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Abstract In order to predict the fatigue limit of a
specimen with an axisymmetric complex surface, a
practical method to estimate a stress concentration fac-
tor (SCF) of its surface was proposed. The roughness
is coarse-grained by removing high frequency com-
ponents and approximated with a parallel row of a
local notch and innumerable average notches. Then,
the notches are each approximated with the elliptical
holes in the infinite plate, and the SCF is calculated
approximately by superposing the elastic solutions of
the holes. Moreover, FEM analyses were carried out
on the various notch models which consist of the local
notch and innumerable average notches to examine the
application limit of the present method. Then, the valid-
ity of the application limit was examined by using the
real roughness and the infinite parallel row of the vari-
ous notches, and it was shown that the present method
was available for the real roughness.
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1 Introduction

When there are several concavities and convexities in
a surface, they interfere with each other and complex
stress concentrations are formed there. If the same
notches are arranged linearly and periodically in the
surface, the stress concentration of the surface decreases
depending on the interval between the notches. The
phenomenon is called “Entlastung effect” (Neuber
1958) and some researchers have studied it (Neuber
1958; Hirano 1950; Nishihara and Fujii 1951; Isibasi
1954). However, the stress concentration of the com-
plex surface without a reappearance and periodicity has
not been clarified yet.

Murakami et al. approximated a periodic surface
roughness with an infinite parallel row of small cracks
and proposed the method for predicting the fatigue limit
of a metal with such a surface by

√
area parameter

model, where area is a projected area of three dimen-
sional crack to a plane perpendicular to a loading axis
(Murakami et al. 1996; Murakami et al. 1997; Mura-
kami 2002). And then, they carried out several fatigue
tests on specimens with the various periodic surface
roughnesses and examined the validity of the method
by the experimental results. Also, the authors proposed
the method to determine the stress concentration factor
(SCF) of a complex surface profile with a sufficiently
long periodicity by the extended Hirono’s conformal
mapping function (Hirano 1950; Aono and Noguchi
2004). Moreover, the authors proposed the method to
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predict the fatigue limit reliability by approximating the
complex profile with a unit crack or notch and examined
the validity of the method by comparing the predicted
results with experimental results of the specimens with
the various complex two dimensional surfaces (Aono
and Noguchi 2004). However, because the real sur-
face roughness has three dimensional shape and does
not have the periodicity and reappearance, the method
which can be applied to the general surface with three
dimensional shape is required.

In this study, for a prediction of a fatigue limit, an
approximate method to calculate a SCF of two
dimensional complex surface roughness is proposed.
Concretely, it is supposed that the strength of a rough
specimen obeys the weakest link model (Weibull 1951).
Then, three concavities which may become the fatigue
fracture origin are chosen from the mechanical profile
(Aono and Noguchi 2004). One of them is assumed
as the local notch, all of the concavities except for
the local notch are assumed as infinite parallel row of
the average notches. And the complex mechanical pro-
file is approximated with the parallel row of the local
notch and innumerable average notches. Three SCFs
and fatigue limits are each calculated in turn indepen-
dently. Finally, the minimum value of the predicted
fatigue limits is adopted as the fatigue limit. Aono and
Noguchi have reported that the complex roughness pro-
file can be replaced with the unit notch or crack model
and its fatigue limit can be predicted if the SCF and
ρ are calculated appropriately. In this study, because
the ρ is obtained easily, the method for calculating the
SCF is discussed mainly. Moreover, the validity of the
present method and its application limit are examined
by a finite element simulation.

2 Fatigue limit of notched specimen of a metal

In general, when fatigue tests are carried out on notched
specimens with constant notch depth t and various root
radii ρ, a typical relation between fatigue limits and
ρ is shown in Fig. 1 (Isibasi 1954). The ρ0 in Fig. 1
is a limit notch root radius whether or not a nonprop-
agating macrocrack exists along the notch root at the
fatigue limit. It is a material constant called “branch
point” (Isibasi 1954; Nisitani 1983).

When ρ > ρ0, the limit stress for the non-prop-
agating microcrack, σw1, appears as the fatigue limit
(Isibasi 1954; Nisitani 1972). The Linear Notch

Fig. 1 Schematic illustration of a relation between fatigue limit
and notch root radius

Mechanics is effective to predict theσw1 (Nisitani 1972).
Because the stress field near the notch root has a unique
form which is governed by the SCF Kt and ρ, the σw1 is
predicted by the following equation
(Miyazaki et al. 2004).

σw1 = σw0

Kt

√
1 + 230

H1.46
V ρ

(1)

σw0 = 1.6 HV (2)

(σw0, σw1 : MPa , HV : kgf/mm2 , ρ : mm)

Here, HV is a micro Vickers hardness, σw0 is the
fatigue limit of the plain specimen (Isibasi 1954;
Murakami 2002).

