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Abstract In this paper the integral equation approach
is developed to describe elastic-damaging materials.
An isotropic damage model is implemented to study
nonlinear structural problems involving localisation
phenomena. Especially for the cases that exhibit stress
or strain concentrations, an integral approach can be
recommended. Besides, the technique is able to repre-
sent well high gradients of stress/strain. The governing
integral equations are discretised by using quadratic
isoparametric elements on the boundary and quadratic
continuous/discontinuous cells in the zone where the
nonlinear phenomenon occurs. Two numerical exam-
ples are presented to show the physical correctness and
efficiency of the proposed procedure. The results are
compared with the local theory and they turn out to be
free of the spurious sensitivity to cell mesh refinement.

Keywords Damage · Nonlocal · Integral equations ·
Arclength

1. Introduction

Quasibrittle materials, such as concrete, rock, tough
ceramics or ice, are characterised by the development
of nonlinear fracture process zones, which can be mac-
roscopically described as regions of highly localised
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strains. The classical linear elastic fracture mechanics
cannot be directly applied to such materials, because
of the existence of a narrow fracture process zone con-
taining a large number of distributed microcracks at the
fracture front. In the last twenty years Continuum Dam-
age Mechanics has grown as a link between the classical
Continuum and the Fracture Mechanics. This approach
tries to model the development, the growth and finally
the coalescence of microdefects which could lead to
the occurring of macrocracks and eventually of rup-
ture. One of the most commonly used damage mod-
els introduces an arbitrary variable tensor to model the
growth and the diffusion of the microcracks inside the
solid. Such a tensor is introduced in the constitutive
equations in order to describe the region of the body
in which a degradation of the material elastic prop-
erties due to the microcracking phenomenon occurs.
In practical application the damage is often consid-
ered isotropic, i.e. a scalar variable d rather than a
tensor is used. The development of material damage
produces a strain softening behaviour: after a thresh-
old of stress or strain is reached, the model exhibits
a decreasing stress with increasing strain. The prob-
lem is that modelling the softening materials as elas-
tic-damaging fails because, as pointed out already by
Hadamard, the dynamic initial-boundary-value prob-
lem changes its type from hyperbolic to elliptic and
becomes ill posed. The finite element (FE) numerical
solution is unobjective with respect to the choice of
the mesh and, upon the mesh refinement, it converges
to a solution with a vanishing energy dissipation. To
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14 V. Mallardo

overcome such drawbacks some regularisation tech-
niques have been proposed. One of these is based on the
formulation of a nonlocal continuum. The idea comes
from the assumption that standard Continuum Mechan-
ics theories are not appropriate when the microscopic
material heterogeneity is characterised by an internal
length which cannot be neglected in comparison with
the macroscopic length of the structure. The material
cannot be treated as a continuum any more, but the
model needs to be enriched in order to keep in count
that the range of the microscopic interaction forces has
to be considered long with respect to the macroscopic
level. The idea of the integral-type nonlocal material
model is that the constitutive law at a point of a contin-
uum involves weighted averages of a state variable over
a certain neighbourhood of that point. A characteristic
length is also introduced to control the spread of the
nonlocal weight function. A lot of work has been done
in the FE context; see for example Jirásek (1998) for a
critical comparison of approaches of nonlocal models
for damage and fracture, Jirásek and Rolshoven (2003)
for the description of various integral-type nonlocal
plasticity models and Bažant and Jirásek (2002) for an
interesting survey of progress of nonlocal integral for-
mulations of plasticity and damage. In the formulation
of a nonlocal model, several choices have to be made
regarding the definition of the variable to be treated as
nonlocal, the definition of the weight function and the
definition of the characteristic length. In Comi and Per-
ego (2001) the issue of the relation between the symme-
try of the tangent operator in a finite element approx-
imation and the choice in the constitutive variable to
average is performed. In Jirásek and Patzak (2002) the
Authors present and discuss a general framework for
a consistent derivation of the nonlocal tangent stiff-
ness: such a matrix turns out to be nonsymmetric but
the lack of symmetry, in the Authors’ opinion, cannot
be considered as a substantial drawback. In Borino et
al. (2003) a thermodynamically consistent formulation
for nonlocal damage models is presented: the main fea-
ture of the proposed scheme is that the nonlocal inte-
gral operator is self-adjoint at every point of the solid,
including zones near to the boundary of the solid. The
very first coupling of the Boundary Element Method
(BEM) with nonlocal operators is given by Garcia et
al. (1999). The damage model by Mazars is involved
and the nonlocal operator is applied to the equivalent
strain of the damage function. The main limitation of
the paper is the application of the grid damage model:

the damage is assumed constant in every internal cell,
therefore the Boundary Integral equations are written
by collocating in every node of the boundary cell and
compatibility and equilibrium equations are imposed
across the boundary between two adjacent cells. There
is an enormous increase of computational effort due
to the arising system of equations which makes the
procedure disadvantageous when compared to a clas-
sical FE approach. It must be pointed out that integral
formulations are very suited to represent high gradi-
ents and they can be recommended in the cases which
exhibit stress or strain concentrations. Both the BEM
and the Boundary/Domain Element Method (BDEM),
in fact, are able to furnish a very precise evaluation
of the stress tensor in any internal point and to reduce
tremendously the number of the unknowns when the
nonlinear zone is relatively small in comparison with
the overall size of the finite domain. In order to deal
with damage it is necessary to implement an arclength
control technique. The problem is addressed in Mal-
lardo and Alessandri (2004) where the arclength pro-
cedure is combined with the BDEM in physically non-
linear problems. The arclength constraint, added to the
governing integral equations, forms a nonlinear sys-
tem of equations which is solved by applying directly
the Newton-Raphson method. Only in 2002–2003 have
Lin et al. (2002) and Sládek et al. (2003) incorporated
an integral type nonlocal strain softening localisation
limiter into the BDEM; nevertheless, they use a for-
mulation which both gives some locking effects in FE
and they cannot deal with snap-back behaviours. In
Alessandri et al. (2000) a nonlocal integral formula-
tion for elastic-damaging materials is presented. In the
paper only the nonlocal formulation and the coupling
with BDEM are presented. Some numerical results are
given in Mallardo (2004) but the nonlocal approach
is not completely and adequately developed. Benallal
et al. (2006) proposed a two-dimensional (2D) non-
local damage model in the Boundary Element (BE)
context. Linear boundary elements and linear domain
cells are implemented. In Sfantos and Aliabadi (2007a)
an interesting cohesive grain boundary integral formu-
lation is proposed for simulating intergranular micro-
fracture evolution in polycrystalline brittle materials. In
Sfantos and Aliabadi (2007b) a multi-scale boundary
element method for modeling damage is proposed.

The present study deals with a thermodynamically
consistent formulation for integral type nonlocal dam-
age models coupled with the BDEM. The boundary is
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discretised into quadratic continuous elements whereas
the part of domain in which the nonlinear term is
expected to occur is discretised into quadratic quad-
rilateral/triangular cells. Proper procedures are devel-
oped in order to handle the involving singular integrals.
The strain energy release rate is taken as the variable to
consider as nonlocal. The advantage of such a choice
is in the possibility of carrying out all constitutive cal-
culations locally at each cell point despite of the non-
locality of the model. Another consequence is the lack
of symmetry of the resulting stiffness tangent matrix,
but this is not an actual drawback in the BEs context;
in fact, even the classical (collocation) BEM approach
leads to a coefficient matrix which is not symmetric
at all. In order to keep in count the possibility of any
type of structural response an arclength procedure, as
implemented by Mallardo (2004), is used.

