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Abstract Two-dimensional crack problems in a
three-layered material are analyzed numerically
under the conditions of plane strain. An image
method is adopted to obtain fundamental solu-
tions for dislocation dipoles in trilayered media.
The governing equations for equilibrium cracks
can be constructed by distributed dislocation tech-
nique and their solutions are sought in terms of the
displacement discontinuity method (DDM). Com-
parisons are made with available analytical or ref-
erence solutions for several examples at various
contrasts of material constants, and good agree-
ments are found. A crack within a brittle adhesive
layer joining two semi-infinite blocks can propa-
gate in a variety of ways. In particular, crack paths
in the form of sigmoidal waves within the adhe-
sive layer are revisited to reveal the sensitivities of
cracking paths to initial crack locations and direc-
tions and residual stresses. In addition, Z-shape
and H-shape cracks alternating from interface to
interface are re-examined to highlight the transi-
tion of failure modes and the role of the interlayer
thickness.
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1 Introduction

Layered structure technologies are essential to
composites, adhesive joints, microelectronic and
optoelectronic devices (Hutchinson and Suo 1992),
and are commonly encountered in geological set-
tings (Pollard and Aydin 1988). For instance, a typ-
ical laminate structure for aeroplanes and space
shuttles is an alternating stack of aluminum alloys
sheets and fiber-reinforced epoxy. Layered ceram-
ics of an alternating stack of TZ-3Y (3 mol% Y2O3-
stabilized tetragonal ZrO2) and Al2O3 provides a
new and intriguing dimension for application since
this material is very heat resistant (see an extended
review by Chan (1997)). Furthermore, sedimentary
rocks are, by their nature, layered (Price and Cos-
grove 1990). However, defects such as cracks, flaws,
inclusions and dislocations are inevitable in these
layered materials and their propagation or mul-
tiplication always determine the stability or reli-
ability of the layered structures. On one hand, the
distribution of excessive defects concentrated over
a small area can cause catastrophic failure of a
material. On the other hand, one of the most
interesting advancements in material science is to
deliberately introduce weak interfaces in layered
ceramics to promote crack deflection and direc-
tionally unstable crack growth, so as to increase
material toughness. Understanding of failure
mechanisms of these layered materials definitely is
of current technological interest and much
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attention has been paid to this topic during the
past two decades.

The current study will focus on numerical sim-
ulation of possible crack propagation paths in a
three-layered structure by alternating layers of two
dissimilar, but isotropic elastic, brittle materials.
This requires accurate treatment of discontinuities
in elastic properties and residual stresses. There
have been a number of investigations of the two-
dimensional stress fields around a straight crack
lying in the middle layer or along the interface
(Hilton and Sih 1971; Fleck et al. 1991). However,
it has been observed experimentally that in a sand-
wich specimen, the cracks can meander within the
layer in a wavy form or in an alternating mode
of switching back and forth between interfaces
(Chai 1987; Akisanya and Fleck 1992). The nat-
ural weak bedding contacts between rock stratas
provide an efficient resistance to dike emplace-
ment (Delaney et al. 1986) due to stress contrasts
in different layers and to the interface properties.
Deflection of the cracks takes place at the inter-
face it impinges on and a delamination crack then
forms. The use of weak interfaces to facilitate crack
deflection has been studied by Folsom et al. (1994)
based on stress transition and vanishing interfa-
cial toughness. Plane-strain delamination is exam-
ined by Akisanya and Fleck (1992) for a Z-shape
crack alternating from interface to interface and
by Lu (1996) and Suiker and Fleck (2004) for an
H-shape crack connecting two interfaces. Impor-
tantly, advancing interface cracks can kink out of
the interface into one of the adjoining materials
(He et al. 1991). Most of these studies employed
the finite element method (FEM) to investigate the
sensitivity of crack paths to the modulus mismatch
of layers and to the relative toughness of layer and
interface.

