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Abstract In the numerical manifold method, there
are two kinds of covers, namely mathematical cover
and physical cover. Mathematical covers are indepen-
dent of the physical domain of the problem, over which
weight functions are defined. Physical covers are the
intersection of the mathematical covers and the physi-
cal domain, over which cover functions with unknowns
to be determined are defined. With these two kinds of
covers, the method is quite suitable for modeling dis-
continuous problems. In this paper, complex crack
problems such as multiple branched and intersecting
cracks are studied to exhibit the advantageous features
of the numerical manifold method. Complex displace-
ment discontinuities across crack surfaces are modeled
by different cover functions in a natural and straightfor-
ward manner. For the crack tip singularity, the asymp-
totic near tip field is incorporated to the cover function
of the singular physical cover. By virtue of the domain
form of the interaction integral, the mixed mode stress
intensity factors are evaluated for three typical exam-
ples. The excellent results show that the numerical man-
ifold method is prominent in modeling the complex
crack problems.
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1 Introduction

Modeling complex crack problems is highly important
for researchers and engineers to quantitatively predict
the life span of cracked structures under service condi-
tions (Daux et al. 2000). For this purpose, a number of
numerical approaches have been proposed in the past
several decades. Through embedding the singular ele-
ments at crack tips, the finite element method (FEM)
was successfully used to compute the stress intensity
factor (SIF) (Barsoum 1977; Kwon and Akin 1989).
However, as we know, in this kind of method, the crack
geometries must be considered at the stage of mesh
generation. This leads to prohibitive burden in meshing
or remeshing for the complex crack problems, such as
multiple cracks, intersecting cracks, branched cracks,
and their growth (Karihaloo and Xiao 2003).

Another effective approach to model crack problems
is the use of meshless (or element-free) methods. Since
elements are not involved any more, meshless methods
avoid distortion or coincidence of elements with the
crack geometries, and therefore are regarded as being
more effective than the FEM in this respect (Belytschko
etal. 1996; Rao and Rahman 2000; Duflot and Nauyen-
Dang 2004). In particular, in the element-free Galerkin
(EFG) method, as a representative, introduction of the
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moving least squares in the interpolation approxima-
tion is beneficial to evaluate the SIF and to model the
crack growth (Belytschko et al. 1994, 1995a,b, 1996;
Krysl and Belytschko 1999; Muravin and Turkel 2006).
However, as we know, the difficulties in the numerical
integration and superimposition of essential boundary
conditions are unavoidably encountered in this kind of
methods (Strouboulis et al. 2000a,b).

At present, a great number of commercial computer
codes have been developed by using the FEM. They
are robust and versatile, owing to the advantageous fea-
tures of the FEM. Within the same framework as the
partition of unity method (PUM) (Melenk ane Babuska
1996; Babuska and Melenk 1997), the extended finite
element method (XFEM) (Daux et al. 2000; Moes et al.
1999; Sukumar and Prevost 2003; Huang et al. 2003;
Sukumar et al. 2000) and the generalized finite element
method (GFEM) (Strouboulis et al. 2000a,b, 2001)
were proposed to overcome the difficulty of the FEM
in mesh generation when tackling complex problems
by constructing a desired conforming approximation
space with a local property.

In the XFEM (Daux et al. 2000; Moes et al. 1999;
Sukumar and Prevost 2003; Huang et al. 2003; Sukumar
etal. 2000), a standard finite element mesh is first gener-
ated as if other internal entities were absent. Then, these
discontinuities will be treated by enriching the interpo-
lation approximation. Taking the crack problem as an
example, the enrichments are two-folded in the XFEM.
For the nodes whose support intersects the crack sur-
face, they will be enriched with a generalized Heav-
iside function. For the nodes whose support contains
the crack tip, they will be enriched with the asymptotic
near tip field. In the GFEM (Strouboulis et al. 2000a,b,
2001), on the other hand, much attention has been paid
to augmenting the finite element space with the ana-
lytically or numerically generated solution for a given
problem on a coarse (or practically acceptable) but reg-
ular mesh. This method has been successfully used to
tackle some typical problems with multiple reentrant
corners, voids and cracks. In the GFEM, the integra-
tion is carried out by employing an effective jagged
refinement algorithm even in an element with a very
complex shape.