2. The damage model

Following an idea by Krajcinovic (1996), the nonlinear
behaviour of quasi-brittle materials can be phenomeno-
logically represented by continuum damage models in
which a tensor d gives, for any plane containing the
point, the measure of the micro-crack diffusion. The
value of such a tensor in any point is related to the
ratio between the effective area of the intersection of
all microcracks lying in the plane and the area of the
intersection of the plane with the representative vol-
ume element (RVE). In the present contribution the
damage is assumed to be isotropic, i.e. d is scalar, and
the formulation is confined to the case of small induced
strains. The stress–strain relation can be written in the
following way:

σ = f (d)Cel : ε (1)

where Cel is the fourth order elastic moduli tensor, σ

and ε are the stress and the strain tensor respectively
and f (d) is a suitable function of the damage parame-
ter d. Some possibilities are given for f (d). The most
common is the linear one:

f (d) = 1 − d (2)

which satisfies the phenomenological meaning of d.
Another choice is the quadratic one:

f (d) = (1 − d)2 (3)

Such a position relates d to the reduction of the strain
energy release rate, rather than to the reduction of area,
due to the diffusion of microcracking.

In order to set the model consistently with thermody-
namic principles, it is necessary to introduce the energy
per unit of volume Y :

Y := 1

2

∂ f (d)

∂d
ε : Cel : ε (4)

the kinematic internal variable γ and the force X whose
definition depends on the way the nonlinear aspect of
the phenomenon is described.

By comparison with plasticity, X could be defined
as:

X = X1 := hγ (5)

Another definition is (see Comi and Perego 2001):

X = X2 := k lnn c

1 − γ
(6)

where k, c and n are material parameters.
It can be proved (see Comi and Perego 2001;

Benvenuti et al. 2002 for details) that both formulations
are consistent with thermodynamic principles assum-
ing the existence of an Helmholtz free energy of the
form:

ψ(ε, d, γ ) = 1

2
ε : f (d)Cel : ε + ψnl(γ ) (7)

where the first term is the damage elastic strain energy
and the second term (nl stands for non linear) is the
energy stored in the microstructure due to the change
of the material internal properties. In this context Y
and X assume the meaning of thermodynamic force
conjugated respectively to d and γ . The expressions
(1), (4), (5) and (6) can be obtained by well established
procedures based on the assumption that the intrinsic
dissipation is equal or greater than zero for any admissi-
ble deformation mechanism, be it elastic or damaging,
if a suitable expression of the nonlinear part of the free
energy is given.

The expressions of ψnl related to relations (5) and
(6) are respectively

ψnl(γ ) = ψnl
1 (γ ) = 1

2
hγ 2 (8)

ψnl(γ ) = ψnl
2 (γ ) = −k(1 − γ )

n∑

i=0

n!
i ! lni

(
c

1 − γ

)

(9)

where by definition 0! = 1.
The existence of a damage activation function

g(Y, X) is now assumed. Under the hypothesis of gen-
eralised associative damage behaviour, the damage acti-
vation function can be written either as:

g(Y, X) = g1(Y, X) = Y − Y0 − X (10)

or as:
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16 V. Mallardo

g(Y, X) = g2(Y, X) = Y − X (11)

depending on the expression of ψnl assumed (respec-
tively 8 or 9). The evolution equations read:

g(Y, X) ≤ 0
.

d = .

λd = .
γ

with
.

λd ≥ 0 and
.

λd g = 0 (12)

in any point of the body V .
At the generic iteration and at the points where the

damage activation function is zero (points x ∈Vd ⊆ V ),
the response is either elastic or damaging and the fol-
lowing relations must hold:
.
g ≤ 0

.

λd ≥ 0
.

λd
.
g = 0 (13)

Expanding the damage activation function in its rate
form leads to:

.
g(Y, X) = ∂g

∂Y

.

Y + ∂g

∂X

.

X = .

Y − .

X (14)

where:

.

Y = 1

2

∂2 f (d)

∂d2 ε : Cel : ε
.

d + ∂ f (d)

∂d
ε : Cel : .ε (15)

and
.

X1 = ∂X1

∂γ

.
γ = h

.
γ (16)

.

X2 = ∂X2

∂γ

.
γ = − kn

1 − γ

.
γ lnn−1

(
c

1 − γ

)
(17)

The main difference between the two definitions of the
internal variable X conjugate of γ stands in the way the
softening branch is described. In fact, it is possible to
obtain an analytical solution in the simple case of uni-
axial compression/tension test. Figure 1 shows such a
difference: it is possible to notice that the Eq. 6 gives a
softening branch (Fig. 1b) which asymptotically tends
to zero stress.

The nonlocal version of the simple model described
above is obtained by substitution of the strain energy

rate Y with its nonlocal value. The advantage of this
choice for the linear damage model is the possibility
of carrying out all constitutive calculation locally in a
way which is formally equivalent to the local version,
despite of the nonlocality introduced. Other choices are
also possible with different physical and computational
implications (see for instance Jirásek 1998).

If Y (x) is the local value at a point x ∈ V , the
corresponding nonlocal value is defined by:

Y (x) =
∫

V

W (x, y)Y (y)dV (y) (18)

The weight function W (x, y) is given by:

W (x, y) = W0(x, y)

W (x)
(19)

where W0(x, y) is a monotonically decreasing non-neg-
ative function of the distance r = ‖y − x‖ here chosen
as the Gauss distribution function, i.e.:

W0(x, y) = e
−‖x−y‖2

2l2c (20)

W (x) is introduced in order to ensure that uniform dam-
age fields are not modified by the spatial average. This
is guaranteed by posing:

W (x) =
∫

V

W0(x, y)dV (y) (21)

i.e. by requiring that:
∫

V

W (x, y)dV (y) = 1 ∀x ∈V (22)

The parameter lc in Eq. 20 plays the role of an inter-
nal length controlling the nonlocal spatial spread of the
damage. The particular nonlocal model here consid-
ered has a nonsymmetric stiffness tangent matrix, but
two points must be underlined: firstly, a symmetric non-
local damage formulation is theoretically appealing but

Fig. 1 stress–strain
behaviour for the 1-D
model. X = hξ (a),
X = k lnn c

1−ξ (b)

(a) (b)
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Integral equations and nonlocal damage theory 17

less suitable for practical computational purposes than
a nonsymmetric one, secondly, the lack of symmetry
is present in the classical BEM approach even for the
linear elastic case, therefore no more complications are
introduced. Another reason of the lack of symmetry of
the proposed model comes from the weight function,
i.e. W (x, y) �= W (y, x) . Borino et al. (2003) proposed
a new averaging weight function which results to be
symmetric everywhere.

The numerical results which will be presented are
obtained by using the Gauss distribution function given
by Eq. 20 and by involving the weight function pro-
posed by Borino et al. (2003). The final values result to
be coincident in terms of structural response and dam-
age contour plot.

On the assumptions made, the nonlocal damage acti-
vation function becomes:

g1(Y , X) = Y − Y0 − X

g2(Y , X) = Y − X (23)

whereas the expressions for the flow laws and the dam-
age evolutive laws are not different from the local ones.

3. The boundary integral equations

It is possible to show that the boundary integral equa-
tions governing the elastic-damaging problem are
similar to the ones involved in the classical elastoplas-
ticity. The relations are presented in rate form in order
to keep a unified notation, the time parameter being
given by the load increment. Under the assumption of
small strains, the total strain can be decomposed into
elastic and damaged parts:

.
εi j (x) = .

ε
el
i j (x)+ .

ε
d
i j (x) = 1

2

[ .
ui, j (x)+ .

u j,i (x)
]

(24)

The Latin subscripts refer to Cartesian coordinates
and the Einstein’s notation is adopted, i.e. comma
denotes the derivative and repetition implies summa-
tion.

