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Abstract In this paper we propose a thermodynam-
ically consistent model for elasto-plastic material with
structural inhomogeneities such as dislocations, sub-
jected to large deformations, in isothermal processes.
The plastic measure of deformation is represented by
a pair of plastic distortion, and plastic connection with
non-zero torsion (in order to have the non-zero Burg-
ers vector). The developments are focused on the bal-
ance equations (for material forces and for physical
force system), derived from an appropriate principle
of the virtual power formulated within the constitutive
framework of finite elasto-plasticity and on constitu-
tive restrictions imposed by the free energy imbalance.
The presence of the material forces (microforce and
microstress momentum) is a key point in the exposure,
and viscoplastic (generally rate dependent) constitutive
representation are derived.
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1 Introduction

The aim of the paper is to propose a thermodynami-
cally consistent model for material with structural inho-
mogeneities such as dislocations, subjected to large
deformations, in isothermal processes. Continuously
distributed dislocations are modeled in Teodosiu
(1970), Steinmann (2002, 1997), Cleja-Tigoiu (2002a),
Gurtin (2004), by the non-zero Burgers vector, which
is related to the non-zero curl of the plastic deforma-
tion component Fp. In our model the plastic measure

of deformation is represented by a pair (Fp,
(p)
� ). Fp is

an invertible second order tensor, called plastic distor-

tion, and
(p)
� is an affine plastic connection with non-

zero torsion, represented by a third order tensor. On the
background of differential geometry concepts we intro-
duce the multiplicative decomposition of the deforma-
tion gradient into elastic and plastic distortions, and
the decomposition of the motion connection in terms
of the elastic and plastic connections. Unlike F—the
deformation gradient that is derived from the potential
χ , which represents the motion function, the plastic
distortion cannot be derived from a certain potential.

The pair (Fp,
(p)
� ) defines an anholonomic configura-

tion (see Acharya 2004; Bilby 1960; Schouten 1954),
or a so called configuration with torsion K.

In this paper a new appropriate principle of the
virtual power, that can be applicable to the consti-
tutive framework of finite elasto-plasticity, has been
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formulated. No Cosserat type kinematics is assumed
in the model, and non-symmetric Cauchy stress T and
the stresses momentum µ (described by a third order
tensorial field) are involved in the internal power Pint .
The pair (T,µ) is power conjugated to the appropriate
rate of the elastic deformation measure.

The principle of virtual power allows to formulate
the macroscopic balance laws of macromomentum and
angular momentum for (T and µ), which are similar to
those derived in Fleck et al. (1994), and to derive the
micro-balance equations (i.e. the microstructural mate-
rial field equations) which are specific for the material
force system (ϒ

p
K,µ

p
K), like Gurtin (2003).

To complete the constitutive equations within the
constitutive framework of finite elasto-plasticity, the
second law for isothermal processes is formalizedsimi-
lar to Gurtin (2003, 2004). The second law leads to local
free energy inequality or to free energy imbalance ψ̇ −
Pint ≤ 0, whereψ is the free energy density. We deter-
mine the thermodynamic restrictions imposed by the
requirement to have the free energy imbalance satisfied
in any virtual process, for a given deformation state.

The admissible virtual process is defined based on
the kinematical relationships, being consistent with
them. The time derivatives of the appropriate distor-
tions and connections put into evidence the presence
of the velocity gradient L and of its gradient ∇χL in
the deformed configuration, as well as of the rate of
plastic distortion Lp and of its gradient ∇KLp, written
in the configuration with torsion, respectively.

The constitutive hypotheses concerning microforces
and micromomentum (called the material forces) are
motivated by the dissipation inequality. The material
forces are represented by a non-dissipative part ener-
getic microforces, derived from the free energy and a
dissipative part, defined in a such way that the dissi-
pation be positive. We emphasized the role played in
the theory by the micro-stress ϒ

p
K, which is force con-

jugated to the rate of plastic distortion Lp, and by the
micro-stress momentum µ

p
K, which generates work in

conjunction with ∇KLp.
We briefly recall different issues, involving continu-

ously distributed dislocations results, which are closely
related to the model proposed here.

A continuum theory for material with continuously
distributed dislocations has been developed by Kondo
and Yuki (1958), Bilby (1960), Kröner in (1963, 1992),
Kröner and Lagoudas in (1992) (for elastic models),
and mathematically founded by Noll (1967) and Wang

(1967) (within the constitutive framework of simple
materials), using the differential geometry concepts.
The decomposition theorem of the connection with
metric property into a Levy-Civita connection and con-
tortion was studied in Schouten (1954), Kondo and
Yuki (1958), and applied in finite elasto-plasticity by
Steinmann (1994), Cleja-Tigoiu (2002a), see also Beju
et al. (1983), Le and Stumpf (1996c)

A Cosserat theory for elasto-(visco)plastic single
crystals, at finite deformations and based on the crystal-
lographic slip mechanism of plastic deformation, was
elaborated in Naghdi and Srinivasa (1994), Le and
Stumpf (1996a), Steinmann (1994). In Forest et al.
(1997) the natural Cosserat strains are considered for
the development of the constitutive equations and evo-
lution laws are proposed also for lattice torsion-
curvature (second order) tensor.

Elasto-plastic model with dislocations was devel-
oped in Le and Stumpf (1996b) based on an appropri-
ate principle of virtual work, and a thermodynamically
consistent analysis of the anisotropic damage evolution
was been performed by Stumpf and Hackle in (2003).
Gurtin (2000) developed a gradient theory of single
crystal plasticity that accounts for geometrically nec-
essary dislocations.

Within the framework of finite elasto-plasticity the
evolution equations to describing the irreversible
behavior plays a fundamental role. Certain compatibil-
ity conditions concerning the evolution equation for the
measure of continuously distributed dislocation could
arrive, see for instance Acharia (2004), Cleja-Tigoiu
(2002a), Gupta et al (2006), Cleja-Tigoiu et al. (in
press). The compatibility conditions are viewed in
Cleja-Tigoiu et al. (in press), say for the given plas-
tic metric tensor, as partial differential equations for
the torsion. We also mention here a second order the-
ory, which allows for growth diffusion, developed in
Epstein and Maugin (2000), especially for the evolu-
tion equation of the second order gradients that has
been considered.

The boundary conditions (appropriate to plasticity
that account for the dislocation) are discussed for
instance by Gurtin and Needlemen (2005) and Gupta
et al. (2006).