For stress and strain analyses in layered materi-
als, complicated integral transform methods such
as Fourier Transform are usually employed to solve
the crack problems (Peirce and Siebrits 2001).
However, the crack is required to be parallel or
perpendicular with regard to interfaces. Generally
speaking, crack problems in layered structures can
also be analyzed by either the domain-discretiza-
tion methods (e.g., FEM) or the boundary element
method (BEM). However, extremely fine finite-
element meshes are required for accurate estimate

of stress intensity factors that must be calculated
to select crack paths. In this study, we employ the
image method proposed by Aderogba (2003) to
derive the Green’s functions for a singularity in
the trimaterial from the known exact solutions for
bimaterial cases. By means of Green’s functions,
a BEM-based discretization method, the DDM,
is then used to obtain stress intensity factors and
stress and deformation fields for the crack prob-
lem. This methodology retains the advantages of
BEM since the discretization is only required along
the cracks.

In this paper, the initiation phase of a crack is not
considered and the crack is assumed to grow from a
small pre-existing crack in the mid-layer. A numer-
ical model is proposed to assess the stress inten-
sity factors for a variety of crack geometries. The
crack growth is assumed to be driven by an inter-
nal pressure associated with injected fluid as would
occur for hydraulic fractures, which are widely used
in the oil and gas industry. The stress intensity fac-
tors and the crack opening profiles are examined,
as well as the selection of the crack paths. In addi-
tion, the complex interfacial stress intensity fac-
tors for Z-shape and H-shape cracks on interfaces
are also re-examined in details. Prior to presenting
numerical results, comparisons with existing solu-
tions of stress intensity factors and crack surface
profiles for various crack configurations are made
to confirm the accuracy of numerical results.

2 Green’s functions

Consider a crack problem associated with a three-
layer elastic medium as shown in Fig. 1. The x1-axis
is taken to be the upper interface and the Cartesian
coordinate system used is depicted in Fig. 1. Sup-
pose that the middle elastic layer with thickness
H(|x1| < ∞, −H < x2 < 0 and moduli (µ2, ν2)) is
perfectly bonded to two semi-infinite solids |x1| <
∞, 0 < x2 < ∞ and |x1| < ∞, −∞ < x2 < −H
of moduli (µ1, ν1) and (µ3, ν3), respectively. The
governing equations for the plane problems in an
isotropic elastic solid are summarized as follows. In
the absence of any body force, the field equations
of equilibrium, elasticity and geometric relations
valid for each layer are:
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Fig. 1 A dislocation dipole located within the interlayer

σij,j = 0 (1)

σij = 2µ
[
εij + ν

1 − 2ν
εkkδij

]
(2)

εij = 1
2

(
ui,j + uj,i

)
(3)

where σij is the Cauchy stress tensor, εij is the strain
tensor, and ui is the displacement vector, µ is the
shear modulus, ν is the Poisson’s ratio, and δij is the
Kronecker’s delta.

In the two-dimensional cases, the solutions can
be obtained by means of the Airy stress function
φ, which is a biharmonic function. In particular,
displacements and stresses for each layer can be
expressed as follows:

2µui = −φ,i + (1 − ν)

∫
∇2φ dxi (4)

σij = δijφ,kk − φ,ij (5)

where ∇2 is the two-dimensional Laplacian opera-
tor. It should be mentioned that the index for mate-
rial number is dropped in the above equations.

For the analysis of crack problems in the three-
layered materials, if the Airy stress functions for
a singularity like a dislocation dipole are known
for each material, the fundamental stress and dis-
placement fields can be obtained by Eqs. (4) and
(5). Furthermore, a crack can be simulated by an
array of distributed dislocation dipoles. In prep-
aration for deriving the Green’s functions for a
dislocation dipole, we first recall its solutions in an
infinite homogeneous elastic medium. The detailed
formulae for eigenstress solutions in homogeneous
materials can be found in Appendix A, which were

obtained by utilizing Eshelby’s theorem and Kelvin
solutions.