The stress tensor rate
.
σi j which is related to the elas-

tic strain tensor by:

.
σ i j (X) = Cel

i jlm
.
ε

el
lm = 2µ

(
.
ε

el
i j + ν

1 − 2ν
δi j

.
ε

el
kk

)
(25)

where δi j is the delta Kronecker, ν is the Poisson’s ratio
and k goes from 1 to 3 in the general 3-D analyses, can
be written as:
.
σ i j := .

σ
el
i j − .

σ
d
i j = Cel

i jlm
.
εlm − Cel

i jlm
.
ε

d
lm (26)

where
.
σ

el
i j (named elastic stress tensor rate) and

.
σ

d
i j

(named damaged stress tensor rate) are the stress tensor
rates generated via elastic moduli tensor respectively by
the total strain and by the damaging strain.

In the proposed damage model it is easy to show that
the stress tensor rate is related to the elastic one by:
.
σ i j = (1 − d)n

.
σ

el
i j − n(1 − d)n−1

.

dσ el
i j (27)

where n = 1, 2 in the case of linear and quadratic dam-
age respectively.

The relation (26) can be written for the traction rate
too:
.
t i = .

σ i j n j = .
t
el
i − .

t
d
i (28)

Keeping in count the above propositions, the governing
equilibrium equation for the problem under examina-
tion (volume forces are neglected):
.
σ i j, j = 0 ⇔ .

σ
el
i j, j = .

σ
d
i j, j (29)

can be written in terms of displacement rates:

(λ+ µ)
.
u j, j i (x)+ µ

.
ui, j j (x) = .

σ
d
i j, j (x) (30)

whereλ andµ are the Lamé elastic constants. It must be
said that the representation of the equilibrium equations
(29) in terms of stresses rather than displacements (30)
results to be more cumbersome to deal with if an inte-
gral representation is to be obtained. In fact, the inte-
gral representation of the displacement rate satisfying
the governing equilibrium equations can be obtained by
weighting (29) with the elastostatic fundamental solu-
tion due to Kelvin, i.e. with displacement u∗

i j (X, x) and
traction t∗i j (X, x) in the j direction at any point x of an
infinite elastic medium due to a unit point load applied
at X in the i direction. The expression of such an inte-
gral representation is:

.
ui (X) =

∫




u∗
i j (X, x)

.
t j (x)d
(x)

−
∫




t∗i j (X, x)
.
u j (x)d
(x)

+
∫

�

ε∗i jk(X, x)
.
σ

d
jk(x)d�(x) (31)

where the term ε∗i jk represents the strain tensor corre-
sponding to u∗

i j . The fundamental solutions are given
in Appendix A.

The relation (31) is a continuous representation of

displacements at any point X ∈ ◦
� where � is the body
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18 V. Mallardo

under analysis and 
 is its boundary. Such an expres-
sion gives the displacement component rate at any
internal point X once the displacement and the traction
fields have been determined on the boundary 
. The
stress state at any point can be obtained in the same
way as in plasticity (see for instance Aliabadi 2002,
pp. 241–242) by applying the generalised Hooke’s law
to the elastic part of the total strain rate tensor:

.
σ i j = µ(

.
ui, j + .

u j,i )+ 2µν

1 − 2ν
.
uk,kδi j − .

σ
d
i j (32)

It must be pointed out that the space derivatives, which
are necessary to obtain the strain tensor rate from the
displacement one, is taken with reference to the coor-
dinates of the load point X i.e. it does not involve the
boundary variables

.
u and

.
t. The final expression of the

internal stress tensor rate is:

.
σ i j (X) =

∫




U∗
i jk(X, x)

.
tk(x)d
(x)

−
∫




T ∗
i jk(X, x)

.
uk(x)d
(x)

+ −
∫

�

�∗
i jkl(X, x)

.
σ

d
kl(x)d�(x)

+ gi j (
.
σ

d
kl) (33)

where U∗
i jk , T ∗

i jk , �∗
i jkl and gi j are given in Appendix

A. The differentiation of the relation (31) with respect
to Xl needs the evaluation of:

Iil(X) = ∂

∂Xl

∫

�

ε∗i jk(X, x)
.
σ

d
jk(x)d�(x) (34)

and the derivatives ε∗i jk,l(X, x) (where l is referred to

the lth coordinate of X) exhibit a r− dim singularity,
where dim is the space dimension, which is not inte-
grable over �. Thus the differentiation with respect to
Xl in Iil(X) cannot be transferred under the integral
sign. This difficulty is rather serious and it was cor-
rectly solved by Bui (1978) who established the correct
expression of Iil(X) involving both a free term gi j (

.
σ

d
kl)

and a domain integral −∫
�
�∗

i jkl(X, x)
.
σ

d
kl(x)d�(x) in

the Cauchy principal value sense (see also Brebbia et
al. 1984, pp. 255–258; Bonnet 1995, p. 325). The free
term also contains the term

.
σ

d
i j .

The calculation of stresses at any point of � is of
fundamental importance for the stepwise solution of
nonlinear material problems; for this reason the expres-

sion of the stress tensor rate is preferred to the one of
the strain tensor rate.

It must be underlined that the expression (33) is the
exact value of the stress tensor rate related to the dis-
placement-traction rate distribution

.
u,

.
t on 
, and it

is not an approximate evaluation, as is the case in FE
or Finite Difference (FD) approaches. Of course, the
stress value will be a consequence of the assumed shape
functions on the boundary.

The integral representation of the displacement rate
for a boundary point ξ can be obtained by a suitable
limiting process (X →ξ ) in which the point is an inter-
nal point surrounded by part of a spherical surface of
radius ε (see Brebbia et al. 1984, pp. 191–194), i.e. by
the application of the concept of Cauchy principal value
of an integral. The study of the arising limits gives the
following boundary integral representation of the dis-
placement rate:

ci j (ξ)
.
u j (ξ)+ −

∫




t∗i j (ξ , x)
.
u j (x)d
(x)

=
∫




u∗
i j (ξ , x)

.
t j (x)d
(x)

+
∫

�

ε∗i jk(ξ , x)
.
σ

d
jk(x)d�(x) (35)

where the integral on the left hand side is to be inter-
preted in the sense of Cauchy principal value and the
coefficient ci j (ξ) is related to the limit value (as ε →
0) of the integral of the fundamental solution t∗i j on
the semi-circle line surrounding ξ (see for instance
Aliabadi 2002, pp. 36–37), being equal to 0.5 if the
tangent line at ξ is continuous. Equation 35 furnishes
an integral equation involving boundary variables only,
i.e. displacement and traction vector rates.

Relation (33) was deduced for points located within
the body, therefore it cannot be used to determine the
boundary stress rates. The limit of such an integral rep-
resentation when the load point X goes to the boundary
can be taken in a similar manner to the boundary dis-
placement equation. However, the resulting integral:

=
∫




T ∗
i jk(ξ , x)

.
uk(x)d
(x) (36)

would contain a hypersingularity, hence a more sophis-
ticated integration technique would be required and
therefore an increase in the CPU time would arise.
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Integral equations and nonlocal damage theory 19

Besides, all the strategies proposed in literature in reg-
ularising the hypersingular term, i.e. partial regularisa-
tion presented by Sládek and Sládek (1983), complete
or indirect regularisation by Krishnasamy et al. (1992)
and exact integration by Salvadori (2002) and by Zhang
and Zhang (2004), require the displacement field and
the unit normal to possess C1,α and C0,α smoothness,
respectively, at the collocation point ξ .

On the other hand, the stress tensor rates at any
boundary point ξ can be expressed in terms of boundary
tractions and displacements and by strain component
along the tangent direction to the boundary. Details of
the procedure and final relations in 2-D are given in
Appendix B.

