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Abstract It is proposed to use a discrete particle
model as a complimentary “numerical testing machine”
to identify the hydrostatic elasticity-damage coupling
and the corresponding sensitivity to hydrostatic stresses
parameter. Experimental tri-axial tensile testing is dif-
ficult to perform on concrete material, and numerical
testing proves then its efficiency. The discrete model
used for this purpose is based on a Voronoi assem-
bly that naturally takes into account heterogeneity. Tri-
tension tests on a cube specimen, based on a damage
growth control, are presented. A successful identifica-
tion of the hydrostatic sensitivity function of a phenom-
enological anisotropic damage model is obtained.

Keywords Discrete model · Anisotropic · Damage ·
Cross-identification · Virtual testing

1 Introduction

Experimental testing is an essential task when design-
ing structures or when developing a constitutive model.
Testing validates the accuracy of the structure design
or the main model features. But experimental tests are
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usually limited due to their cost, and sometime to their
complexity. In contrast with the past, tests number tends
to decrease when planning a development campaign,
and nonlinear numerical simulations are complimen-
tary used (see Linde et al. 2006; Reese 2006; Wang et al.
2006 for some recent examples). In a near future
numerical simulations may replace a non negligible
part of experimental validation. If the model used is
robust and efficient, simulations have numerous advan-
tages: “perfect” boundaries and well-known loading
conditions, limited cost, reproducibility.

The purpose here is to show that numerical sim-
ulations can help in the same way to identify parts
of phenomenological constitutive models, as they can
help to study bifurcation and instability (Delaplace et
al. 1999). Material parameters identification is usually
done with standard experimental tests (e.g. tension,
compression, torsion) but which may be not sufficient
for complex models or for models with a large number
of parameters. This feature leads to the development of
specific experimental devices and complex protocols
in order to identify the “recalcitrant” or low sensitive
parameters.

The phenomenological constitutive model consid-
ered in the present work is a 3D anisotropic damage
model based on a reduced number of parameters
(Desmorat 2004; Desmorat et al. 2007). A function
h(D) controls the evolution of the damage D under pos-
itive hydrostatic stresses, and is tricky to determine for
brittle heterogeneous material like mortar or ceramic:
the response is highly sensitive to this function under
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116 A. Delaplace, R. Desmorat

tri-axial states of stresses but becomes much less
sensitive under uniaxial loading. It is proposed to use
a discrete particle model (see Cundall and Strack 1979
for first application to geomaterials) well-adapted to
describe material failure under tensile conditions, to
perform pertinent complimentary numerical testing and
to identify both the scalar argument of the function
h(D) (is it the norm of the damage tensor? the mean
or hydrostatic damage?) and its expression. The 3D
anisotropic damage and discrete particle models are
described first, with a particular attention to param-
eters identification. A numerical identification proto-
col is given aiming at cross-identifying the discrete
and phenomenological models damage hydrostatic
responses.

2 Induced anisotropic damage model

The main idea of anisotropic damage models is to rep-
resent the non isotropic micro-cracks damage pattern.
It is essential in 3D to built a state potential which can
be continuously differentiated and from which derive
the state laws: the elasticity law coupled with dam-
age and the definition of the thermodynamics force
associated with damage. This key differentiability fea-
ture ensures the stresses-strains continuity under com-
plex nonproportional loading. Anisotropic damage is
generally represented by a tensorial thermodynamics
variable D (Chaboche 1978; Leckie and Onat 1981;
Cordebois and Sidoroff 1982; Ladevèze 1983; Chow
and Wang 1987; Murakami 1988; Ju 1989; Halm and
Dragon 1998; Lemaitre and Desmorat 2005) taken next
as a second order tensor. An anisotropic damage model
for concrete has been proposed based on these assump-
tions (Desmorat 2004; Desmorat et al. 2007), based
also on a splitting of the Gibbs free enthalpy (Papa and
Taliercio 1996; Lemaitre et al. 2000)

– into a deviatoric part fully affected by the damage
tensor D through the effective tensor H=(1−D)−1/2,

– and on a hydrostatic part affected by a sensitivity to
hydrostatic stresses scalar function h(D) for positive
hydrostatic stresses and not affected by damage for
negative hydrostatic stresses.