The image method can be applied to two-dimen-
sional elastostatics in the case of bimaterials sepa-
rated by a flat interface. Consider the upper layer
(x2 > 0) is occupied by an elastic medium with
corresponding moduli (µ1, ν1) and the lower layer
(x2 < 0) is filled by a different elastic medium
with corresponding moduli (µ2, ν2). It is supposed
that an arbitrary singularity is located in the upper
layer. According to the work by Aderogba (1977)
to satisfy continuity and equilibrium conditions
across the interface, the new Airy stress functions
for the upper and the lower planes, respectively,
are given by

�1 = L1�0(x1, x2, −p1, p2) (6)

�2 = L2�0(x1, x2, p1, p2) (7)

where the operators L1 and L2 are given in
Appendix B, �0 is the Airy stress function for a
singularity in an infinite elastic medium and the
dislocation dipole is located at (p1, p2) and the
influenced point is at (x1, x2). Based on the Airy
stress functions obtained, we can carry out the cal-
culations for stress components based on Eq. (5).
It should be mentioned that there is a sign differ-
ence in the operator L1 between the edge and the
glide dislocation dipoles. In addition, the choice
of Airy stress functions for each layer depends on
whether the dislocation dipole is located within it
or not. By rearranging the material constants for
upper and lower layers, we can find solutions for
the cases when dislocation dipoles are located in
the lower half plane. The Green’s functions for the
singularity in a trimaterial can be obtained through
an image method or an alternating technique de-
scribed by Aderogba (2003). At first, disregarding
the x2 = −H interface, the regions 2 and 3 are
treated as a homogeneous medium of material 2.
The Airy stress functions for each region can be
constructed based on Eqs. (6) and (7). However,
the solutions cannot ensure stress and displace-
ment continuity at the interface x2 = −H or in
the third material. Secondly, disregarding the exis-
tence of the x2 = 0 interface, the regions 1 and 2 are
considered as a homogeneous medium of material
2. We must take into account the stresses and dis-
placements induced by both the source singularity
and its image with respect to x2 = 0. Accordingly,
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Fig. 2 Schematics of the image method

the Airy stress functions for each discontinuity can
be obtained through satisfying the continuity con-
ditions at the x2 = −H interface. Next, repeat the
above process by invoking Eqs. (6) and (7) at the
interface x2 = 0 for the two images with respect
to x2 = −H. The process is continued indefinitely
for this trilayered material, leading to an infinite
series of images. A schematic description of this
process for the case with both singularity source
and influenced point located in the middle layer is
depicted in Fig. 2. More detailed description has
been provided in Appendix C. In particular, if the
dislocation dipole (p1, p2) and the influenced point
(x1, x2) are located in the layer and the dipole pro-
duces a unit vertical opening, the corresponding
Airy stress functions for the source and its images
�i are given by

1. the singularity source

�0 = − t2

s2 + t2
− 1

2
log(s2 + t2) (8)

where t = x1 − p1 and s = x2 − p2.
2. the first-order image

�1 = At2

s̄2 + t2
− 2A(s̄2 − t2)(s̄ − v)v

(s̄2 + t2)2

+1
4
(A + B) log(s̄2 + t2) (9)

where s̄ = x2 + p2 and v = x2 and A and B
are material constants defined by Eq. (B.3) in
Appendix B.

3. the second-order image

�2 = ŝ[BC(ŝ − u)+ ADv]
ŝ2 + t2

−AH[−3ŝ3 + ŝ2t + 2H(ŝ2 − t2)]
(ŝ2 + t2)2

+8AC(ŝ2 − 3t2)(ŝ − u)Hv
(ŝ2 + t2)2

−1
4

log(ŝ2 + t2) (10)

where ŝ = x2 − p2 + 2H and C and D are the
derived material constants associated with the
x2 = −H interface in terms of the same defi-
nitions as A and B, respectively.

In the calculation presented below, the Airy
stress functions of up to the eighth-order image
have been employed. It is found that the sum of the
first eight terms can provide a good approximation
for most combinations of materials, as verified in
the next section.

3 Problem formulation and numerical method

The formulation and solution of crack problems is
simplified by application of distributed dislocation
dipole singularities (Hills et al. 1996). The crack
is modeled by a continuous distribution of disloca-
tion dipoles and solutions are sought for the result-
ing integral equations based on the equations of
equilibrium. In the absence of shear stress along
the crack and body force, the integral equations
are:

σn(x)− σ1(x) =
M∑

m=1

∫ lm

0
[Gnn(x, �,α,β)ω(�)

+Gns(x, �,α,β)υ(�)] d� (11)

−τ1(x) =
M∑

m=1

∫ lm

0
[Gsn(x, �,α,β)ω(�)