The displacement rate boundary integral equation
(35), the expression both of the internal stress tensor
rate (33) and of the boundary stress tensor rate (85) are
to be used in the incremental iterative solution algo-
rithm. It is therefore necessary to set both a boundary
discretisation and a domain discretisation in the region
where the damage process occurs in order to evaluate
the integrals involved.

It must be pointed out that (either totally or partially)
discontinuous quadratic cells have also been tried for
the region close to the boundary in order to avoid both
a hypersingular term and the approximated boundary
stress tensor rate (85). With reference to the numeri-
cal examples shown in the last section, the difference
between the results obtained with the discontinuous
cells and the approximated formulation (85) was neg-
ligible and the convergence was not improved.

4. The boundary/domain element incremental
problem

The resolution of the rate problem requires two differ-
ent discretisation techniques. The first one is related to
the integration along the loading path of the rate con-
stitutive equations, and this is achieved by the Euler
backward difference scheme, the second discretisation
is the space discretisation required by the BDEM. In
the nonlocal approach another discretisation would be
necessary in order to evaluate the nonlocal value of the
variable. Nevertheless, it is more convenient from the
computational point of view to use the same domain
discretisation provided that such a discretisation is suf-
ficiently fine in comparison with the adopted charac-
teristic length.

4.1. Discretisation and singular integrals treatment

The boundary 
 is divided into N
 continuous three
noded (quadratic) elements and the displacement and
traction rates as well as the geometry can be approxi-
mated in each boundary element
l by products between
the shape function, Mn


(η), and the nodal values where
η represents the local coordinate taking value 0,−1, 1 in
each element node. The domain discretisation needs to
be performed only for that region �d ⊆ � susceptible
to damage, such as areas of higher strain energy den-
sity, whereas for other numerical techniques the whole
domain must be discretised. This is especially attrac-
tive in damage mechanics for brittle materials since
the area expected to damage tends to the macro-crack
shape. The domain �d is divided into N� quadratic
triangular or quadrilateral cells (with shape functions
Mn
�(η, ζ )) and the stress rate tensor in the local cell�d

can be expressed as:

.
σ

d
i j
(x(η, ζ )) =

p∑

n=1

Mn
�(η, ζ )

.
σ

d,n
i j

(37)

where x ∈�d , p is the number of nodes in the cell (6
for the triangular cell, 9 for the quadrilateral one) and
.
σ

d,n
i j

is the damaged stress tensor rate in the cell node
n. η, ζ represent the local coordinate system in the cell.
The same shape functions Mn

� can be used to represent
the geometry of the damaged area too.

By performing both the boundary and the domain
discretisation described above, the discretised displace-
ment rate boundary integral equation at the node ξ can
be written as:

ci j (ξ)
.
u j (ξ)+

N
∑

l=1

3∑

n=1

.
u

n
j −

+1∫

−1

t∗i j (ξ , x(η))

×Mn

(η)J

l(η)dη

=
N
∑

l=1

3∑

n=1

.
t
n
j

+1∫

−1

u∗
i j (ξ , x(η))Mn


(η)J
l(η)dη

+
N�∑

l=1

p∑

n=1

.
σ

d,n
jk

+1∫

−1

+1∫

−1

ε∗i jk(ξ , x(η, ζ ))Mn
�(η, ζ )

×J l(η, ζ )dηdζ (38)

where
.
un
,
.
t
n

represent the values of displacement and
traction rates respectively in each of the three nodes of
the generic boundary element with Jacobian J l(η), and
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J l(η, ζ ) is the Jacobian of the generic domain cell. The
expression of the stress tensor rate at the internal cell
node X in its discretised form can be written as:

.
σ i j (X) =

N
∑

l=1

3∑

n=1

.
t
n
k

+1∫

−1

U∗
i jk(X, x(η))Mn


(η)J
l(η)dη

−
N
∑

l=1

3∑

n=1

.
u

n
k

+1∫

−1

T ∗
i jk(X, x(η))Mn


(η)J
l(η)dη

+
N�∑

l=1

p∑

n=1

.
σ

d,n
kl

p.v.

+1∫

−1

+1∫

−1

�∗
i jkl(X, x(η, ζ ))

×Mn
�(η, ζ )J

l(η, ζ )dηdζ+gi j

(
.
σ

d,n
kl

)
(39)

where the last integral is to be taken in the Cauchy
principal value (p.v.) sense.

The boundary integrals appearing in the Eqs. 38
and 39 when the source node ξ belongs to the bound-
ary element 
l are dealt with by using well estab-
lished techniques. In the Eq. 38 three terms deserve
special attention. The logarithmic quadrature rule is
used for the singularity of order ln r contained in the
term involving the fundamental displacement u∗

i j . The
integration of the term containing the fundamental trac-
tion t∗i j , containing the 1/r (strong) singularity along
the line, can be avoided by the use of the rigid body
technique (Aliabadi 2002, p. 51). The domain inte-
gral contains a weak singularity of order 1/r in the
2-D cell and it can be treated by performing a suitable
coordinate transformation which results in an integral
to be evaluated by standard Gaussian quadrature. On
the other hand, concerning the Eq. 39, attention must
be paid only for the domain integral which contains a
strong singularity of order 1/r2 in the 2-D cell. It can be
transformed into the sum of regular integrals by apply-
ing the same coordinate transformation of the previous
weakly singular domain integral and by introducing
a Taylor series expansion about the collocation point.
The method was proposed by Guiggiani and Gigante
(1990) in its general form. Details of the procedure are
given in Appendix C.

Evaluating nearly singular integrals is another key
issue in the boundary element analysis. The problem
occurs in evaluating both the boundary integrals and
the domain integrals involved in the Eqs. 38 and 39
when either the collocation point is too close to the

integration boundary element or the stress is evalu-
ated very near to the boundary. Conventional Gaussian
quadrature rule proves to be successful when applied
in estimating the stress in points which are far from the
boundary and in the displacement boundary integral
equation if the collocation point is far from the bound-
ary element, but its accuracy deteriorates tremendously
in evaluating nearly singular integrals. In the present
work, the method used to compute such integrals is
based on the iterative element subdivision. Concern-
ing the nearly singular boundary integrals, the element
is iteratively divided in sub-elements until the mini-
mum distance between the collocation node and the
subelement itself becomes greater than its length. Eight
Gauss points are used in each sub-element. On the other
hand, the nearly singular domain integral is evaluated
by dividing the cell in either four or sixteen sub-cells
in terms of the value of the minimum distance between
the collocation point and the cell; sixteen Gauss points
are used in each sub-cell.

The discretised displacement rate boundary integral
equation (38) along with both the discretised integral
representation (39) of the internal stress tensor rate and
(if continuous cells are adopted) the expression (85) of
the boundary stress rate tensor are to be used in the
incremental iterative solution algorithm. By the classi-
cal collocation approach and by applying the Dirich-
let/Neumann boundary conditions the above relations
can be written in matrix form as:

A
.
x = .

f + Q
.
σ

d
(40)

.
σ = −A′ .x +

.

f ′ + (Q′ + E ′) .σ d
(41)

the bold letters meaning vectors whereas the capital let-
ters meaning matrices. The unknowns (either displace-
ment or traction rate on the boundary) are collected in

.
x,

and A, A′ and Q, Q′, E ′ are matrices involving bound-
ary and domain integrals of the fundamental solutions
respectively.