Using the notation 〈x〉 = max(x, 0) for the positive
part of a scalar, Gibbs free enthalpy reads:

ρψ∗ = 1 + ν

2E
tr

[
HσDHσD

]

+ 1 − 2ν

6E

[
h(D) 〈tr σ 〉2 + 〈−tr σ 〉2

]
(1)

with E and ν the Young modulus and Poisson ratio of
the initially isotropic material and where (·)D denotes
the deviatoric part. The purpose next is to determine
h(D) function for concrete.

The state laws derive from the state potential (1), the
elasticity law reading then

ε = ρ
∂ψ∗

∂σ
= 1 + ν

E

[
HσDH

]D

+ 1 − 2ν

3E
[h(D) 〈tr σ 〉 − 〈−tr σ 〉] 1 (2)

The strain energy release rate density—the thermody-
namics force associated with the damage D—is gained
as Y = ρ

∂ψ∗
∂D .

Concerning damage, a criterion function f is con-
sidered defining the elasticity domain by f < 0 and
damage growth by the consistency condition f = 0
and ḟ = 0,

f = ε̂ − κ (trD) (3)

where ε̂ is Mazars equivalent strain (Mazars 1984;
Mazars et al. 1990),

ε̂ = √〈ε〉+ : 〈ε〉+ (4)

built from the positive extensions (〈ε〉+ is the positive
part of the strain tensor in terms of principal values).
The function κ allowing for modeling both tensile and
compressive response of concrete with a single set of
material parameters is:

κ (trD) = a · tan

[
trD
aA

+ arctan
(κ0

a

)]
(5)

The anisotropic damage growth is assumed induced
by the square of the positive strain tensor1 〈ε〉2+ as
(λ̇ is the damage multiplier gained from the consistency
condition),

Ḋ = λ̇〈ε〉2+ (6)

The numerical implementation of the model in a finite
element code is given in Desmorat et al. (2007).
The intrinsic dissipation due to damage remains posi-
tive (Desmorat 2006). A main feature of the model is
the reduced number of material parameters introduced

1 In terms of principal components, i.e. (i) make ε diagonal as
εdiag = P−1εP, (ii) take its positive part 〈εdiag〉+, (iii) turn it
back to the initial basis, 〈ε〉+ = P〈εdiag〉+P−1.
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Discrete 3D model as complimentary numerical testing for anisotropic damage 117

to represent the full 3D anisotropic damage evolution:
five including the elastic parameters,

– the elasticity parameters E, ν,
– the damage threshold κ0,
– the damage parameters A, a,

and the function h(D).
The first five parameters are easily identified from

basic experimental tension and compression tests. On
the other hand, the function h(D) is more subtle to
identify, because it is acting on triaxial tension states
difficult to represent with an experimental setup for
brittle materials. An identification for metallic materi-
als of such a function has been successfully realized
(Lemaitre et al. 2000) but the procedure needed differ-
ent small samples cut in large uniaxialy pre-damaged
plates. The small samples were then tested to measure
their damaged elastic properties related toh. The exper-
imental protocol used is not conceivable for quasi-
brittle material. With the fact that tests with positive
hydrostatic stresses are very difficult to perform for
these materials, numerical testing will prove useful in
order to cross-identify the sensitivity to hydrostatic
stresses function h.

The numerical tests will be made by use of a discrete
model, based on a simple statistic representation of
the material at the microstructure scale. Discrete mod-
eling is robust enough in tension-like loadings to be
considered as a numerical testing machine under such
loading conditions (Kun and Herrmann 1996; Bolander
and Saito 1998; D’Addetta et al. 2002; Yip et al. 2006;
Delaplace and Ibrahimbegovic 2006). Tri-tension

loading tests can then be realized. Next section is
devoted to the discrete model used.