The numerical manifold method (NMM) (Shi 1991,
1992) originated from the topological manifold and dif-
ferential manifold. Due to the partition of unity of the
weight functions, the NMM can also be regarded as an
extension of the FEM, like the XFEM and the GFEM.
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More importantly, due to the cover-based property, the
NMM is in essence different from the FEM, and partic-
ularly suitable for modeling discontinuous problems.
The distinct features of the NMM can be manifested
in two aspects. First, the mathematical covers in the
NMM need not conform to the physical domain. Sec-
ond, the degrees of freedom (DOFs) are associated with
the physical covers, rather than the nodes, and there-
fore, discontinuities can be modeled in a more natural
manner, even for a complex case.

The advantages of the NMM lie in solving discontin-
uous problems, and simple crack problems have been
modeled by Tsay et al. (1999), Chiou et al. (2002) and
Li et al. (2005). This paper intends to exhibit the capa-
bility of the NMM in modeling complex crack prob-
lems such as multiple intersecting cracks and branched
cracks, as compared with other effective methods such
as the XFEM and the GFEM. In Sect. 2, the NMM
is systematically introduced in theory and implemen-
tation for complex crack problems. In Sect. 3, three
numerical experiments are carried out, and the SIF
results are compared with the available reference solu-
tions. The conclusions from the current work are made
finally in Sect. 4.

2 Modeling crack problems with the NMM
2.1 Fundamentals of the NMM

The NMM is based on three important concepts, i.e.,
mathematical cover (MC), physical cover (PC) and
cover-based element (CE). MCs are user-defined over-
lapping small patches. Their union is independent of,
but must cover the physical domain of the problem. PCs
are the intersection of MCs and the physical domain.
Here, we use physical domain to represent the portrait
of a physical problem in a general sense. It includes
the problem domain in which the physical problem
is defined, and all the physical features such as inter-
nal discontinuities (e.g. joints, material interfaces and
cracks) and external geometries on which boundary
conditions are prescribed. Obviously, the physical
domain is problem dependent. Thus, PCs are in fact
the subdivision of MCs by the physical domain. Fur-
ther, the CE in the NMM is defined as the common
region of several PCs.

To visualize the three concepts, the example illus-
trated in Fig. 1 is used. There are two MCs in total, a
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Fig.1 Covers and elements in the NMM. a The physical domain
(circumscribed by the thick lines) and two mathematical cov-
ers. b Four corresponding physical covers. ¢ Five corresponding
cover-based elements

rectangle M; and a circle M;. The thick lines define
the physical domain 2. Intersected with the physical
domain, M| and M, are divided, respectively, into two
PCs,i.e. P(1; 1) and P(1;2),and P(2; 1) and P(2; 2),
as shown in Fig. 1b. Here, notation P (i; j) represents
the jth PC generated from the ith MC.

So far, each MC is associated with several PCs, and
each PC has two indices, i.e. i and j. To simplify an
implementation, it is helpful to reallocate a single index
to each PC. Considering the simple example shown
in Fig. 1, for instance, the four PCs can be renum-
bered by P; = P(1;1), P, = P(1;2), P = P(2; 1),
Py = P(2;2) in light of different MCs.

These four PCs finally form five CEs as shown in
Fig. 1c, numbered by E| = E (P, P3), E» = E (P3),
and so on.

Oneach MC M/, a weight function is defined, which
satisfies

p1(x) € CO (M)

01X =0, x ¢ M (12)
with

> =1 (1b)
if XéM]

Equation la indicates that the weight function has
non-zero value only on its corresponding MC, but zero
otherwise, whereas Eq. 1b is just the partition of unity
property to assure a conforming approximation. The
weight function ¢; (x) associated with M will be accor-
dingly transferred to P;, any of the PCs P (1, j) in My,
which is expressed as ¢; (x) on P; hereafter.

