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Abstract A penny-shaped crack at the interface of a
piezoelectric bi-material system is considered. Analyt-
ical general solutions based on Hankel integral trans-
forms are used to formulate the mixed-boundary value
problem corresponding to an interfacial crack and the
problem is reduced to a system of singular integral
equations. The integral equations are further reduced
to two systems of algebraic equations with the aid of
Jacobi polynomials and Chebyshev polynomials. There-
after, the exact expressions for the stress intensity fac-
tors and the electric displacement intensity factor at the
tip of a crack are obtained. Selected numerical results
are presented for various bi-material systems to portray
the significant features of crack tip fracture parameters
and their dependence on material properties, poling ori-
entation and electric loading.

Keywords Cracks - Electric field - Fracture
mechanics - Piezoelectricity - Stress intensity factors

1 Introduction

Piezoelectric actuators are used in many advanced engi-
neering applications. Common examples include ink-
jet printer heads, fuel injectors, ultra precision machine
tool positioning devices, etc. This class of materials is
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generally brittle, has low fracture toughness and pos-
sesses micro-defects produced during the manufactur-
ing process. These factors make fracture and reliability
key issues in the design of piezoelectric devices for var-
ious engineering applications. Study of linear fracture
mechanics of piezoelectric materials is quite well estab-
lished and numerous papers have appeared in the litera-
ture. A comprehensive review of past studies is beyond
the scope of this paper. It is suffice to refer to a few key
papers to highlight the development over the past few
decades (Parton 1976; Deeg 1980; McMeeking 1989,
2001; Sosa 1992; Pak 1992; Suo et al. 1992; Xu and
Rajapakse 2001).

A majority of studies dealing with fracture of pie-
zoelectric materials is based on two-dimensional mod-
els and homogeneous materials. In practical situations
dealing with cylindrical actuators it is more common to
encounter cracks that are circular, elliptic or arbitrary
shaped and located at material interfaces. For exam-
ple, ultra-thin electrodes are placed between thin pie-
zoelectric layers with adjacent layers having opposite
polarization in the case of commonly used cylindrical
stack actuators (Fig. 1). Complex crack patterns ex-
ist in such devices that include electrode delamination
cracks, branch cracks at electrode tips, delamination
cracks between piezoelectric layers, electrode bridg-
ing cracks through a piezoelectric layer, etc. Needless
to say, the development of mathematical models for
such complex cases is a challenging task.

A few studies dealing with penny-shaped cracks in
piezoelectric materials have appeared in the literature
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Fig. 1 Piezoelectric stack actuator

over the past 10years. Wang (1994) and Kogan et al.
(1996) analyzed the case of a penny-shaped crack in
a transversely isotropic piezoelectric material. Huang
(1997) also considered a penny-shaped crack in a trans-
versely isotropic piezoelectric medium. Chen and Shi-
oya (1999) presented a general three-dimensional
analysis of a penny-shaped crack subjected to normal
mechanical loads and electric charges symmetrically
applied on the upper and lower surfaces. Wang (1992)
and Wang and Huang (1995) considered an elliptical
crack in a piezoelectric medium. Yang and Lee (2001,
2003) studied a penny-shaped crack in a piezoelectric
strip and a cylinder. Three-dimensional cracks of differ-
ent geometry were considered by Shang et al. (2003)
by using the finite element method.

An interesting problem related to a penny-shaped
crack is the case where such a crack lies in the interface
between two piezoelectric materials. Such a case repre-
sents an idealized mathematical model for an interface
crack in a stack actuator and could shed some insight
into fracture mechanics of stack actuators. Bi-material
crack problems in ideal elasticity have a rich history
and a comprehensive review is beyond the scope of this
paper. The studies by Erdogan (1965), Willis (1971),
Erdogan and Arin (1972), Comninou (1977) and Rice
(1988) are some key references. Two-dimensional inter-
facial cracks in dissimilar piezoelectric materials were
considered by Beom and Atluri (1996), Gao and Wang
(2000), Qin and Mai (2000), Ru (2000), Nishioka and
Shen (2001) and Scherzer and Kuna (2004). However,
the more practically useful case of an interfacial penny-
shaped crack in a piezoelectric bi-material system is not
yet solved.

