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Abstract Two fracture criteria are proposed and
applied to blunt-notched components made of brittle
materials loaded under mixed mode; the former is based
on the averaged strain energy density over a given con-
trol volume, the latter on the cohesive crack zone model.
In both instances use of the equivalent local mode I
hypothesis is made. Only two material properties are
needed: the ultimate tensile strength and the fracture
toughness. Numerical predictions of rupture loads from
the two criteria are compared with experimental mea-
surements from more than 160 static tests with notched
beams. The samples are made of PMMA and tested at
−60◦C to assure a bulk behaviour almost linear elastic
up to rupture. Notch root radii range from 0.2 to 4.0 mm
and load mixicity varies from pure mode I to a pre-
vailing mode II. The good agreement between theory
and experimental results adds further confidence to the
proposed fracture criteria.
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1 Introduction

Notches in structural components are weak points with
a high risk of triggering brittle fracture; they may gene-
rate cracks or lead to fatigue crack initiation. When the
notch is blunted (i.e. with a non-negligible root radius)
and brittle fracture is expected, the conventional stress
intensity factor cannot be applied, and a method to eva-
luate the maximum load that a component with a notch
can sustain is needed.

Several criteria have been proposed to predict frac-
ture loads of components with notches, subjected to
mode I loading (See, for example Kipp and Sih 1975;
Carpinteri 1987; Knésl 1991; Nui et al. 1994; Seweryn
1994; Gómez et al. 2000; Lazzarin and Zambardi 2001;
Atzori and Lazzarin 2001; Strandberg 2002; Atzori
et al. 2003, 2005; Gogotsi 2003; Leguillon and Yosi-
bash 2003; Yosibash et al. 2004, 2006; Dini and Hills
2004; Taylor 2004; Lazzarin and Berto 2005a;
Leguillon et al. 2007).

Recently, the authors successfully predicted fracture
loads of notched specimens (sharp and blunted U and
V notches) loaded under mode I, using two equivalent
criteria; one based on the cohesive zone model (Gómez
et al. 2000; Gómez and Elices 2003a,b, 2004), the other
based on the local strain energy density (Lazzarin and
Zambardi 2001; Lazzarin and Berto 2005a; Lazzarin
et al. 2003, 2004, 2006, 2008; Livieri and Lazzarin
2005).

The problem of brittle failure from blunted notches
loaded under mixed mode is more complex than in
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mode I loading and experimental data, particularly for
notches with a non- negligible radius, is scarce. Even
so, several fracture criteria have been proposed
(Papadopoulos and Paniridis 1988; Seweryn and Mróz
1995; Seweryn and Lucaszewicz 2002; Yosibash et al.
2006; Priel et al. 2007). In mode I, fracture systemati-
cally initiates from the notch tip located on the notch
bisector line; this is the point where the main princi-
pal stress is at a maximum, as well as the maximum
shear stress and the strain energy density. Conversely,
the point where fracture starts in mixed mode varies
from case to case, because it depends on the geometry
of the notch and loading mode mixicity.

Fracture criteria based on a critical distance state
that crack propagation occurs when the normal strain
(McClintock 1958), or circumferential stress σθθ

(Ritchie et al. 1973) at some critical distance from the
crack tip, reaches a critical value. This “point crite-
rion” becomes a “line criterion” in the papers by Knésl
(1991) and Seweryn (1994) who dealt with compo-
nents weakened by sharp V-shaped notches. Knéls and
Seweryn formalised a stress criterion of brittle failure
based on the assumption that crack initiation or propa-
gation occurs when the mean value of the stress over a
specified damage segment d0 reaches a critical value.
According to Knéls, d0 is two to five times the grain
size and then ranges for most metals from 0.03 mm to
0.50 mm. Seweryn denominated the segment d0 “ele-
mentary increment of the crack length”. Both authors
quoted a previous paper by Novoz̆hilov (1969). After-
wards, this critical distance-based criterion was exten-
ded also to structural elements under multi-axial loa-
ding (Seweryn and Mróz 1995; Seweryn et al. 1997) by
introducing a non-local failure function combining nor-
mal and shear stress components, both normalised with
respect to the relevant fracture stresses of the material.

The purpose of this paper is to generalise the pre-
vious results by the present authors for components
with blunted notches loaded under mode I, to notched
components loaded under mixed mode. This generali-
zation is based on the hypothesis that fracture mainly
depends on the local mode I and on the maximum value
of the principal stress or the strain energy density.

The proposal of mode I dominance for cracked plates
was suggested be Erdogan and Sih (1963) when dea-
ling with cracked plates under plane loading and trans-
verse shear, where the crack grows in the direction
almost perpendicular to the maximum tangential stress
in radial direction from its tip.

Two different methods are used to verify such a
hypothesis: the cohesive zone model and the model
based on the strain energy density over a control volume.
Both methods allow us to evaluate the critical load
under different mixed mode conditions when the mate-
rial behaviour can be assumed as linear elastic.

Theoretical predictions were compared with more
than 160 data from static tests performed on notched
specimens taken from two recent contributions from
the authors (Gómez et al. 2007a,b). All specimens were
made of PMMA and tested at−60◦C. In order to include
a wide degree of experimental support to test the theo-
retical predictions, the experimental programme was
carried out by changing specimen geometries, thus ass-
uring a large range of loading modes (between pure
mode I and almost pure mode II).

2 Summary of the experimental data

The material chosen for the experimental programme
was polymethyl-methacrylate (PMMA) tested at
−60◦C, an amorphous glassy polymer that exhibits a
non-linear behaviour at room temperature and linear
elastic up to fracture at −60◦C, even when tested
without cracks or notches (Fig. 1) (Gómez et al. 2005).
The average mechanical properties of PMMA at−60◦C
are shown in Table 1.