On the other hand, when ρ ≤ ρ0, the limit stress for
the non-propagating macrocrack, σw2, appears as the
fatigue limit. Shown in Fig. 1, the σw2 is independent
of ρ. Because the fatigue limit of the notched specimen
with ρ ≤ ρ0 is obtained from that of a cracked speci-
men whose crack depth is equal to t , the Linear Fracture
Mechanics is effective to predict the σw2. Especially,
when the notch depth is shallow enough, the σw2 is
predicted by the following equation (Murakami 2002).

σw2 = 1.43 (HV + 120)√
area1/6 (3)

(σw2 : MPa , HV : kgf/mm2 ,
√

area : µm)
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Here, the relation between
√

area and t is approxi-
mately expressed with the following equation (Mura-
kami 2002).
√

area = √
10 t (4)

From Fig. 1, the fatigue limit of the notched specimen,
σw, is predicted by the following equation.

σw = max(σw1, σw2) (5)

3 Coarse-graining of roughness and
transformation from roughness to a notch
and a crack

3.1 Coarse-graining of roughness

It is well known that a defect has a size effect on the
fatigue limit (Murakami 2002). When the lower limit
of the size is denoted with

√
areac, it is obtained by

solving σw2 = σw0 on
√

area as follows.

√
areac =

{1.43 (HV + 120)

1.6HV

}6
(6)

When the crack is assumed to be two dimensional, its
crack depth cIE is approximately given by the following
equation (Murakami 2002).

cIE =
√

areac√
10

(7)

Generally, the roughness profile can be expressed by
the superposition of several profiles with various fre-
quencies and spectra. Because the crack whose depth
is smaller than cIE has no effect on the fatigue limit,
the roughness profile can be coarse-grained, keeping
the same mechanical condition by removing the pro-
files whose amplitudes are smaller than cIE (Aono and
Noguchi 2004). Concretely, the high frequency profiles
are removed from the roughness profile so as to meet
the following equation.

|R(x) − W (x)| < cIE (8)

Here, W (x) is a mechanical profile, R(x) is a roughness
profile. The coarse-grained surface roughness is called
the mechanical profile (Aono and Noguchi 2004).

3.2 Transformation roughness to a notch and a crack

Figure 2 shows a schematic illustration of a transfor-
mation from the mechanical profile to a unit notch and

a b c

Fig. 2 Evaluation of notch depth and crack length

crack model (Aono and Noguchi 2004). When ρ > ρ0,
the non-propagating microcrack limit σw1 becomes the
fatigue limit. Because the non-propagating behavior of
the microcrack is governed by the stress field near the
notch root, the mechanical profile is approximated with
the unit notch model which has the stress field equal to
that of the profile. The stress field near the notch root is
determined by the Kt andρ approximately. As shown in
Fig. 2, the equivalent notch depth teq is introduced and
determined so as to meet Kt A = Kt B with the ρ con-
stant, where Kt A and Kt B are the SCFs of the mechan-
ical profile and the unit notch model, respectively. By
using the teq, the mechanical profile can be expressed
with the unit notch model keeping the mechanical con-
dition.

When ρ ≤ ρ0, the macrocrack arrests under the
notch root and the non-propagating macrocrack limit
σw2 becomes the fatigue limit. Because the fatigue limit
of the notched specimen with ρ and teq, σw2, is indepen-
dent of ρ, and equals to the fatigue limit of the cracked
specimen with ρ = 0 and the crack depth c = teq,
the notch can be considered as a crack with c = teq

mechanically.
The σw1 is predicted by Eqs. (1) and (2). The σw2 is

predicted by Eqs. (3) and (4). Because there is a compet-
itive relation between the σw1 and σw2, the fatigue limit
of the mechanical profile, σw, is obtained from Eq. (5).
So, even if the surface roughness is significantly com-
plex, the surface is coarse-grained and its fatigue limit
can be predicted by the unit notch or crack model.

4 Approximate method for calculation of stress
concentration factor of mechanical profile

It is supposed that strength of the mechanical profile
obeys the weakest link model (Weibull 1951). The con-
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Fig. 3 Schematic illustrations of infinite parallel rows of ellipti-
cal holes in an infinite plate and elliptical notches in a semi-infi-
nite plate

cavities and convexities in the mechanical profile are
divided into the severest notch and the other notches.
Because the mechanical profile is significantly com-
plex, the complex stress distributions are each formed
under all of the notch roots. However, the local stress
concentration in a position away from the notch root is
reduced according to the Saint-Venant’s principle, the
factor which governs the stress distribution changes
from the local notch shape to the average one.