Maugin in (1999), combining the energy and mom-
entum balance derives a so-called pseudo-momentum
equation to derive material forces. Well-known exam-
ples of the material forces are driving forces on defects
and the J-Integral in fracture mechanics.
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Material forces in finite elasto-plasticity with continuously distributed dislocations 69

We mention the proposed model in our paper Cleja-
Ţigoiu (2002a), where the results from Cleja-Ţigoiu
(1990), Cleja-Ţigoiu and Soós (1990), and Cleja-
Ţigoiu (2001) have been extended to elasto-plastic
materials with continuous distributed dislocations,
based on the hypotheses listed below in an heuristic
manner: (i) The crystalline body is not homogeneous
and it has no relaxed (natural) global configuration.
(ii) The local relaxed state is characterized by non-
Euclidean and non-Riemannian metric space.
(iii) Dynamical balance equations involve non-
symmetric Cauchy stress tensor and couple stresses.
(iv) The crystalline body behaves as an elastic mater-
ial element, which means that the stress and the stress
momentum are functions of the elastic distortion and
elastic connection. (v) The irreversible behavior of the
material is described by the evolution equations (of the
rate independent type) for plastic distortion as well as
for the gradient of plastic distortion.

In the present paper the developments are focused on
the balance equations (micro and macro), derived from
an appropriate principle of the virtual power formulated
within the constitutive framework of finite elasto-
plasticity and on the restriction on the constitutive equa-
tions imposed by the imbalanced free energy (i.e.
second law for isothermal processes). The presence
of the material forces is a key point in the exposure,
and viscoplastic (generally rate dependent) constitutive
representation are derived.

List of notations. Further the following notations
will be used:

E—the three dimensional Euclidean space, with the
vector space of translations V;
Lin—the set of the linear mappings from V to V , i.e
the set of second order tensor, Skew ⊂ Lin the set of
all skew-symmetric second order tensors;
u × v is the cross product, u ⊗ v and u · v denote the
tensorial product and the scalar product of the vectors
u, v ∈ V .
As and Aa are the symmetrical and skew-symmetrical
parts of the tensor A, here AT denotes the transpose
of A;
∂Aφ(x) denotes the partial differential of the function
φ with respect to the field A.
Curl of a second order tensor field A is defined by the
second order tensor field

(curlA)(u × v) := (∇A(u))v − (∇A(v))u
∀u, v ∈ V. (1)

The component representation of the curl is given in a
Cartesian basis by

(curl A)pi = εi jk
∂Apk

∂x j
, while the third order tensor field

∇A is characterized by

∇A = ∂Ai j

∂xk
ii ⊗ i j ⊗ ik . Thus we have the formulae

�χL ≡ ∂

∂xk

(
∂vi

∂x j

)
ii ⊗ i j ⊗ ik .

Lin(V, Lin) = {N : V −→ Lin linear}− defines the
third order tensors and it is given by N = Ni jk ii⊗i j⊗ik .
The scalar product of two third order tensors is given
by N ·M = Ni jk Mi jk .

Three configurations will be considered: k be a fixed
reference configuration of the body B, k(B) ⊂ E with
the vector space Vk , χ(·, t) the deformed configura-
tion at time t , for any motion of the body B, χ :
B × R −→ E , there exists K, time dependent (non-
local) configuration with torsion, defined by the pair

(Fp,
(p)
� k), Fp—plastic distortion and

(p)
� k—plastic con-

nection.
F− the deformation gradient is defined by

F(Z, t) = ∇(χ(·, t) ◦ k−1)(Z), ∀ Z ∈ k(B). (2)

We recall here the integrability theorem: Let F be a
function defined on a arcwise connected domain U . F
is a gradient of χ , i.e. F(x) = ∇χ(x) for x ∈ U if and
only if

(∇F(x)u)v − (∇F(x)v)u = 0
⇐⇒ (curlF(x))(u × v) = 0, ∀ x ∈ U ,

∀u, v ∈ Vk .

(3)

Dislocation means (1) non-zero curl or (2) non-zero
plastic torsion

(1) curl(FP ) = 0 or

∃ u, v such that (∇Fp(u))v
−(∇Fp(v))u = 0

(2) ∃ u, v such that (Spu)v = (� pu)v − (� pv)u
= 0.

Let us introduce the following notation for a third order
field generated by a connection, say �, and by second
order tensors, for instance F1,F2,

(�[F1,F2]u)v = (�(F1u)) F2v, ∀u, v ∈ Vk . (4)

2 Second order elastic and plastic pairs
of deformations

Let us consider the body B, k the initial configuration
of the body (which will be not explicitly mentioned
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further) and χ(·, t) the actual configuration attached to
the function χ which defines the motion of the body.

Ax.1 (the existence of the second order pair of plas-
tic deformations) For any motion χ of the body B, at
any material particle X and at any time t, there exists a

pair (Fp,
(p)
� )with Fp an invertible second order tensor,

called plastic distortion and
(p)
� a third order field, which

represent an affine connection, called plastic connec-

tion. The pair (Fp,
(p)
� ) is invariant with respect to a

change of frame in the actual configuration.

Definition The connection of the motion χ with
respect to the reference configuration can be introduced
by

�u = F−1∇Fu, ∀ u ∈ V. (5)

Ax.2 For any pair (F,�) of the deformation gradient
and motion connection, there exists a second order pair
of elastic deformation, where the elastic distortion is
defined by

Fe = F(Fp)−1, (6)

and the elastic connection is introduced in terms of
the motion and plastic connections, both of them being
related to the initial configuration, through the formula

(e)
� K ũ = Fp((�−

(p)
� )(Fp)−1ũ)(Fp)−1, ∀ ũ ∈ VK.

(7)

Here VK := Fp(Vk).
The pull back to the reference configuration k leads

to the following relationship between connections:

(e)
� back := (Fp)−1

(e)
� K [Fp,Fp] = �−

(p)
� , (8)

derived from (7).

Definition The differential of any smooth tensor field
F̄, defined on k(B), with respect to the configuration
with torsion K is given by

(∇KF̄)ũ = (∇F̄)(Fp)−1ũ, ∀ ũ ∈ VK (9)

Proposition 1

1. The multiplicative decomposition of the deforma-
tion gradient F into the elastic and plastic distor-
tions Fe,Fp follows

F = FeFp. (10)

2. The connections �,
(e)
� K and

(p)
� are related by

�u = (Fp)−1(
(e)
� K (Fpu))Fp+

(p)
� u, with

� = (F)−1∇F (11)

∀ u ∈ V , or using (4)

� = (Fp)−1(
(e)
� K [Fp,Fp])+

(p)
� . (12)

We put into evidence the rules of calculus for the
expressions of the differential of a smooth tensor field
F̄, in various configurations, k, χ and K, when we pass
from one configuration to the other one:

(∇F̄)u = (∇χ F̄)∇(χ ◦ k−1)u ≡ (∇χ F̄)Fu,
(∇F̄)u = (∇KF̄)Fpu,

(∇χ F̄)ū = (∇F̄)F−1ū = (∇KF̄)FpF−1ū
≡ (∇KF̄)(Fe)−1ū, ∀u ∈ V, ū ∈ Vχ .