The experimental programme was performed
with U-notched specimens, varying the notch incli-
nation, the root radius and the boundary conditions.
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Fig. 1 Uniaxial stress–strain curve for PMMA at different
temperatures
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Fracture assessment of U-notches under mixed mode loading 417

Table 1 Mechanical properties of PMMA at −60◦C

Young’s modulus E = 5.05 ± 0.04 GPa

Tensile strength σu = 128.4 ± 0.1 MPa

Fracture toughness KIC = 1.7 ± 0.1 MPa m1/2

Poisson’s ratio ν = 0.40 ± 0.01

B = 14

W = 28

126

a = 14

(mm)

b

9

R
R = 0, 0.2, 0.3, 0.5, 1, 2, 4

56

B = 14

W = 28

126

a = 14

(mm)

9

m

R
R = 0.3, 0.5, 1, 2, 4

56

Fig. 2 Geometry and load condition. Data in mm (b = −3, 3,
9, 18, 27 and 36 mm; m = 3, 9 and 15 mm)

The geometries of the specimens are shown in Fig. 2.
In all the specimens, the thickness, B, was 14 mm, the
size, W , was 28 mm and the notch height, a, was 14 mm.

To achieve different mixed mode loading, two types
of U-notched specimens were studied; beams with
straight notches and beams with tilted notches, at 45◦.
Samples were loaded as shown in Fig. 2. When loa-
ding beams with straight notches, the position of the
load point was modified; the distance from this point
to middle point, b, was −3, 3, 9, 18, 27 and 36 mm.
When loading beams with tilted notches, the position
of the support was moved and the horizontal distance
to the centre of the specimen, m, was 3, 9 and 15 mm.

The influence of the notch root radius, R, was exa-
mined by introducing seven different root radii. In the
first straight notch series (characterised by b = 9, 18,
27 and 36 mm), R was 0, 0.2, 0.3, 0.5, 1.0, 2.0 and
4.0 mm. In the two series with b = −3 and 3 mm, as
well as in the cases of tilted notches, the geometry with
R = 0.2 mm was not considered. Three samples were
tested for each configuration. All in all, 165 fracture

tests were performed. Experimental details appear in
the authors analysis (Gómez et al. 2007a,b), here only
the critical loads for all the geometries are summarised
in the Appendix. (Tables A1 and A2).

3 Fracture criterion based on the strain energy
density averaged over a control volume

The concept of “elementary” volume and “micro struc-
tural support length” was introduced some time ago
by Neuber (1958). Neuber formulated the idea that the
material is sensitive to a fictitious root radius ρ f , which
was given according to the expression ρ f = ρ + sε
where ρ is the actual radius, s a factor that takes into
account the state of multiaxility and ε the “micro struc-
tural support-length”. This length depends on the mate-
rial and not on the notch geometry, and was later cor-
related on its fracture toughness and ultimate tensile
strength according to the expression ε=(KIc/σt )

2/(2π)

(Neuber 1985).
Dealing here with the strain energy density concept,

it is worthwhile contemplating some fundamental
contributions provided by Sih and Gillemot. The
concept of “core region” surrounding the crack tip was
proposed by Sih (1973). The main idea is that the conti-
nuum mechanics stops short at a distance from the
crack tip, providing the concept of the radius of the core
region. The strain energy density factor S (Sih 1974a)
was defined as the product of the strain energy density
by a critical distance from the point of singularity. Fai-
lure was thought of as controlled by a critical value Sc,
whereas the direction of crack propagation was deter-
mined by imposing a minimum condition on S.

The theory was extended to employ the total strain
energy density near the notch tip (Sih 1974b), and the
point of reference was chosen to be the location on
the surface of the notch where the maximum tangential
stress occurs. This was due to expectation that from
this point fracture will proceed, although failure loads
based on this stress are not satisfactory.

The strain energy density fracture criterion was refi-
ned and extensively summarised in chapter 5 of Sih’s
book (Sih 1991). The material element is always kept
at a finite distance from the crack or the notch tip out-
side the “core region” where the inhomogeneity of the
material due to micro-cracks, dislocations and grain
boundaries precludes an accurate analytical solution.
The theory can account for yielding and fracture and is
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applicable also to ductile materials. Depending on the
local stress state, the radius of the core region may or
may not coincide with the critical ligament rc that cor-
responds to the onset of unstable crack extension (Sih
1991, chapter 8). The ligament rc depends on the frac-
ture toughness KIC, the yield stress σy, the Poisson’s
ratio ν and, finally, on the ratio between dilatational and
distortional components of the strain energy density.
The direction of Smax determines maximum distortion
while Smin relates to dilatation. Distortion is associated
with yielding, dilatation tends to be associated to the
creation of free surfaces or fracture and occurs along the
line of expected crack extension (Sih 1991, Chapter 5).

A critical value of strain energy density function
(dW/dV)c has been extensively used also by Gillemot
and collaborators (Gillemot 1965, 1976; Czoboly et al.
1982; Gillemot et al. 1985), who determined experi-
mentally (dW/dV)c for various engineering materials
by using plain and notched specimens. The deformation
energy required for crack initiation in a unit volume of
material is termed Absorbed Specific Fracture Energy
(ASFE) by Gillemot, who also discussed its links with
the critical value of Jc and the critical factor Sc. This
subject was considered also by Sih who showed that
(dW/dV)c is equivalent to Sc/r, where Sc is the criti-
cal strain energy density factor and the radius vector r
identifies the location of failure (Sih 1974b, 1991).

Since distributions of the absorbed specific energy
W in notched specimens are not uniform, Gillemot
assumed that the specimen cracks as soon as a precise
energy amount has been absorbed by the small plastic
zone at the root of the notch. If the notch is sufficiently
sharp, specific energy due to the elastic deformation is
small enough to be neglected as an initial approxima-
tion (Gillemot 1976).