From the above reasoning, in this study, the mechan-
ical profile is expressed with “the local notch” and a
parallel row of “the average notches”. Then, as shown
in Fig. 3, the SCF of the mechanical profile is evaluated
by approximating the notches in the semi-infinite plate
with elliptical holes in an infinite plate. In Fig. 3, the
0-th hole corresponds to the local notch, where a0 is a
semi-major axis, b0 a semi-minor axis, ρ0 = b2

0/a0 a
notch root radius, t0 = a0 a notch depth. And then, the
j (= ±1,±2, · · · )-th holes correspond to the average
notches, where am is a semi-major axis, bm a semi-
minor axis, ρm = b2

m/am a notch root radius, tm = am

a notch depth. pm is an average interval between the
notches.

4.1 Transformation from mechanical profile to
infinite parallel row of notches

When there are (2N + 1) concavities and convexities
which can be treated as the notchs in the mechanical
profile, the method for evaluating, the interval pm , a
notch depth tm and a notch root radius ρm of the aver-
age notch, a notch depth t0 and a notch root radius ρ0

of the local notch from the mechanical profile is men-
tioned in this section.

4.1.1 Evaluation of pm

The mechanical profile W (x), which is obtained by
removing the high frequency profiles from the mechan-
ical profile so as to meet Eq. (8), is expressed by a
Fourier series.

W (x) =
∞∑

n=0

cn( fn) ei2π fn x (9)

cn( fn) = 1

L

∫ L/2

−L/2
W (x) e−i2π fn x dx (10)

Here, L is the distance from the beginning of the rough-
ness profile to the end and a constant which is obtained
when the profile is measured, fn = n/L . The frequency
where the spectrum becomes a maximum is denoted
with fm . It is supposed that the reciprocal fm is pm

(= 1/ fm).

4.1.2 Evaluations of ρ0 and ρm

The x coordinate under the j-th notch root on the W (x)

is denoted with x j . The j-th notch root radius at x j , ρ j ,
is expressed with the following equation.

1

ρ j
=

∣∣∣ d2W (x)

dx2

∣∣∣
x=x j

∣∣∣
{

1 +
(

dW (x)
dx

∣∣∣
x=x j

)2}3/2
(11)

Because the 0-th notch is the local notch, the average
of all notch root radii except for ρ0 is adopted as the
average notch root radius ρm .

4.1.3 Evaluations of t0 and tm

The frequencies of W (x) are divided into fm and other
frequencies. The former forms a periodic profile with a
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period pm , the latter gives the periodic profile irregular-
ity. When the profile with pm is denoted with Wm(x),
the Wm(x) corresponds to the infinite parallel row of
the average notches.

When several similar notches are arranged, regions
where shear stress τxy = 0 and which are not related to
a stress distribution form between the notches (Neuber
1958). Therefore, when the parallel row of the notches
is approximated with that of the elliptical holes, the dis-
tance from the boundary of the region to the notch root
has to be used as the semi-major axis of the hole. The
distance is called the effective notch depth teff . Figure 4
shows a schematic illustration of a relation between the
mechanical profile and the parallel notch model. When
t∗m , which is the average of t j ( j = ±1, . . . ,±N ), pm

and ρm are used as the parameters, the parallel row of
notches in W (x) is approximated with that of average
notches through an arbitrary periodical profile W ∗

m(x)

whose parameters equal those of W (x). Finally, the
notches in the semi-infinite plate are approximated with
the elliptical holes in the infinite plate. The notch depth
of the elliptical notch is denoted with tm(= teff ).

The height from standard W (x) = 0 to the highest
peak of Wm(x) is used as the height from the standard
to a free surface. The notch depth of the j-th notch, t j ,
is expressed with the following equation.

t j = max (Wm(x)) − W (x j ) (12)

The notch depth of W ∗
m(x), tm , is chosen so that the SCF

of W ∗
m(x) equals that of the infinite parallel row of the

semi-elliptical notches with ρm . The tm is expressed
with the following equation.

tm = K −1
tm (pm, ρm, tm)|Ktm=K ∗

tm
(13)

Here, Ktm(pm, ρm, tm) is the SCF of the infinite par-
allel row of the average notches, K ∗

tm is the SCF of
W ∗

m(x), and K −1
tm (pm, ρm, tm)|Ktm=K ∗

tm
is a function

which is obtained by solving Ktm(pm, ρm, tm) = K ∗
tm

on the notch depth tm .
The distance from the standard W (x) = 0 to the

j-th notch root is expressed with −W (x j ). Therefore,
an average height from the standard to the free surface
is obtained as follows by subtracting an average of all
distances from the tm .

tm − 1

2N

N∑
−N
j �=0

{−W (x j )
}

(14)

Therefore, the local notch depth t0 is obtained by add-
ing the distance from the standard to the 0-th notch root,

0 0 0

0

-1

-1

1

1

Fig. 4 Schematic illustration of a relation between mechanical
profile and parallel notch model

−W (x0), to Eq. (14) as follows.

t0 = tm + 1

2N

N∑
−N
j �=0

W (x j ) − W (x0) (15)

4.2 Stress concentration factor at the local notch

When there are several notches, the stress field of one
notch is disturbed by the other notches. The interfer-
ence problem is caused by such disturbances of the
stress fields must be determined (Nisitani 1968; Nisi-
tani 1978). In this section, the method to determine the
unknown stress field is described.

