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Abstract Surface-bonded piezoelectric layers can
be used as actuators/sensors for advanced struc-
tural applications. The current paper provides a
theoretical study of the dynamic behaviour of inter-
acting cracks between a piezoelectric layer and an
elastic medium under antiplane mechanical loads.
The electromechanical field of a single interfacial
crack is determined first using Fourier transform
technique and solving the resulting integral equa-
tions. This fundamental solution is then imple-
mented into a pseudo-incident wave method to
account for the interaction between different
cracks. The dynamic behaviour of the resulting
stress field is studied with special attention being
paid to the stress intensity factors at the crack tips.
Typical examples are provided to show the effect
of the size and position of the cracks, the material
combination and the loading frequency upon the
stress intensity factors.
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1 Introduction

Due to their advantages of quick response, low
power consumption, high linearity and strong elec-
tromechanical coupling, piezoelectric materials
have been extensively used as actuators and sen-
sors to form smart systems in the design of ad-
vanced structures (Gandhi and Thompson 1992;
Chee et al. 1998; Bar-Cohen 2000; Boller 2000).
In these applications, piezoelectric actuators/sen-
sors are usually surface-mounted and the actua-
tion/sensing process is controlled by the load
transfer through the interfaces. Any interfacial deb-
onding between these actuators/sensors and the
host structure may significantly degrade their effi-
ciency. The determination of the electromechani-
cal behaviour of interfacial debonding in
integrated smart structures is, therefore, an impor-
tant issue in the design of this type of structures.

The quasi-static electromechanical behaviour of
cracks in piezoelectric materials has been exten-
sively studied. There are two typical crack models
using different electric boundary conditions along
the crack surfaces, which have been extensively
used to study the fracture behaviour of piezoelec-
tric materials. One is the electrically permeable
crack model (Parton 1976; Beom 2003), and the
other is the electrically impermeable model (Deeg
1980; Pak 1990, 1992; Suo et al. 1992; Park and
Sun 1994). For the permeable crack model, both
electric displacement and electric potential are
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continuous across the crack surfaces. For the imper-
meable crack model, a charge-free condition along
the crack faces is assumed. Based on these models,
the behaviour of interacting cracks in piezoelec-
tric media (Pak and Goloubeva 1995; Chen and
Han 1999a, b; Han and Wang 1999) and interfa-
cial cracks between a piezoelectric actuator and an
elastic substrate have been analysed (Liu and Hsia
2003).

New piezoelectric materials have shown great
potential as actuators/sensors in high-frequency
applications. Correspondingly, the dynamic behav-
iour of cracks in piezoelectric materials have
received significant attention from the research
community. Shindo and Ozawa (1990) investigated
the steady state dynamic response of cracked pie-
zoelectric materials subjected to incident plane har-
monic waves. Chen and Karihaloo (1999) studied
the transient response of a finite crack in an infinite
piezoelectric medium under the antiplane mechan-
ical loads and inplane electric displacements using
the integral transform method. Norita and Shindo
(1999) investigated the scattering of antiplane shear
waves by a finite crack in piezoelectric laminates.
Li and Mataga (1996a, b) studied the problem of
a semi-infinite, antiplane crack propagating in an
infinite piezoelectric medium to evaluate the ef-
fect of the speed of the crack propagation on the
crack tip fields. Li et al. (2000) considered a mov-
ing mode-III impermeable crack at the interface
between two dissimilar piezoelectric half-spaces.
Wang et al. (2000) analysed the transient response
of a crack perpendicular to the edges of a piezo-
electric strip subjected to dynamic antiplane
mechanical and electrical loads. Meguid and Wang
(1998) and Wang and Meguid (2000) studied the
dynamic interaction of arbitrarily oriented cracks
in piezoelectric media under different electric
boundary conditions subject to incident antiplane
shear waves. Wang (2001) investigated the dynamic
behaviour of interacting interfacial cracks between
two semi-infinite piezoelectric media subject to an-
tiplane mechanical loads. Zhao and Meguid (2002)
studied the dynamic behaviour of a piezoelectric
laminate containing multiple interfacial collinear
cracks subjected to steady state electromechanical
loads based on both permeable and impermeable
crack models.

A piezoelectric element used in smart structural
applications may undergo different deformations
depending on the design of the system. Two typical
possible deformation modes are thickness expan-
sion and thickness shear when the polarization
direction of the piezoelectric element is parallel
to and perpendicular to the thickness direction,
respectively, corresponding to inplane and anti-
plane deformation.