3 Discrete model as particle assembly

In the considered discrete model, the material is
described as a particles assembly (see the pioneering
work of Cundall and Strack (1979)), representative of
the material heterogeneity. Two kinds of particle shapes
are generally used: spherical or polyhedra. The first one
is very efficient thanks to the simple shape, especially
for contact problems. But mesh generation is tricky,
and space between particles needs a special treatment
for dynamic problems (see for example a full genera-
tion procedure in Potyondy and Cundall (2004)). On
the other hand, control of heterogeneity and mesh gen-
eration are easy to obtain with polyhedra shapes. One
chooses these last particles, computed from a
Voronoi tessellation. Heterogeneity is controlled
through the randomness of the particle center. There
is no direct correlation between the Voronoi particles
and the microstructure of a real material, but the intro-
duced randomness avoids any privileged orientation in
the medium. Because one wants a simple control of the
boundary and loading conditions, a 3D regular grid is
generated on the sample and a particle center is gen-
erated inside each grid box (Moukarzel and Herrmann
1992). Figure 1 explains the successive steps of the
mesh generation. A 2D mesh is considered for a better
visualisation, but the steps remain identical in 3D.

Fig. 1 Successive steps of the mesh generation
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118 A. Delaplace, R. Desmorat

Fig. 2 Two 3D samples used for this study (left: 8×8×8, right:
16 × 16 × 16)

1. Create a grid on the mesh outline and place random
points in each square;

2. Compute the Delaunay triangulation of the set of
points;

3. Compute the dual Voronoi tesselation;
4. Cut the particles with the mesh outline.

The geometry considered next is simpler (a cube)
but 3D. Two different meshes are given in Fig. 2.

3.1 Particle interactions

Two kinds of interaction are taken into account, the
cohesion forces and the contact forces. Cohesion forces
are necessary in order to represent the behavior of a
cohesive material, as contact forces are used for impact
problems and for cyclic loading problems, to represent
cracks closure effect. In this study, only tension and tri-
tension tests will be considered. No contact forces are
computed.

Because particles are underformable (an overlap-
ping is allowed), particle interaction should represent
the elastic material behavior. For two particles, the
interaction is represented through a 12 × 12 local stiff-
ness matrix. Generally, physical meaning of this matrix
is rendered as six elastic springs at the particle common
boundary, or as an elastic beam. This last representa-
tion is chosen and cohesive forces are represented by
elastic Euler-Bernoulli beams. If just cohesive forces
are considered, the model is nothing else than a lattice
model (Schlangen and Garboczi 1997; Van Mier et al.
2002).

An isotropic material is modeled here, character-
ized by two elastic parameters:E, the Young modulus,
and ν, the Poisson coefficient. These material parame-
ters can be imposed by choosing the right local beam
parameters. For an elastic Euler–Bernoulli beams, these
parameters are:

– the Young modulus Eb (equals for all beams),
– the area Ab,
– the length �b,
– the moment of inertia Ib.

Ab and �b are imposed by the particle geometry. Then,
elastic material parameters E and ν are obtained
through the beam Young modulus Eb and through the
beam inertia. An adimensional parameter α = 64Ib/
(πφ4) is introduced instead of Ib, with φ the diame-
ter of the equivalent circular section of the considered
beam.

With a discrete model, a “sufficient number” of
particles should be considered in order to obtain con-
vergence of the elastic properties of the media to the
isotropic elastic properties of the material. This con-
vergence is shown on Fig. 3, for the following model
parameters Eb = 46 GPa and α = 0.74. For different
particle densities and for different meshes, the macro-
scopic elastic properties E and ν of the media have
been computed. Table 1 summarizes the results. As
expected, parameters converge toward finite values as
the density increases.

3.2 Nonlinear behavior

Quasi-brittle response of the material is obtained by
considering a brittle behavior of the beams. The break-
ing criteria depend on the beam axial strain and on the
rotations of extremities i and j leading to the following
expression:

Pij
(
εij , |θi − θj |

) ≥ 1 (7)

where εij is the beam strain, θi and θj are respectively
the rotations of the end particles i and j and where
P(.) is a coupling function. If condition (7) is fulfilled,
the beam breaks irreversibly. Enhanced behavior can
be considered, with for instance linear softening, but
computational cost increases much with the improve-
ment. For brittle materials like concrete, brittle elas-
tic behavior usually gives good results (Van Mier and
Van Vliet 2003). Following (Herrmann and Roux 1990;
D’Addetta 2004), the chosen breaking threshold is:

Pij =
(
εij

εcr

)2

+
( |θi − θj |

θcr

)
≥ 1 (8)

where the first variable εcr acts mainly on tensile behav-
ior as the second one θcr acts on compressive behavior.
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Fig. 3 Convergence of elastic parameters with respect to particle density

Table 1 Elastic parameters
for different particle
densities

Particle Number of E (GPa) (min–max) ν (min–max)

density realizations

4 2,048 43.14 (35.91–50.69) 0.1622 (0.08978–0.2450)

8 512 35.19 (33.74–36.96) 0.1881 (0.1689–2.146)

16 256 31.96 (31.62–32.36) 0.1989 (0.1904–0.2064)

24 128 31.00 (30.80–31.17) 0.2020 (0.1974–0.2054)

32 64 30.56 (30.46–30.67) 0.2034 (0.2014–0.2055)

40 8 30.32 (30.28–30.37) 0.2040 (0.2032–0.2046)

3.3 Solver

We present in this part the algorithm used for static
problems. Basically, one has to solve the discrete equi-
librium equations, formally written

K(u)u = f (9)

K(u) is the global stiffness matrix, u the displace-
ment vector, f the loading vector applied to particles.
The most common algorithm, also used in finite ele-
ment codes, is the step-by-step monotonic loading algo-
rithm, as follows for step k corresponding to the applied
load fk:

Step k

1. Apply loading fk ,
2. Compute uk using an iterative method solving

equation (9),
3. Save couple (uk, fk),

4. Find the mk links that satisfy

Pipjp ≥ 1 p ∈ {1, . . . , mk}
5. Change the stiffness matrix setting

Kk+1 = Kk −
mk∑
p=1

LTipjpKipjpLipjp

where Lipjp is the connectivity matrix of element
ipjp.

End step k

The drawback with this algorithm is that the response
depends on the loading step f = fk+1 − fk . Further-
more, if the loading step is too large, the algorithm may
not converge. Then, one prefers a second algorithm,
called the elastic prediction algorithm which ensures a
unique response. Global loading does not correspond
to a monotonic increasing force or increasing displace-
ment, but corresponds to a decreasing of the apparent
stiffness. Usually, just one beam is broken during one
step. The algorithm is:
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120 A. Delaplace, R. Desmorat

Step k

1. Apply elastic loading fel ,
2. Compute uel using an iterative method solving

equation (9),
3. Compute ϕmin with

ϕmin = min
i, j ∈ (1, .., n)

i �= j

(
1

Pij

)

4. Save couple (ϕminuel, ϕminfel),
5. Change the stiffness matrix setting

Kk+1 = Kk − LTijKijLij

where Lij is the connectivity matrix of element ij .

End step k

Note that such an algorithm can also be used in a
finite element code (Rots et al. 2006). The two algo-
rithms give the same response for stable crack propa-
gation, and for a sufficient small loading step for the
monotonic algorithm. The response force-displacement
obtained with the monotonic algorithm is nothing else
than the envelope of the response obtained with the
elastic prediction algorithm. In the following, we will
use this last algorithm to avoid loading step dependency.

3.4 Discrete model parameter identification

3.4.1 Elastic parameters

The model elastic parameters are Eb, the beam Young
modulus, and α, the inertia coefficient. These two
parameters are identified by considering the isotropic
elastic material coefficientsE, the Young modulus, and

ν, the Poisson coefficient of the macroscopic medium.
This identification is easy when considering these two
following properties:

– the material Young modulus E is proportional to
beam Young modulus Eb.

– the material Poisson coefficient ν does not depend
on the beam Young modulus.

These properties are shown on Fig. 4. Evolution and E
and ν are plotted versus Eb with a fixed α, and versus
α with a fixed Eb.