While measurements of the energy in an infinitely
small element are not possible, they can be approxi-
mated with sufficient accuracy by calculating the frac-
ture energy over the entire fractured cross section of
an unnotched tensile specimen (Gillemot et al. 1985).
Notched components loaded under static loads show
that the average ASFE decreases with increasing the
notch sharpness, with the ASFE parameter being plot-
ted as a function of the theoretical stress concentration
factor, Kt, and the temperature (Gillemot et al. 1985).

For a common welded structural steel and Kt = 1,
the ASFE value, obtained by tensile tests, is about
1.0 MJ/m3 while for values of Kt greater than 3.0 a pla-
teau value is visible (Gillemot et al. 1985). Depending

on the considered welded metal, the plateau approxima-
tely ranges between 0.15 and 0.35 MJ/m3. These values
are not so different from the mean value that characte-
rises the high cycle fatigue strength of welded joints,
�WC = 0.105 MJ/m3 but with reference to a speci-
fic control volume (Lazzarin et al. 2003; Livieri and
Lazzarin 2005).

Dealing here with control volumes applied to not-
ched components, it is worth mentioning that the idea
of averaging over a finite size volume was examined
in a paper by Sheppard, who quantified the stress state
in the volume by means of a single parameter, the ave-
rage value of the circumferential σθθ stress (Sheppard
1991). The volume was a semicircular sector whose
radius could exactly be evaluated by using the finite ele-
ment method. The radius was varied until the resulting
value of Kf , thought of as coincident with the averaged
stress to nominal stress ratio, matched the experimental
data for a particular notch geometry (Sheppard 1991).

Different from Sih’s criterion, which is a point-
related criterion, the averaged strain energy density cri-
terion (SED) as reported in (Lazzarin and Zambardi
2001; Yosibash et al. 2004) states that brittle failure
occurs when the mean value of the strain energy den-
sity over a control volume (which becomes an area in
two dimensional cases) is equal to a critical energy Wc.
The SED approach is based both on a precise defini-
tion of the control volume and the fact that the critical
energy does not depend on the notch sharpness. Such a
method was formalised and applied first to sharp, zero
radius, V-notches and later extended to blunt U- and
V-notches under Mode I loading (Lazzarin and Berto
2005a). The authors argue that the extension of the SED
approach to ductile fracture is possible, with a major
problem being the definition of the control volume and
the influence of the dilatational and distortional com-
ponents of the strain energy density. In such a case, it
should be remembered that in referring to small-scale
yielding, Ellyin and Kujawski extended to cyclic
loading of notched components a method based on
the averaged of the stress and strain product within
the elastic-plastic domain around the notch (Ellyin and
Kujawski 1989; Ellyin 1997).

Recently, the effect of plasticity in terms of strain
energy density over a given control volume has been
considered by the present authors, showing different
behaviours under tension and torsion loading, as well
as under small and large scale yielding (Lazzarin and
Berto 2008).
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Fig. 3 Critical volume definition for crack (a), sharp V-notch
(b), and blunt V-notch (c) under mode I loading

When dealing with cracks the critical volume is a
circle of radius Rc centred at the tip (Fig. 3a). For a
sharp V-notch, the critical volume becomes a circular
sector of radius Rc centred at the notch tip (Fig. 3b).
Finally, for a blunt V-notch under mode I loading, the
volume assumes the crescent shape shown in Fig. 3c,
where Rc is the depth measured along the notch bisec-
tor line. The total radius of the crescent shape is greater,
equal to Rc + r0, being r0 a distance that depends on
the V-notch opening angle 2α, according to the expres-
sion r0 = R(π − 2α)/(2π − 2α) (Lazzarin and Tovo
1996). For U-notches r0 is simply equal to R/2, as in
Creager-Paris’ equations for blunt-cracks (Creager and
Paris 1967). The link between the total strain energy
over the particular control volume and Rice’s J-integral
was discussed by Berto and Lazzarin (2007) for U- and
V-shaped notches under mode I loading.

To apply this fracture criterion, two independent
parameters are needed: the critical value of the strain
energy density, Wc, and the critical length, Rc. For an
ideally linear elastic material

Wc = σ 2
u

2E
(1)

being σu the ultimate tensile stress and E the elas-
tic modulus. The critical length, Rc, can be evaluated
according to the following expressions:

Rc = (1 + ν)(5 − 8ν)

4π

(
KIC

σu

)2

. (2a)

under plane strain conditions (Yosibash et al. 2004),
K I C being the fracture toughness and ν the Poisson’s
ratio, or

Rc = (5 − 3ν)

4π

(
KC

σu

)2

(2b)

under plane stress conditions (Lazzarin and Berto
2005b). The two independent parameters for PMMA

at −60◦C are, taking into account Eqs. 1 and 2a and
Table 1 values, Wc = 1.6 MJ/m3, and Rc = 0.035 mm

Rc
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Rc

A

B

C

(b)

Fig. 4 Critical volume in U-notches under mode I (a) and mixed
mode loading (b)

The critical volume in U-notched specimens under
mode I loading conditions is centred in relation to the
notch bisector line (Fig. 4a). Under mixed mode loa-
ding the critical volume is no longer centred on the
notch tip, but rather on the point where the princi-
pal stress reaches its maximum value along the edge
of the notch (Fig. 4b). It is assumed that the crescent
shape volume rotates rigidly under mixed mode, with
no change in shape and size. (Gómez et al. 2007a). This
is the governing idea of the ‘equivalent local mode I’
approach, as proposed in this research.