The objective of this paper is to analyze by using
analytical techniques the axi-symmetric problem of an
interfacial penny-shaped crack in a piezoelectric
bi-material system (Fig. 2). Analytical general solu-
tions based on Hankel integral transforms are used
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Fig. 2 A penny-shaped crack at the interface of a piezoelectric
bi-material system

to formulate the mixed-boundary value problem cor-
responding to an interfacial crack and the problem is
reduced to a system of singular integral equations. The
integral equations are further reduced to two systems
of algebraic equations with the aid of Jacobi polynomi-
als and Chebyshev polynomials. Exact expressions for
the stress intensity factors and the electric displacement
intensity factor of the crack tip are thereafter obtained.
Selected numerical results are presented for various
bi-material systems to portray the significant features
of crack tip fracture parameters and their dependence
on material properties and poling orientation.

2 Axisymmetric general solution

Consider a transversely isotropic piezoelectric mate-
rial with a cylindrical polar coordinate system (r, 6, z)
defined with (7, 6) as the plane of isotropy and z-axis
as the poling direction.

In the case of axisymmetric deformations, the elas-
tic displacement components (i, u#.) and the electric
potential ¢ are functions of only r and z and ug = 0.
Constitutive equations can be expressed in terms of the
elastic displacements and electric potential as (Parton
and Kudryavtsev, 1988)

u u ou d
Orr = Cll— + Clo— + 13— + e31—¢
ar r 0z 0z
ou u u 0
009 = cl2— +c11— + 13— +€31—¢
or r 07 9z |
ou, uy du, ¢ M
Oxx = C13—— +C13— + 33— +e33—
or r 0z 0z
ou,  Ju, ap
Orz —C44( 9z + o ) +€1sar
ou u du d
D, =e3— +e31— +e33— — d33—¢
ar r 07 0z
uy  Oug ¢
D, = —+ — ) —di—
r= e (az + ar) P
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where o, 0pg, 0,; and o,, denote stresses; D, and where
D, denote electric displacements; ¢y, ¢12, 13, ¢33 and 2
‘ 5P ) I €12, €13- €33 L1 = ciicqadyy + cri(ers)
c44 denote the elastic moduli; e31, e33 and e;5 denote )
the piezoelectric constants; and d; and d33denote the Ly = 2cizersesn 2_ 644(6312) — 2ciiersess
dielectric permeability coefficients. +2ci3(e15)” + (c13)7din — crie3zdi
In the absence of body forces and body electric +2¢13¢a4d11 — C11Caad33
charges, the equilibrium equations can be expressed in 2
& quitibrt 4 b . L3 = 2c33eyse31 + c33(e31)” — 2ci3eise3s
terms of the elastic displacements and electric potential
as —2cy3e31€33 — 2c44e31€33
2 2
P2ur 10u,  u, 9 u, +c11 (6;3) + c33(e15)” + c33caadyy
i\ G2t 2 +C44—8Z2 —(c13)7d33 + cr1c33d33 — 2c13¢44d33
2
2 2 Ly = —caac33d33 — cq4(e33) (N

( ) 2 ( )
+(c13+cC44 +(e31+e =0
13 9 8 31 15 979

9%u, 19du, u, 10u,
(c13+c44) +- +ca4 7t
or r or

ardz r 0z
0%u. %y 10¢ 9%
+c33—5- 922 +615(3 7 T 8r>+e338_12=0

(e1s-+esr) 9%u, n 1 0u, n 0%u. n 1 du;
e e - e -——
15Test ordz r 0z 15 arz r or
32 ¢ 10 92
du( ¢ ¢) e

82 t 3322

=0
arz r or

+
)

In order to solve the equation (2), the following gen-
eralized displacement potential relations are defined
(Rajapakse and Zhou 1997).

3

3
oD, (r, oD; (r,
D= 3 T,
Z
i=1

i=1

3
\ 0D (r,

p=-> Azi# 3)
i=1

where ®; (r, 7)(i = 1, 2, 3) denotes generalized displace-
ment potential functionsand A1; and Ay; (i =1, 2, 3) are
unknown constants. Substitution of Eq. (3) into Eq. (2)
yields,

Di(r,2) | 19Di(r,z) | 2Di(r,2) 0
or? r or 0 (Zi)2 -
(i=1,2,3) “4)
where,
z
= — = WiZ, 1 =1,2,3 5
Zi Wi wiz, (@ ) &)

and n; (i = 1, 2, 3) are the roots of the following equa-
tion.

Ly (ni)* 4+ Ly (n)* + Lani + Ly =0 (6)

The constants A1; and Ay; (i = 1, 2, 3) are determined
from the following relationship.

_c4g+(c13+caa)rhi — (€31 + e15)A;
cn
_ c33h1; — €339 ®)
C44Mi + c13 + cas — €150
e33hi; + dazho;
e1shii +eis +e31 +diha;
The solution for ®;(r, z) can be expressed in the fol-

lowing form by using Hankel integral transforms.