+Gss(x, �,α,β)υ(�)] d� (12)

where x = {x1, x2}, � is the arc length of the crack
and M is the number of elements. ω(s) and υ(s)
are the crack opening and shear displacement dis-
continuities across the fracture, respectively. lm is
the length for each crack with a subscript index
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associated with the crack number. σn is the normal
traction on the crack surface and σ1, τ1 are normal
and shear stresses on the crack surface induced
by far-field and residual stresses. Gnn, Gns, Gsn and
Gss are the hypersingular Green’s functions de-
rived by differentiating the Airy stress functions
for the dislocation dipole problems in light of Eq.
(5). α and β are two Dundurs’ parameters defined
in Appendix B. For the sake of facilitating compar-
isons with existing results, both the upper and the
lower planes are assumed to be the same material
in the following.

For inclined cracks, there is a coordinate trans-
formation to relate the normal and tangential
stresses to the normal and tangential displacement
discontinuities along the crack surface within the
framework of a local coordinate system. See
Appendix D for more general expression of the
equations of equilibrium. The numerical analyses
are carried out using the DDM with a constant
strength for each element. The tip element has
an imposed shape function as given by the LEFM
solution at the tip. The hypersingular integrals are
evaluated analytically, while the regular integrals
are evaluated numerically for each element. Based
on the nodal displacements, Eqs. (11) and (12) can
be represented by a set of matrix relations. In par-
ticular, after eliminating shear displacements, the
final matrix form can be rearranged as follows

A{ω} = b (13)

where A is a matrix assembled from the Green’s
functions, and b and {ω} are the vectors for the
traction and the crack opening, respectively.

In terms of the displacement discontinuities ob-
tained, the mode I and II stress intensity factors
for the tip within the interlayer are obtained by
the displacement correlation method

(KI, KII) = lim
r→0

µ2

κ2 + 1

√
2π
r

[ω(r), υ(r)] (14)

where κ2 = 3 − 4ν2. If the crack tip is on the inter-
face, the complex stress intensity factor is given as
follows (Hutchinson et al. 1987)

K1 + iK2 = lim
r→0

(1 + 2iε)
2[(1 − ν1)/µ1 + (1 − ν2)/µ2]

×
√

2π
r

[ω(r)+ iυ(r)]r−iε (15)

where ε = ln[(1 − β)/(1 + β)]/2π .

3.1 Validation

To validate the Green’s functions, examples are
presented in this subsection, by comparing our re-
sults with those given by Fett and Munz (1997)
for interlayer cracks and the analytical solution for
interfacial cracks given by Hutchinson et al. (1987).
Figures 3 and 4 shows the variations of the normal-
ized toughness for different modulus contrasts and
geometry configurations of horizontal and vertical
cracks located within the interlayer. The tough-
ness is normalized by σ

√
2πa in which σ is the

uniform internal pressure along the crack and a
is the half crack length. The scattered symbols are
based on the results given in the monograph by Fett
and Munz (1997). The numerical results obtained
here, shown by solid lines, match very well with
their counterparts. The relative small discrepan-
cies within 10% of the results collected by Fett and
Munz (1997) may result from discretization used
in both numerical models. Only 50 elements are
used in the calculation, and the numerical results
for increasing number of elements are convergent
to the results provided here.

For an interface crack subjected to uniform
internal pressure σ , the relative crack surface dis-
placements are given by Hutchinson et al. (1987)
as follows,

ω + iυ = σ
√

a2 − x2

C
√

1 − β2

∣∣∣∣x + a
x − a

∣∣∣∣
iε

(16)

where x denotes the distance to the center of the
crack, and

C = 2µ1(1 + α)

(κ1 + 1)(1 − β2)
= 2µ2(1 − α)

(κ2 + 1)(1 − β2)
(17)

and the corresponding complex interface stress
intensity factor for the right tip is

K1 + iK2 = σ
√
πa(2a)−iε(1 + 2iε) (18)

Figure 5 provides the normalized crack opening
and sliding displacements for the interface crack.
The interface crack is treated as the crack on the
upper interface for a three-layered structure and
its length 2a is extremely small compared with the
interlayer thickness. It is found that the numerical
results based on 100 elements match the analytic
solutions very well in Fig. 5. The corresponding
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Fig. 3 Comparisons of
normalized toughness for
the cracks parallel to the
interfaces with the results
(the scattered symbols)
collected by Fett and
Munz (1997)
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Fig. 4 Comparisons of
normalized toughness for
the cracks vertical to the
interfaces with the results
(the scattered symbols)
collected by Fett and
Munz (1997)
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analytic complex interface stress intensity factor
can therefore be recovered.