The maximum stress occurring along the edges of
U-notches has been calculated numerically by using the
FE code ANSYS 9.0�. For each geometry two models
were created: the first was mainly oriented to the deter-
mination of the point where the maximum principal
stress was located; the second model was more refined,
with an accurate definition of the control volume where
the strain energy density should be averaged. All the
analyses have been carried out by means of eight-node
elements under plane strain and linear-elastic hypo-
theses. Figures 5, 6, and 7 show the maximum prin-
cipal stress and the strain energy density contour lines
inside the control volume for the three configurations
with different m values. The strain energy density is
approximately symmetric in relation to the ideal line
normal to the edge and crossing the point of the maxi-
mum principal stress. The main results of the FE ana-
lyses are reported in Tables A3 and A4.

For blunted notches loaded in mode I, the averaged

value of the strain energy density, W
(e)
1 , can be expres-

sed as (Lazzarin and Berto 2005a):

W
(e)
1 = H(Rc/R)

πσ 2
max

4E
(3)

where σmax is the maximum stress at the notch tip and
H is a parameter that depends on the normalised radius
R/Rc and the Poisson’s ratio ν. H condenses the contri-
bution of all stresses and strains present on the control
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Fig. 5 Principal stress and
strain energy density
contour lines for the case
R = 0.3 mm and m = 3 mm

Fig. 6 Principal stress and
strain energy density
contour lines for the case
R = 0.3 mm and m = 9 mm

volume, its analytical expression appears in a Lazzarin
and Berto analysis (Lazzarin and Berto 2005a). Table 2
gives the values for H corresponding to Mode I, plain
strain conditions with, ν = 0.4 and Rc = 0.035 mm.

For mixed mode loading an equivalent expression
for the averaged strain energy density is proposed:

W
(e) = H∗(Rc/R)

π
(
σ ∗

max

)2

4E
(4)

where σ ∗
max is the maximum value of the principal stress

along the notch edge and H∗ depends again on the nor-
malised radius R/Rc, the Poisson’s ratio ν and the loa-
ding conditions. Values of H∗ are listed in the Table 2

and compared with the corresponding values of H . It is
evident that the dependence on the loading conditions is
weak for all the straight notches, the difference between
H and H* being less than 1%. The difference increases
to 8.5% in the case of two tilted notches (m = 3 mm,
R = 0.3 mm and 0.5 mm), being less than 5% in the
other 13 cases.

Based on this result, an approximate procedure to
evaluate the critical load, Pcr , under mixed mode loa-
ding once σ ∗

max is known, is by using the following
equation:

W
(e)
cr = H(Rc/R)

π
[
σ ∗

max (Pcr )
]2

4E
(5)
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Fig. 7 Principal stress and
strain energy density
contour lines for the case
R = 0.3 mm and
m = 15 mm

where in Eq. 4, H∗ was changed by H . Some plots of
the stress components (σθθ , σrr , and σrθ ) are shown in
Fig. 8 where two root radii, R = 0.3 and 4.0 mm, cor-
responding to a tilted notch with m = 3 mm, are consi-
dered. Stresses in cylindrical coordinates are plotted
over a line perpendicular to the notch edge, drawn over
the point of maximum principal stress. Under mode
I conditions, the shear stress component σrθ is always
equal to zero ahead of the notch tip. Under mixed mode
conditions, σrθ is practically zero for R = 4.0 and, in
both cases, very low in comparison with the hoop stress,
particularly near the notch edge. The concept of equi-
valent local mode I, although not exact in principle, can
be seen as an accurate engineering approximation.

In the Erdogan-Sih criterion, valid for cracks, the
angle of maximum tangential stress was obtained by
imposing equal to zero the shear angular function
(Erdogan and Sih 1963). By using plexiglass plates
weakened by a crack under pure shear loading, Erdogan
and Sih showed that the fracture angle varied around
70◦ with very small scatter. That angle was in agree-
ment with the theoretical assessment (70.5◦ in absolute
value) obtained in the skew-symmetric case.

Considering mode I loading conditions, some rela-
tionships between J-integral and the strain energy eva-
luated in a given finite size volume, surrounding the tip
of sharp and blunt V-notches, were recently presented
(Berto and Lazzarin 2007). With the aim of assessing
the static failure of specimens weakened by U-notches,

an attempt was carried out to link the strain energy
density W̄ averaged over a control volume and the
J-integral as determined on the inner arc delimitating

the same semi-moon-like volume (i.e. the arc (A
	

BC) as
shown in Fig. 4). This allowed the researchers to create
a link among J-integral, the mean value of the strain
energy density W̄ and the material-dependent control
radius Rc.

Many attempts have been made in the past to study
the problem of crack growth under mixed mode loading
by using path-independent line integrals (see Gdoutos
1990). The J-integral, as proposed by Rice (1968), is the
first component of the vector Jk(k = 1, 2), as defined
in (Knowles and Sternberg 1972; Budiansky and Rice
1973):

Jk =
∫



(
W nk − Ti · ∂ui

∂xk
ds

)
(k = 1, 2) (6)

where W is the strain energy density, nk is the unit
normal vector to the contour 
, where J is evaluated,
and ui and Ti are the components of the displacement
and traction vectors, respectively. In a less synthetic
form, J1 and J2 can be expressed as follows:

J1 =
∫



[
W n1 − (σxx n1 + τxyn2)

∂ux

∂x1

− (τxyn1 + σyyn2) · ∂uy

∂x1

]
ds (7a)
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J2 =
∫



[
W n2 − (σxx n1 + τxyn2)

∂ux

∂x2

− (τxyn1 + σyyn2) · ∂uy

∂x2

]
ds (7b)

Chen and Lu (2004) analysed the path dependence
of the Jk-vector when applied to the circular arc of
blunt U- and V-notches. They found a new condition to
ensure the path-independence of the J-integral, based
on the zeroing of the projected contributions from the
J2 integral evaluated in local coordinate system along
the integration path (traction-free surfaces). Moreover,
they underlined the importance played by J2 in studying
fracture of notch-like defects.