Then, the identification proceeds in two steps:

1. Calibrate α with respect to material Poisson coeffi-
cient (eventually by using Fig. 4, right).

2. Calibrate Eb with respect to material Young coeffi-
cient (eventually by using Fig. 4, left).

3.4.2 Nonlinear parameters

For the identification of the nonlinear parameters, one
has to keep in mind that rupture of quasi-brittle
materials are mainly due to apparition of mode-I micro-
cracks. Two variables, εcr and θcr, control the nonlin-
ear behavior for the chosen model. One identifies these
two variables on the peak stress values in tension and
in compression. As for the elastic parameters, identifi-
cation of εcr and θcr proceeds in two steps. The tension
peak stress value depends indeed only on εcr: a simple
tension test allows to identify εcr value. Then, a simple
compression loading is used to identify θcr value with
respect to the peak stress.

Figure 5 shows the evolution of the tension peak load
versus εcr, for a fixed θcr, and versus θcr, for a fixed εcr.
As expected, the peak stress depends mainly on εcr
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Fig. 4 Evolution of elastic material parameters E and ν versus beam parameters Eb and α
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Fig. 6 Evolution of compression peak stress versus mean model
parameter θcr

with a linear relationship. Note that a dependence with
respect to θcr exists for small values, but these values
have no physical meaning for the modeled material.

As mentioned earlier, the second step consists in
the evaluation of θcr from a simple compression test.
The relationship between peak stress and θcr is not lin-
ear, and identifying this last variable is obtained using
Fig. 6, where the evolution of the compression peak
stress is plotted versus θcr.

Finally, the identified model parameters for a tension
peak stress of 3 MPa and a compression peak stress of
−30 MPa are:

εcr = 1.8 × 10−4, θcr = 5.6 × 10−3

The response of the discrete model for these last values
is plotted in Fig. 7, for either tension or compression.
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Fig. 7 Discrete model response for parameters εcr = 1.8×10−4

and θcr = 5.6 × 10−4

4 Cross-identification of function h(D)

A strategy for determining the sensitivity to hydro-
static stresses functionh is developed by using different
relations gained from the elasticity coupled with dam-
age law (2). Whatever the chosen strategy, a tritension
loading test has to be performed with a bulk modulus
evaluation for different damage values, test excessively
difficult to realize experimentally.

4.1 Identification procedure

The identification strategy is based on the expression
of the damaged—or effective—bulk modulus:
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122 A. Delaplace, R. Desmorat

K̃ = tr σ

3 tr ε
(10)

By using expression (2), one has:

K̃ = K

h(D)
(11)

whereK is the modulus of the virgin material. One can
propose the following global identification procedure.
Note that the term “measure” (or measurement) means
“measure on the computed response by means of the
discrete modeling”.

– Perform one elastic uniaxial tension test on a cube.

• Measure E, ν and the initial bulk modulus K =
E/3(1 − 2ν)

– Perform n-nonlinear tritension tests using the dis-
crete model for different increasing loads q ∈
{1, . . . , n}.
Proceeds as follows:

1. Apply equally imposed displacements ūq1=ūq2=
ū
q
3 on the cube faces and measure the damaged

bulk modulus K̃q .
2. Unload the specimen.
3. Apply an elastic uniaxial load in direction i.

• Measure the damaged Young modulus Ẽqi• Compute the damage value as (obtaining of
next expression is detailed in Appendix A)

Dq = 1 − 6(1 + ν)ẼqK̃q

E(9K̃q − Ẽ
q
i )

(12)

• Store the couple (K̃q,Dq)

– Identify h from the curve K/K̃q = h(Dq), q ∈
{1, . . . , n}.
For this last point two assumptions will be compared:
(a) h = h(DH) with DH = 1

3 tr D the hydrostatic
damage and (b) h = h(‖D‖) with ‖D‖ = √

D : D
the norm of tensor D.

Note that if the iso-triaxial damage assumption is not
satisfied, the two last points of the protocol are changed
into:

– Perform n-nonlinear tritension tests using the
discrete model for different loads q ∈ {1, . . . , n}.
Proceeds as follows:

1. Apply equally imposed displacements ūq1=ūq2=
ū
q
3 on the cube faces and measure the damaged

bulk modulus K̃q .
2. Unload the specimen.