Letusconsider thetensileproblemoftheinfiniteplate
with the parallel row of elliptical holes under the applied
stresses σx∞ = 1 and σy∞ = 0. When the interference
problem is replaced with the tensile problem of the sin-
gle k-th hole in the infinite plate, the applied stress to the
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k-th hole, σx∞ = Xk , is expressed with the following
equation (Nisitani 1968; Nisitani 1978).

Xk = 1 +
∞∑
−∞
j �=k

σx j (X j , 0)

∣∣∣ x j = (k− j)pm
y j = −ak

(16)

Here, σx j (σx∞, σy∞) is an additional stress in a point
(x j , y j ) by the j-th hole in the infinite plate under σx∞
and σy∞ (see Appendix A).

In this paper, it is supposed that a metal is sur-
face-finished by a turning machine, grinding machine,
emery paper, etc. and its surface does not have extreme
sharp and deep notches. Therefore, because the shapes
and sizes of the convexities and concavities are com-
parable although they each vary randomly, the differ-
ence between the local and average notches is assumed
to be little. The notch interference problem is solved
approximately based on the following assumption (the
application limit of the approximation is mentioned in
Sect. 5).

X j =
{

X0 ( j = 0)

Xm ( j = ±1, . . . ,±∞)
(17)

First, let us consider that the stress X0 which is
applied to the 0-th elliptical hole. Substituting k = 0
and X j = Xm ( j = ±1, . . . ,±∞) into Eq. (16), the
following equation is obtained.

X0 + δX0 = 1 + Xm

∞∑
−∞
j �=0

σxm(1, 0)

∣∣∣ x j = − j pm
y j = −a0

(18)

Here, σxm(1, 0) = σx j (1, 0) ( j = ±1, . . . ,±∞), δX
is the error due to the approximation. When X0 = Xm ,
the local notch becomes equal to the average notch and
X0 is expressed with the following equation.

X0 = Xm = Ktm

Ktm |pm=∞
(19)

Here, Ktm is the SCF of the semi-infinite plate with an
infinite parallel row of average notches under the ten-
sile stress (see Appendix B). When δX0 is decided to
satisfy Eq. (19), it is given by the following equation.

δX0 = 1 − Ktm

Ktm |pm=∞

{
1 −

∞∑
−∞
j �=0

σxm(1, 0)

∣∣∣ x j = − j pm
y j = −am

}

(20)

Finally, substituting Eq. (20) into Eq. (18), X0 is
obtained as follows.

X0 − Xm

∞∑
−∞
j �=0

σxm(1, 0)

∣∣∣ x j = − j pm
y j = −a0

= Ktm

Ktm |pm=∞

{
1 −

∞∑
−∞
j �=0

σxm(1, 0)

∣∣∣ x j = − j pm
y j = −am

}
(21)

Next, let us consider the first hole and its applied
stress Xm . Substituting k = 1 and Eq. (17) into Eq.
(16), Xm is obtained as follows.

Xm + δXm = 1 + Xm

∞∑
−∞
j �=1

σxm(1, 0)

∣∣∣ x j = (1− j)pm
y j =−am

−Xmσxm(1, 0)

∣∣∣ x0 = pm
y0 = −am

+ X0σx0(1, 0)

∣∣∣ x0 = pm
y0 = −am

(22)

Here, δXm is an error due to the approximation. The
right hand side of Eq. (22) means an elliptical hole is
taken out from the infinite parallel row of the average
holes with semi-major axis am and semi-minor axis bm

and it is replaced by a local elliptical hole with semi-
major axis a0 and semi-minor axis b0. Because the sec-
ond term of the right hand side of Eq. (22) means a
summation of additional stresses by the infinite paral-
lel row of the average notches, the following equation
is obtained from Eq. (19).

∞∑
−∞
j �=1

σxm(1, 0)

∣∣∣ x j = (1− j)pm
y j = −am

= 1 − Ktm

Ktm |pm=∞
(23)

Substituting Eq. (23) into Eq. (22) and deciding δXm

to satisfy Eq. (19), δXm is obtained as follows.