Following the guidelines drawn for U-notches in
mode I loading, a new proposal for the use of the
J-integral in mixed mode is presented here. When mixed
mode conditions are present, both J1 and J2 are different
from zero; the modulus of the vector Jk can be evaluated
by using the expression

Jeq =
√

J 2
1 + J 2

2 (8)

Considering that now the same rotated volume as defi-
ned for the SED evaluations (Rc = 0.035 mm), it is
possible to define the averaged value of Jeq over the arc
defined by points A, B and C, which describes the inner
perimeter of the selected volume (see Fig. 4b):

Jarc = Jeq

arc(A
	

BC)
(9)

For the beams with tilted notches, which presented the
higher contribution due to mode II, Table 3 lists the
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Table 3 Application of the
J-integral to beams with
tilted notches and
comparison with the SED

R (mm) m (mm) J1 J2 Jeq arc Jarc = Jeq/arc SED

(N/mm) (N/mm) (N/mm) (mm) (Nmm/mm3) (Nmm/mm3)

4 15 1.88 0.71 2.01 1.08 1.86 1.91

9 1.74 0.80 1.92 1.08 1.77 1.78

3 1.57 0.99 1.86 1.08 1.72 1.75

2 15 1.49 0.56 1.59 0.76 2.09 2.08

9 1.40 0.61 1.53 0.76 2.01 1.96

3 1.34 0.82 1.57 0.76 2.07 2.06

1 15 1.15 0.30 1.19 0.56 2.12 2.13

9 1.07 0.42 1.15 0.56 2.05 2.07

3 0.99 0.58 1.15 0.56 2.05 2.06

0.5 15 0.81 0.17 0.83 0.42 1.97 1.98

9 0.68 0.23 0.72 0.42 1.71 1.83

3 0.74 0.66 0.99 0.42 2.36 2.18

0.3 15 0.91 0.11 0.92 0.34 2.70 2.65

9 0.82 0.34 0.89 0.34 2.61 2.44

3 0.77 0.38 0.86 0.34 2.53 2.56

values of J1, J2, Jeq and Jarc. The results are reported for
the three different values of the span length m already
considered in the experimental programme and for all
the values of the notch root radius R. In addition, a
comparison between the values of Jarc (as obtained by
averaging the modulus of the Jk-vector over the perime-
ter of the control volume) and the SED is presented. The
agreement between the two parameters is accurate also
for mixed mode loading, as has already occurred in the
pure mode I case. This provides not only a new inter-
pretative key to J when applied to blunt notches under
mixed mode loading (I + II), but also confirmation that
Jarc is a worthy engineering tool for static assessment
of components weakened by U-notches.

It is important to note that Jarc is not rigorously for-
mulated and precisely defined for the crack case (see
also Berto and Lazzarin 2007 and Berto et al. 2007).
In fact, the definition of Rc has not been updated with
respect to the definition based on the SED approach.
Furthermore, it should also be highlighted that dealing
with a blunt notch the J-integral is path-dependent and
the only way to extend its use, as an assessment para-
meter, in the case of finite value of the notch radius is to
define a characteristic length dependent on the material.
This length, conceptually similar to the microstructural
support length introduced first by Neuber (1958, 1985),
“decides” on which path J has to be evaluated (Livieri

Fig. 9 Ratio between the SED and Jarc, as a function of notch
root radius R, for two different Rc values

2008). The SED approach allows to take into account
the averaged energy in an area, while the Jarc gives the
value of the line energy averaged along a characteristic
path (in this case the path is defined as the perime-
ter of the control volume and is then tied to Rc). Two
different energetic approaches—one rigorously formu-
lated and analytically developed, and another based on
the control radius defined by means of SED criterion—
give the same results because they are conceptually
linked.

The ratio β between the SED and Jarc, as a func-
tion of the notch root radius R, is plotted in Fig. 9 for
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two different values of the control radius Rc (0.035 and
0.1 mm) showing that, despite the approximate defini-
tion of Jarc, β is near to 1, confirming our engineering
choice.

4 Fracture criterion based on the cohesive
zone model

The cohesive model was first proposed in the 1960s by
Dugdale (1960) and Barenblatt (1962) from a theore-
tical point of view to eliminate the stress singularity at
the tip of the crack. In the 1970s, Hillerborg et al. (1976)
generalised the cohesive zone (CZM) model to explain
fracture process where no initial macroscopic crack
existed. This last generalization is the starting point
for applying this model to notches. A review of this
model, together with some improvements, was made
by the authors in a recent paper (Elices et al. 2002).

The material is characterised by the properties of the
bulk material and by the conditions for the initiation and
development of cracking. A cohesive crack initiates
at the point where the maximum principal stress σ11

first reaches a critical value, being termed the cohesive
stress ft . This cohesive crack initiates in the direction
perpendicular to the maximum principal stress. After
its formation, the cohesive crack opens while transfer-
ring stress from one face to the other one. The transfer-
red stress strictly depends on the crack opening
displacement. For a monotonic load and local mode
I, the stress transferred σ , is normal to the crack faces
and is a unique function of the crack opening w. The
material function linking σ and w is termed the softe-
ning function.

The material behaviour is characterised by the cons-
titutive equations of the bulk material and the softening
function. In this research, the bulk material behaviour
is assumed linear elastic and the softening function a
rectangular law, in accordance with previous results
(Gómez et al. 2005).

The rectangular softening function has been suc-
cessfully employed for PMMA at −60◦C where frac-
ture assessment of notches in mode I was the prime
concern (Gómez et al. 2005). This softening curve is the
simplest one and depends only on two parameters: the
cohesive stress ft and the fracture energy G F . Here,
the cohesive stress ft is assumed as equal to the ten-
sile strength measured at −60◦C from unnotched spe-
cimens, while the fracture energy was calculated from
the knowledge of the fracture toughness and Eq. 10.