3. Apply three elastic uniaxial loads in the three
loading directions x ≡ 1, y ≡ 2, z ≡ 3.
• Measure damaged Young modulus Ẽq1 , Ẽq2

and Ẽq3
• Compute damage values for each direction

(obtaining of next expressions is detailed in
Appendix B)

1 −D
q
1 = 2(1 + ν)

E

(
5
Ẽ
q
1

− 1
Ẽ
q
2

− 1
Ẽ
q
3

− 1
3K̃q

) ,

1 −D
q
2 = 2(1 + ν)

E

(
− 1
Ẽ
q
1

+ 5
Ẽ
q
2

− 1
Ẽ
q
3

− 1
3K̃q

) ,

1 −D
q
3 = 2(1 + ν)

E

(
− 1
Ẽ
q
1

− 1
Ẽ
q
2

+ 5
Ẽ
q
3

− 1
3K̃q

)

• Store the set (K̃q,D
q
1 ,D

q
2 ,D

q
3 )

– Identify h from the curve K/K̃q = h(Dq), q ∈
{1, . . . , n} with either assumption (a) or (b).

4.2 Numerical results

The identification of functionh(D) is performed on two
cube samples (also illustrated in Fig. 13). Two differ-
ent cube sizes are considered (Table 2), the increase in
size corresponding to an increase in the number of par-
ticles and in the number of degrees of freedom (dof).
The discrete model parameters are Eb = 45 GPa, α =
0.75, εcr = 1.8 × 10−4, θcr = 5.0 × 10−3 (Table 2).

4.2.1 8-cube sample results

Tritension response of the 8-cube sample is plotted
in Fig. 8 (for the crack pattern see directly Fig. 13).
Stress-strain curves are plotted for the three directions
of loading and, more important, evolution of the dam-
age moduli Ẽi , i ∈ {1, 2, 3} are the right-hand curves

Table 2 Samples tested for the determination of function h(D)

Sample size Number of Number

particles of dof

8 × 8 × 8 512 3, 072

16 × 16 × 16 4, 096 24, 576
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Fig. 8 Stress-strain responses for the three directions during tri-tension (left), and evolution of stiffnesses Ẽ1, Ẽ2, Ẽ3 (right)

(upperscripts q corresponding to the maximum applied
displacement are omitted next). From these values, the
bulk modulus K̃ is computed. Recall that tr(D) =
3DH = D1 +D2 +D3 and ‖D‖ =

√
D2

1 +D2
2 +D2

3
are respectively the hydrostatic damage and the norm of
the damage tensor in the principal framework. Note that
tr(D) and ‖D‖ are both equal in homogeneous uniaxial
tension as then tr(D) = ‖D‖ = D1 (in direction 1).

For successive loading steps, tritension test is
stopped and an uniaxial tensile loading is applied elas-
tically in order to obtain the corresponding principal
damage values Di . Finally, the evolution of the ratio
K̃/K , i.e. the inverse of function h(D), is plotted in
Fig. 9. The left-hand side figure shows this evolution
versusDH (assumption a), and the right-hand side one
versus the ‖D‖ (assumption b). In order to reveal the
intrinsic property of function h(D), curves obtained for
uniaxial tension tests in the different directions x ≡ 1,
y ≡ 2, z ≡ 3 (instead of triaxial tension) are superim-
posed. One can see that h(DH) is kept invariant when
h(‖D‖) depends on the loading state. This result justi-
fies the choice h = h(DH ) for the damage coupling in
the hydrostatic part of Gibbs thermodynamics potential
rather than the choice h = h(‖D‖).

The second main conclusion concerns the final deter-
mination of function h. A linear evolution of K̃/K is
obtained over a wide range of damage values. Hence,

1/h(D) can be considered as an affine function ofDH
characterized by a slope η, leading to:

h(D) = 1

1 − ηDH
(13)

Six samples have been broken in tritension for the iden-
tification of η. Evolution of K̃/K = 1/h(D) versus
hydrostatic damage DH for the six samples is shown
in Fig. 10. Parameter η is evaluated from the best fitted
line as

η ≈ 1.3

The form (13) of function h is in agreement with results
obtained heuristicaly for metallic materials Lemaitre et
al. (2000), with only a different value for parameter η
(1.3 instead of values ranging between 2 and 3). This
relationship emphasizes the fact that η can be consid-
ered as a material parameter: the hydrostatic stresses
sensitivity parameter.