(13)

Ax.3 The plastic connection
(p)
� has the non-zero

Cartan torsion, defined by the skew-symmetric part
of the connection, as it follows

(Spv)u ≡ (
(p)
� v)u − (

(p)
� u)v. (14)

Ax.4 The plastic distortion and the plastic connec-
tion are compatible each other, in the sense that the
Frobenius integrability condition is satisfied
(p)
� = (Fp)−1∇ Fp. (15)

2.1 Relationships between the connections attached
to the plastic and elastic distortions

When we pass from one configuration, say from the
initial configuration to another one, say K, as a conse-
quence of rule of calculus formulae (13), from (15) the
relationship between the plastic connections follows
(p)
� = −(Fp)−1

(p)
� K [Fp,Fp], (16)

where the plastic connection with respect to K is intro-
duced by
(p)
� K = Fp(∇K( Fp)−1). (17)

Remark Consequently we defined two pairs (Fp,
(p)
� )

and ((Fp)−1,
(p)
� K) of the appropriate plastic distor-

tions, Fp and (Fp)−1, and the connections
(p)
� and

(p)
� K,

which are compatible.
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The appropriate torsion (14), for the plastic connec-
tion defined in (15), becomes

(Spv)u = (Fp)−1[((∇ Fp)v)u − ((∇ Fp)u)v]. (18)

Let us introduce the elastic connections associated
with respect to the specified configurations

(e)
� K = (Fe)−1∇K Fe,

(e)
� χ= Fe∇χ (Fe)−1. (19)

From the above definitions together with (9) the fol-
lowing relationship can be put into evidence

(e)
� χ= −Fe

(e)
� K [(Fe)−1, (Fe)−1]. (20)

On the other hand for the elastic connection, say
(e)
� K, the torsion can be similarly defined as the skew-
symmetric part of the connection

(Se
Kv)u ≡ (

(e)
� K v)u − (

(e)
� K u)v. (21)

As a consequence of the multiplicative decomposi-
tion (10) and of the adopted definition for the connec-
tions, the relationships between appropriate elastic and
plastic connections follows.

Due to the symmetry of the motion connection intro-
duced in (5), provided by the fact that at any time t F
is the gradient of an appropriate application (2),

(�v)u − (�u)v = 0. (22)

As a consequence of (11) the torsion of the plastic con-
nection with respect to the reference configuration and
the torsion of the elastic connection, with respect to the
so called configuration with torsion K, are related one
to another by

(p)
S = −(Fp)−1(

(e)
S K [Fp,Fp]). (23)

On the other hand, from (16) it follows

(p)
S = −(Fp)−1(

(p)
S K [Fp,Fp]). (24)

Thus the equality between the elastic torsion and plastic
torsion is derived

(e)
S K = (p)

S K ≡ SK. (25)

Proposition 2 As a consequence of the axioms Ax.3,
Ax.4, of the definitions (14), (7), as well as of the rela-
tionship (22), it follows Fp,Fe are not the gradients of
certain mappings.

2.2 Time-derivatives of the elastic connection with
respect to relaxed configuration

When we take the time derivative of the motion con-
nection (5), the rate of the total connection is expressed
in term of the second order velocity gradient

d

dt
(�) = F−1(∇χL)[F,F] (26)

where the velocity gradient in the actual configuration
is characterized by

L := ∇χv(x, t), L = Ḟ(F)−1, (27)

where v is the vector field in the actual configuration.
As a consequence of the multiplicative decomposi-

tion (10) the kinematics relationships

L = Ḟe(Fe)−1 + FeLp(Fe)−1,

Le = Ḟe(Fe)−1, Lp = Ḟp(Fp)−1
(28)

follow. Le,Lp are the rates of elastic and plastic dis-
tortions in the deformed configuration and the config-
uration with torsion, respectively.

The rate of the plastic connection, relative to the
reference configuration, can be derived from (15) under
the form similar to (26)

d

dt
(
(p)
� ) = (Fp)−1(∇KLp)[Fp,Fp]. (29)

Taking into account the relationship between the plastic
connection when we pass from one configuration to the
other one, the time derivative applied to (16) leads to

d

dt
(
(p)
� K)ũ = Lp(

(p)
� K)ũ

−Fp d

dt
(
(p)
� )((Fp)−1ũ)(Fp)−1

−
(p)
� K (Lpũ)− (

(p)
� K ũ)Lp. (30)

When we replace (29) into the above relation the rate
of plastic connection is calculated through

d

dt
(
(p)
� K)ũ = Lp(

(p)
� K)ũ − (∇KLp)ũ−

(p)
� K (Lpũ)

−(
(p)
� K ũ)Lp. (31)
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When we take the time derivative in (12) we get

d

dt
(
(e)
� K)(ũ) = Fp

(
d

dt
(�−

(p)
� )

)
((Fp)−1ũ)(Fp)−1

+ LpFp((�−
(p)
� )(Fp)−1ũ)(Fp)−1

−Fp((�−
(p)
� )(Fp)−1Lpũ)(Fp)−1

−Fp((�−
(p)
� )(Fp)−1ũ)((Fp)−1Lp)

∀ ũ ∈ VK. (32)

Using again (12) and the multiplicative decomposi-
tion (10) in relationship (32), the time derivative of the
appropriate connections are related by

d

dt
(
(e)
� K)(ũ)−Lp(

(e)
� K ũ)+ (e)

� K (Lpũ)+((e)� K ũ)Lp

≡ Fp

(
d

dt
(�−

(p)
� )

)
((Fp)−1ũ)(Fp)−1.

(33)

Let us introduce a linear operator applied to the elastic

connection
(e)
� K, dependent on the rate of plastic dis-

tortion Lp, by

(LLp [(e)� K])ũ := d

dt
(
(e)
� K)ũ − Lp(

(e)
� K ũ)

+ (e)
� K (Lpũ)+ (

(e)
� K ũ)Lp

(34)

for all ũ. The expression of the above operator (34),
introduced in the left hand side of (33), leads to the
following equivalent formula

(Fp)−1((LLp [(e)� K])[Fp,Fp]) = d

dt
(�)− d

dt
(
(p)
� ).