S |
;i (r, 2) = /0 A1) exp(—112) + B (©)

exp(§ uiz)]Jo(6r)dé )

where A;(£) and B;(§)denotes a set of arbitrary func-
tions to be determined from the boundary and conti-
nuity conditions, and Jy() is the Bessel function of the
first kind of order zero (Abramowitz and Stegun 1964).
In view of Egs. (9) and (3), the general solutions for
displacements and electric field can be expressed as,

B 23; dD; (r, 2)
N ar

i=1
3 00
-3 [ /0 [4i®) exp(—& i)
i=1

+Bi() exp(E i) |1 (5r>d§}

uy(r, z)

3

b (r,
wrz) = 30 220D

d
i=1 <

3 00
= - Z [Mi,ui/o (A; (&) exp(—&uiz)
i=1
—B;(§)exp(§uiz)) Jo(Sr)dS}
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3

0d;(r, 2)
_Z)inla—z

i—1

o(r,z)

3 o0

- Z[xzim /0 (A (©) exp(—£1;2)

i=1

—Bi(®) exp(Epi2)) Jo(&?)dE} (10)

The general solutions for relevant components of stress
and electric displacements can be expressed as,

3

0= [ /0 ) & Hi (4:(6) exp(—£p1:2)

i=1

+B;(6) eXp(Emz))Jo(Sr)dé}

3

ore =D [ /0 " e (A©) exp— )

i=1

—Bi(S)eXP(EuiZ))h(&r)d&} ()

D=2 [ /0 " e (410 exp(—£i0)

i=1
+B; (&) eXp(EMiZ))Jo(Sr)dS}
where

Hii = (c33hi — e33ra)(i)? —ci3
Hy; = (caahi +cas —ershodp; (0=1,2,3) (12)
Hsi = (d3hai + e33h1i)(1ei)* — e31

3 Formulation of crack problem

Consider now a piezoelectric bi-material system with
an electrically impermeable interface penny-shaped
crack as shown in Fig. 2. The radius of the crack is
denoted by a and the piezoelectric general solutions of
the top and bottom regions are given by Eqs. (10) and
(11). In the ensuing analysis a superscript j(j = 1, 2)
is used to identify the quantities associated with the
top and lower half spaces. It is assumed that axis-sym-
metric normal tractionp (r), radial traction p>(r) and
electric charge p3(r) act on the surfaces of the crack.
The boundary and continuity conditions of the system
shown in Fig. 2 can be expressed as,
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oD (r,0M) = a2(r,07) = p1(r),
D oFy — @ 0-) —

oD, 0 =02 07) = pa(r), 0<r<a

DV 0t) = DP(r,07) = p3(r). 0<r<a

0<r<a

(132)
w0, 01) = (,07), r>a

uV 01 =ul 07y, r>a (13b)
oV, 07) =@ (r,07), r=>ua

o0 =02 07), 0<r<oo

Ur(zl)(r» 0) = Ur(zz)(r, 07), 0<r<oo (13¢)

DV, 01 = DP(r,07), 0<r<oo

In addition, the electroelastic field in the top and bot-
tom half spaces should satisfy the regularity conditions
at infinity. For the top half space therefore Bi(l) &) =0

and Al@ (&) = 0 for the lower half space.

In view of the stress and electric displacement con-
tinuity conditions expressed by Eq. (13c) the following
relationship can be established by using Eq. (11).
B &) = AV ) (14)
where

Q- [M(2>]‘1 qh

(D) (1) £y (1)
Hll H12 H13
1) 7y (1) 7p(1)
H = | Hy' Hy, Hy;
1) 77 (1) 75(1)
H31 H32 H33
L@ 5@ O
Hll H12 H13
2) 2) 2)
M@ = _H21 _sz _st
2) 2) 2)
H3l H32 H33
A @) B ()
AVE =1aPE t BP@E =1BPE) ¢ (19
1 2
A6 BP (8)

A set of new unknown functions, g;(i = 1, 2, 3), are
now introduced to reduce the mixed boundary condi-
tions of Eqgs. (13a) and (13b) to a system of integral
equations.