Note that the isotropic damage assumption is satis-
fied for this sample (equality D1 = D2 = D3 during
loading).

4.2.2 16-cube sample results

Figure 11 shows the results for the 16-cube sample.
As for the 8-cube sample, h(DH) is kept invariant
with respect to the loading conditions, but not h(‖D‖).
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Fig. 9 Evolution of K̃/K = 1/h(D) versus hydrostatic damage
(left, in fact versus

√
3DH for comparison) and versus the norm

‖D‖ (right) for the 8-cube sample: h(‖D‖) exhibits a loading

dependency when h(DH ) is kept invariant and can be consid-
ered as intrinsic
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Fig. 10 Evolution of K̃/K = 1/h(D) versus hydrostatic
damageDH for the six 8-cube samples. Straight line corresponds
to K̃/K = 1 − ηDH

Identification of parameter η (Eq. 13) is obtained from
Fig. 12 in which bulk modulus measurements on
uniaxialy damaged specimens are superimposed.

Note that localization occurs for the y ≡ 2 and z≡3
directions after the peak load making the specimen a

full structure instead of an equivalent Gauss point. One
has to limit the identification of the damage hydro-
static parameter to the beginning of the loading (prior
to localization) if the iso-triaxial damage assumption is
used. Parameter η is evaluated to be:

η ≈ 1.2

The crack patterns obtained for the two samples are
shown in Fig. 13. Note that the number of beams to
break before failure varies from 1,500 beams for the
8-cube sample to 8,000 for the 16 one. Using elastic
prediction algorithm needs to solves 8,000 systems of
24,576 degrees of freedom.

5 Identification of the anisotropic damage model

One can now represent the response of the anisotropic
damage model with the identified sensitivity to hydro-
static stresses function h(D) = 1/(1−ηDH), the elas-
ticity law reading:

ε = 1 + ν

E

[
(1 − D)−1/2σD(1 − D)−1/2

]D

+ 1 − 2ν

3E

[ 〈tr σ 〉
1 − η

3 tr D
− 〈−tr σ 〉

]
1 (14)

The monotonic response in tension and compression is
plotted in Fig. 14. On this curve, the effect of parameter
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√

3DH for comparison) and versus the norm ‖D‖
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Fig. 12 Evolution of K̃/K = 1/h(D) versus hydrostatic dam-
age DH for the 16-cube sample. Straight line corresponds to
K̃/K = 1 − ηDH

η cannot be noticed (it does not affect compression).
The sensitivity to η is shown in Fig. 15, with as dif-
ferent values considered η = 0, η = 1.25, η = 3. As
expected, the response in uniaxial tension is not much
influenced by this parameter. On the other hand, tri-
tension response strongly depends of η. Note that the

Fig. 13 Crack patterns for the two samples (left 8 × 8 × 8, right
16 × 16 × 16)

value η = 0 corresponds to unphysical response with
no damage developed in tritension.

6 Conclusion

The popularity and the use of a constitutive model
depend on its robustness, its simplicity, and its easiness
to implement in a numerical code. Concerning simplic-
ity, the number, the physical meaning and the identifica-
tion easiness of material parameters is an important fea-
ture to be considered. Both the discrete and anisotropic
damage models have been developed with respect to
these considerations with quite a reduced number of
parameters introduced.
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The experiments needed to identify the coupling—
through a function h—between positive hydrostatic
stresses and anisotropic damage have been advanta-
geously replaced by numerical testing and models
cross-identification. A 3D discrete particle analysis has
allowed us to determine the sensitivity to hydrostatic
function h(D) as an intrinsic function of the hydrostatic
damage DH ,

h(D) = h(DH ) = 1

1 − ηDH
(15)

The value of the sensitivity to hydrostatic stresses
parameter has also been determined for quasi-brittle
materials,

η ≈ 1.25

and is then quite different from the values obtained for
metals for which η ∈ [2, 3].

To conclude, the advantages of numerical testing
approach are numerous and have proven efficient:

– All tensile tests (uniaxial, biaxial, triaxial) can easily
be considered in discrete modeling when the appli-
cation of the corresponding loading conditions are
most delicate in experiments. One performed a tri-
tension loading on a cube sample without developing
a specific setup device.