δXm = 0 (24)

Substituting Eqs. (23) and (24) into Eq. (22), Xm is
obtained as follows.

Xm = 1 + Xm

{ (
1 − Ktm

Ktm |pm=∞

)

− σxm(1, 0)

∣∣∣ x0 = pm
y0 = −am

}
+ X0 σx0(1, 0)

∣∣∣ x0 = pm
y0 = −am

(25)

Moreover, by rearranging terms of Eq. (25), the follow-
ing equation is obtained.{ Ktm

Ktm |pm=∞
+ σxm(1, 0)

∣∣∣ x0 = pm
y0 = −am

}

Xm − X0σx0(1, 0)

∣∣∣ x0 = pm
y0 = −am

= 1 (26)
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Fig. 5 Schematic illustration of a model analyzed by FEM

Finally, solving simultaneous equations of Eqs. (21)
and (26), X0 and Xm are obtained. The SCF of the local
notch, Kt0, is obtained from the following equation.

Kt0 = Kt0|pm=∞ X0 (27)

Here, Kt0|pm=∞ = 1 + 2
√

t0/ρ0.

5 Application limit of approximate calculation
method

In this section, the limit of application of the method
presented in Sect. 4 is examined using the analysis mod-
els which are constituted by the local notch and the
average notches.

5.1 FEM analysis and boundary condition

Figure 5 shows a schematic illustration of an analysis
model. The FEM analyses were carried out changing
the number of the element division and length L , width
W of the finite plate based on the notch depth tm so that
the analyzed result was independent of the model and
the element division. The ratios of W and L to t0 were
W/t0 � 100 and L/t0 � 200, respectively.

5.2 Examination of application limit

Under the pre-condition of Appendix C, the analyses
were carried out changing the sizes, shapes and peri-
ods of the notchs like

√
tm/ρm = √

t0/ρ0 = 1, 2, 4
and pm/tm = 2.5, 3, 4. Figure 6 shows results of com-
parison between Kt0|present by the present method and
Kt0|FEM by the FEM analysis. For t0/tm � 1, because
Kt0|present is governed by the accuracy of Eq. (45), the
smaller

√
tm/ρm is, the closer the Kt0|present/Kt0|FEM

comes to 1. From Fig. 6, when the local notch, similar
to the average one, satisfies the following conditions,
then the SCF can be predicted to within ±5% error.

1.0 ≤ t0/tm ≤ 1.2 (28)

2.5 ≤ pm/tm ≤ 4.0 (29)

2.0 ≤ √
tm/ρm ≤ 4.0 (30)

Figure 7 shows the Kt0|present/Kt0|FEM values which
were calculated changing

√
t0/ρ0 under t0/tm = 1.2,√

tm/ρm = 2, 4. From Fig. 7, when the local notch
is not similar to the average one and satisfied with the
following conditions, the SCF can be predicted within
± 5% error.

1.0 ≤
√

t0
ρ0

/√
tm
ρm

≤ 2.0 (31)

Therefore, when the notches are satisfied with Eqs.
(28), (29), (30) and (31), the stress concentration factor
can be predicted within ± 5% error.

The real surface roughness is different from the par-
allel row of notches geometrically. However, the stress
by the notch is governed by the ρ and t . When ρ0, t0,
ρm, tm and pm are chosen appropriately, it seems that
the real surface roughness can be simulated by the par-
allel row of notches and Eqs. (28), (29), (30) and (31)
are approximately useful.

6 Examination of application limit

In this section, the validity of the present method and its
application limit inSect. 5 is examinedusingafinitepar-
allel row of notches with various shapes and periods and
real surface roughness (Aono and Noguchi 2004).

6.1 profile of the infinite parallel row of semi
elliptical holes

In order to examine the validity of the present method
and its application limit, the numerical simulations were
carried out on three kinds of simple models with the par-
allel row of various elliptical notches. The local notch
depth t0 was set at 1.2. Then, the pm/tm and t0/tm of
the models were determined by referring to those of
the real surface roughness. The shapes and intervals
of the notches were varied randomly within a range of
t j ± δt j , p j ± δp j and

√
t j/ρ j ± δ

√
t j/ρ j . Table 1

shows the parameters of the models. The parameters
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Fig. 6 Relation between
Kt0|present/Kt0|FEM and
t0/tm
(a)

√
ρ0/t0 = √

ρm/tm = 1
(b)

√
ρ0/t0 = √

ρm/tm = 2
(c)