Considering the evolution problem from a discrete
incremental standpoint for a finite time step �t =
ts+1 − ts , these relations can be written as:

A�xs = f�λs + Q�σ d
s (42)

�σ s = −A′�xs + f ′�λs + (Q′ + E ′)�σ d
s (43)

where the notation �( )s = ( )s+1 − ( )s has been
used and�λs represents the sth load factor increment.
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4.2. The arclength technique

The classical incremental procedures that are used in
BEM analyses are the load and the displacement control
techniques. Both strategies assume either a load incre-
ment or a displacement increment and they evaluate the
solution, which is both equilibrated with the external
loads and respectful of the constitutive equations, at
the end of the step by an iterative scheme. As a mat-
ter of fact, these approaches are not able to cope with
special peak points, for instance when the structural
response has a snap-back path. The arclength methods
are intended to enable solution algorithms to pass such
special limit points. Because damage models can give
rise to snap-back paths, in this paper the governing inte-
gral equations described above are used together with
the arclength constraint. The procedure was presented
by Mallardo and Alessandri (2004) in softening plas-
ticity. It is based on a nonlinear system of equations
resolution of which is performed by the Newton-Raph-
son method, i.e. at every time step the iterative pro-
cess evaluates in sequence δ�λ, δ�x, and δ�σ where
δ�( ) = �( )new−�( )old = �( )n−�( )o represents
the additive correction.

Equations 42, 43 can be coupled to the classical arc-
length constraint and re-written in the following way:

R(�λ,�x,�ε) = A�x − f�λ− QCel�ε

+ Q�σ = 0 (44)

R′(�λ,�x,�ε) = A′�x − f ′�λ− (QCel − Cel)�ε

+ Q�σ = 0 (45)

a(�λ,�x) = �xT�x + ψ2�λ2fT f

−�l2 = 0 (46)

where the subscript s is omitted,�l is the fixed radius of
the desired intersection between the equilibrium path
and the arclength constraint, ψ is a scaling parame-
ter which regularises the inconsistency in the physical
dimensions and Q = Q′ + E ′ + I . In the numerical
results presented in this paper, only one arclength con-
trol point (on the boundary) is set. If u and q are the
displacement and the traction respectively of such a
point, the Eq. 46 can be written as

a(�λ,�u) = �u2 + ψ2�λ2q2 −�l2 = 0 (47)

In case the control point is internal, some mathematical
manipulations are necessary.

The Newton-Raphson method can be applied via a
truncated Taylor series. In matrix form:

⎛

⎝
Ro
R′

o
ao

⎞

⎠

=
⎡

⎣
f −A Q(Cel − Ct )

f ′ −A′ Q(Cel − Ct )− Cel

−2�λoψ
2fT f −2�xT

o 0

⎤

⎦

⎛

⎝
δ�λ

δ�x
δ�ε

⎞

⎠

(48)

Ct is the tangent operator, i.e. Ct = ∂�σ
∂�ε

∣∣
o and the

residual terms are given by:

Ro = A�xo − f�λo − Q�σ d
o (49)

R′
o = A′�xo − f ′�λo − Q�σ d

o +�σ (50)

ao = �xT
o �xo + ψ2�λ2

ofT f −�l2 (51)

If the tangent operator is kept constantly equal to the
elastic one Cel along the iterations, the system of equa-
tions can be easily uncoupled in three relations which
can be evaluated separately to give the additive correc-
tions at every step. On the contrary, if either a full or
a modified Newton-Raphson approach is adopted, the
system of nonlinear equations (48) needs to be investi-
gated to obtain more cumbersome relations. From the
first two relations of the Eq. 48 it is possible to derive
the expression of both the elastic stress and the bound-
ary unknown additive corrections:

δ�x=A−1
[
−Ro + fδ�λ+ QCδ�σ el

]
(52)

δ�σ el = (I − Q C)−1(−R′
o − A′δ�x + f ′δ�λ) (53)

where:

C = I − Ct Cel−1
. (54)

Substituting the Eq. 53 into the Eq. 52 the expres-
sion of the boundary unknowns additive correction is
obtained in terms of the scalar quantity δ�λ:

δ�x=B−1 [−Ro + fδ�λ− P(R′
o − f ′δ�λ)

]
(55)

where:

T = (I − Q C) (56)

P = QC T −1 (57)

B = A + Q C T −1 A′ (58)

In analogy with the FE context (see Crisfield 1991,
p. 273), the boundary unknown additive correction can
be written as:
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δ�x=δ�xI +δ�λδ�xI I (59)

where

δ�xI = −B−1(Ro + PR′
o) (60)

δ�xI I = B−1(f + Pf ′) (61)

The term δ�xI I would not change along the iterations
in which the global tangent matrix B is kept constant.
In case a linearised form of the arclength constraint is
used, the following expression of the load-parameter
additive correction is obtained:

δ�λ = −1

2

ao + 2�xT
o δ�xI

ψ2�λ2
ofT f +�xT

o δ�xI I
(62)

On the other hand, if the quadratic form is retained, a
quadratic equation in δ�λ perfectly coincident with the
one given by Crisfield (1991, pp. 273–274), is obtained.
Both approaches have been attempted by the author, but
no meaningful difference is encountered in the numer-
ical examples presented in this paper. After the evalua-
tionof theboth load-parameter andboundaryunknowns
additive correction, the additive correction of the elastic
stress increment can be evaluated by:

δ�σ el = T −1(−R′
o − A′δ�x + f ′δ�λ) (63)

For the iterations occurring when the damage parame-
ter has reached values close to one for some points, it
could be more convenient to start the first iteration with
a reduced tangent operator rather than with the elastic
one, i.e. rather with the following elastic try:

δ�σ el
f irst = −A′�x + f ′�λ where �x = A−1f�λ

(64)

The tangent operator Ct can be obtained by the
stress–strain relation (1). In the linear case:

�σ = (1 − d −�d)Cel�ε −�dCelε (65)

Therefore:

∂�σ

∂�ε
= (1 − d −�d)Cel − ∂�d

∂�ε
Cel(ε +�ε) (66)

In order to impose the nonlocal damage law at the end
of the step, the constitutive relations are integrated by
the Euler backward scheme, namely:

�d = Y s+1 − gs

h
if the damage is linear and ψnl

is given by Eq. 8 (67)

�d = 1 − d − c

exp

[(
Y s+1

k

) 1
n
] if the damage is

linear and ψnl is given by Eq. 9 (68)

It must be pointed out that the obtained expressions
of the damage increment are formally equivalent to
the classical local damage loading problem. This is
true only in the hypothesis of linearity of the model
which makes Y not dependent on damage. If a quadratic
damage law were adopted, then the damage increment
would be the solution of a Fredholm integral equation
to be solved by more complex strategies.

The nonlocal value Y of Y in the generic domain
point X can be evaluated at every iteration step by the
Gauss integration rule:

Y (X) = 1

W (X)

N�∑

l=1

ng1∑

ig1=1

ng2∑

ig2=1

wig1wig2 Jl

× exp

[
−
∥∥X − yg

∥∥

2l2

] p∑

n=1

Mn
�(ηig1 , ζig2)Yn

(69)

where W (X) is equal to the relation obtained from the
Eq. 69 by posing Yn = 1 for every n. In the classical
physically nonlinear BDEM approach, the domain dis-
cretisation is limited to the part of the domain where
the nonlinear phenomenon occurs, i.e. �d ⊆ �.

5. Numerical examples

Some numerical examples are presented in order to
show the efficiency of the procedure. The first example
refers to the rectangular plate in Fig. 2 where a plane
stress behaviour is adopted and the measures are given
in millimeters. The second numerical application con-
cerns the direct traction depicted in Fig. 12: a constant
displacement is applied at the top side of the plate in
plane stress condition.

Fig. 2 Example 1. Geometry and load condition
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Fig. 3 Example 1. Domain discretisation

5.1. Example 1

The present example is a useful benchmark, often
adopted in the FE context, which is able to show clearly
the onset of the localisation and the effect of the non-
local regularisation approach.

The Young’s modulus and the Poisson’s coefficient
are respectively E = 36, 000 MPa and ν = 0. The null
value of the Poisson’s coefficient is able to keep the
mechanical behaviour as one-dimensional even in the
nonlinear branch.