2100 = - [, 0% a2, 0)
) = li {ruﬁl)(r, 0y — ruﬁz)(r, 07)} (16)
ror

0
— 1) +y _ 4@ -
830 = = {6000 =P .07
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Substitution of Eq. (10) into (16), yields
3 00
ar=> 0 /0 AV )11 (E)de
i=1
3 o0
220 =Y 0 /0 EA (&) Jo(ré)dE a7
i=1

3 o0
e =3 0 /0 AN )11 (rE)de
i=1

where

A<1) (])+ZK(2) @0,

Q= —1+ZQ,'1 —1+ZQ,'2

i=1 i=1

(H (M 2) (2) (1)
—Ayp My Z)‘ Qi1 =Aypy —

/0 EJo(rE)dE /0 [F311(58)g1(s)

+F3J0(s8)g2(s) + F33J1(58)g3(s)]sds = p3(r)
(20¢)

O<r<a

where F = H(UR.

In order to avoid divergent integrals, Eq. (20) is now
integrated with respect to r to yield the following equa-
tions.

1 1 2) (2 1 1 2) (2
A ()+Z/\( 120, ,\gguguzﬁ I

Z)"Q) (2)9

—1+Z§2i3

i=1

(1 (D () (2)
A3 M3 Z)‘ E

(18)

The arbitrary functions Afl)(é)(i =1, 2, 3) can be ex-
pressed in terms of g; (r)(i =1, 2, 3) by taking inverse
Hankel transform of (17). According to the continuity
conditions of (13b), g;(r) =0, (i =1,2,3) forr > a.
Therefore,

AV E) = R< / ’ sg1(s)J1(s€)ds,
0

T

/Ong(S)Jo(SE)ds,/O Sg3(S)Jl(S§)dS>
19)

where R = QL.

The boundary conditions of Eq. (13a) can be ex-
pressed in the following form by substituting Eq. (19)
into (11).

/O %‘Jo(r%')dé/o [F11J1(s8)g1(s)

+F12Jo(s8)g2(s) + Fi3J1(s8)g3(s)Isds = p1(r)
(20a)

/O éfl(rc?)dé/o [F21J1(s8)g1(s)

+F2Jo(s8)g2(s) + Fa3J1(s8)g3(s)]sds = pa(r)
(20b)

/0 Jl(ré)dé/o [Fllfl(sé?)gl(s)

+F12Jo(s8)g2(s) + Fi3 /1 (SE)&(S)}SdS

_! (/ spi(s)ds + cl) (21a)
r 0

_/0 Jo(ré)dé/o [leJl(SE)gl(S)
+F0Jo(s8)g2(s) + Fa3Jy (S§)g3(S)}sds

=/ p2(s)ds + C2 (21b)
0

/o J1(r§)d€/0 [F3111(S§)81(S)

+F32Jo(s8)g2(s) + F33J1(s§)g3 (S)}Sds

= l (/r sp3(s)ds + C3)
r \Jo

O<r<a (21¢)

where C; (i = 1, 2, 3) are arbitrary constants.
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After changing the order of integration, Eq. (21) can
be written as

/O (s I(Fuig1(5) + Frags ()] + hiaGr s)

1 r
x F12g2(s)}sds = - (/0 sp1(s)ds + Cl)
(22a)

- /0 (a1 (s $)(Fa11(5) + Fasga ()] + haa(r, )

X Frg2(s)}sds = / p2(s)ds 4+ C> (22b)
0

/O U1 (r, 5)(F311(5) + Fyags()] + hiar, s)

1 r
x F382(s)]sds = ;(/0 sp3(s)ds + C3)
O<r<a) (22¢)

where
B s) = /0 TER ) (Es)dE

2 [%[K(sm —E(@/M] s<r

| LK G /s) — Er/9)]

s >r

N 2 (ik@s/r) s <
hoo (r, s)—/0 Jo(ér)Jo(&)dé—;[%K(r/s) $ >
00 1

hi2(r, s) =/0 J1(§r)Jo(§s)dE = I(’) i i :
0 0
hoi(r, s) =/O Jo(§r)Ji1(Es)dE = [% j i: (23)

where E and K are the complete elliptic integrals of
the second and first kind respectively (Abramowitz and

Stegun 1965) and
/2
E (D) :/
0

/2 do
o (1 —bsin6)l/
(1—bsin?0)/?d9 0<b<1 (24)
Differentiating Eq. (22) with respect to r yields,
1 a
; 0 (S — r)

+ /O 11 (r. ) Fiig1(s)
+F1383(s)]lds + Fi282(r) = p1(r)

[F11g1(s) + Fi3g3(s)]ds
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1 a

TJo (s—7r)
—F181(r) — F2383(r) = pa(r)