4 Numerical results

4.1 Sigmoidal crack paths

To begin with, the propagation path of a uniformly
pressurized slant crack in an inhomogeneous mate-

rial can be modeled by the proposed numerical
method. We choose the uniform pressure loading
case because we are motivated by layered prob-
lems involving hydraulic fracturing. The interlayer
with thickness H is perfectly bonded by two stiffer
half planes. The elastic properties E and ν are spec-
ified for the interlayer and the internal pressure p
is adjusted to meet the material toughness KIC. A
residual tensile stress σres exists in the layer, which
is represented by a normal remote load parallel to
the interfaces. The selection of crack propagation
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Fig. 5 Comparisons of
normalized crack flank
displacements for an
interface crack subjected
to uniform internal
pressure with the analytic
solutions given by
Hutchinson et al. (1987)
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Fig. 6 Trajectories and
variations of internal
pressure of uniformly
pressurized cracks starting
from the middle plane of
the interlayer for various
inclined angles (χ = 0.01)
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direction is assumed to follow the maximum ten-
sile stress criterion proposed by Erdogan and Sih
(1963). Dimensional analysis dictates that

p
√

H
KIC

= p̃(�̄,χ , θ ,α,β) (19)

{x1

H
,

x2

H

}
= {f1, f2}(χ , θ ,α,β) (20)

where �̄ = �/H with � being the half arc length
of the growing crack and χ = σres

√
H/KIC, θ is the

inclined angle of the initial crack with respect to
the interfaces. The initial crack length is assumed
to be too small to perturb the stress fields on the
interface, with its center on the middle plane of the
interlayer.

Figure 6 shows the propagation paths and the
variations of normalized internal pressure
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p
√

H/KIC for three different crack angles at
χ = 0.01. They are plotted as against the inclined
angles θ = π/6,π/4 and π/3 in Fig. 6. The inter-
layer occupied the domain −1 < x2/H < 0 and
material constants are E2/E1 = 6 and ν1 = ν2 =
0.3, corresponding to a pair of Dundurs parame-
ters (α21,β21) = (0.714, 0.204) with α21,β21 as the
Dundurs parameters for the elastic mismatch from
material 2 to material 1. It is seen that the crack
paths exhibit a sigmoidal shape. When θ is less
thanπ/4, the crack tends to intersect the interfaces.
However, if θ is larger than π/4, the crack avoids
the interface by turning back from the interfaces.
It is interesting to note that such sigmoidal crack
paths have been experimentally found in layered
ceramics (see Chan 1997). It is noted from Fig. 6
that the internal pressure is insensitive to the crack
pathways if the crack tip is not very close to the
interface. When the crack is within the vicinity of
the interface, for example, there is an increase in
internal pressure, if θ is less than π/4.

4.2 Wavy crack paths

A wavy crack trajectory about the midplane of
the interlayer is anticipated when ∂KII/∂a > 0 and
with a positive T-stress (Fleck et al. 1991). There-
fore, a pre-existing crack located slightly above or
below the midplane can give rise to wavy crack
paths under tensile residual stresses. Although
Fleck et al. (1991) has pointed out the existence
of wavy crack paths, there is no crack path sim-
ulation available in literature, to our knowledge.
Figure 7 shows the crack trajectories and the varia-
tions of normalized internal pressure p

√
H/KIC for

a small pre-existing crack parallel to the interfaces,
and with an offset to the middle line. The material
constants are the same as those used in the previous
subsections. Except for the dimensionless param-
eter χ , the crack trajectories depend on the length
ratio � = s/H in which s is the distance of the
pre-existing crack to the middle line. � = −0.25
is employed for the two values of χ . There is a
uniform internal pressure along the crack, which
is adjusted based on the toughness and the prop-
agation direction is also based on the maximum
tensile stresses criterion given by Erdogan and Sih
(1963). It is demonstrated in Fig. 7 that the crack

propagates in a wavy form and the wave length
seems to increase with decreasing the value of χ .
In addition, there is a slight difference in varia-
tions of internal pressure between χ = 0.3 and
0.4 if the tip is not close to the upper interface.
The halt in the decreasing trend of internal pres-
sure can be detected for χ = 0.4 when the crack
tip is close to the upper interface. But when the
crack tip leaves the interface at a certain distance,
the internal pressure resumes its decreasing trend.