With these concepts, the interpolation approxima-
tion can be constructed. First, a cover function u; (x)
is defined individually as a local approximation on the
PC P; for the displacement field, which can be con-
stant, linear, high order polynomials or other functions
with unknowns (also termed DOFs) to be determined.
Then, the global displacement u(x) on a certain CE e
is approximated to be

V= D e wix) )

i
if eCP;

2.2 Generation of physical covers for crack problems

In Fig. 1, we use rectangular and/or circular MCs. The-
oretically, any shape of MCs can be accepted in the
NMM. In this paper, for convenience of generating
covers and constructing weight functions, a finite ele-
ment mesh is adopted. To this end, the finite element
mesh is re-examined from the viewpoint of the NMM.
It is noted that the so-called finite element mesh here
is independent of the physical domain of the problem,
and therefore different from the one actually used in
the FEM. Further, due to the dissimilarity between the
physical domain and the union of MCs, the CEs may
have arbitrary shape, different from the finite elements
in the FEM, according to the formation procedure in
the NMM.

Regarding the point at which the weight function
is unity and in the neighborhood of which the weight
function is not identically equal to unity as a star, the
union of the finite elements sharing a same star forms
a MC. Figure 2 shows a triangular finite element mesh,
and a resulting hexagonal MC with the star marked by
S. The weight function for such a hexagonal cover is
easily constructed by borrowing the shape functions of
the triangular finite element, and depicted in Fig. 3. Itis
not difficult to verify that the weight functions satisfy
Eq. 1.

In the NMM, the MCs are designated by users,
regardless of the crack entity. When a crack is present in
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Fig. 2 A triangular finite element mesh and the resulting MC

Fig. 3 Weight function for a hexagonal MC

the physical domain, it will intersect some of the MCs
(Lin 2003). As shown in Fig. 4a, for the MC split com-
pletely by a single crack surface, two different PCs will
then be formed. Similarly, the MC split by a branched
crack will become three PCs (Fig. 4b) while the MC
split by an intersecting crack will generate four PCs
(Fig. 4c). In the framework of the NMM, presence of a
crack surface will produce additional PCs (Chen et al.
1998), and in general, if a MC is divided into m com-
pletely isolated regions by crack surfaces, m-1 PCs will
be added.

For the MC partially cut by the crack (shown in
Fig. 4d), only one PC will be formed. This PC con-
tains the crack tip singularity, and is called singular PC
in this context, in contrast to other conventional PCs.

Hence, as shown in Fig. 5, when complex cracks are
modeled with the NMM, each MC starred by square
is divided into several conventional PCs, and each MC
starred by circle becomes a single singular PC.

@ Springer
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Fig. 4 Generation of PCs for crack problems

2.3 Modeling cracks in the NMM

2.3.1 Modeling displacement discontinuity across
the crack surface

For the case of continuous problem, the displacement
approximation in Eq. 2 is always continuous. For the
case of discontinuous problem, as mentioned in
Sect. 2.2, a crack surface may cut a MC into two con-
ventional PCs. For clarity, we study the displacement
along the crack surface while the crack passes through
the shaded triangle shown in Fig. 6a. The triangle is
formed by three MCs of Ms, Mg and My. As shown in
Fig. 6b, M5, Mg and My are divided, respectively, into
two PCs,i.e. P(5; 1)and P(5; 2), P(6; 1) and P (6; 2),
and P(9; 1) and P(9; 2). For convenience, the six PCs
are renumbered by Ps = P(5; 1), Ps = P(5;2), P; =
P(6: 1), Ps = P(6:2), P9 = P(9; 1), Pio = P(9;2)
in light of different MCs. Thus, from Eq. 2, the dis-
placement jump across the crack surface in the shaded
triangle is obtained as

[Wo]= > ewu- X axu

ie€{5,7,9} i€{6,8,10}

Knowing that ¢s(x) and ¢g(x), ¢7(x) and ¢g(x),
@9(x) and @o(x) are identical since they are defined
on the same MC, the above equation can be further
simplified as
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Fig. 5 Treatment of
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Fig. 6 Illustration of
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Considering that us and ug, u; and ug, ug and ujg
are individually defined cover functions and contain
independent DOFs, the displacement discontinuity can
be obviously manifested.