1 a
[F3181(s) + F3383(s)]ds

T Jo (s—r)
+ /O 11 )L F3181(5)
+F3383(s)1ds + F3282(r) = p3a(r)

a
Fzzgz(S)dS-l-/ k22(r, 8) F2282(s)ds
0

O<r<a (25a—)
where
. 5) 1 [2sMq(r,s) 1
K11(r,s) = — — ,
" Tl s2—r2 (s—r)
. 5) 1 [2rMy(r, s) 1
Kkn(r,s) = — —
2 x| s2—r2 (s —7)
22
ZE(f)—i—s rK(f) s<r
Ml(y"s): S , rs r
E(E) s >r
iE (i) s<r
Mor,s)=1" "
27, = SZE(r) S2_r2K(r)
—E(-)— - s>r
L r2 7 \s r2 s
(26)

For the problem shown in Fig. 1, the following limits
must be satisfied on physical grounds.

[ugl)(r, ot) — u§2) (r, O’)] — 0,

[V 01 =@ 07)] >0 r—a
[uﬁl)(r, 0t — uﬁz) (r, O_)] -0 r—a
uV @, 0t) = 0 27)
uP 07 = 0 r— 0

a
— [0 0. 0%) =P ¢ 00)] > 0,
’
ad
o [V, 01 — 9@ 07)] -0 r—0
,
In view of the Eq. (27), the system of Eq. (25) has to
be solved under the following conditions.

a a
/ g1(r)ydr =0, / g3(r)dr =0,
0 0

/“ rga(r)dr =0 (28)
0

Now normalize the integration interval of the Eq. (25)
by defining,

141 14+ x
=—-a

, T
2 2

K a 29)
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In view of the Eq. (29) the Eq. (25) can be expressed

as,
1o
—/ [F11G1(t) + F13G3(t)]dt
T ) (t—x)

1

+/1 K (e, OLF11G1(1) + FisG3(n)]de
+F12Ga2(x) = Pi(x)

1o

— F» Gy (t)dt

n/_l(t_x) 202G (1)
1

+ / Kaa(x, 1) FraGa(1)dt — Fy G (x)
~1

—F3G3(x) = Pa(x)

||
! / [F3.G1(1) + FiaGa(D)1dr
T (t—x)

1
+/1 K11 e, DIF31G1(0) + Fi3G3(0)dr

+F3Ga(x) = P3(x)

(x| < 1) (30a—c)

where

1 1
Gl<t>=g1( :’a), Gz(t)=gz( ;ta),

1
Ga(f)—ga( —ZHa)

1 1
P1(X)=P1( ;xa), Pz(X)=P2( ;xa),

1
P3(x)=1?3( —;xa)

1+ 1+1¢
Ky (x,1) = gI<11 (—xa, —a) ,

2 2 2
a 1+x 141t
Ko (x,1) = Sk |\ a5 (31

According to the Egs. (30a) and (30c),

1
l‘/ |: ! +7TK11(x,t)i| Go(t)dt
)L —x)

= F3P1(x) — Fi2P3(x) (32)

where Go(t) = [(F11F32— F31 F12)G1 (1) + (Fi3F32 —
F33F12)G3(1)].

It is known from the Eqs. (28) and (31) that the un-
known function Go(¢)must satisfy the following con-
dition.

1
/ Go()dt =0 (33)

1

Using the numerical method developed by Erdogan

(1975), Go(t) can be expressed as
()

V=12

Expanding W (¢) in terms of Chebyshev polynomials of

the first kind, 7,,, yields,

Go(r) = (34)

V() =D BaTu(1) (35)

n=0
where B,, denote a set of constants.
From Eqgs. (33)—(35), it can be inferred that
Byp=0 36)

Consider the following identity for Chebyshev polyno-
mials,

LY L de
7)1 VI ﬂ::Un—l(x) (It < Llx| <D

(37

where U,, denote Chebyshev polynomials of the sec-
ond kind.

The integral Eq. (32) can be reduced to the following
equation system by using Eq. (37).

o o0
> BuUp1(x) + D ByVu(x)
n=1 n=1

= FnPi(x) — Fi2 P3(x) (38)
where

PEnG 0T
-1 N1
and B, can be obtained by solving Eq. (38) and the

continuity condition (28).
Combining Egs. 30(a)—(c), yields,

Va(x) = (39)

1 1
12 G(1)
—)/11G2(x)+y—/ —dt+J/12/ Kii(x, 1)
T J g t—X —1
F>3
xG@)dt = | F33 — —F31 ) Pi(x)
F
F
- (F13 - 21’11) P3(x)
Fy

1 1
21 G (1)

V22G(X)+V—/ dt+)/21/ Ko (x,1)
T 1 t—Xx -1

1
xGo(t)dt = Pa(x) (40a,b)

x| <1
where
vi2 = F11F33 — F31 Fi3,

v = —F, vy =Fp,
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Fx3
Yl = F_z1(F12F31 — F3F11) — (Fi2F33 — F3 Fi3)
(41)

;3
G(t) =G1(t) + F—Ga(t)
21

Eq. (40) can be further simplified to obtain the follow-
ing system of singular integral equation.