Of particular interest in the current work is the
antiplane dynamic debonding of piezoelectric thin
sheets from elastic host media. The objective is
to provide a theoretical study of interacting inter-
facial cracks between a thin piezoelectric layer
and an elastic substrate subjected to incident Love
waves, which propagate along the layer. The the-
oretical formulations governing the problem are
based upon the use of the integral transform tech-
nique and a pseudo-incident wave method. The
resulting dynamic stress intensity factors at the
interacting cracks are obtained by solving the resul-
ting singular integral equations using Chebyshev
polynomial expansions at different loading freque-
ncies. Numerical simulation is conducted to study
the effects of the sizes and locations of the cracks,
the material properties and the loading frequency
upon the fracture behaviour of interacting cracks.

2 Formulation of the problem

Consider the problem of a piezoelectric layer
bonded to a homogeneous isotropic elastic medium
with multiple interfacial cracks. The piezoelectric
layer is assumed to be very thin in comparison with
the thickness of the host medium and, therefore,
the host medium is assumed to be semi-infinite.
The system is subjected to a harmonic antiplane
incident wave of frequency ω, as shown in Fig. 1.
A global Cartesian coordinate (x, y, z) and M local
systems (xn, yn, zn), n = 1, 2, . . . , M are employed
to characterize different cracks. The position of the
centre of crack n is given by x = Xn, y = 0 in the
global coordinate system. The piezoelectric layer,
with the z-axis being the polarization direction,
occupies a region −h < y < 0, −∞ < x < ∞ with
h being the thickness of the piezoelectric layer. The
steady state mechanical fields corresponding to the
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Fig. 1 Interacting cracks between a piezoelectric layer and
an elastic medium

incident wave will generally involve an exponential
harmonic factor e−iωt. For the sake of convenience,
the exponential harmonic factor will be suppressed
and only the amplitude of different field variables
will be considered.

The dynamic electromechanical behaviour of
a homogeneous piezoelectric material under har-
monic antiplane mechanical loading is fully de-
scribed, as shown in Appendix, by the following
governing equations,

c44∇2w + e15∇2φ + ρω2w = 0, (1)

e15∇2w − κ11∇2φ = 0, (2)

where the Laplacian operation ∇2 stands for
∂2/∂x2 + ∂2/∂y2, w is antiplane displacement and
φ is the electric potential. ρ is the mass density
of the piezoelectric material, c44, e15 and κ11 are
the elastic modulus, the piezoelectric constant and
the dielectric constant of the piezoelectric layer,
respectively. Introducing a new function given by

f = e15

κ11
w − φ, (3)

Eqs. 1 and 2 can be reduced to

∇2w + k2w = 0, ∇2f = 0, (4)

where k is the wave number defined by

k2 = ρω2

c∗ , c∗ = c44 + e2
15

κ11
. (5)

The corresponding non-vanishing stress and elec-
tric displacement components are given as

τyz = c∗ ∂w
∂y

+ e15
∂f
∂y

, τxz = c∗ ∂w
∂x

+ e15
∂f
∂x

, (6)

Dx = −κ11
∂f
∂x

, Dy = −κ11
∂f
∂y

, (7)

where τxz and τyz are the shear stress components,
Dx and Dy are the electric displacements.

The constitutive relation for the elastic host
medium can be written as

τ 1
xz = c1

44
∂w1

∂x
, τ 1

yz = c1
44
∂w1

∂y
, (8)

where τ 1
xz and τ 1

yz are the shear stress components,
w1 and c1

44 are the displacement and the shear
modulus of the host medium, respectively, with
the superscript ‘1’ indicating the host medium. The
governing equation is given by

∇2w1 + (k1)2w1 = 0 (9)

in which k1 = ω

c1
with c1 =

√
c1

44/ρ
1 and ρ1 is the

mass density of the host medium.