4.3 Z-shape cracks

A crack in a brittle adhesive layer can grow in an
alternating way between two interfaces. To simplify
the crack problems, let us consider the Z-shape
crack geometry as shown in Fig. 8. The left branch
on the lower interface is a semi-infinite cut and the
right branch on the upper interface is an interface
crack. Both branches are connected by a vertical
cut subjected to an internal pressure σo. This alter-
nating morphology has been documented for mode
I loading of an aluminum/epoxy/aluminum sand-
wich specimen by Chai (1987). Material constants
of two elastic media are selected so that β21 =
α21/4 and ν1 = ν2 = 1/3. The crack is loaded by
the tensile residual stress within the interlayer only.
The induced complex interface stress intensity fac-
tor for the crack branch on the upper interface is
shown in Fig. 8. As done by Suo and Hutchinson
(1989), the interlayer thickness is chosen as the ref-
erence length to normalize the complete interface
stress intensity factor. Therefore, Eq. (15) can be
rewritten as

KHiε = lim
r→0

(1 + 2iε)
2[(1 − ν1)/µ1 + (1 − ν2)/µ2]

×
√

2π
r

[ω(r)+ iυ(r)]
(

H
r

)iε

(21)

where K = K1 + iK2 and the phase angle of the
interfacial crack is defined as

� = arctan

[
Im(Khiε)

Re(Khiε)

]
(22)

A plot of the normalized real and imaginary
parts of the complex interface stress intensity fac-
tors (by σo

√
H) versus the normalized crack length

l/H is shown in Fig. 8. Under given crack geometry
and loading configuration, the opening along the
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Fig. 7 Trajectories and
variations of internal
pressure of uniformly
pressurized cracks initially
parallel to the interfaces
and with an offset to the
midplane (� = −0.25)
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Fig. 8 Dimensionless
complex interface stress
intensity factors versus
the length ratio l/H for
Z-shape cracks under
tensile residual stress. The
solid lines are based on
the proposed model and
the dashed lines are finite
element results obtained
by Akisanya and Fleck
(1992)
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crack is predicted to be negative. The solid lines are
based on the results obtained here and the dashed
lines are from Akisanya and Fleck (1992). The real
and imaginary parts both have a minimum value
at l/H ∼ 0.55. With increasing the length ratio l/H
beyond 0.55, the imaginary part increases faster
than the real one. Finally both components tend
to approach zero. However, the magnitude of real
part is larger than that of imaginary one at large
length ratio l/H based on our numerical results,
while the magnitude of real part is still larger than

the imaginary one in Akisanya and Fleck (1992).
The varying trend of KHiε based on relatively small
K2 with respect to K1 reflects the transition of fail-
ure modes to a tensile interfacial crack ultimately
for a Z-shape crack, as argued by Suo and Hutch-
inson (1992).

In addition, the failure mode transition can be
represented by the interfacial phase angle �. Its
variation is plotted against the length ratio l/H
in Fig. 9. As expected, the interface cracks start
with a shear-dominated crack growth correspond-
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ing to � ∼ 90 degree. The large negative imagi-
nary components at the early stage will force the
crack to grow along the interface. As the crack
advances, the curve tends to resemble the solu-
tion of the interfacial crack on the upper interface
with a small shearing component (Hutchinson and
Suo, 1992). This transition from shearing to ten-
sile failure mode can be easily detected in Fig. 9
and it is anticipated that the phase angle will ap-
proach the dashed-dot-dot line which indicates the
solution obtained by Suo and Hutchinson (1989)
for a long interfacial crack on the upper inter-
face. The phase angle of infinite interface cracks
is −10.5 degree for the given material constants by
Suo and Hutchinson (1989). However, the phase
angle curve in the dashed line based on the numer-
ical results obtained by Akisanya and Fleck (1992)
shows a different trend.