(35)

Using (26 ), (29) and the multiplicative decomposition
(10), (35) becomes

(LLp [(e)� K]) = (Fe)−1(∇χL)[Fe,Fe] − ∇KLp. (36)

Definition Starting from the kinematic relationships
derived above, for a given deformation state

(i.e. F,Fe,Fp,
(e)
� K,

(p)
� are considered to be given), we

characterize a virtual process by
ṽ—the virtual velocity, L̃—the virtual velocity gra-

dient,
L̃e and L̃p the virtual rate of the elastic and plastic

distortion, compatible with the kinematical relation-
ships (27), (28), which means

L̃ := ∇χ ṽ, and L̃ = L̃e + FeL̃p(Fe)−1. (37)

Consequently, taking into account (34) and (36) the
virtual time-derivative of the elastic connection with
respect to the plastically deformed configuration can
be introduced by the Definition:

virt
d

dt
(
(e)
� K)(ũ) = Fe−1

((∇χ L̃)[Fe,Fe])ũ−(∇KL̃p)ũ

+L̃p(
(e)
� K ũ)− (

(e)
� K (L̃pũ))

−((e)� ũ)L̃p, ∀ ũ ∈ VK. (38)

3 The macro and micro balance equations

The principle of the virtual power at any arbitrary fixed
moment of the time t is built starting from the prin-
ciple of the virtual power derived from Fleck et al.
(1994) and using the result already proved by Cleja-
Tigoiu in (2002a), relative to the expressions of the
power expanded by an elasto-plastic material (without
any relation with a principle of the virtual power).

First we recall the definitions for Piola-Kirchhoff
stress tensor and the stress momentum as pulled back
to the configuration with torsion, and Mandel’s non-
symmetric stress measure, all of them being expressed
relative to K
�K ≡ � = det (Fe)(Fe)−1Ts(Fe)−T , detFe=ρK

ρ
µK = (det Fe)(Fe)T µ[(Fe)−T , (Fe)−T ],
1

ρK
�K = (Fe)T

T
ρ
(Fe)−T , Ce = (Fe)T Fe,

(39)

associated to the non-symmetric Cauchy stress T.
The virtual power at a fixed moment of time is writ-

ten for any part P ⊂ B and we accept that a surface
element in the actual configuration, with unit normal n,
may transmit both force vector and couple vector. We
start from the virtual power principle, VPP-I, formu-
lated in Continuum Mechanics with couple stresses
(see Fleck et al. (1994)).

PVP-I. In the deformed configuration, ∀ P ⊂ B
bounded by a smooth surface ∂P , the virtual power at
a fixed moment of time∫

Pt

ρa · wdx +
∫
Pt

T · ∇wdx +
∫
Pt

2
×
T ·θdx

+
∫
Pt

M · ∇θdx = +
∫
∂Pt

Tn · wdσ

+
∫
∂Pt

Mn · θdσ +
∫
Pt

ρb f · wdx

+
∫
Pt

ρbm · θdx

(40)
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Material forces in finite elasto-plasticity with continuously distributed dislocations 73

holds for ∀ virtual velocity w, and θ = 1

2
curl w. Here

a is the acceleration vector and the vector field
×
T is

the coaxial vector associated with the skew-symmetric
part of the Cauchy stress tensor T

u× ×
T = Tau, ∀ u ∈ Vχ . (41)

b f ,bm are densities of the body forces and body cou-
ples, the vector force Tn and couple vector Mn, acting
on the surface of the normal characterized by the unit
vector n, M is the couple stress tensor. T and M are
generally non-symmetric second order tensors.

Let us consider some simple properties, concerning
the second order tensor fields with non-zero associated
curl, which will be useful in defining an appropriate
form of the virtual power principle.

Proposition 3 ∀L = W ∈ Skew such that curlL = 0,
then

(∇Lu)v − (∇Lv)u = 0 and
∃ ω, ψ ∈ V : Wu = ω × u,
∀u ∈ V ω = curlψ.

(42)

Proposition 4 ∀L = W ∈ Skew such that curlL = 0,
then

(∇L)u + ((∇L)u)T = 0 ⇐⇒
∃ 	 ∈ Lin ∇Lu = 	u × I and
curlW ≡ det	I −	T .

(43)

Based on the two propositions derived above we pro-
pose a virtual power principle appropriate to finite elasto-
plasticity with continuously distributed dislocation.

We pass to the virtual power principle, PVP-II, that

can be derived from the previous one, when
1

2
curl w—

vector field replaced by {∇w}a—tensor field.
PVP-II. ∀ P and ∀ virtual velocity w∫
Pt

ρa · wdx +
∫
Pt

T · ∇wdx +
∫
Pt

T∗ · {∇w}adx

+
∫
Pt

µ · ∇χ {∇w}adx =
∫
Pt

ρb f · wdx

+
∫
∂Pt

Tn · wdσ +
∫
∂Pt

µn · {∇w}adσ

+
∫
Pt

ρBm · {∇w}adx

(44)

with {∇w}a = 1

2
(∇w − ∇wT ). (45)

In the above formulae Bm denotes the second order
body couple density and µ is a third order field associ-
ated with a second order tensor field M as it follows

µ · ∇χ {∇w}a = 1

2
M · ∇curlw. (46)

The principle of the virtual power PVP-III follows
from PVP-II, when {∇w}a replaced by W ∈ Skew.

PVP-III ∀ P and ∀ virtual fields w and W the
equality∫

Pt

ρa · wdx +
∫
Pt

T · ∇wdx +
∫
Pt

T∗ · Wdx

+
∫
Pt

µ · ∇Wdx =
∫
Pt

ρb f · wdx

+
∫
∂Pt

Tn · wdσ +
∫
∂Pt

µn · Wdσ

+
∫
Pt

ρBm · Wdx

(47)

holds.
Finally a general form for the principle of the vir-

tual power principle, PVP-general, can be put into evi-
dence, when W ∈ Skew in PVP-III is replaced by L,
restricted to the conditions either L = 0 or curlL = 0.

Let us introduce the micro-stress ϒ
p
K in the config-

uration with torsion, and the micro stress momentum
µ

p
K.
Ax.5 The principle of the virtual power in finite

elasto-plastic, formulated ∀ part P ⊂ B bounded by a
smooth surface ∂P∫

χ(P,t)
ρa · ṽdV +

∫
χ(P,t)

{T · ∇χ ṽ + T∗ · L̃e}dV

+
∫
χ(P,t)

µ · ∇χ L̃edV

+
∫
Kt (P)

{ϒ p
K · L̃p + µ

p
K · ∇KL̃p}dVK

=
∫
χ(P,t)

ρb f · ṽdV

+
∫
χ(P,t)

ρBm · L̃edV +
∫
Kt

ρ̃Bp
m · L̃pdVK

+
∫
∂χ(P,t)

t(n) · ṽdV +
∫
∂χ(P,t)

M(n) · L̃ed A

+
∫
∂Kt (P)

Mp(n) · L̃pd AK, (48)

holds for any all generalized virtual velocities and vir-
tual rates ṽ, ∇χ ṽ, L̃p, ∇KL̃p, for all L̃e, ∇χ L̃e.