G F = K 2
I C

E ′ (10)

where E′ = E/(1 − ν2). By using the mechanical pro-
perties shown in Table 1, such a softening function
of PMMA was characterised by ft = 128 MPa and
G F = 480 N/m.

In mode I loading, the geometry and loading is sym-
metrical to the symmetry plane of the notch. This has
the advantage of knowing, a priori, the crack path as
well as the plane on which the cohesive process zone
develops, and allows us to model only half of the geo-
metry. The cohesive process zone is modelled on this
plane as a mixed boundary condition by stipulating a
relationship between stresses and displacements given
by the softening function.

In mixed mode loading the problem is more com-
plex, given that the fracture path is initially unknown.
This problem could be overcome by using the local
mode I approach, with the hypothesis that the cohesive
crack initiates ahead of the notch in the point where the
principal stress reaches its maximum value. It could
then be analysed by placing close to this point, per-
pendicular to the notch edge, a band of cohesive ele-
ments, where the behaviour is defined by the softening
function in a similar manner to in Mode I. To improve
slightly this procedure, a triangle of special elements
is placed near the critical point, allowing a possible
curvature in the initial path of the cohesive crack.

Calculations were performed with the freeware finite
element code COFE, developed in the Department of
Materials Science at the Universidad Politécnica de
Madrid (Planas and Sancho 2007). The local mode I
hypothesis allows us to determine the initial position
of the cohesive crack: the point at the notch boundary
where the main elastic principal stress is at a maximum.
After a first linear elastic calculation to reach such a
point, an isosceles triangle was placed over it with the
height of the triangle perpendicular to the notch, to
simulate the cohesive crack. The general form of all
the FE meshes appears in Fig. 10. The size of the ele-
ment decreases near the critical point on the notch up to
4 µm. Special cohesive elements had been placed into
the triangular area, using the embedded crack technique
(Sancho et al. 2007). Bulk elements are conventio-
nal linear triangular plane strain elements. Calculations
were performed controlling the displacement of the
node at the cohesive crack initial point.

This procedure predicts the maximum load when
the maximum displacement between the lips of the
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Fig. 10 Detail of the mesh used in cohesive calculations
(R = 1 mm)

cohesive crack reaches the critical value, wc, equal to
the fracture energy divided by the cohesive stress ft .
When the problem is formulated analytically and an
actual crack is considered, two equations govern frac-
ture: the maximum displacement among the cohesive
crack lips and the fact that the stresses are finite near the
cohesive crack. Thus, the stress intensity factor must be
equal to zero, i.e.:

wc = G F

ft
(11)

and

K I = 0 (12)

Using the superposition principle, the initial state can
be analysed as a combination of two auxiliary states,
shown in Fig. 11: a loaded notched sample, having a
crack without transferring stresses and a notched
sample without external loads and with a crack loa-
ded by cohesive forces. Introducing this concept into
Eqs. 11, 12 one reaches at:

G F

ft
= CP (acohesive, geometry) R

Pcr

B DE ′

− C f (acohesive, geometry) R
ft

E ′ (13)

0 = gP (acohesive, geometry)
√

R
Pcr

B D

− g f (acohesive, geometry) ft
√

R (14)

In expressions (13) and (14) the first term corresponds
to state I (see Fig. 11) and the second to state II (Fig. 11).
CP and C f are dimensionless stiffness functions
(which depend on the geometry and the size of the

R
ft

acohesive

σ
a

P P

σ
= -

I II

Fig. 11 Cohesive crack and superposition diagram

cohesive crack, acohesive)B and D, two dimensions of
the sample, and gP and g f the dimensionless shape
functions. A general description of these two equations
and the procedure can be found in Bažant and Planas
(1998). After solving the equation system, one obtains
Pcr and acohesive, where

acohesive = acohesive

(
R

lch
, geometry

)
,

Pcr = Pcr

(
R

lch
, geometry

)
(15)

and lch a material characteristic length (Hillerborg et al.
1976) defined as

lch = E ′G F

f 2
t

(16)

Rearranging expression (15) in a dimensionless form,
the system of equations provides the following
relationship
G F

ft
= Pcr

B DE ′ R f

(
R

lch

)
(17)

For notched components under mode I loading, Eq. 17
can be modified, taking into account the maximum
stress at the notch edge and the new function h, as:
G F

ft
= σM AX

E ′ Rh

(
R

lch

)
(18)

This equation can be further modified by considering
the ratio tk between theσmax and the critical load Pcr , as:
G F

ft
= tk Pcr

E ′ Rh

(
R

lch

)
(19)

The numerical values of the function h corresponding
to mode I are shown in Table 4. For mixed mode loading,
an analogous expression can be stated as:

G F

ft
= t∗k Pcr

E ′ Rh∗
(

R

lch

)
(20)
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where, again, t∗k is the ratio between the maximum
stress at the notch and the applied load, and h∗ is a
function of the normalised radius, R/ lch , of the geo-
metry and the loading conditions. The parameter h∗
has been calculated and shown in Table 4 for lch =
0.176 mm, the characteristic length for PMMA. The
values of Table 4 show that the dependence of h and
h∗ from the loading modes is weak.

Involving the same reasoning as in the SED cri-
terion, an approximate procedure is proposed to eva-
luate the critical load, Pcr , in mixed mode loading by
substituting h* by h, as both values are almost equal.
The resulting equation is:

G F

ft
= t∗k Pcr

E ′ Rh

(
R

lch

)
(21)

This simple formula provides accurate predictions, as
shown in the next section.