The mechanical parameters assigned are h = 0.02
MPa, Y0 = 0.01 MPa and k = 1.5E − 4 MPa, c = 2.7,
n = 2. In order to trigger the damage localisation, the
part of the plate in grey presents either Y0 or k reduced
of 5%.

Two different discretisations are adopted: 20×2 and
40×4 quadratic quadrilateral elements (Fig. 3).

The boundary discretisation is carried out in order to
have the coincidence between the boundary elements
and the side of the domain cells coincident with the
contour. It must be pointed out that in this example the
damage may be diffused over the entire bar and, there-
fore, one of the main advantages of the BDEM, i.e.
the possibility of discretising only the part of domain
affected by the damage, is not evident. In different sit-
uations, in which the geometry and the load conditions
reproduce some stress concentrations, the damage will
be localised in a more narrow area, and the domain cells
will be introduced only in a small zone.

The characteristic length is assumed to be lc =
20 mm.

Figure 4 presents the structural response in terms of
p, u with reference to the local model in which ψnl

is given by the Eq. 5. The procedure becomes unsta-
ble once the damage activates in the grey area, i.e. the
model is not able to spread the damage over the bar. The
lost of convergence occurs for both the meshes. Figures
5 and 6 show respectively the structural response and
the damage distribution if the model described by Eq. 5
is regularised by the presented nonlocal approach. The
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Fig. 4 Example 1. Global p, u response. Local model. X = X1
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Fig. 5 Example 1. Global p, u response. Nonlocal model.
X=X1

damage distribution depicted in Fig. 6 refers to the
points of the equilibrium path represented by the same
symbol in the structural response of Fig. 5. The response
is independent of the mesh, the damage propagates cor-
rectly outside the weaker area but the behaviour turns
out to be fragile. A snap-back occurs and it is well cap-
tured by the proposed arclength technique.

In the FE context, for linear elements, some Authors
(see for instance Jirásek 1999) have addressed the
appearance of stress oscillation patterns. Such a phe-
nomenon is not encountered in the present formulation
as Fig. 7 shows; the various stress levels are related to
the position in Fig. 5 marked by the same symbol.

In the F.E. context the lack of oscillation is mainly
deputed to the quadratic form of the shape functions
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Fig. 6 Example 1. Damage distribution. Nonlocal model.
X=X1
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Fig. 7 Example 1. Profile of the stress. Nonlocal model. X=X1

adopted. In the B.E. context, the integral representa-
tion of the stress, Eq. 33, has a positive influence on
the lack of oscillation.

Figures 8 and 9 show respectively the global
response and the damage distribution for the model
given by the Eq. 6 in the local version. Again, Fig. 9
illustrates the damage distribution at each of the equi-
librium points indicated in Fig. 8 by the corresponding
symbol.

The structural response presents a softening branch
with jumps which demonstrates the localisation of the
damage in some nodes of the weaker area. The damage
distribution confirms such a behaviour: every step in the
global response corresponds to a new node in which the

0 0.004 0.008 0.012 0.016 0.02

u[mm]

-1

0

1

2

3

p 
[N

/m
m

2 ]

2x20

4x40

Fig. 8 Example 1. Global p, u response. Local model. X = X2

0 20 40 60 80 100
x [mm]

0

0.2

0.4

0.6

0.8

1

d

Fig. 9 Example 1. Damage distribution. Local model. X = X2

damage parameter reaches the unity. The regularising
effect of the nonlocal approach is shown in the Figs.
10 and 11 (the meaning of the symbols is the same of
the previous graphics) where the response turns out to
be mesh-independent and the damage spreads correctly
over the bar. Two iterations and a few tenths of second
(for instance 0.3 s for the finer mesh) for every arclength
step are necessary to obtain the convergence with a tol-
erance of the order 10−6. Such a tolerance refers both
to the convergence in the resolution of the nonlinear
system of equations inside the arclength step and to the
convergence in obtaining the increment of the damage
parameter. CPU time increases enormously (about 100
times slower) if the tangent approach is adopted. The
increase in CPU time is mainly related to the update of
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Fig. 10 Example 1. Global p, u response. Nonlocal model.
X = X2
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Fig. 11 Example 1. Damage distribution. Nonlocal model.
X=X2

Ct in the Eq. 48. This change, even though it does not
involve the entire matrix, is very time-consuming. In
the presented numerical results the matrix is updated
at the first iteration of every arclength step and then it
is kept constant.

5.2. Example 2

This example reproduces numerically a direct traction
test of a four notched plate. Figure 12 shows the geome-
try and the loading condition of the sample. A constant
displacement is applied at the top side of the plate; con-
sequently the unknown pressure with R as its resultant,

u

70

60

R

15 15

4

28

Fig. 12 Example 2. Geometry and load condition

is not distributed constantly. The numerical analysis is
carried out under the hypothesis of plane stress condi-
tion and X = X2. The following material parameters,
corresponding to a tensile strength σt = 3.00 MPa, are
adopted: E=36, 000 MPa, ν=0.15, k=5.8E−14 MPa,
c = 405, n = 12. The analysis has been performed
for two different meshes shown in Fig. 13. It must be
underlined that if the tangent operator Ct is kept con-
stantly equal to the elastic one Cel along the iterations,
i.e. C = 0 in Eqs. 52, 53 and 58, the domain discreti-
sation does not affect the matrices to be inverted.

The figures corresponding to the numerical results
of the nonlocal analysis are obtained by employing the
Gauss function given by Eq. 20 with the following inter-
nal length lc = 1.6 mm.

The numerical results are presented in terms of the
structural response, i.e. resultant reaction R at the side
where the displacement u is imposed versus u, and in
terms of the damage distribution at different load lev-
els. Such results show that the damage starts at the
notches, it propagates towards the central zone of the
plate and finally it extends up to the formation of a
horizontal damage band. As expected, the local model
is not able to capture the correct physical behaviour.
Figure 14 presents the damage contour map related to
the local solution obtained with both meshes at quasi-
zero resistance (R ≈ 10 N/mm2, u ≈ 0.007 mm).
The damage does not spread over the central line but
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Fig. 13 Example 2.
Meshes adopted in the
boundary/domain elements
simulations. Mesh (a): 72
boundary elements and 134
internal cells. Mesh (b): 154
boundary elements and 236
internal cells

(a) (b)

Fig. 14 Example 2.
Damage contour maps
related to the local solution
for coarse mesh (a) and fine
mesh (b)

0.00

0.50

1.00(a) (b)

it remains confined to a thin line the size of which
changes with the adopted mesh. The peak value deter-
mined numerically turns out to be lower than the value
obtained by the nonlocal analysis. In fact, the central
line of the plate, where, as is evident from Fig. 14, d
turns out to be close to 1, arises soon after the first
occurring damage at the notches; as a consequence,
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Fig. 15 Example 2. Structural response of the slab—R versus
u. Nonlocal approach

the structural response moves along the softening path
almost contemporarily to the appearance of the nonlin-
ear phase, thus the peak value remains low. The inte-
gral type regularisation is evident in Fig. 15 where the
structural response for the two meshes is depicted. Both
meshes give the same results even though the coarser
mesh is not able to capture the phenomenon when the
damage parameter approaches the unit value: the num-
ber of iterations increases enormously up to the lack of
satisfaction of the fixed tolerances; the result does not
change significantly by using the full Newton-Raphson
approach to solve Eq. 48; such a drawback is probably
related to the fact that the mesh is too coarse to cap-
ture the propagation of the nonlinear phase when the
damage approaches the complete detachment.