Complex crack surfaces may cut the mathematical
cover into more conventional PCs (e.g. three PCs for a
branched crack, four PCs for an intersecting crack), as
shown in Fig. 4a—c. Since there are independent cover

11 12

= PO;1y’

functions for each individual PC, the displacement dis-
continuity across any surface of multiple intersecting or
branching crack surfaces will be modeled in a similar
way, as indicated in Eq. 3.

Here, we compare the NMM with the XFEM and the
GFEM in this respect. The XFEM adopts the general-
ized Heaviside function H (x) to describe the displace-
ment discontinuity across a crack surface. The H (x)
has two values, i.e., +1 above the crack surface and
—1 below the crack surface. This function is valid to
represent the displacement jump across a single crack
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Fig. 7 Treatment of
complex cracks in the
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surface. However, it is insufficient for complex crack
problems. In such a case, additional technique must be
adopted. For instance, in Daux et al. (2000), a branched
crack is defined as the intersection of a main crack and
a secondary crack (see Fig. 7a). First, the main crack is
treated, in which the nodes whose support completely
cut by the main crack surface are enriched with gen-
eralized Heaviside function and the nodes whose sup-
port containing the main crack tips with crack tip func-
tions. Then the secondary crack is treated in a simi-
lar way. Lastly, a junction function J(x) is added to
all the nodes whose support contains the junction. For
an intersecting crack, a main crack and two second-
ary cracks (Fig. 7b) must be defined and then enriched
accordingly. So, in the XFEM, enrichment for com-
plex cracks are problem-dependent and requires addi-
tional functions. Recently, Simone et al. (2006) uses
the GFEM for polycrystal by incorporating a different
discontinuous functionH, (x), defined by Hy (x) = 1
when x within grain ¢, and 0 otherwise. Modeling a
triple junction with this method is illustrated in Fig. 8.
Later, Duarte et al. (2007) extended it for branched
crack problems. This method is over the XFEM because
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Fig. 8 Treatment of a triple junction in the GFEM from Simone
et al. (2006)

of its simplicity for arbitrary number of branches, selec-
tion of enrichment functions, and extension to three-
dimensions. However, the discontinuous function in the
GFEM is based on a polycrystalline aggregate topol-
ogy, which only allows the crack to stop at the edge of
finite elements.

To sum up, since the FEM was originally devised
for continua, the displacement discontinuity can only
be modeled by introducing additional functions in the
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XFEM and the GFEM. In contrast, since the NMM was
originally devised for discontinuous problems, even
with movement, this discontinuity can be modeled in a
straightforward and natural manner wherever the crack
stops, even for complex cases (see Sect. 3.3), sim-
ply by using different cover functions associated with
individual PCs inside one MC, without introducing
any additional functions. This way can also be easily
extended to the three-dimensional counterpart.

2.3.2 Modeling the near tip singularity in the NMM

The original NMM adopts a polynomial cover func-
tion. This is sufficient for conventional PCs, even to
model the discontinuity across a crack surface. How-
ever, for a singular PC discussed in Sect. 2.2, because
of the stress singularity near the crack tip, the poly-
nomial cover function is insufficient. Considering the
fact that the singular PC is formed by a whole MC,
under which the NMM is identically reduced to the
FEM in this case, a similar way suggested in the EFG
(Fleming et al. 1997) and the XFEM (Moes et al. 1999;
Daux et al. 2000) is chosen to enrich the cover functions
as the local approximation on the same mathematical
basis.

Thus, for a more general CE e with singular PCs, the
global displacement approximation in Eq. 2 is rewritten
as
v = D e (i) + 6 (%) 5)

iceCh;
where 1; is an additional cover function for the ith PC.