. 1 . 1
—Wﬂj(x)-i-g—J./ (p"—(t)dt—l—/ [f1j(x, 1)
w1t —X -1
X Re(p;(t)) + f2;(x, H)Im(p;(1))]ds 42)
F
= ﬂ[(Fx - ﬁFSl)Pl (x)
3y

Y12

F3 .S 02
- (F13 — —Fu) P3 (x)] — 22X =P ()
33 V21
lx] <1
where
_

@j(x) = J12G2(x) +igj/u1G(x), v =—

Y21
Vi1
V) = —, Y = 4/V1V2
Y12

f1j(x,t)=—Aii[b2K11(x,t)«/ﬁ+i§ja1 (43)
szz(xyt)\/v_z] si=1 o=-1
fajx, 1) = Aij[azKu(x,l)\/v_l— ibig;
x K (x,1)/v2], Aj = gj(araz + b1by)

a; = Re(y/v1), a2 = Re({/v2)
by = Im(y/v1), by = Im(/v2), j = 1,2
Eq. (42) can be solved by expressing ¢ (x) in terms of
Jacobi polynomials, P,,(a'i ) (x), in the following form
(Erdogan and Arin 1972, Erdogan 1969, Erdogan et al.
1973).
= (aj.Bj)
a;. B
0i(x) =D Tjnw; @) P (x) (44)
n=0
where 7, are unknown complex constants and w ; (x)
is a weight function defined as,

wj(x) = (1 =% (1 +x)f (452)
and

| .
Olj:—z—lé‘j, ,sz—z—{—zsj,

1 I+y 1 11—y
e1=—log{ —— ), e&=—log| ——

27 1—y 2 14y

(45b)
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Substitution of Eq. (44) into (42) yields (Erdogan and
Arin 1972),

()
P (0

n—

V(1 —y?)
n=0

1 00
* / 1[ij (¥, )Re Z TjinW; (l‘)Prfaj'ﬂj)(t)

n=0

o0
+ i (e DI D i () P (0)1dr
n=0

/ F
= l[(&s - ﬁ1”31)1’1 (x)
3y

Y12

Fy3
—\Fi3——=—Fn ) Ps(x)
>

—iSjEPz () (x[ <D (40)
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Now using the orthogonality relations

1
/ PO T 0 Py TP (s (x)
—1

0 k#m
Vi k=m

xdx = [
with @ (x) = (1 — x) "% (1 +x)7Fi

2174 BiT(k+ 1 —apTk+1 - B))
Qk—o;—B;j+ DI k+1—a; — Bk

Wk =

(47)

and multiplying both sides of Eq. (46) by Pk( —h) (x)
(k =0,1,2,...) and then integrating with respect to
x, the Eq. (46) can be reduced to the following infinite
system of linear algebraic equations.

1—y2 -
_T§jlﬁjkfjk+l + Z(AjknRe(Tjn)
n=0

+AjpnIm(zy) = njik (48)
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where

1 (—a

/ {/1j(x, DRe[w; (1) P,

D (xyej (x)dx

0)

+ o (e OIm[w; () PP ()] )dr

b a))
A jkn =/ P, (0w (x)dx
—1

! @;.6)
/1{—f1j(x,t)lm[wj(t)Pn (3]

+ (e DRe[w; (1) P (1) yde

1
V1 F3
njk =/ [—[ (F33 — —F31) Pi(x)
1Ly >
Fy3
— (F13 - —Fll) P3(X):|
135

—ig) £P2(x)] PP oy () dx
V2
(49)
Therefore 7 can be obtained from Eq. (48) and (28).