Now we justify the postulated form for the prin-
ciple of the virtual power (48), using the expression
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of the mechanical internal power as it follows from
Cleja-Ţigoiu (2002a).

Proposition 5

1. The density of the internal mechanical power pro-
duced by the non-symmetric Cauchy stress tensor
can be written under the form
1

ρ
T · L = 1

ρ
T · Le + 1

ρK
�K · Lp. (49)

2. The density of the internal mechanical power pro-
duced by the couple stresses can be expressed with
the aid of the third order tensor of stress momen-
tum defined in the actual configuration by µ or in
terms of the stress momentum pulled back to the
configuration with torsion µK
1

ρ
µ · ∇χL = 1

ρK
µK · (Fe)−1∇χL[Fe,Fe]

= 1

ρK
µK · (LLp [(e)� K])

+ 1

ρK
µK · ∇KLp. (50)

The last equality, that put in evidence the elastic and
plastic part of the appropriate internal power, has been
reformulated as a consequence of (36).

Remark We use Gurtin’s argument, since there are no
motivation to suppose that the terms which enter the
previous formulae (49) and (50) refer to the same stress
and the same momentum, and we replace in (49) �K
by the microstress ϒ

p
K and in (50) µK, which is power

conjugated with ∇KLp, by µ
p
K.

The macro-balance equation at any time t can be
derived from (48) if we take L̃p = 0 and ∇KL̃p = 0.
For any ṽ, a virtual velocity and for any second order
tensor field L̃e with curl(L̃e) = 0, i.e non-reducible
to a gradient of an appropriate vector field, the macro-
balance equations are derived. The micro-balance
equation at any time t can be derived from (48) if
L̃p and ∇KL̃p are non-zero.

Theorem 1

1. The impulse and momentum local balance equa-
tions can be written under the form

ρa = div T + ρb f

T∗ = div µ + ρBm, on Pt
(51)

with the appropriate boundary conditions on ∂Pt

Tn = t(n), and µn = M(n). (52)

2. The micro balance equation is expressed by

ϒ
p
K − div µ

p
K = ρ̃Bp

m, in K(P, t),

µ
p
Kn = Mpn on ∂K(P, t),

micro-traction condition.

(53)

We remark that (51), (53)1 together with the bound-
ary conditions (52) and (53)2 follow directly from the
principle of the virtual power, stipulated in (48), with-
out any additional assumptions.

Finally we conclude that the theory can be based
either on the appropriate postulate of the variational
principle for physical and material space or on the pos-
tulates of the physical and material balance laws.

4 Free energy imbalance

Ax.6 There exists a free energy density function ψ ,
invariant with respect to a change of frame in the actual
configuration

ψ = ψK(Ce,
(e)
� K, (Fp)−1,

(p)
� K), (54)

represented in the configuration with torsion K by a

function of the second order elastic pair (Ce,
(e)
� K),

and dependent on the plastic measure of deformation

((Fp)−1,
(p)
� K).

Ax.7 The elasto-plastic behavior of the material is
restricted to satisfy in K the free energy imbalance

−ψ̇K + 1

ρK
(Pint )K ≥ 0

for any virtual (isothermic) processes.
(55)

Proposition 6 In (55) the internal power in the con-
figuration with torsion can be calculated starting from
the expression

(Pint )K = 1

ρ
(T + T∗) · Le + ϒ

p
K · Lp

+ 1

ρK
µK · LLp [(e)� K]

+ 1

ρK
µ

p
K · ∇KLp, (56)
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while the time derivative of the free energy is expressed
through

ψ̇K = ∂CeψK · Ċe − (Fp)−T ∂(Fp)−1ψK · Lp

+ ∂(e)
� K
ψK ·

(
d

dt

(e)
�K

)

+ ∂(p)
� K
ψK ·

(
d

dt

(p)
� K

)
. (57)

The formula (56) is derived from macro and micro bal-
ance equations, multiplied by Le and by Lp, respec-
tively.

In order to pursuit the calculus

1. We eliminate the rate of the elastic distortion,
which enters the expression (56) via formula (28),
as well the gradient of the rate of elastic ditorsion
via the formula (36). Then only L and Lp and their
appropriate differentials, ∇χL and ∇KLp, enter
the internal power.

2. In (57) the rate of the elastic strain is replaced by

Ċe = 2 (Fe)T {L}sFe − 2 {CeLp}s, (58)

using the elastic strain Ce expressed as a consequence
of the multiplicative decomposition under the form

Ce := (Fe)T Fe = (Fp)−T C(Fp)−1,

where C = FT F. (59)

In order to obtain the imbalanced energy condition, we
pass to the virtual kinematic process, as it follows:

virt(Ċe) = 2 (Fe)T {L̃}sFe − 2 {Ce · L̃p}s,

related to (58)

virt(LLp [(e)� K]) = (Fe)−1(∇χ L̃)[Fe,Fe] − ∇KL̃p,

related to (36). (60)

Everywhere we replace L, and ∇χL, by the virtual L̃
∇χ L̃, Lp, and ∇KLp are replaced by L̃p and ∇χ L̃p.

Proposition 7 The free energy imbalance is satisfied
for any virtual process, if the inequality written below

{
1

ρ
(Fe)−1{T + T∗}s(Fe)−T − 2∂CeψK

}

·[(Fe)T {L̃}sFe − {Ce · L̃p}s]
+ 1

ρ
{T + T∗}a · (L̃ − FeL̃p(Fe)−1)

+
{

1

ρK
ϒ

p
K + (Fp)−T ∂(Fp)−1ψK

}
· L̃p

+ 1

ρK
µK · [(Fe)−1(∇χ L̃)[Fe,Fe] − ∇KL̃p]

+ 1

ρK
µ

p
K · ∇KL̃p

−∂�eKψK · virt

(
d

dt
�eK

)
− ∂(p)

� K
ψK

·virt

(
d

dt

(p)
� K

)
≥ 0 (61)

holds for any L̃ ≡ ∇χ ṽ, ∇χ L̃, and for arbitrarily
given L̃p,∇KL̃p.