The conventional cover function wu;(Xx) is often

expressed by

() =p ) -a (©6)
where a; is the array of DOFs, and pY(x) is the matrix
of polynomial bases as

T 1 0x0yO0 .-
P®=B10x0y-J )
in the two dimensional setting.

As we know, near the crack tip, the asymptotic two-
dimensional field can be expanded by following four
basis functions in isotropic elasticity (Fleming et al.
1997; Moes et al. 1999)

0 (%
[P Dy @3 Py] = [ﬁsin 3 r cos 3

% %
/7 sin 6 sin > /7 sin 6 cos §:|
(®)

where r and 6 are polar coordinates in the local crack tip
coordinate system. It is noted that the four basis func-
tions can construct arbitrary displacement field near the
crack tip, and moreover, the first term which is discon-
tinuous across the crack surface (i.e. 6 = =4mw) will
recover the jump property expressed in Eq. 3. Based
on Eq. 8, the additional cover function for a singular
cover takes the form

U = o¢; (€))

where ¢; is the array of additional DOFs associated with

the enrichment, and @ is the matrix of corresponding

bases as

<I>_|:CI>1O P, 0 P33 0 Dy O
0O &; 0 P, 0 D3 0 Py

in the two-dimensional setting.

} (10)

2.4 Formulations of the NMM

Discrete equations for a linear elastic problem with
cracks can be obtained from the Galerkin formulation
(Lin 2003). Let u € V be the displacement trial func-
tion with V. = H' (), and du € V be a test function.
A weak form of the discrete problem on a CE e is to
find u” in the finite dimensional subspace vh c v,
vsu" € V" such that

/a(uh) : e(Suh)dQ+k/(uh —u)-sudl
Q. re

=/i-5uhdr+/b.5uhdsz (an
re Qe
where o and € are stress tensor and strain tensor, respec-
tively. €2, is the domain occupied by the CE e subjected
to the body force b. The boundary conditions consist
of the essential boundary condition u = u on I';, and
traction boundary condition o - n = t on I'’.

In the NMM, when tackling the discontinuities effec-
tively, the essential boundary conditions are superim-
posed in a weak form, unlike in the FEM. This is
because the union of MCs is not necessarily identical
to the physical domain. In this paper, for the purpose of
simplicity, the penalty method with a real penalty num-
ber X is chosen to superimpose the essential boundary
conditions, as the second term on the lefthand in Eq. 11.
Since the single-field formulations are preserved and no
additional DOFs involved, the additional burden proves
to be trivial by our numerical experiments.
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From Egs. 5 and 9, the trial function u” and the test
function su” are expressed as

W00 =3 i () - ai + @) (12a)
') => g (x) - (pT(x) Sa; + <I>8c,~) (12b)

By substituting the above two equations into Eq. 11,
and considering the arbitrariness of the test functions,
we formally obtain

Kq=F (13)

where q is the vector of DOFs, K and F are the equiv-
alent stiffness matrix and the load vector, respectively.
The element contribution to K and F are as follows

ka,-aj ka,'(:j
kte] = |:kc,-aj kc,-cj }’ (143)
fe = {fai f£ei }T (14b)

with their entries being

K% = / (Bri)TDBSfdQ"‘)‘/(‘PiP)T ~(#P)

Qe re
dl'(ri, s; = a;, ¢;) (15a)
£2i =/<pindF+/<pindSZ+k/<piPﬁdF
r¢ Qe Ty
(15b)
fei :/(pi<1>t_dF+/<pi<I>bdQ+)»/goi<I>ﬁdF
re Qe s
(15¢)

where D is the elasticity matrix. The entries of the
strain-displacement matrix B are

(piP) 0

B =0 (@iP), |, (16a)
(@iP), (¢iP)

B¢ = [B1 B, B3 B4], (16b)
(Qaicba),x 0

B,=1]0 (0i ®y),y (x=1~4). (16¢c)

(@i q)a),y (i Po) x

3 Numerical examples and discussion

In this section, we give three examples of complex
crack problems by using the present NMM. In Sect. 3.1,
a symmetrically branched crack problems are stud-
ied. In Sects. 3.2 and 3.3, problems with a star-shaped
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Fig. 9 A symmetrically branched crack in a finite plate under
tension

crack and a tree-shaped crack are investigated, respec-
tively. For these crack problems, the SIFs are calculated
through the domain form of interaction integral (Moes
etal. 1999). For the SIF results, the convergence is stud-
ied, and the accuracy is compared with the reference
solutions available.