Figure 16 shows the regularised damage contours at
four different load levels. Such load levels are reported
in Fig. 15 with the same symbols as in the structural
response. The contour plots (a, b) describe the dam-
aged zones close to the peak point and at the peak
point, whereas the remaining ones refer to the soft-
ening branch. As expected, the number of iteration for
every arclength step depends on the type of Newton-
Raphson adopted. A comparison is shown in Fig. 17
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Fig. 16 Example 2.
Damage contour maps
corresponding to the
solution obtained with the
fine mesh

R=114.02 u = 0.00407

(a)

R=124.62 u = 0.00488
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Fig. 17 Example 2. Number of iterations versus displacement
u. Continuous line: Ct updated. Dashed line: Ct kept equal to
the elastic value

where the number of iterations to obtain the conver-
gence versus the value u is depicted. The x-axis starts
at u = 0.002, i.e. where the nonlinear phase begins;

of course, before that value one iteration is enough to
converge to the solution. From the figure, it is clear
how updating the matrix C at the beginning of every
arclength step improves the rate of convergence. On
the other hand, the total CPU time increases by two
orders.

6. Conclusions

An integral approach for some nonlocal damage mod-
els has been presented. The formulation is physically
nonlinear and thus requires the domain discretisation of
the part of the volume in which the damage is expected
to occur. Two simple damage models have been tested,
the former more fragile than the latter. Numerical
results both in 1-D and in 2-D have been obtained
and discussed. The numerical results refer both to the
local approach and to the nonlocal approach. The local
approach has showed its inability to correctly describe
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softening behaviours. A nonlocal integral type operator
has been introduced in order to regularise the models.
Such an integral operator has been tested both in the
symmetric and in the nonsymmetric form and it has pro-
duced coincident results. In order to take into account
possible snap-back branches in the structural response a
coupling technique between BDEM and arclength con-
straints has been applied. The tangent operator involved
in the Newton-Raphson procedure applied at the gov-
erning nonlinear system of equations has been either
updated at the beginning of every arclength step or kept
constantly equal to the elastic one.

The discretisation of the boundary and of the part of
the domain affected by the damage has been performed
respectively by quadratic lines and by quadratic cells.
Such a choice gives a more precise representation of
the damage distribution with respect to linear elements
and it better describes the high damage gradient which
usually occurs in such models. The BDEM approach
turns out to be efficient and it only requires the dis-
cretisation of the part of the domain where the damage
occurs.

Appendix A

The expression of the fundamental solutions involved
in Sect. 3 for 2-D plane strain problems is given by:

u∗
i j (X, x)

= − 1

8π(1 − ν)µ

[
(3 − 4ν)δi j ln r − r,i r, j

]
(70)

t∗i j (X, x)

= − 1

4π(1 − ν)r

{[
(1 − 2ν)δi j + 2r,i r, j

]
r,n

− (1 − 2ν)(r,i n j − r, j ni )
}

(71)

ε∗i jk(X, x)

= − 1

8πµ(1 − ν)r

[
(1 − 2ν)(r, jδki + r,iδ jk)

− r,kδi j + 2r,i r, j r,k
]

(72)

U∗
i jk(X, x) = 1

4π(1 − ν)r

[
(1 − 2ν)(r, jδik + r,iδ jk

− r,kδi j )+ 2r,i r, j r,k
]

(73)

T ∗
i jk(X, x) = µ

2π(1 − ν)r2

{
2r,n
[
(1 − 2ν)δi j r,k

+ ν(δikr, j + δ jkr,i )− 4r,i r, j r,k
]

+ 2ν(nir, j r,k + n jr,i r,k)

+ (1 − 2ν)(2nkr,i r, j + n jδik + niδ jk)

− (1 − 4ν)nkδi j
}

(74)

�∗
i jkl(X, x) = 1

4π(1 − ν)r2

{
(1 − 2ν)

[
δikδ jl

+ δ jkδil − δi jδkl

+ 2δi j r,kr,l
]+ 2ν

[
δilr, j r,k+

+ δ jkr,i r,l + δikr,lr, j + δ jlr,i r,k
]

+ 2δklr,i r, j − 8r,i r, j r,kr,l
}

(75)

gi j (σ
d) = − 1

8(1 − ν)

[
2σ d

i j + (1 − 4ν)σ d
mmδi j

]

m = 1, 2 (76)

The plane strain expressions are valid for plane stress if
ν is replaced by ν = ν

1+ν . In the above relations X and
x are usually referred to as source point and field point
respectively and r(X, x) represents their distance. The
involved derivatives of r are taken with respect to the
coordinates of x.

Appendix B

The global stress components at a boundary point can
be partially retrieved by expressing the traction vec-
tors in a local coordinate system and employing the
relationship between strain and displacement on the
tangent directions to the boundary. The procedure was
developed by Lachat (1975) in elasticity and can be
here extended to the proposed damage model. The rela-
tions will be obtained in 2-D. Let us assume a general
boundary part with a local Cartesian coordinate sys-
tem tangent to its line (see Fig. 18). It is easy to obtain
components σnn and σns of the stress tensor in terms of
the traction components and of the normal and tangen-
tial vector components by applying the transformation
rule:

σnn = σi j ni n j = (σ11n1 + σ12n2)n1

+(σ21n1 + σ22n2)n2 = t1n1 + t2n2 (77a)

σns = σi j ni s j = t1s1 + t2s2 (77b)

where s1 = −n2 and s2 = n1. The remaining compo-
nent σss of the stress tensor can be obtained in terms of
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Fig. 18 Boundary point ζ . Local and global coordinate system

both the normal component of the stress and the tan-
gential strain by manipulating the Hooke’s law in plane
strain (εzz = 0) and in the local coordinate system:

σss = 2µεel
ss + 2µ

ν

1 − 2ν
(εel

ss + εel
nn) (78)

The relations

εel
ss = εss − εd

ss εel
nn = εnn − εd

nn (79)

can be substituted into the Eq. 78. It must be kept in
mind that the normal strain component is given by:

εnn = 1

2µ

[
σ el

nn − ν(σ el
nn + σ el

ss )
]

(80)

and the elastic stress tensor can be expressed in terms
of both the actual stress tensor and the damaged strain
tensor by:

σ el
nn = σnn + σ d

nn σ el
ss = σss + σ d

ss (81)

and by:

σ d
nn = 2µ

[
εd

nn + ν
1−2ν (ε

d
ss + εd

nn)
]

(82a)

σ d
ss = 2µ

[
εd

ss + ν
1−2ν (ε

d
ss + εd

nn)
]

(82b)

The final expression can be arranged in the form:

f (εss, ε
d
ss, ε

d
nn, σnn, σss) = 0 (83)

and solved in terms of σss to obtain the requested rela-
tion:

σss = 1

1 − ν
(2µεss + νσnn)− 2µ

1 − ν
εd

ss (84)

It is possible to transform the stress tensor formed by
the terms (77a–77b) and (84) from the local coordinate
to the global coordinate system. The final expression
of the stress tensor at any boundary point ζ is:

⎛

⎝
σ11(ζ )

σ22(ζ )

σ12(ζ )

⎞

⎠ = 2µ

1 − ν
εss

⎡

⎣
n2

2
n2

1
−n1n2

⎤

⎦

+
⎡

⎣
n3

1+n1n2
2+ 1

1−ν n1n2
2 −n2

1n2+ ν
1−ν n3

2
−n1n2

2+n3
1
ν

1−ν n3
2+n2

1n2+ 1
1−ν n2

1n2

n3
2− ν

1−ν n2
1n2 n3

1− ν
1−ν n1n2

2

⎤

⎦

×
(

t1(ζ )
t2(ζ )

)

+
⎡

⎣
n2

2(−n2
2+ ν

1−ν n2
1) n2

2(−n2
1+ ν

1−ν n2
2) n1n3

2
2

1−ν
n2

1(−n2
2+ ν

1−ν n2
1) n2

1(−n2
1+ ν

1−ν n2
2) n3

1n2
2

1−ν
n1n2(n2

2− ν
1−ν n2

1) n1n2(n2
1− ν

1−ν n2
2) −n2

1n2
2

2
1−ν

⎤

⎦

×
⎛

⎝
σ d

11(ζ )

σ d
22(ζ )

σ d
12(ζ )

⎞

⎠ (85)

where εss can be evaluated by differentiating the shape
functions:

εss = 2

Jacob

[
−

3∑

n=1

∂Mn

(η)

∂η
un

1 n2

+
3∑

n=1

∂Mn

(η)

∂η
un

2 n1

]
(86)

The derivatives of the shape functions at the bound-
ary nodes between two elements have been evaluated
both as belonging to one element only and by averag-
ing the values obtained from the two elements. For the
examples presented in the paper no difference in the
results has been detected.