The virtual kinematic processes are also character-
ized by the virtual variations of the fields via the for-
mulae

virt

(
d

dt
(
(e)
� K)

)
= L̃p

(e)
� K − (e)

� K L̃p− (e)
� K [I, L̃p]

+ (Fe)−1(∇χ L̃)[Fe,Fe] − ∇KL̃p

related to (38) (62)

and related to (31)

virt

(
d

dt
(
(p)
� K)

)
= L̃p

(p)
� K −∇KL̃p−

(p)
� L̃p

−
(p)
� [I, L̃p].

(63)

5 Thermodynamic restrictions

We provide the thermomechanic restrictions on the con-
stitutive description of elasto-plastic material, based
on the imbalanced free energy condition. We require
the imbalanced condition written in (61) to be satis-
fied for any virtual process, defined by the formulae
(60)–(63), when L̃,∇χ L̃ are arbitrary, and for the given
L̃p,∇KL̃p.

I. First step: we consider a virtual process in a such
way to have L̃p = 0,∇KL̃p = 0.
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Thus (61) holds for any L̃,∇χ L̃, if and only if the
following constitutive restrictions

(Fe)−1{T + T∗}s(Fe)−T = 2ρ∂CeψK,
{T + T∗}a = 0

1

ρK
µK = ∂�eKψK,

(64)

are satisfied.
II. Second step: we introduce the thermodynamic

restriction (64) into imbalanced free energy con-
dition (61) and we get the dissipation inequality

{
1

ρK
ϒ

p
K + (Fp)−T ∂(Fp)−1ψK

}
· L̃p

+
{

1

ρK
µ

p
K + ∂(p)

� K
ψK

}
· ∇KL̃p − ∂(e)

� K
ψK

·{L̃p
(e)
� K − (e)

� K L̃p− (e)
� K [I, L̃p]} − ∂(p)

� K
ψK

·{L̃p
(p)
� K −

(p)
� K L̃p−

(p)
� K [I, L̃p]} ≥ 0. (65)

Let us introduce the free energy in the reference con-
figuration

ψ = ψK(Ce,
(e)
� K, (Fp)−1,

(p)
� K)

≡ ψ(C,
(e)
� back,Fp,

(p)
� ),

(66)

taking into account the relationships (59), (8) and (16).

Proposition 8 When we pass to the free energy den-
sity in the reference configuration k, the dissipation
inequality becomes

{
1

ρK
ϒ

p
K − 2Ce(Fp)∂Cψ̄(Fp)T − ∂Fpψ(Fp)T

}
· L̃p

+
{

1

ρK
µ

p
K − (Fp)−T ∂(p)

�
ψ[(Fp)T , (Fp)T ]

}

·∇KL̃p ≥ 0, ∀ L̃p,∇KL̃p. (67)

In order to prove the above formulae we take into
account the relationships between the partial deriva-
tives of the free energy expressed relative to the ini-
tial configuration and to the configuration with torsion,
derived from (66) together with (59), (8) and (16), under
the form

∂Cψ̄ = (Fp)−1∂CeψK(Fp)−T

∂(p)
�
ψ̄ = −(Fp)T ∂(p)

� K
ψK[(Fp)−T , (Fp)−T ],

∂(e)
� K
ψK = (Fp)−T ∂(e)

� back

ψ̄[(Fp)T , (Fp)T ],
∂Fp ψ̄(Fp)T · L̃p = −2Ce∂CeψK · L̃p

− (Fp)−T ∂(Fp)−1ψK · L̃p

+ ∂(e)
� K
ψK · {L̃p

(e)
� K − (e)

� K L̃p− (e)
� K [I, L̃p]}

+ ∂(p)
� K
ψK · {L̃p

(p)
� K −

(p)
� K L̃p−

(p)
� K [I, L̃p]} (68)

The constitutive form of ∂Fp ψ̄ following from (68) can
be expressed through

∂Fp ψ̄ = −2Ce∂CeψK − (Fp)−T ∂(Fp)−1ψK

+DψK(
(e)
� )[(e)� ] + DψK(

(p)
� )[

(p)
� ]. (69)

Here the second order tensor denoted by DψK(
(e)
� )[(e)� ]

is defined for any third order tensor field
(e)
�≡ X as it

follows

DψK(X )[X ] :=
[
∂ψK
∂Xpjk

Xs jk − Xi j p
∂ψK
∂Xi js

−Xi pk
∂ψK
∂Xisk

]
ip ⊗ is . (70)

Based on the dissipation inequality, we formulate
the constitutive hypotheses:

Ax.8 The microforces contain:

(1) a dissipative part,
(2) a non-dissipative part, which are derived from the

free energy, the so-called energetic microforces,

and they are represented through
1

ρK
ϒ

p
K = 2Ce(Fp)∂Cψ̄(Fp)T + ∂Fp ψ̄(Fp)T + Yγ L̃p

1

ρK
µ

p
K = (Fp)−T ∂(p)

�
ψ̄[(Fp)T , (Fp)T ] + Yµ∇KL̃p.

(71)

We remark that the non-dissipative parts of the micro-
forces were derived from the free energy through (71),
but only the last terms of the right sides of (71) are dis-
sipative, because the free energy cannot depend on the
rates.

Ax.9 The scalar constitutive functions Yγ ,Yµ are
defined in such a way to be compatible with the dissi-
pation inequality

Yµ∇KL̃p · ∇KL̃p + Yγ L̃p · L̃p ≥ 0. (72)
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Remark The presence of the non-dissipative part (the
first term in the right-hand side, which has the signifi-
cance of the Mandel’s type stress) in the formula (71)1

couples the macroscopic and microscopic forces.

Following Gurtin (2004), we introduce the intensity
for the accumulated effect of the rate of plastic distor-
tion and of the gradient of plastic distortion, through

d p := √
Lp · Lp + h2∇KLp · ∇KLp, (73)

and we define

Yγ := Y (d p), Yµ := h2Y (d p), (74)

with h a length scale.
We resume the constitutive equations for macro-

stress and macrostress momentum, when T∗ = −{T}a ,

{T}s = 2ρFe∂CeψK(Fe)T ,
1

ρK
µK = ∂�eKψK,

(75)

which can be equivalently represented as a consequence
of the relationships derived in (68) through

{T}s = 2ρF∂Cψ̄FT ,
1

ρ
µ = F−1∂�e

back ψ̄[FT ,FT ].
(76)

The microforces and microstress momentum have been
represented under the form of viscoplastic constitutive
equations

1

ρK
ϒ

p
K = 2Ce(Fp)∂Cψ̄(Fp)T + ∂Fp ψ̄(Fp)T

+ Y (d p)Lp

1

ρK
µ

p
K = (Fp)−T ∂(p)

�
ψ̄[(Fp)T , (Fp)T ]

+ h2Y (d p)∇KLp,

(77)

with d p := √
Lp · Lp + h2∇KLp · ∇KLp. Thus the

dissipation inequality (72) becomes

Y (d p)Lp · Lp + h2Y (d p)∇KLp · ∇KLp

≡ Y (d p)(d p)2 ≥ 0,
(78)

under the supposition that Y (d p) ≥ 0.
Let us remark that the stress

ϒ
p
K := ϒ

p
K − �

p
K (79)

leads to the viscoplastic constitutive equations
1

ρK
ϒ

p
K = ∂Fp ψ̄(Fp)T + Y (d p)Lp

1

ρK
µ

p
K = (Fp)−T ∂(p)

�
ψ̄[(Fp)T , (Fp)T ]

+h2Y (d p)∇KL̃p.