3.1 A symmetrically branched crack in a finite plate

Our numerical experiments start with a finite plate with
a symmetrically branched crack under uniform tension
as shown in Fig. 9.

SNLNSN f\/'\"-"\/".\"_:""\.'\ NN NINNNN/

\f\j'\/\,\; \f‘vr\
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"/ /\f >\_ N/
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Fig. 10 The branched crack and the MCs
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Fig. 11 Variations of the normalized SIFs with the cover size
for the branched crack problem. a F ,A. b F, IB. cF ,B, (dash line
represents the converging value of each normalized SIF)

In this example, the plate dimensions are fixed to
be W = 5 and H = 4, and material constants are
the Young’s modulus £ = 1000 and the Poisson’s
ratio v = 0.3. The uniform tension at the boundary
is assumed to be 0 = 1.0. The normalized stress inten-
sity factors for tips A and B are defined as

(@ |
28 -
[ +
sal + Present
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Fig.12 Comparison of the normalized SIFs for a branched crack
problem. a F,A. b F,B. c FIB,

FIA = K;‘/a«/nc, FIB = Kf/d«/ﬂ’c,
Ff =kKBjomc (17)

with ¢ = (a + bcos6)/2 (see Fig. 9).
As previously mentioned in Sect. 2.2, the uniform
hexagonal MCs like those in Fig. 2 are chosen, based
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Table 1 Normalized SIFs comparison for a branched crack

b/a 0 30° 45° 60°

NMM * RE (%) NMM * RE (%) NMM * RE (%)

0.1 FIA 1.020 1.008 1.19 0.999 1.010 1.09 1.002 1.012 0.99
FIB 0.669 0.679 1.47 0.553 0.560 1.25 0.386 0.390 1.03
FE 0.196 0.199 1.51 0.352 0.347 1.44 0.430 0.435 1.15

0.3 FIA 1.022 1.016 0.59 1.026 1.019 0.69 1.020 1.023 0.29
F,B 0.664 0.661 0.45 0.509 0.512 0.59 0.307 0.309 0.65
FIBI 0.274 0.276 0.72 0.441 0.438 0.68 0.521 0.526 0.95

0.5 Ff 1.013 1.021 0.78 1.016 1.026 0.97 1.026 1.033 0.68
FE 0.652 0.658 0.91 0.496 0.500 0.80 0.290 0.288 0.69
FIBI 0.311 0.309 0.65 0.470 0.474 0.84 0.563 0.559 0.72

0.7 F,A 1.027 1.024 0.29 1.036 1.033 0.29 1.038 1.046 0.76
FIB 0.658 0.657 0.15 0.499 0.496 0.60 0.284 0.282 0.71
FIBI 0.324 0.327 0.92 0.497 0.493 0.81 0.577 0.573 0.70

0.9 Fi 1.034 1.028 0.58 1.042 1.040 0.19 1.054 1.061 0.66
FIB 0.655 0.658 0.46 0.499 0.495 0.81 0.282 0.281 0.36
F,B, 0.396 0.399 0.75 0.507 0.503 0.80 0.580 0.577 0.52

*Chen and Hasebe (1995)

on which PCs and CEs are formed. In addition, to man- c

ifest the resolution of the mathematical cover system, $ $ $ t t t t

we define the cover size h as the radius of the circum-

scribed circle of MC cover in this context.