4 Field intensity factors

Noting that Egs. (32) and (42) are valid for x > 1 as
well as for 0 < x < 1, and ¢(x) = 0 for x > 1, the
interfacial stresses and normal electric displacement
can be expressed as

FoV(x,0) — FlaDV (x, 0)

1
= l/ |: ! +7tK]](t,x):| Go(t)dr (x > 1)
7T )L —x)

—1 g] Grz )

. 1 X 1
_ 8 / 20 g, 4 / LA1; (x. DRe(g; (1)
w1t —Xx ~1
+ o (x, Im(g; (1))]dr (50a.b)

In the neighborhood of x = 1, the second integral in
Eqgs. (50a) and (50b) are bounded, and the first term can

be evaluated by using Eqgs. (34), (35) and (44), and the
following identity.

g—f./l PEED (1) j<t)—dt ity

i
_ (@j.B)) 00
X[—w;(x) Py, () + X5, ()] (51)
where X°° (x) is the principal part of w ]P<a P g

infinity.

It can be seen from Egs. (50b) together with Eqs.
(42), (44) and (45) that the order of singularity of the
crack tip field is generally complex-valued resulting
in an oscillatory field. For certain bi-material systems,
however, «; and B;are real and this leads to a real-
valued singularity with a non-oscillatory field. In the
case of a homogeneous material system, «; and 8; are
equal to —1/2 and the crack tip field is non-oscilla-
tory. Xu and Rajapakse (2000) give a comprehensive
treatment of singularities in multi-material piezoelec-
tric wedges and junctions.

Define the stress intensity factors k; and k, and the
electric displacement intensity factor k; by

Fyky — Fiokg = lim /2(r — a)[F320 " (1, 0)

r—a

—FiaDV(r, 0)] (52a)
and

AT Fy3 F3
— [(F33 - fF31) ki — <F13 - 7F11) kd:|
Y12 Py Fa
—a\
—igj Y2k = lim V20 —a) (r a)
)/21 r—a 2(1
V1 F3 1
{— [(F33 - —Fu) o (r,0)
Y12 F

F
—(Fla—ﬁFn)D?)(r,m] i forz)(rm}

F V21
= lim 272 Jq

S (P = $2 ) oV, 0) — (Fis = $2 1))

DV, 0)] —ic; 20 (x,0)
(= e
(52b)
Eqgs. (34), (35), (44), (50), (51) and (52) yields
oo
a
F3ky — Fiokg = —Jgrg By, (53a)

U1 3 >3
-— |:(F33 - —F31) ki — (F13 - —Fu) kd:|
V12 F 3y

—i g,-@kz (53b)

Y21
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o0
= i2% a1 — 2> P (1)
n=0

The field intensity factors (ki, k3, kg) of an inter-
facial crack can be obtained by solving the complex-
valued Eqgs. (53a) and (53b). It can be seen from Egs.
(53a) and (53b) that mixed mode fracture together with
electric singularity can exist under Mode 1 loading or
vice versa.

5 Numerical results and discussion

Selected numerical results are presented in this sec-
tion for a few bi-material systems with a penny-shaped
interface crack to examine the salient features of frac-
ture parameters. The properties of the materials used in
the numerical study are listed in Table 1 and the loading
on the crack faces are:

022(r,0) = p1(r) = —po, 0,:(r,0) = p2(r) =0,
D (r,0) = p3(r) = —Do (54)

Accuracy of the present scheme is first confirmed
by comparing with the solution for an interfacial penny
shaped crack in an ideal elastic bi-material system
(Erdogan and Arin 1972). Same elastic properties as in
Erdogan and Arin (1972) are used in the calculations
and the piezoelectric and dielectric constants are set to
negligibly small values. The solution for the normal-
ized mode 1 stress intensity factor, k1/pg~/a, obtained
from the present analysis is 0.6715 and the solution
reported by Erdogan and Arin (1972) is 0.6716.

The solutions for piezoelectric bi-material systems
are now considered. Three material combinations,
namely, PZT-5H/PZT-4, PZT-5/PZT-4 and PZT-7/PZT-
4 are considered with PZT-4 occupying the lower half
space in all three cases. The crack-tip stress and elec-
tric displacement intensity factors are shown in Figs.
3(a) and 3(b) respectively for varying electric charge
loading ratio, Do/ po. Note that solid lines in Fig. 3
correspond to the situation where the poling direction
of both upper and lower half spaces are along the posi-
tive z-axis whereas the dashed lines for the case where
the poling direction of the upper half space is along
the positive z-axis and the lower half space is along the
negative z-axis such as the case of adjacent layers in a
stack actuator.