√
ρ0/t0 = √

ρm/t = 4

1 1.2 1.4 1.6 1.8 2
   0

0.8

0.9

1

1.1

1 1.2 1.4 1.6 1.8 2
   0

0.8
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1

1.1

c

a b

1 1.2 1.4 1.6 1.8 2
   0

0.8

0.9

1

1.1

-5% error

5% error

Fig. 7 Relation between
Kt0|present/Kt0|FEM and√

t0/ρ0 /
√

tm/ρm under
t0/tm = 1.2 (a)√

tm/ρm = 2 (b)√
tm/ρm = 4

1 1.5 2 2.5 3
   0

0.8

0.9

1

1.1

1 1.5 2 2.5 3
   0

0.8

0.9

1

1.1a b

were determined referring to the those of the real sur-
face roughness. For example, the t0/tm and pm/tm of
the models are similar to those of the real roughness in
the following Sect. 6.2; the pm/tm values of the mod-

els and the real roughness ranges from 2.61 to 3.64 and
from 3.14 to 3.33, respectively; the t0/tm values of the
models and the real roughness ranges from 1.0 to 1.09
and from 0.9 to 1.38, respectively.
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Table 1 Parameters of notch configurations

t0
√

t0
ρ0

t j ± δt j

√
t j
ρ j

+ δ
(√

t j
ρ j

)
p j + δp j

Model I 1.2 2.5 1.0 ± 0.15 2.09 ± 0.32 2.59 ± 0.72
Model II 1.2 4.0 1.1 ± 0.05 3.00 ± 0.95 3.18 ± 0.80
Model III 1.2 6.0 1.1 ± 0.10 3.45 ± 0.71 4.09 ± 0.69

j = ±1,±2, . . . ,±N (2N is the number of average notches.)

Fig. 8 Spectrum of simulated surface roughness of model I

6.1.1 FEM analysis and boundary condition

Because notches which have various ρ and t were
arranged randomly, asymmetrical models 2W in width
and L in height were analyzed. The ratios of W and L
to t0 were W/t0 � 100 and L/t0 � 200, respectively.

6.1.2 comparison between calculated and analyzed
results

ρ0, t0, ρm , tm and pm are determined according to Sect.
4.1. Because the analyzed model is the parallel row of
elliptical notches, the distance from the surface to the
notch root is used as the notch depth t j . Figure 8 shows
the relation between the power spectrum and frequency.
Table 2 shows tm ,

√
tm/ρm , pm , Kt due to the present

method and FEM analysis. Comparing Kt |present with
Kt |FEM, all of the Kt values are within about 10 % error.

6.2 profile of real surface roughness

In this section, the validity of the present method and
its application limit were examined by using the real
surface roughness of 0.1% carbon steel. The roughness
was machined under the condition of 0.15 mm depth of
cut and manual feed by a turning machine (Aono and
Noguchi 2004).

Figure 9(a) shows the analyzed profiles. The solid
line is a mechanical profile; the chained line is the Hir-
ano’s conformal mapping function which gives the best
fit for the mechanical profile (Aono and Noguchi 2004).
For the fitting profile, the notch depths of the notch
model, t j , range from 55.4µm to 98.5µm. The notch
radii of the notch model, ρ j , range from 15.0µm to
57.0µm. Figure 9(b) shows a spectrum of the mechan-
ical profile. In this analysis, the Kt values at x j =
57, 784, 1233µm in the mechanical profile and x j =
70, 744, 1229µm in the fitting profile were each cal-
culated. Table 3 shows the ρ0, t0, ρm and tm of the
profiles, respectively. The parameters were determined
from the t j and ρ j values according to Sect. 4.1. Also,
because the spectrum of the mechanical profiles has
peaks at fn = 1/2381, 3/2381, 6/2381, the pm was
assumed to be 2381/10 � 238µm. The present notch
model which was used in the process of calculating the
Kt at x = 1229µm was added as the broken line in
Fig. 9(a).

Figure 9(c) shows Kt and σ1/σx∞ of the profiles in
Fig. 9(a). The solid line is theσ1/σx∞ distribution of the
mechanical profile which was calculated by the com-
plex variable method using Hirano’s conformal map-
ping function; the open circle and triangle marks are
the Kt values of the mechanical profile and the fitting
profile which were calculated by the present method,
respectively. The locations of the notch roots in the
broken line roughly corresponds to those in the solid
line in Fig. 9(a). Additionally, eight local maximum
values are also found in the solid line macroscopically.
Because the peaks mean that eight main notches exist
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Table 2 Exact and present
solutions tm

√
tm
ρm

pm Kt |present Kt |FEM

Model I 1.00 2.00 2.61 3.96 4.02
Model II 1.10 2.68 3.26 6.23 6.51
Model III 1.10 3.24 4.00 10.00 9.84

∞

a
b

c

jt x

Fig. 9 Simulated model and results of complex surface roughness (a) Mechanical profile and approximated profile (b) Spectrum analysis
(c) Stress concentration factor and equivalent stress distribution