To study the convergence, a branched crack with - —

a/W = b/W = 0.2 and 8 = 45° is investigated. W

The representative discretized domain with cover size B

h = 0.18 W is shown in Fig. 10, in which there are G a A e c

493 MCs, 503 PCs and 913 CEs. The SIFs for differ- 5

ent cover size h are calculated and the normalized SIF - —

results versus W/ h are plotted in Fig. 11. It is evident w

that the SIF converges to a certain value as the MC is

consecutively refined.

Next, the influence of the finiteness of plate on the w w

SIFsis examined by varyinga/ W from 0.1 to 0.9 while
keeping a/b = 1,60 = 45° and h = 0.04 W. The SIFs
are calculated and compared with the reference solu-
tion from the XFEM (Daux et al. 2000) in Fig. 12. It
is seen that the agreement between the present results
and the reference solution is satisfactory.

The influence of the crack geometry on the SIFs
is also investigated by varying b/a and 6, while fix-
ing a/W = 0.05. In calculation, & takes the value of
0.02 W for relatively larger b/a (e.g. 0.5, 0.7 and 0.9),
while 7 = 0.01 W for smaller b/a to assure that there
is only one crack tip in a CE. Since the crack size is
sufficiently small as compared with the plate size in
our modeling, it is reasonable to choose the SIFs of a
branched crack in an infinite plate as the reference solu-
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Fig. 13 A star-shaped crack in a square plate under bi-axial
tension

tion (Chen and Hasebe 1995). The SIF results from the
present NMM and the reference solution (Chen and
Hasebe 1995) are listed in Table 1. It is seen that the
relative error (RE) is less than 1.6% for all the cases.

3.2 A star-shaped crack in a square plate

Next, we examine a star-shaped crack in a square plate
subjected to bi-axial tension as shown in Fig. 13. The
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Fig. 14 Variation of the SIFs with the cover size for a star-
shaped crack problem.a FA, b F ,B .¢cF lb} (dash line represents
the converging value of each normalized SIF)

normalized stress intensity factors at tips A and B are
defined as

F,A = Kf‘/cn/na, F,B = KIB/a«/na,
FP =KPjoma (18)

In the analysis, the plate size is taken to be W = 2.0,
and the bi-axial tension to be unity. The normalized

Table 2 Number of PCs and CEs for different a/ W

a/W 01 02 03 04 05 06 07 08 09

PCs 2921 2951 2979 3009 3037 3065 3095 3123 3153
CEs 5612 5642 5670 5700 5728 5756 5786 5814 5844

(b)
™ A V. . A S, 7

SNNINININ/N/N/A
AAANRNNNNN/

NN I I dIN N I X

Fig. 15 Star-shaped crack and MCs (a/W = 0.1). a Global
view. b Zoom in the region of the star-shaped crack

SIFs are inspected. The results for different cover sizes
are plotted in Fig. 14 for the case of a/ W = 0.2, and
the convergence can be apparently found as the cover
size is consecutively decreased.

Similar to that in Sect. 3.1, the influence of the finite-
ness of plate on the SIFs is also investigated. This time,
the cover size h = 0.05W is used. In this case, the
number of MCs is fixed at 2895, while numbers of PCs
and CEs changes with the crack length (see Table 2).
It should be noted that the numbers of MCs, PCs and
CE:s in this paper can be sharply decreased if adaptive
finite element mesh is adopted. However, it is not the
issue of the current study. To avoid the tediousness,
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Table 3 Normalized SIFs comparison for a star-shaped crack

a/W  Ff FP FE

0.1 0.758 0.751 - 0.741 0.767 0.769 - 0.741 0 0 - 0

0.2 0.771 0.767 0.769 0.757 0.771 0.768 0.769 0.758 0 0.001 0.001 0.001
0.3 0.789 0.793 0.797 0.785 0.798 0.798 0.799 0.788 0.002 0.002 0.002 0.002
0.4 0.821 0.829 0.835 0.826 0.854 0.847 0.853 0.837 0.007 0.008 0.008 0.007
0.5 0.887 0.886 0.892 0.885 0.924 0.926 0.923 0.909 0.016 0.018 0.02 0.017
0.6 0.971 0.967 0.975 0.976 1.04 1.045 1.041 1.018 0.036 0.036 0.045 0.034
0.7 1.107 1.097 1.102 1.114 1.234 1.237 1.238 1.194 0.061 0.059 0.062 0.053
0.8 1.340 1.342 1.345 1.559 1.562 1.558 0.082 0.086 0.08