@ Springer

It is found that both stress intensity factor and elec-
tric displacement intensity factor vary linearly with the
intensity of the applied electric charge loading. Both
field intensity factors depend significantly on the mate-
rial type and the poling orientation of the bi-mate-
rial system. A positive electric charge loading has a
shielding effect on a crack in all three bi-material sys-
tems when the poling directions are opposite to each
other whereas a negative electric charge loading en-
hances crack growth in such cases. This behaviour is
reversed for two bi-material systems (PZT-5H/PZT-4
and PZT-5/PZT-4) when the poling directions of the
upper and lower half spaces are aligned in the same
direction. A crack in PZT-5H/PZT-4 and PZT-5/PZT-4
systems with opposite polarization directions and sub-
jected to positive charge loading is more stable when
compared to a crack in an identical bi-material sys-
tem with the same poling directions. A crack in PZT-
7/PZT-4 system is most unstable under negative charge
loading when compared to the other two bi-material
systems. Electric displacement intensity factor is neg-
ative for negative charge loading and shows negligible
dependence on the material types of the bi-material
system but more dependence on poling orientation of
the materials. The potential for dielectric breakdown at
a crack tip is higher under both positive and negative
electric charge loading when the two materials of the
bi-material system have opposite polarization.

Figure 3(c) and (d) show the mode 1 stress and elec-
tric displacement factors of three bi-material systems
made out of the same material except the poling direc-
tions of the upper and lower half spaces are either iden-
tical or opposite. The case where the poling direction
is identical is therefore same as the case of a penny-
shaped crack in a homogeneous full space. It can be
seen from Fig. 3(c) that stress intensity factor is prac-
tically independent of the magnitude of electric charge
loading and the materials of the system including their
poling orientation. The solution is approximately 6%
lower than the solution for an ideal elastic material
(Erdogan and Arin 1972). It is also noted that stress
intensity factor in Fig. 3(c) is smaller than that in Fig.
3(a). The solutions for electric displacement shown in
Fig. 3(d) behave similar to Fig. 3(b) but have slightly
lower absolute values. It is found that for the three bi-
material systems considered in the present study, kj
is nearly zero and negligible kq exists under Mode I
loading.
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Table 1 Material properties

Ci1 (GPa) Ci2 (GPa) Ci3 (GPa) Cs3 (GPa) Cas (GPa)
PZT-5H 126 79.5 84.1 117 23
PZT-5 121 75.4 75.2 111 21.1
PZT-7 130 83 83 119 25
PZT-4 139 77.8 74.3 115 25.6
e31 (C/m?) e33 (C/m?) e1s (C/m?) dy1(x10~1F/m) d33(x 107 10F/m)
PZT-5H -6.55 23.3 17 153.8 127.6
PZT-5 -54 15.8 12.3 81.7 73.46
PZT-7 -10.3 14.7 13.5 171 186
PZT-4 -5.2 15.1 12.7 64.605 56.1975
(a) 1.4 % (b) 0.9
121 _ 06 PZT-5H/PZT-4
101 Z 03 s PZT-5/PZT-4
. O PZT-7/PZT-4
v\—m 0.8 4 ‘O_ 0.0
o X
= 061 g 03
0.4 - Y
PZT-5H/PZT-4 E-o -0.6
024 4 PZT-5/PZT-4
»  PZT-7/PZT-4 0.9
00 T T T 1 T T T T 1
-1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
D/P,(x10°CN™) Dy/p,(x10°CN")
0.8
()
0.7
.\-m - . - - -
é:: 0.6
>
054 = PZT-5H
A PZT-5
" PZT-7
0.4 T T T 1 '08 T T T T 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

D,/p,(x10°CN™)

Dy/p,(x10°CN™)

Fig. 3 Variation of normalized stress and electric displacement intensity factors with applied electric charge intensity, Do/ po

6 Conclusions

An integral equation formulation is successfully devel-
oped to analyze the case of a penny-shaped crack at
the interface of a piezoelectric bi-material system. A
numerical scheme based on Jacobi polynomials is used
to reduce the integral equation system to a system of

linear simultaneous algebraic Eqs. Numerical solution
of the algebraic system is stable and accurate for a
wide range of bi-material systems. Stress and electric
displacement factors vary linearly with electric charge
loading. Positive electric loading retards crack growth
in bi-material systems with opposite poling directions.
In the case of bi-material systems with identical pol-
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ing direction, positive loading may or may not retard
crack growth depending on the type of material in the
system. Mode 1 stress intensity factor of a bi-material
system with identical materials and same or opposite
poling directions is independent of the material type,
poling orientation and magnitude of electric charge
loading. Electric displacement intensity factor show
negligible dependence on the material composition of a
bi-material system and a crack in a system with oppo-
site poling directions has a higher chance for dielec-
tric breakdown under both positive and negative charge
loading.
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