3 Solution of single interfacial crack problem

Consider now the steady state antiplane shear
problem of a single crack of length 2a between a
piezoelectric layer and a host medium subjected
to harmonic mechanical loads. In the framework
of linear theory, the problem can be decomposed
into two subproblems, (1) a crack-free system sub-
jected to the incident wave, and (2) the cracked
system subjected to boundary loads along the
crack surfaces. The wave propagation in the crack-
free structure has been investigated by Wang et
al. (2001). The resulting stress τ I at the site of
the crack will be used as the boundary load along
the crack surfaces in subproblem (2) to ensure
the traction free condition of the original problem
at the crack. Therefore, subproblem (2) should
satisfy the following mechanical boundary condi-
tions:

τyz(x, −h) = 0,

τ 1
yz(x, 0) = τyz(x, 0), −∞ < x < ∞, (10)

τyz(x, 0) = −τ I
yz(x, 0), −a < x < a, (11)

w(x, 0) = w1(x, 0), |x| > a. (12)

The electric boundary condition of cracks in pie-
zoelectric media has been the topic of many inves-
tigations (Dunn 1994; Zhang et al. 1998). For the
current antiplane problem, since no opening dis-
placement exists, the crack surfaces is assumed to
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be in perfect contact. Accordingly, the permeable
crack model is used, i.e. both the electric potential
and the normal electric displacement are assumed
to be continuous across the crack surfaces. It is
further assumed that the host elastic material is a
grounded conductor. The electric boundary condi-
tion of the crack problem can then be expressed
as

φ(x, 0) = 0, −∞ < x < ∞. (13)

By solving Eqs. 4 and 9 using Fourier transform
with respect to x, the resulting wave field in the
piezoelectric material and the host medium can be
obtained as

w(x, y) =
∫ ∞

−∞
[A1(s)e

−αy+ B1(s)e
αy]e−isxds,

(14)

f (x, y) =
∫ ∞

−∞
[A2(s)e−|s|y + B2(s)e|s|y]

×e−isxds, (15)

w1(x, y) =
∫ ∞

−∞
A3(s)e−α1ye−isxds, (16)

where A1(s), A2(s), A3(s), B1(s) and B2(s) are un-
known functions of s and α and α1 are given by

α =

⎧
⎪⎨
⎪⎩

√
s2 − k2, |s| > k

−i
√

k2 − s2, |s| < k

,

α1 =

⎧
⎪⎪⎨
⎪⎪⎩

√
s2 − (k1)2, |s| > k1,

−i
√
(k1)2 − s2, |s| < k1,

(17)

By using the boundary conditions (10) and (13),
and defining the following dislocation density func-
tion

ψ(x) = ∂[w(x, 0+)− w1(x, 0−)]
∂x

, |x| ≤ a, (18)

A1(s), A2(s), A3(s), B1(s) and B2(s) can be ex-
pressed in terms of one unknown function ψ(s) as

A1(s) = 	1ψ(s), A2(s) = 	2	1ψ(s), (19)

A3(s) =
[
	1(1 + e2αh)− i

s

]
ψ(s), (20)

B1(s) = e2αh	1ψ(s),

B2(s) = e2|s|h	2	1ψ(s), (21)

where 	1 and 	2 are given by

	1(s) = ic1
44α

1

sN
, 	2(s) = − e15(1 + e2αh)

κ11(1 + e2|s|h)
,(22)

N = (c∗α + c1
44α

1)e2αh − c∗α + c1
44α

1

−e2
15|s|
κ11

(1 + e2αh)(e2|s|h − 1)
1 + e2|s|h . (23)

The stress distribution along the interface can
then be obtained as

τyz(x, 0) = c1
44

2π

∫ a

−a
ψ(u)

∫ ∞

−∞
iα1

×
[

i	1(1 + e2αh)+ 1
s

]
eis(u−x)ds du. (24)

The kernel of the infinite integration in Eq. 24 tends
to a constant when |s| → ∞, which corresponds to
the singular term of the stress. After performing
the appropriate asymptotic analysis, the following
result can be obtained:

β0 = − lim
s→∞α

1
[

i	1(1 + e2α0h)+ 1
s

]

= c44

c44 + c1
44

. (25)

By using the boundary condition given by Eqs. 11
and 12 and the asymptotic behaviour given by Eq.
25, a system of governing equations for determin-
ing ψ are obtained,

−
∫ a

−a
ψ(u)

∫ ∞

0

{
α1

β0

[
i	1(1 + e2αh)+ 1

s

]
+ 1

}

× sin s(u − x)ds du

+
∫ a

−a

ψ(u)
u − x

du = − π

c1
44β0

τ I
yz(x), |x| < a (26)

and∫ a

−a
ψ(u)du = 0. (27)