5 Comparison of experimental results
with numerical predictions

The experimentally measured critical loads from the
160 tests, performed with notched beams loaded under
mixed mode, are compared with the numerical predic-
tions based on the SED and CZM criteria. The critical
loads, deduced from Eqs. 5 and 21 are given by

Pcr = 2

t∗k

√
EW̄ (e)

cr

π H(Rc/R)
(22)

for the SED criterion and by

Pcr = E ′G F

ft t∗k Rh
(

R
lch

) (23)

when the CZM criterion is used.
To calculate these critical loads, one needs to know

some material properties obtained from two tests: a
tensile test and a fracture toughness test. The ratio t∗k ,
can be extracted from linear elastic calculations and the
functions h and H , are given in Tables 2 and 4.

Figures 12 and 13 compare the experimental values
of the critical loads as a function of the notch root radius
with the numerical predictions based either on the CZM
model or the SED model, as well as with those based on
the two simplified procedures, Eqs. 5 and 21. Figure 12
corresponds to the straight notches, each one with a
different value of b; Fig. 13 corresponds to the inclined
notches, with different values of m. The agreement is
found to be satisfactory for the SED model and accurate Ta
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Fig. 12 Comparison
between experimental and
predicted values of the
critical load for different
notch root radii (b = −3, 3,
9, 18, 27 and 36 mm)
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for the CZM model. For the latter, the differences in
terms of critical loads between the predictions based on
the numerical and the ‘approximate’ procedure, Eq. 23,
are less than 5%.

The main differences between numerical and approxi-
mates procedures are in the last series corresponding
to tilted notches with m = 3 mm. In these tests, fracture
starts far from the notch tip, near the end of the circu-
lar contour. The influence of the straight contour of the
notch could be one of the reasons for the discrepancy.

6 Summary and final comments

In this paper two different fracture criteria, based on the
averaged strain energy density over a control volume
and the cohesive zone model, have been generalised
from mode I to mixed mode (I + II), under the hypo-
thesis of an equivalent local mode I along the normal

line to the notch edge, at a point where the principal
stress reaches its maximum value. The two different
approaches have been used to assess rupture loads of
U-notched components made of PMMA and tested at
−60◦C under mixed mode loading.

The idea behind the equivalent local mode I is that
the control volume, which was symmetric with respect
to notch bisector line under Mode I loading, is shifted
along the notch edge and centred with respect to the
point of maximum principal stress. Since the influence
of remaining stress components (σrr , σrθ ) is small in
the presence of a blunt notch and near the control area,
the hypothesis of an equivalent local mode I for mixed
mode loading can be substantiated.

To check the proposed fracture criteria, a signifi-
cant amount of experimental data, recently obtained
by the authors, has been reconsidered. The measured
critical loads have been compared with those obtained
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Fig. 13 Comparison between experimental and predicted values
of the critical load for different notch root radii (m = 15, 9 and
3 mm)

numerically by means of the two approaches with a
satisfactory agreement being found in all cases. This
agreement between numerical and experimental values
supports the hypothesis of local mode I. In all cases
the divergences between each are of the same order
than those that appear in previous analyses in which
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Fig. 14 Principal stress distribution along the normal line to
the notch at the point where fracture starts. The figure has been
obtained by imposing a constant value the strain energy density
(1.69 Nmm/mm3) on the control volume with a critical radius
equal to 0.035 mm

only mode I was considered, (see Gómez et al. 2005 or
Lazzarin and Berto 2005a).

An additional argument that supports the local mode
I is the similitude between the stress fields shown in
Figs. 5, 6 and 7. The only difference between the stress
and energy contours from one geometry to another
is the position of the point where the stress is at a
maximum.

Figure 14 shows that for different notch radii the
distribution of the principal stress σ11, along the line
which represents the axis of symmetry of the rotated
control volume under mixed mode loading. The dia-
gram has been obtained by imposing a constant value of
the strain energy density (Wc = 1.69 Nmm/mm3) over
the control volume having a critical radius Rc equal
to 0.035 mm. The curves intersect each other at a dis-
tance approximately equal to 0.5a0, where a0 is the
extensively known El Haddad Smith Topper parameter
(El Haddad et al. 1979) (the expression Rc = 0.63a0

under plane strain conditions is valid for ν = 0.4).
Such a finding strongly supports the idea of the equi-
valent local mode I approach proposed in this study,
confirming the fact that the critical radius Rc needs not
be updated under mixed mode conditions (I + II) with
respect to pure mode I loading.
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Appendix

Table A1 Outline of
experimental values of the
critical loads from beams
with straight notches

R (mm) b (mm) P1 (N) P2 (N) P3 (N) <P> (N)

4 −3 6903 6830 7277 7003

3 4716 4643 4645 4668

9 4219 41550 4171 4182

18 4885 5304 5133 5107

27 6114 6518 6659 6430

36 9968 9889 9286 9714

2 −3 5954 6093 6033 6027

3 3880 3740 3775 3798

9 3692 3700 3374 3589

18 4079 4102 4062 4081

27 5258 5210 4689 5052

36 7606 7640 8113 7786

1 −3 4634 4633 4549 4605

3 2901 2876 2846 2874

9 2742 2886 2559 2729

18 3531 3739 3262 3511

27 4302 4401 4469 4391

36 6242 6115 5835 6064

0.5 −3 3687 3682 3505 3625

3 2530 2514 2562 2535

9 2131 2246 2186 2188

18 2504 2503 2677 2561

27 3412 3509 3452 3458

36 4837 4791 4519 4716

0.3 −3 3462 2880 3161 3168

3 2146 2235 2195 2192

9 1797 1918 2131 1949

18 2356 2346 2345 2349

27 3305 2776 3435 3172

36 4722 4700 4487 4636

0.2 9 1427 1304 1193 1308

18 1536 1528 1580 1548

27 2097 2114 2171 2127

36 3466 3486 2914 3289

0 −3 2213 1967 2426 2202

3 1393 1486 1379 1419

9 1136 1203 − 1170

18 1507 1451 1418 1459

27 1995 1785 2089 1956

36 2582 2624 2933 2713

123



430 F. Berto et al.

Table A2 Outline of
experimental values of the
critical loads from beams
with inclined notches