– Different loading paths can be realized on the same
sample. This point is very important for brittle het-
erogeneous materials for which response variabil-
ity is observed for different samples. In our case,
one has performed 3 uniaxial tensile loadings in the
3 space directions on the same triaxially damaged
specimen, experiment that could not be envisaged
on a real specimen.

– The procedure for parameter identification is not
restricted by the experimental setup. Then, the most
suitable and robust procedure can be used, rather
than an identification based on a difficult experi-
mental test with then possibly ill-defined boundary
conditions.

As a final remark, let us emphasize that numerical
identification is obviously a complimentary procedure
for experimental testing, and one does not imagine a
full model identification with just numerical tests. But
again this approach is an excellent possibility to iden-
tify specific material parameters.

Appendix

A. Damage measurement under iso-damage
assumption

This appendix details the computation of the damage
parameter of a specimen under an uniaxial elastic ten-
sile loading. Before this loading, the specimen has been
damaged under a tritension test, with the iso-damage
assumption, i.e. D1 = D2 = D3 = 1

3 trD = DH . In
the following, tensile load is supposed to be applied in
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the x-direction. Strain is computed from relation (2):

ε11 = 2

3

1 + ν

E(1 −DH)
σ11 + 1 − 2ν

3E
σ11h(D)

Note that ifDH = 0, the elastic relation ε11 = σ11/E is
recovered (with the initial value h(0) = 1 for the virgin
material). By using the expressionsK = E/(3(1−2ν))
for the elastic bulk modulus and K̃ = K/h(D) for the
damaged bulk modulus,

ε11 =
(

2

3

1 + ν

E(1 −DH)
+ 1

9K̃

)
σ11 (16)

The definition of the damaged Young modulus Ẽ11 =
σ11/ε11 altogether with Eq. 16 lead to the final relation:

1 −D1 = 6K̃Ẽ(1 + ν)

E(9K̃ − Ẽ)
(17)

B. Damage measurement under anisotropic state

This appendix details the computation of the damage
variable of a specimen submitted to an uniaxial elastic
tensile load. Recall that before this loading, the spec-
imen has been damaged under a tritension test, with
different damage values D1 �= D2 �= D3. In the fol-
lowing, tensile load is supposed to be applied in the
x-direction. The strain in x-direction is derived from
relation (2):

ε11 = 1 + ν

9E

(
4

1 −D1
+ 1

1 −D2
+ 1

1 −D3

)
σ11

+ σ11

9K̃
For tensile loads in y and z directions, the strains ε22

and ε33 can be derived in the same way. These for-
mula lead to the three relations of the damaged Young’s
moduli,

1

Ẽ11
= 1 + ν

9E

(
3

1 −D1
+ 1

1 −D1
+ 1

1 −D2

+ 1

1 −D3

)
+ 1

9K̃
(18)

1

Ẽ22
= 1 + ν

9E

(
3

1 −D2
+ 1

1 −D1
+ 1

1 −D2

+ 1

1 −D3

)
+ 1

9K̃
(19)

1

Ẽ33
= 1 + ν

9E

(
3

1 −D3
+ 1

1 −D1
+ 1

1 −D2

+ 1

1 −D3

)
+ 1

9K̃
(20)

making the term
∑
k

1
1−Dk = 1

1−D1
+ 1

1−D2
+ 1

1−D3
appears in each expression. Adding the last three rela-
tions gives:

1

Ẽ11
+ 1

Ẽ22
+ 1

Ẽ33
= 2(1 + ν)

3E

(
1

1 −D1

+ 1

1 −D2
+ 1

1 −D3

)
+ 1

3K̃
(21)

Finally, using relations (18) and (21) leads to the final
form:

1 −D1 = 2(1 + ν)

E
(

5
Ẽ11

− 1
Ẽ22

− 1
Ẽ33

− 1
3K̃

) (22)

One can check that under iso-damage assumption,
i.e. Ẽ11 = Ẽ22 = Ẽ33, relation (17) is recovered.
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