Equation (26) is a singular integral equation of
the first kind. Its solution includes the well-known
square-root singularity and can be expressed as

ψ(u) =
∞∑

j=0

cjTj(x/a)/
√

1 − x2/a2, (28)

where Tj are the Chebyshev polynomials of the
first kind and cj are unknown constants. From the
orthogonality condition of the Chebyshev polyno-
mials, Eq. 27 leads to c0 = 0. Substituting Eq. 28
into Eq. 26, the following algebraic equation for cj
is obtained:

∞∑

j=1

cjUj(x/a)−
∞∑

j=1

cjgj(x) = − 1

c1
44β0

τ I
yz(x),

|x| < a, (29)
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where Uj represent the Chebyshev polynomials of
the second kind and

gj(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)na
∫ ∞

0

{
α1

β0

[
i	1(1 + e2αh)+ 1

s

]

+1

}
Jj(sa) cos(sx)ds, j = 2n + 1,

(−1)n+1a
∫ ∞

0

{
α1

β0

[
i	1(1 + e2αh)+ 1

s

]

+1

}
Jj(sa) sin(sx)ds, j = 2n

(30)

in which Jj are the Bessel functions of the first kind.
Truncating the Chebyshev polynomials in Eq. 28 to
the Nth term and assuming that Eq. 29 is satisfied
at N collocation points along the crack surface,

xl = a cos

[
l

N + 1
π

]
, l = 1, 2, . . . , N. (31)

Equation (29) can be reduced to a system of linear
algebraic equations of the following form

∞∑

j=1

cj

sin
(

jlπ
N+1

)

sin
(

jπ
N+1

) −
∞∑

j=1

cjgj(xl) = − 1

c1
44β0

τ I
yz(xl),

j, l = 1, 2, . . . , N. (32)

cj can then be determined by solving the following
equation,

[A]{c} = − 1

c1
44β0

{τ }, (33)

where

{c} = {c1, . . . , cj, . . . , cN}T , (34)

{τ } = {τ I
yz(x1), τ

I
yz(x2), . . . , τ I

yz(xj), . . . , τ I
yz(xN)}T

(35)

and

[A] =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1N
A21 A22 · · · A2N

...
...

...
...

AN1 AN2 · · · ANN

⎤
⎥⎥⎥⎦ (36)

with

Alj =
sin

(
jlπ

N+1

)

sin
(

jπ
N+1

) − gj(xl), j, l = 1, 2, . . . , N. (37)

Based on the solution given by Eq. 33, the stress
distribution along the interface resulting from the

crack can be obtained by substituting Eq. 28 into
Eq. 24, such that

τyz(x, 0) = [h(a, x)]{c} (38)

in which [h(a, x)] = [h1(a, x), h2(a, x), . . . , hN(a, x)]
and hj(a, x) are given by

hj(a, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)naβ0

∫ ∞

0
Jj(sa) cos(sx)ds, j = 2n + 1,

(−1)n+1aβ0

∫ ∞

0
Jj(sa) sin(sx)ds, j = 2n,

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)na
∫ ∞

0

{
α1

[
i	1(1 + e2αh)+ 1

s

]
+ β0

}

Jj(sa) cos(sx)ds, j = 2n + 1,

(−1)n+1a
∫ ∞

0

{
α1

[
i	1(1 + e2αh)+ 1

s

]
+ β0

}

Jj(sa) sin(sx)ds, j = 2n

(39)

with∫ ∞

0
Jj(sa) cos(sx)ds

= (−1)n+1aj
√

x2 − a2[√x2 − a2 + |x|]j
,

j = 2n + 1,
∫ ∞

0
Jj(sa) sin(sx)ds (40)

= sgn(x)
(−1)n+1aj

√
x2 − a2[√x2 − a2 + |x|]j

,

j = 2n. (41)

4 Interaction between cracks

For the general cases where multiple interface
cracks are involved, as shown in Fig. 1, the interac-
tion between these cracks may significantly affect
the local stress field around the crack tips. This
interaction effect will be considered in this sec-
tion using a pseudo-incident wave method based
on the single interfacial crack solution. The tech-
nique developed by Wang and Meguid (1997) will
be briefly described in the next section.