The expression (85), slightly different from the one
developed in plasticity, is valid for plane stress too pro-
vided that ν is replaced by ν = ν

1+ν . Concerning to
this, it is possible to demonstrate that Eq. 78 is valid
for plane stress too.

Appendix C

First of all a polar coordinate transformation is intro-
duced in the cell:

η = η0 + ρ cosϑ ζ = ζ0 + ρ sin ϑ (87)

where η0, ζ0 represent the local coordinates of the
source node ξ . Therefore the limits ofρ (0, ρ(ϑ)) and of
ϑ (ϑi , ϑ f ) depend on the position of the source node in
the integration cell and it is easy to show that the Jaco-
bian of the transformation is given by ρ. It is possible
to transform the integration limits into −1,+1 both for
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Fig. 19 Polar coordinates ρ, ϑ centered at the singular point ξ

ϑ and for ρ. The limits (ϑi , ϑ f ) are transformed into
(−1,+1) by the Jacobian:

Jϑ = ϑ f − ϑi

2
(88)

whereas the integration along ρ is transformed by the
following Jacobian:

Jρ = 1

2
[
a(ξ , x) cosϑ + b(ξ , x) sin ϑ

] (89)

where a and b depend on the position of the source and
field nodes and they can assume only one of the values
−1,−0.5, 0, 0.5, 1. Fig. 19 shows the case of the sin-
gular node ξ coincident with the left bottom node of a
quadrilateral cell; similar relations can be obtained in
the remaining possibilities and in the case of a triangu-
lar cell.

Keeping in count the above transformation, the
weekly singular domain integral in the Eq. 38 can be
written as:

+1∫

−1

+1∫

−1

ε∗i jk(ξ , x(η, ζ ))Mn
�(η, ζ )J

l(η, ζ )dηdζ

=
+1∫

−1

+1∫

−1

ε∗i jk(ξ , x(ρ, ϑ))Mn
�(ρ, ϑ)

×J l(ρ, ϑ)Jϑ Jρρdρdϑ (90)

and it can be evaluated by the standard Gaussian quad-
rature rule, whereas the strongly singular integral:

p.v.

+1∫

−1

+1∫

−1

�∗
i jkl(X, x(η, ζ ))Mn

�(η, ζ )J
l(η, ζ )dηdζ

= p.v.

ϑ f∫

ϑi

ρ(ϑ)∫

0

�∗
i jkl(X, x(ρ, ϑ))Mn

�(ρ, ϑ)

J l(ρ, ϑ)ρdρdϑ

= p.v.

ϑ f∫

ϑi

ρ(ϑ)∫

0

Si jkl(ρ, ϑ)dρdϑ (91)

needs a further manipulation to be evaluated. The term
Si jkl(ρ, ϑ) can be expanded into a Taylor series expan-
sion about the collocation point X and for the compo-
nents of the distance r = x − X:

ri = (xi,η |X cosϑ + xi,ζ |X sin ϑ)ρ + O(ρ2)

= Ti (ϑ)ρ + O(ρ2) (92a)

r = ρ

√√√√
2∑

i=1

T 2
i (ϑ)+ O(ρ2) = rρ + O(ρ2) (92b)

r,i = Ti (ϑ)√∑2
i=1 T 2

i (ϑ)

+ O(ρ)

= Ti (ϑ)T (ϑ)+ O(ρ) = r,i0 + O(ρ) (92c)

It must be pointed out that the fundamental solution
strictly depends on the distance r and on the deriva-
tive r,i (see Eq. 75) rather than on X and x separately,
therefore if the following position:

si jkl(ϑ) = �∗
i jkl(rρ, r,i0)M

n
�(X)J

l(X)ρ2 (93)

is set, then the following term:

si jkl(ϑ)

ρ
= �∗

i jkl(rρ, r,i0)M
n
�(X)J

l(X)ρ (94)

has the same singular behaviour of Si jkl(ρ, ϑ). There-
fore the integral (91) can be re-written keeping in count
the definition of the Cauchy principal value:

p.v.

ϑ f∫

ϑi

ρ(ϑ)∫

0

Si jkl(ρ, ϑ)dρdϑ

= lim
λ→0

ϑ f∫

ϑi

ρ(ϑ)∫

α(λ,ϑ)

Si jkl(ρ, ϑ)dρdϑ (95)
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where ϑ ∈ [ϑi , ϑ f
]

, ρ ∈ [0, α(λ, ϑ)] individuates a
neighbourhood of radius λ of the collocation point X.
The limit term α is given by:

α(λ, ϑ) = λ

r
= λT (ϑ)+ O(ρ2) (96)

Adding and subtracting the term (95) the strongly sin-
gular integral becomes:

lim
λ→0

ϑ f∫

ϑi

ρ(ϑ)∫

α(λ,ϑ)

Si jkl(ρ, ϑ)dρdϑ

= lim
λ→0

⎡

⎢⎣

ϑ f∫

ϑi

ρ(ϑ)∫

α(λ,ϑ)

(
Si jkl(ρ, ϑ)− si jkl(ϑ)

ρ

)
dρdϑ

+
ϑ f∫

ϑi

ρ(ϑ)∫

α(λ,ϑ)

si jkl(ϑ)

ρ
dρdϑ

⎤

⎥⎦ (97)

The first integral in (97) is regular, i.e. the limit value is
obtained substituting 0 to α(λ, ϑ). The second integral
can be evaluated in the ρ variable:

lim
λ→0

ϑ f∫

ϑi

ρ(ϑ)∫

λT (ϑ)

si jkl(ϑ)

ρ
dρdϑ

=
ϑ f∫

ϑi

si jkl(ϑ)

[
ln

(
ρ(ϑ)

T (ϑ)

)
− lim
λ→0

ln λ

]
dϑ

=
ϑ f∫

ϑi

si jkl(ϑ) ln

(
ρ(ϑ)

T (ϑ)

)
dϑ

− lim
λ→0

⎡

⎢⎣ln λ

ϑ f∫

ϑi

si jkl(ϑ)dϑ

⎤

⎥⎦ (98)

where the second term can be proved to be zero when X
is an internal point. The final expression of the strongly
singular integral is:

p.v.

+1∫

−1

+1∫

−1

�∗
i jkl(X, x(η, ζ ))Mn

�(η, ζ )J
l(η, ζ )dηdζ

=
ϑ f∫

ϑi

ρ(ϑ)∫

0

(
Si jkl(ρ, ϑ)− si jkl(ϑ)

ρ

)
dρdϑ

+
ϑ f∫

ϑi

si jkl(ϑ) ln

(
ρ(ϑ)

T (ϑ)

)
dϑ (99)

Both terms can now be evaluated by standard Gauss-
ian quadrature rule. The number of points to be used
depends on the position of the point X inside the cell,
i.e. in terms of the number of subregions to be consid-
ered in the transformation (87), and it is set equal to
either 14 or 12 or 10.
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