R (mm) w1 (mm) P1 (N) P2 (N) P3 (N) <P> (N)

4 15 3433 3329 3466 3409

9 4225 4209 4448 4294

3 6613 6337 6353 6434

2 15 2842 2809 3112 2921

9 3743 3854 3729 3775

3 6316 6086 5914 6105

1 15 2266 2310 2460 2345

9 3327 3164 3008 3166

3 5435 4851 5316 5201

0.5 15 1792 1783 1776 1784

9 2323 2494 2436 2418

3 4503 4732 4334 4523

0.3 15 1736 1866 1669 1757

9 2397 2420 2446 2421

3 4394 4354 4173 4307

Table A3 Outline of
numerical results for
straight notches

R (mm) b (mm) σ ∗
θθ σ ∗

max K V,R
1 K V,R

2 SED

(MPa) (MPa) (MPa
√

m) (MPa
√

m) (MJ/m3)

4 −3 145.75 146.38 7.90 −2.81 1.73

3 135.38 154.10 7.38 −6.83 1.92

9 110.81 149.36 6.20 −7.91 1.80

18 105.18 155.05 5.88 −8.03 1.95

27 99.76 147.33 5.57 −7.62 1.77

36 103.93 152.13 5.82 −7.91 1.89

2 −3 157.18 161.30 6.14 2.31 2.05

3 139.49 160.00 5.48 4.34 2.01

9 123.10 161.87 4.87 −5.19 2.07

18 109.57 155.30 4.33 −5.06 1.92

27 102.33 145.14 4.05 −4.71 1.67

36 108.56 152.94 4.30 −4.96 1.86

1 −3 158.09 164.10 4.40 −1.68 2.03

3 140.23 160.95 3.91 −2.76 1.95

9 125.69 162.67 3.51 −3.32 2.00

18 127.44 175.96 3.57 −3.73 2.37

27 120.20 166.06 3.35 −3.52 2.08

36 114.23 156.85 3.19 −3.29 1.87

0.5 −3 165.45 175.75 3.32 −1.29 2.12

3 167.83 193.28 3.33 −2.20 2.58

9 138.46 177.27 2.75 −2.40 2.18

18 128.49 174.17 2.56 −2.47 2.11

27 130.83 177.44 2.59 −2.53 2.19

36 122.62 165.27 2.43 −2.37 1.91
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Table A3 continued
R (mm) b (mm) σ ∗

θθ σ ∗
max K V,R

1 K V,R
2 SED

(MPa) (MPa) (MPa
√

m) (MPa
√

m) (MJ/m3)

0.3 −3 185.27 194.53 2.79 −1.13 2.35

3 184.94 211.85 2.79 −1.84 2.78

9 157.26 200.19 2.40 −2.02 2.47

18 150.85 202.44 2.31 −2.18 2.52

27 153.62 206.28 2.37 −2.21 2.47

36 154.33 206.19 2.37 −2.21 2.62

0.2 9 128.51 162.99 1.61 −1.33 1.44

18 121.26 161.73 1.52 −1.39 1.44

27 125.63 167.62 1.58 −1.45 1.52

36 133.49 177.27 1.68 −1.52 1.70

0 −3 − − 1.74 −0.40 2.05

3 − − 1.65 −0.58 2.15

9 − − 1.34 −0.61 1.70

18 − − 1.35 −0.68 1.88

27 − − 1.36 −0.68 1.92

36 − − 1.29 −0.65 1.73

Table A4 Outline of numerical results for inclined notches

R (mm) w1 (mm) σ ∗
θθ (MPa) σ ∗

max (MPa) K V,R
1 (MPa

√
m) K V,R

2 (MPa
√

m) SED (MJ/m3)

4 15 31.14 153.79 1.73 6.05 1.91

9 −10.32 148.72 −0.41 6.88 1.78

3 −102.00 148.16 −5.32 9.61 1.75

2 15 50.89 163.00 2.14 4.80 2.08

9 7.47 158.16 0.48 5.41 1.96

3 −104.11 163.67 3.87 8.31 2.06

1 15 33.05 168.43 1.99 −3.63 2.13

9 22.96 166.80 0.80 −4.21 2.07

3 −102.37 169.58 −2.69 −6.54 2.06

0.5 15 78.39 169.87 1.64 −2.66 1.98

9 34.35 165.14 0.79 −3.07 1.83

3 −108.96 185.65 −2.03 −5.39 2.18

0.3 15 104.03 208.95 1.68 −2.58 2.65

9 50.71 203.45 0.87 −3.02 2.44

3 −123.50 212.98 −1.80 −5.00 2.56

σ ∗
θθ is the stress on the notch tip along the notch bisector line

σ ∗
max is the maximum stress out of the notch bisector line

K V,R
1 and K V,R

2 are the generalized stress intensity factor evaluated by using the definition by Lazzarin and Filippi (2006)

K V,R
1 = √

2π
(σθθ )θ=0r1−λ1

1 + ω̃1

(
r

r0

)µ1−λ1
K V,R

2 = √
2π

(τrθ )θ=0r1−λ2

1 + ω̃2

(
r

r0

)µ2−λ2
(A1)

SED is the value of the energy averaged over the control volume of radius Rc

Please note that the results related to the straight notches (with b = 9, 18, 27, 36) are reported also in the paper by Gomez et al. 2007
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