4.1 Pseudo-incident wave

For crack n, in addition to the initial stress τ I
yz

induced by subproblem (1), the crack will also
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experience a stress τp
n caused by a scattered wave

from other cracks, which can be regarded as an un-
known incident wave, pseudo-incident wave. The
behaviour of crack n can be equivalently described
by a single interfacial crack subjected to an incident
wave given by

τ I
n = τ I

yz + τ
p
n . (42)

In response to this incident wave, crack n will result
in a scattered wave τ sc

n . The total stress field can
then be expressed as

τ total = τ I
yz + τ

p
n + τ sc

n . (43)

The total stress field can also be expressed by sum-
ming up the stress from the initial field and the
contributions from all the cracks, such that

τ total = τ I
yz +

M∑

m=1

τ sc
m . (44)

The equivalence between Eqs. 43 and 44 indicates
that

τ
p
n =

M∑

m �=n

τ sc
m , n = 1, 2, . . . , M. (45)

4.2 Solution of interacting cracks

Based on the single interfacial crack solution dis-
cussed in Sect. 3, the interfacial stress at point x
due to crack m can be expressed, by using Eq. 38,
as

τ sc
m (x) = [h(am, x − Xm)]{c}m, (46)

where {c}m represents the coefficients of the
Chebyshev polynomial expansion of crack m.

For any crack n, the interfacial stress acting on
its surfaces induced by the pseudo-incident wave
can be obtained by substituting Eq. 46 into 45 as

τ
p
n (xn) =

M∑

m �=n

[h(am, xn − Xm + Xn)]{c}m. (47)

We are interested in the shear stress at the follow-
ing collocation points

xl
n = an cos

[
l

N + 1
π

]
, l = 1, 2, . . . , N. (48)

By using Eqs. 47 and 48, the stress at these points
due to the total incident wave of crack n can be
obtained as

{t}n = {t}I
n + [Q]n{C}, (49)

where

{t}I
n =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

τ I
yz(x

1
n)

τ I
yz(x

2
n)

...
τ I

yz(x
N
n )

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, {C} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{c}1

{c}2

...
{c}M

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(50)

with {t}I
n being the initial stress due to subproblem

(1) and {C} being the coefficients of the Chebyshev
polynomial expansion of interacting cracks. [Q]n

represents the interaction between cracks and is
given by

[Q]n =

⎡
⎢⎢⎢⎣

0
f (a1, x2

n − X1 + Xn)

...
f (a1, xN

n − X1 + Xn)

(51)

f (a2, x1
n − X2 + Xn) · · · f (aM , x1

n − XM + Xn)

0 · · · f (aM , x2
n − XM + Xn)

... · · ·
...

f (a2, xN
n − X2 + Xn) · · · 0

⎤
⎥⎥⎥⎦ .

Therefore, by using Eqs. 33 and 49, the Cheby-
shev polynomial expansion coefficients of crack n,
{c}n = {cn

1, cn
2, . . . , cn

N}T , can be determined by

[A]n{c}n = − 1

c1
44β0

({t}I
n + [Q]n{C}). (52)

[A]n is a known matrix given by (37) with the half-
length of the crack a being replaced by an. Substi-
tuting (51) into (52), the governing equation for
solving {C} is obtained, from which {C} can be
determined.

The singular behaviour of interfacial crack n
is characterized by the following stress intensity
factors:

Kn
r = lim

xn→an
[√2π(an − xn)τyz(xn)], (53)

Kn
l = lim

xn→−an
[√−2π(an + xn)τyz(xn)] (54)

with r and l representing right and left tips of the
crack. By using Eq. 38, the stress intensity factor at
the right tip of crack n can be expressed in terms
of cn

j as being

Kn
III = Kn

r = √
πan

N∑

j=1

cn
j . (55)
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5 Results and discussions

This section will be devoted to the determination of
the effect of different parameters upon the
dynamic stress intensity factor (SIF). It should be
mentioned that the SIF induced by a time-
harmonic load is in general a complex quantity.
The stress intensity factor should be multiplied by
e−iωt and then the real part should be taken to
obtain the physically meaningful stress intensity
factor. For convenience, only the amplitude of the
obtained complex stress intensity factor, which is
the same as the amplitude of the physical value, is
considered in the following examples.

The incident wave considered is the so-called
Love wave propagating in the x-direction. The
antiplane displacement of this wave can be gen-
erally expressed as

wI = w(y)e−iksx, (56)

where w(y) is a known function and ks is the wave
number. By using boundary and continuity con-
ditions, the resulting interfacial stress can be ex-
pressed as (Wang et al. 2001)

τ I
yz(x, 0) = −τe−iksx, (57)

where τ = Ac44χ is the maximum shear stress
with A being a constant and χ =

√
(ks)2 − (k1)2.