(80)

The micro balance Equation (53)1 involves the material
forces and finally it is written under the form

ϒ
p
K = �K + div µ

p
K + ρ̃Bp

m, in K(P, t). (81)

6 Screw dislocations

We recall here the definitions of the Burgers vector bK
adopted in our context of finite elasto-plasticity, first in
terms of plastic distortion Fp.

Definition For a given A0 surface with normal N
bounded by C0, a closed curve in the reference con-
figuration, we introduce the definition

bK =
∫

C0

Fp dX =
∫
A0

curl (Fp)Nd A

=
∫
AK

αKnKd AK,
(82)

where N is the unit normal on the surface in the refer-
ence configuration and Noll’s dislocation (second
order) tensor is given in terms of the plastic distortion

αK ≡ 1

det Fp
curl(Fp)(Fp)T . (83)

The meaning of Burgers vector clearly appears from
the approximate formula, derived from (82)

bK � curl (Fp)N area(A0), (84)

with the functions calculated in an appropriate point.
A similar definition for the Burgers vector bK can

be also done in terms of elastic distortion Fe and the
approximate formula can be derived under the form
bK � curl (Fe)−1n area (At ), with the functions cal-
culated in a fixed point inside At —an appropriate sur-
face in the actual configuration.

The geometric dislocation tensor G, which repre-
sents the Noll’s second order dislocation tensor, G =
ᾱK = αK, is decomposed by Gurtin (2002) in pure
screw and edge dislocations, corresponding to differ-
ent slip system within the constitutive framework of
Crystal plasticity.

Remark As it follows from the characteristics
attributed to the edge dislocation (Hirth and Lothe
1982), the Burgers vector is defined by

b = (curl(Fp)) N(area A0) with
curl (Fp) = a p(e3 ⊗ e1)

(85)

where the unit vectors e are chosen in a such way to have

e1 = N, e3 is the Burgers direction, e3 = b
| b | , e2 ⊥

b.

Consequently the edge dislocation is characterized
by the curl of plastic distortion of the form

curl (Fp) =
(
∂F p

32

∂x3 − ∂F p
33

∂x2

)
(e3 ⊗ e1) (86)
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Let us remark that if there exists a potential for plastic
deformation

F p
32 = ∂u3

∂x2 , F p
33 = ∂u3

∂x3 with u3 = u3(x2, x3)

≡ u · b
| b | , (87)

which can be associated to a certain plane motion of
dislocation, then in order to have non-zero curl it is
necessary to accept a non-simply arc wise connected
physical domain in a certain neighborhood of the given
material point.

Following again (Hirth and Lothe 1982) the screw
dislocation is characterized by a Burgers vector with
the property listed below

b = (curl (Fp)) N (areaA0) for
curl (Fp) = a p(b ⊗ b),

(88)

N = e3, e3 = b
| b | .

Let us characterize the plastic curl in this case

curl (Fp) =
(
∂F p

31

∂x2 − ∂F p
32

∂x1

)
(e3 ⊗ e3) (89)

If there exists a potential for plastic deformation, defin-
ing the only two components F p

31, F p
32 of the plastic

distortion supposed to be non-zero, then

F p
31 = ∂u3

∂x1 , F p
32 = ∂u3

∂x2 with

u3 = u3(x1, x2) ≡ u · b
| b | ,

(90)

which means that an anti-plane motion of dislocation
has been considered. Again, in order to have
non-vanishing curl, the physical space in a certain
neighborhood of the material point is locally a simply
arc wise connected domain.

6.1 Characteristics of the plastic distortion in the case
of screw dislocation

The simplest form of the plastic distortion, compatible
with the characterization given for the screw disloca-
tion can be represented by the matrix

Fp =
⎛
⎝ 1 0 0

0 1 0
F p

31 F p
32 1

⎞
⎠, (91)

in the Cartesian basis denoted by {e j }{ j=1,3}, where

F p
31, F p

32 are functions of (x1, x2), and

∂F p
31

∂x2 − ∂F p
32

∂x1 = 0, det Fp = 1. (92)

We kept the same notation for the tensor and its matrix
representation, in a certain mentioned basis.

The plastic metric tensor Cp associated to the plastic
distortion (91) is given by

Cp =
⎛
⎝ 1 + (γ1)

2 γ1γ2 γ1

γ1γ2 1 + γ 2
2 γ2

γ1 γ2 1

⎞
⎠, (93)

with the notation F p
31 = γ1, F p

32 = γ2.
Let us introduce the function γ

γ = γ1e1 + γ2e2 with
γ1 = γ1(x1, x2), γ2 = γ2(x1, x2).

(94)

From (91) together with (94) we get

Cp = I + γ ⊗ γ + γ ⊗ e3 + e3 ⊗ γ . (95)

Let us introduce a local basis (µ, ν, e3)

ν = γ

| γ | , for | γ |≡
√
γ 2

1 + γ 2
2 ,

µ ∈ (e1, e2), such that µ · ν = 0.
(96)

From (91) together with (94) we get

Cp = µ ⊗ µ + Ap with

Ap = (1+ | γ |2)ν ⊗ ν+ | γ | (ν ⊗ e3

+e3 ⊗ ν)+ e3 ⊗ e3. (97)

The second order tensor Ap has the matrix representa-
tion in the basis {ν, e3}

Ap =
(

1+ | γ |2 | γ |
| γ | 1

)
. (98)

We define the positive square root tensor (Ap)1/2 and
the symmetric and positive definite tensor Up.