Table 3 Parameters of notch configurations

j x j ρ0 t0 ρm tm
pm
tm

t0
tm

√
t0
ρ0

√
tm
ρm

1 56 48.5 67.9 71.1 75.9 3.14 0.90 1.18 1.03
(70) (15.0) (69.7) (43.1) (75.8) (3.14) (0.92) (2.15) (1.33)

2 784 69.6 98.7 68.1 71.5 3.33 1.38 1.19 1.02
(744) (38.6) (98.5) (40.2) (72.2) (3.30) (1.36) (1.60) (1.34)

3 1233 49.3 97.9 71.0 71.8 3.31 1.36 1.41 1.01
(1229) (33.3) (97.3) (40.8) (72.3) (3.29) (1.35) (1.71) (1.33)

(x j , ρ0, t0, ρm , tm :µm)

in the mechanical profile of L = 2381µm, the validity
of pm = 238µm is confirmed. When the σ1/σx∞ dis-
tribution corresponds to the fitting profile in Fig. 9(a),
all peaks on the σ1/σx∞ distribution occur at the notch
roots and the direction of the local maximum values of
the σ1 corresponds to that of the σx∞.

Comparing the triangle marks to the solid line, both
of them correspond well. The Kt predicted by the pres-
ent method basically contain errors which are caused
by two differences: the difference between the com-
plex profile and the parallel row of elliptical notches;
the difference between the simple model with various
notches and the present model with average notches and
the local notch. The former is confirmed by

comparing the square marks to the solid line. On the
other hand, the latter is roughly estimated by Table 3
and the application limit of Eqs. (28), (29), (30) and
(31). Comparing the solid line with the circle marks,
there are the large errors between them. The errors
are caused by the difference between the real surface
roughness and the fitting profile in addition to the errors
due to the above differences.

Conclusively, if the concavities and convexities are
distributed randomly even if the profile is complex, the
surface roughness can be approximated with the infi-
nite parallel row of elliptical notches and its Kt can be
approximately predicted by the present model with the
average notches and the local notch.
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7 Conclusion

In order to predict the fatigue limit of a specimen with a
two dimensional complex surface, a practical method to
estimate a SCF of its surface roughness was proposed.
The conclusions of the present study are summarized
as follows.

1. The practical method to evaluate the SCF by
replacing the surface roughness with a parallel
row of the local notch and innumerable average
notches was proposed. Then, an approximate
method to calculate the SCF by replacing the
notches with an elliptical hole and superposing
the elastic solution of the holes was proposed as
in Eqs. (21), (26) and (27).

2. The FEM analyses were carried out on several
models, changing the shapes and sizes of the local
notch and the average notches. The application
limit was examined and obtained as Eqs. (28), (29),
(30) and (31).

3. The validity of the application limit was examined
by using the real roughness and the infinite parallel
row of various notches.

Appendix

A The additional stress due to the elliptical hole at
a point

Let us consider a tensile problem of an infinite plate
with an elliptical hole. The origin is set to the center of
the hole. Then, the major axis and minor axis are set
to a in x axis and b (< a) in y axis, respectively. The
stress which is added by the elliptical hole at z = x +iy
is expressed as follows (Nisitani 1968).

σ ∗
x = Re

[
− A

{ 2 e−ζ

sinh ζ
+ cosh ζ̄

sinh3 ζ

}
+ B

cosh ζ

sinh3 ζ

− 2 C
(2 sinh ζ + cosh ζ ) e−2ζ

sinh3 ζ

]
(32)

σ ∗
y = Re

[
− A

{ 2 e−ζ

sinh ζ
− cosh ζ̄

sinh3 ζ

}
− B

cosh ζ

sinh3 ζ

+ 2 C
(2 sinh ζ + cosh ζ ) e−2ζ

sinh3 ζ

]
(33)

τ ∗
xy = Im

[
A

cosh ζ̄

sinh3 ζ
− B

cosh ζ

sinh3 ζ

+ 2 C
(2 sinh ζ + cosh ζ ) e−2ζ

sinh3 ζ

]
(34)

Here, A, B and C are constants which depend on the
boundary condition, z −√

a2 − b2 cosh ζ , ζ = ξ + iη,
i = √−1. When the boundary condition is σy∞ = 1
and σx∞ = τxy∞ = 0, A, B and C are given as follows.

A = − 1

2 (1 − ε)
(35)

B = − 1

2 (1 − ε2)
(36)

C = ε

4 (1 − ε)2 (37)

Here, ε = b/a.
When σx∞ = X j and σy∞ = 0 are applied to

the infinite plate with only the j-th elliptical hole, the
stress which is added at the point (x j , y j ) by the hole
is obtained by substituting Eqs. (35), (36) and (37) into
Eq. (33), considering the direction of the semi-major
and semi-minor axes in Eqs. (35), (36) and (37).