The shear stress given by (57) is used in Eq. 26
as the boundary condition at the crack surface in
the determination of the stress field for subprob-
lem (2).

5.1 The single crack solution

First, we restrict our attention to the single crack
problem. Figure 2 shows the effect of the thick-
ness of the layer upon the normalized stress inten-
sity factor (K∗ = |KIII/(τ

√
πa)|). In this case, the

material constants of the piezoelectric layer and
the host medium are assumed to be (Wang et al.
2001):
the piezoelectric layer

c44 = 2.56 × 1010(Pa), e15 = 10.5(C/m2),

κ11 = 7.0832 × 10−9(C/Vm), ρ = 7500(kg/m3)

host medium

c1
44 = 8.39 × 1010(Pa), ρ1 = 7800(kg/m3).

0 0.5 1 1.5 2 2.5

k
s
a

0

1

2

3

4

K
*

a/h=0.4
a/h=0.8
a/h=1.0
a/h=1.5

Fig. 2 The effect of the thickness of the layer upon the
dynamic stress intensity factor of a single crack

When the frequency of the incident wave is low
(ksa < 0.25), the effect of the thickness of the layer
upon K∗ is insignificant for the cases considered.
However, for higher frequencies the decrease of
layer thickness will significantly intensify the dy-
namic overshoot phenomenon observed in tradi-
tional materials. This result indicates that relatively
high-SIF may be generated for thin piezoelectric
layers.

The piezoelectric effect can be expressed by us-
ing the following normalized piezoelectric constant
λ = e2

15/κ11c44. For the piezoelectric material cur-
rently used, λ = 0.608. Typically, for PZT-4 piez-
oceramics (Park and Sun 1994), λ can reach 0.977.
In order to study the piezoelectric effect on the
stress intensity factor, different λ values ranging
from 0 to 1 are considered int he following exam-
ple. Figure 3 shows the effect ofλon the normalized
stress intensity factor for the case where a/h = 1,
ρ/ρ1 = 1.0. It can be seen clearly that λ signifi-
cantly affects the frequencies at which maximum
SIFs occur. The increase of the electromechanical
coupling will result in the occurrence of maximum
stress intensity factors at lower frequencies. When
the loading frequency is high, this effect will reduce
gradually.

The effect of material mismatch q = c1
44/c

∗ be-
tween the piezoelectric layer and the host medium
on the dynamic stress intensity factor is shown in
Fig. 4 for cases where a/h = 1 and ρ/ρ1 = 1.0. The
material properties of the piezoelectric layer is the
same as that presented in Fig. 2 with λ = 0.608.
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Fig. 3 The effect of the electromechanical coupling upon
the dynamic stress intensity factor of a single crack

It is observed that q has a significant effect on the
SIF for 0.5 < ksa < 1.5 although for low frequen-
cies this effect is insignificant. With the increase of
the material mismatch q the maximum normalized
stress intensity factor occurs at a higher frequency
and its amplitude increases.

5.2 The interacting cracks

Figure 5 shows the normalized dynamic stress inten-
sity factor K∗ at the inner tips of two identical
cracks of length 2a with a/h = 1 subjected to the
same incident wave discussed before. The material
properties of the piezoelectric layer and the host

0 0.5 1 1.5 2

k
s
a

0

1

2

3

4

5

K
*

q=2.0
q=2.5
q=3.0
q=4.0

Fig. 4 The effect of the material mismatch upon the
dynamic stress intensity factor of a single crack
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Fig. 5 The dynamic stress intensity factors of two
interacting cracks

medium are the same as those presented in Fig. 2.
To evaluate the effect of crack interaction, differ-
ent distances (e) between the centres of the two
cracks are used with e = 2.5a, e = 3.5a, e = 4.5a,
respectively. Significant interaction between these
cracks is observed, even when the distance be-
tween cracks is similar to the crack length (e/a =
3.5). For closer cracks (e/a = 2.5), the stress inten-
sity factor is increased dramatically in comparison
with the corresponding single crack result.