Proposition 9 (Ap)1/2 is defined by

(Ap)1/2 = 1√
4+ | γ |2

(
Ap + Î2

)
,

Î2 = ν ⊗ ν + e3 ⊗ e3

(99)

or in a matrix representation

(Ap)1/2 = 1√
4+ | γ |2

(
2+ | γ |2 | γ |
| γ | 2

)
. (100)

The symmetric and positive definite tensor Up can be
expressed under the form

Up = µ ⊗ µ + (Ap)1/2. (101)
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Finally, we prove the formula

Up ≡ (Cp)1/2 = µ ⊗ µ

+ 1√
4+ | γ |2 (2+ | γ |2)ν ⊗ ν

+ | γ |√
4+ | γ |2 (ν ⊗ e3 + e3 ⊗ ν)

+ 2√
4+ | γ |2 e3 ⊗ e3

where ν = γ

| γ | , µ · ν = 0, µ · e3 = 0.

(102)

Proof We write the Hamilton-Caley theorem for the
tensor fields (Ap)1/2

Ap − (Ap)1/2(tr(Ap)1/2)+ √
(detAp)Î2 = 0 (103)

When we apply the trace operator in (103) we get

(tr(Ap)1/2)2 = (trAp)+ 2
√
(detAp) (104)

and consequently

(Ap)1/2 = 1

tr(Ap)1/2

(
Ap + √

(detAp)Î2

)
. (105)

Using the explicit expression of the trace, the formula
(99) follows at once.

Proposition 10

1. The torsion of the plastic connection, attached to
the plastic connection in the reference configura-
tion , can be expressed in term of ω, by

S = ωe3 ⊗ [e2 ⊗ e1 − e1 ⊗ e2]. (106)

2. The second order torsion tensor is derived under
the form

N = ωe3 ⊗ e3, with ω = ∂γ2

∂x1
− ∂γ1

∂x2
. (107)

Proof By direct calculus we derive the expression of
the plastic connection

� p ≡ (Fp)−1(∇Fp) = e3 ⊗ e1 ⊗ (∇γ1)

+e3 ⊗ e2 ⊗ (∇γ2) (108)

A full characterization of the edge dislocation as well
as the appropriate compatibility condition can be found
in Cleja-Ţigoiu et al. (2007, in press).

Concluding remarks.
In order to compare the presented here results with

the existing in the literature results in the field, we put
into evidence different internal power expressions, pro-
posed by Gurtin.

a. The additive decomposition of the displacement
vector ∇u = He +Hp into elastic and plastic parts

is accepted in Gurtin (2003), within the framework
of small deformation theory. The power expended
in terms of an appropriate force system is given

under the form
∫
P
(T·Ḣe+Tp ·Ḣp+S p ·∇Ḣp)dx.

Here Tp a second-order microstress and S p a polar
(third-order) microstress that together perform
work in the evolution of the defects through this
structure, for any part P of the body.

b. In Gurtin (2004) the power expended within any

part P has the form
∫
P
(T · Ėe + Tp · Ḣp + S p ·

curlḢp)dx. Here Ee = {He}S , and the micro-
scopic stress performs work in conjunction with
the rate of Burgers vector, which is characterized
by G = curl(Hp)

c. Within the constitutive framework of Crystal plas-
ticity, based on the multiplicative decomposition
of the deformation gradient, the tensor field
G = 1/(detFp)Fpcurl(Fp) (i.e just Noll’s dislo-
cation density, in Noll (1967), here in terms of
the plastic distortion Fp) is considered by Gurtin
(2000) to be a measure of geometrically neces-
sary dislocations. In this case the internal power

is written in the form
∫
P
(T · Le +

∑
α

(παvα +
ξα · gradvα))dx, where the sum is espanded to the
slip systems and for each α, πα—internal micro-
forces and ξα—microstresses are introduced as
forces conjugated to slip and they produce work
by slip and by slip gradient respectively.

We conclude

1. As a peculiar aspect of the models proposed by
Gurtin in the mentioned papers, the microbalance
equation generates the viscoplastic yield condi-
tions or the viscoplastic flow rules. On the other
hand no yield criteria has been introduced, and
the irreversible behavior can develop at the very
beginning.

2. Let us remark that the micro balance equation
together with the viscopalstic constitutive equa-
tion for the microforces and microstress momen-
tum generate an appropriate flow rule (see also the
non-local yield condition in Gurtin (2000))

2Ce(Fp)∂Cψ̄(Fp)T + ∂Fp ψ̄(Fp)T + Y (d p)Lp

−divK((Fp)−T ∂(p)
�
ψ̄[(Fp)T , (Fp)T ]

+h2Y (d p)∇KL̃p) = ρ̃Bp
m, (109)
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with d p := √
Lp · Lp + h2∇KLp · ∇KLp, for the

plastic incompressible case ρK = ρ0.
3. Following the methodology developed in Cleja-

Ţigoiu (2002b), we can derive from the proposed
here model the behavior of the elasto-plastic mater-
ial, in the case of small elastic strains but large elas-
tic rotation Re. In this case Ce � I + 2ε with the
elastic strain | ε |<< 1, and the connection is gen-
erated by the gradient of the elastic rotation as well
as the ∇ε. Moreover, when we restrict ourselves
to small elastic and plastic deformations, i.e. the
small rotation and small strains, model within the
constitutive framework adopted by Gurtin (2000)
follows, but the microstress momentum are still
presented.

4. The plasticity and the damage defects localize
over the narrow region of the material. The plas-
tic and the damage evolution process are inho-
mogeneous at the macroscale. The macroscopic
inelastic deformation are sensitive to the structural
defects within the volume element. Hence, nonlo-
cal theories are necessary to adequately take into
account mechanisms which take place in the neigh-
borhood of the considered material points (see the
comments by Brünig and Ricci (2005)). A nonlo-
cal theory of an isotropically damaged materials
can be developed based on our proposed model,
in order to characterize the damage state config-
uration (identified with a configuration with tor-
sion), independently of the current elastic defor-
mation, i.e. for Ce = I. The damage produced by
the microdefects can be identified with the pres-
ence of screw and/or edge dislocations.

5. The proposed description of the edge and screw
dislocations (corresponding to deformation fields,
which remain incompatible due to the non-zero
curlFp) can be utilized in order to describe the
appropriate fracture mode, by plane deformation
and anti-plane deformation. The non-zero Burgers
vector can be utilized in order to describe the cracks
motion.

6. The quantities with the dimension of length
appears as additional material parameters, in the
expression of the free energy density, in the inten-
sity for the accumulated effect of the rate of plastic
distortion Lp and of the gradient of Lp.

7. In the model (although at the general framework
presented here there is not necessary) we can
assume the existence of the viscoplastic (or an

yield) function defined in the physical force system
(T,µ), such that the plastic (viscoplastic) behav-
ior can develope if and only if during the deforma-
tion process the physical force system lays on the
yield surface or it is situated outward the surface
fK(T,µ) ≥ 0. Consequently the behavior would
be elastic if the physical force system remains
inside the yield surface.
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