σx j (X j , 0) = X j σ ∗
y

∣∣
z=y j +i x j

(38)

B Derivation of approximate formulae of Ktm| p=∞
and Ktm

The SCF of the elliptical hole in the infinite plate under
the tensile stress σx∞ = 1 is given by the following
equation.

Kt = 1 + 2
√

a

ρ
(39)

Here, ρ is a notch root radius, a is a semi-major axis.
Moreover, the SCF of the infinite parallel row of notches
with a period pm in the semi-infinite plate under σx∞
is denoted with Ktm . Ktm |p=∞, which corresponds to
the SCF of the unit notch in a semi-infinite plate, is
expressed with the following equation.

Ktm |p=∞ = Ft · Kt (40)

Here, Ft is a modified parameter of the elliptical notch
to the elliptical hole with the semi-major axis a and
notch root radius ρ in the infinite plate under the ten-
sile stress. In this paper, the following equation is used
as an approximate formula (Noda et al. 1997).
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Fig. 10 Relation between Ktm/Kt0 and t/p

Ft = 1.148 − 0.160
( ρ

a

)1/2 − 0.0345
( ρ

a

)
+0.0693

( ρ

a

)3/2
(41)

The stress intensity factor of edge cracks which con-
stitute the parallel infinite row in a semi-infinite plate is
denoted with K I m . The K I m is independent of the crack
length t and expressed with the following equation by
J integral (Rice 1968).

K I m = σx∞
√

p

2
(42)

On the other hand, when p = ∞, K I m |p=∞ is equal
to the stress intensity factor of the edge crack with the
crack length t in the semi-infinite plate and given by
the following equation.

K I m |p=∞ = 1.121 σx∞
√

π t (43)

Figure 10 shows the Ktm values calculated by the
previous method (Aono and Noguchi 2004) against the
various t/ρ and t/p. From this figure, the Ktm is inde-
pendent of t/ρ and expressed with the function of only
t/ρ. Also, because the crack corresponds to the notch
with ρ → 0, Ktm/Ktm |p=∞ is approximated by the
following equation.

Ktm

Ktm |p=∞
� K I m

K I m |p=∞
(44)

Substitiuting Eqs. (40), (42) and (43) to Eq. (44) and
solving on Ktm , the following equation is obtained.

Ktm = Ft

1.121
√

2 π

(√
p

t
+ 2

√
p

ρ

)
(45)

Fig. 11 Relation between Ktm |Eq. (45)/Ktm |Ref. and t/p

When p, ρ � t , Eq. (45) is approximated with the
following equation.

Ktm �
√

2 p

πρ
(46)

C Accuracy of Eq. (45)

Figure 11 shows a result of a comparison of the Kt

values of various notches by Eq. (45) and References
(Peterson 1974; Nisitani 1978). From this figure, when
the notch is satisfied with the following equations, the
SCF can be predicted within ± 5% error.

2.5 ≤ pm/tm ≤ 4.0 (47)

1 ≤ √
tm/ρm ≤ 4 (48)

Because Eq. (45) is derived based on Eq. (44), the
smaller the p and ρ are, the more accurate Eq. (45)
becomes.

Figure 12 shows the Ktm values by Eq. (45) and Ref-
erences (Peterson 1974; Nisitani 1978) against tm/p.
From this figure it is found that the Ktm values are
independent of tm/ρm and expressed with a function of
p/ρm , when ρm, p � tm .

In this paper, Eq. (45) was used to give priority to
simplicity and convenience. If the exact solution is used
instead of Eq. (45), the accuracy and application limit
of the present method will improve.
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Fig. 12 Relation between Ktm and p/ρ

ρ

Fig. 13 Relation between teff/t and p/ρ

D The effective notch depth of the profile due
to Hirano’s conformal mapping function

Hirano’s conformal mapping function was used as
W ∗

m(x), and teff is calculated by solving Eq. (13) numer-
ically using FEM. Figure 13 shows a relation between
teff/t and p/ρ using t/ρ as a parameter. However,
because it is difficult to form the profile by Hirano’s
conformal mapping function and the K ∗

tm cannot be
calculated when p/ρ becomes smaller than the crit-
ical value, the K ∗

tm values which are extrapolated by

the obtained K ∗
tm value are used. The broken lines in

Fig. 13 are the K ∗
tm values by the extrapolated values.

When p/ρ becomes small, the extrapolated K ∗
tm value

becomes close to Ktm and teff = 1. On the other hand,
when the p/ρ becomes large, teff = 0.65 independent
of t/ρ.
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