Figure 6 shows the effect of the crack size upon
the dynamic SIF K∗ at the right tip of a crack with
a half length a = h, which interacts to its right with
a second crack with a half-length c. The material
combination used is the same as the one in the pre-
vious example. The distance between the inner tips
of the two cracks is assumed to be d = 0.5a. It can
be observed that the SIF of the first crack increases
with the increase of the size of the second crack, as
well-known for traditional materials.

Figure 7 shows the effect of the electromechan-
ical coupling (λ) on the normalized dynamic stress
intensity factor K∗ at the inner tips of two identical
cracks of length 2a for the case where the material
constants are the same as that used in Fig. 3 with
a/h = 1. Similar to the single crack case shown
in Fig. 3, With the increase of λ, the frequency at
which the maximum amplitude of the SIF occurs
decreases.

The normalized SIFs K∗ at the right tips of three
identical interacting cracks of length 2a are shown
in Fig. 8, where the centres of the three cracks
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Fig. 6 The effect of the crack size upon the dynamic stress
intensity factors of two interacting cracks
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Fig. 7 The effect of the electromechanical coupling upon
the dynamic stress intensity factors of two interacting cracks

are located at x = 0, x = 2.5a, x = 5.0a, respec-
tively. It is assumed that a/h = 1 and the mate-
rial combination in the case presented in Fig. 2
is used. It is interesting to mention that the SIF
at the outer tip of crack 3 is similar to that of
a single crack, while the result of crack 1 is sim-
ilar to that of crack 2. These results indicate that
only the direct interaction between crack tips plays
an important role even for the current dynamic
problem. The stress intensity factor of crack 1 is
close to that of crack 2 because only the inner tips
are considered. This phenomenon can also be ob-
served from the SIFs due to four identical interact-
ing cracks of length 2a, as shown in Fig. 9, where
the centres of the four cracks are assumed to be
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Fig. 8 The dynamic stress intensity factors of three inter-
acting interfacial cracks
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Fig. 9 The dynamic stress intensity factors of four interact-
ing interfacial cracks

at x = 0, x = 2.5a, x = 5.0a, x = 7.5a, respec-
tively. Again the SIF of the outer tip (crack 4) is
close to the single crack result and the stress inten-
sity factors at all the inner tips (cracks 1–3) are
quite similar. It can be concluded that the behav-
iour of this type of interfacial cracks is dominantly
affected by the interaction between neighbouring
cracks.

6 Concluding remarks

The dynamic behaviour of a piezoelectric layer
bonded to an elastic medium containing multiple
interfacial cracks subjected to steady state mechan-
ical loads is investigated. The analysis is based on
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the use of the integral transform method and a
pseudo-incident wave method. Attention has been
focussed on the study of the fundamental behav-
iour of the local stress field around crack tips. The
effect of the geometry of the cracks, the material
constants and the loading frequency of the incident
Love wave upon the dynamic SIF is examined and
discussed. The study reveals the important effect of
the electromechanical coupling, material mismatch
and geometry of the system upon the dynamic SIFs.
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Appendix

The equation of motion and Gauss’s law for a
piezoelectric medium under antiplane loading are
given by

∂τxz

∂x
+ ∂τyz

∂y
+ ρω2w = 0,

∂Dx

∂x
+ ∂Dy

∂y
= 0,

where τxz, τyz are shear stress components, Dx and
Dy are the electric displacements and w, ρ and ω
are the antiplane displacement, mass density and
frequency, respectively. Most existing piezoceram-
ic materials are transversely isotropic, with the axis
of symmetry being along the polarization direction.
If the z-axis is chosen to be along this direction,
the non-vanishing stress components (τxz and τyz)
and the electric displacements (Dx and Dy) can be
expressed as

τxz = c44
∂w
∂x

+ e15
∂φ

∂x
, τyz = c44

∂w
∂y

+ e15
∂φ

∂y

and

Dx = e15
∂w
∂x

− κ11
∂φ

∂x
, Dy = e15

∂w
∂y

− κ11
∂φ

∂y
,

where φ is the electric potential, c44, e15 and κ11
are the elastic modulus, the piezoelectric constant
and the dielectric constant of the medium, respec-
tively. Substituting the constitutive equations into
the equation of motion and Gauss’s law results in

c44∇2w + e15∇2φ + ρω2w = 0,

e15∇2w − κ11∇2φ = 0,

where the Laplacian operation ∇2 stands for ∂2/∂x2

+ ∂2/∂y2.
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