0.9 1.930 1.931 1.915 - 2.166 2.193 2.161 - 0.089 0.087 0.091 -

*Daux et al. (2000), ** Muravin and Turkel (2006), *** Cheung et al. (1984)

—’, means no corresponding solution

—~ ——
— —_—
H
— —
0 = 9
D —
H
— e
w w
—~ —

oy

Fig. 16 A tree-shaped crack in a square plate under bi-axial
tension

only the CEs for the case of a/W = 0.1 are shown in
Fig. 15. The computed SIF results are summarized and
compared with three reference solutions, respectively
from Daux et al. (2000), Muravin and Turkel (2006),
and Cheung et al. (1984) in Table 3. From this table,
the excellent accuracy can also be easily seen.

3.3 A tree-shaped crack in a finite plate

The last example is intended to show the capability of
the present NMM in solving very complex crack prob-
lems. As shown in Fig. 16, this is a coined problem
with a tree-shaped crack under tension in a finite plate.
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Fig. 17 Tree-shaped crack and MCs. a The discretized domain
with cover size & = 0.073 W. b Zoom in the region of tree-shaped
crack

Solving this example seems very difficult by using the
XFEM and GFEM. However, using the NMM, it can
be treated in quite a same manner as in Sects. 3.1 and
3.2.
In computation, the dimensions are W = H = 6.0,
=b =2c = 10and ¢ = 45°, B = 90°. The
external load is bi-axial uniform tension with o = 1.0.
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Fig. 18 Variation of the
SIFs with the cover size for
tree-shaped crack. a F IA. b
FP.cFE.dFP.eFF. £
FICI' g FID. h Fﬁ (dash line
represents the converging
value of each normalized
SIF)

The material constants are £ = 1000 for the Young’s
modulus and v = 0.3 for the Poisson’s ratio.

To the authors’ knowledge, the reference solution
to this problem is not available. So, the current work
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focuses on the convergence test for such a problem,

and the crack tips labeled by A, B, C and D in Fig. 16

are investigated. The normalized SIFs for these crack
tips are expressed as
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FIM = K;W/a«/na, FIA}I = K%/o«/na
(M=A,B,C, D) 19)

The calculation of SIFs for different cover sizes # is
performed. For the case of 1 = 0.073 W, 3636 overlap-
ping hexagonal MCs are used to cover the whole phys-
ical domain, and 3744 PCs together with 7125 CEs are
eventually formed, as shown in Fig. 17. The SIFs results
for different values of W/ h are plotted in Fig. 18. It is
seen that, even for such a complex problem, the NMM
shows a consistent convergence as the MCs are gradu-
ally refined.

4 Conclusions

The numerical manifold method was originally devised
to solve discontinuous problems by introducing the
concepts of mathematical cover and physical cover.
It has two distinct features: one is that the mathemat-
ical covers are independent of the physical domain,
and the other is that the DOFs are defined over the
physical covers. In combination with the crack prob-
lems, the method was first summarized in detail, and
the formulations were then derived. Three numerical
experiments for complex crack problems such as a
branched crack, a star-shaped crack and a coined tree-
shaped crack problem were conducted. The results fully
exhibited that with the numerical manifold method the
complex crack problems can be effectively modeled
in a more natural manner. The forthcoming work to
model the growth of complex cracks with this method
is now under study and the results are awaited. Together
with the well known advantageous property in model-
ing blocky problems, the numerical manifold method
so far seems to be a promising approach to tackle the
whole failure process of material or a structure includ-
ing crack initiation, crack growth, crack coalescence,
and then formation of a complete failure plane, and
lastly movement of discrete bodies.
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