Furthermore, the variation of the interfacial
phase angle of the right tip with the crack length
for an interfacial crack on the upper interface is
calculated numerically, as depicted in Fig. 10 based
on the material constants specified above. When
a/H = 0.5,� = 6.83 degree at α = 0.8 and β =
α/4, which is close to the bimaterial solution � =
7.35 degree from the theoretical solutions given by
Hutchinson et al. (1987). Figure 10 also shows that
there is a small discrepancy in the phase angle for
a/H up to 40, between our numerical model and
the asymptotic solution (� = −10.5 degree) ob-
tained by Suo and Hutchinson (1989).

4.4 H-shape cracks

In fiber-reinforced ceramic composites, loading in
the direction of the fibers gives rise to cracks in the
fiber bundles. Then the fibre-bundle cracks propa-
gate into a matrix-rich region parallel to the load-
ing direction, and then bifurcate to form H-shape
cracks. Plane-strain analysis of H-shape cracks has
been conducted by Lu (1996), in which for simplic-
ity, the fibers and the matrix have the same mate-
rial constants. Figure 11 shows the interfacial phase
angles as a function of 2a/H for different combina-
tions of material constants. It should be mentioned
that the case of α21 = β21 = 0 corresponds to the
assumption of material homogeneity by Lu (1996).
The circles in Fig. 11 are extracted from Fig. 6 in

Lu (1996). It is seen that for 0.1 < 2a/H < 0.25,
our numerical results match very well the results of
Lu (1996). For 2a/H < 0.1, a discrepancy between
two solutions is detected and seems to increase as
2a/H decreases. This may arise from different dis-
cretization schemes in the two numerical models.
For small crack lengths, relatively large number of
elements should be employed for the segment con-
necting two interfacial cracks to meet the require-
ment on accuracy.

There exists a transition in failure mode from
mixed to shearing mode as displayed in Fig. 11.
However, this transition takes place at small length
ratios and finishes before 2a/H attains 0.3. This
means that the H-shape crack is embedded with a
large component of mode II stress intensity factor
as 2a/H increases beyond 0.3.

5 Conclusions

In this paper, we have first presented an image
method to derive the Green’s functions for three-
layered elastic media based on the formulation
of the Airy stress functions proposed by Ader-
ogba (2003). The method can be applied to obtain
the fundamental solutions for dislocation dipoles.
Although the problem involves infinite series of
images, the first eight terms are employed in the
model and reasonable numerical accuracy is ob-
tained in comparisons with existing results. The
corresponding numerical method for equilibrium
cracks is delineated following the procedure of
the DDM. Numerical examples are examined in
the context of the existing studies for interfacial
cracks or cracks within the interlayer. The compar-
isons between them show good agreements based
on the eight-term Green’s functions. In addition,
based on the crack growth criterion, the sigmoidal
and wavy paths of meandering cracks within the
interlayer are recovered, consistent with experi-
mental observations and theoretical predictions.
On the other hand, the complex stress intensity
factors for Z-shape and H-shape cracks on the
interfaces alternating from one interface to an-
other are obtained under tensile residual stresses
or loads. The variations of their phase angles
evidently imply the transition of failure modes from
shear-dominated to opening-dominated crack
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Fig. 9 Comparisons of
interfacial phase angle for
the Z-shape cracks
subjected to tensile
residual stress between
numerical results (the
solid line) and finite
element solutions by
Akisanya and Fleck
(1992) (the dashed line).
The phase angle for the
limiting case (l/H → ∞)
(the dash-dot-dot line) is
obtained by Suo and
Hutchinson (1989)
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Fig. 10 Interfacial phase
angle for the right tip of
an interfacial crack on the
upper interface. The
phased angle obtained by
Suo and Hutchinson
(1989) for the limiting
case (a/H → ∞) is
included by a dashed line
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growth for Z-shape cracks. It is observed that the
thickness of interlayers starts to play a role in the
transition when the crack length is about the inter-
layer thickness. However, the transition of failure
modes from mixed to shearing mode takes place
at small crack lengths for H-shape cracks and sub-
sequently H-shape cracks exhibit themselves as a
shearing-dominant crack.

Appendix A: Eigenstress in infinite medium

In order to demonstrate clearly the establishment
of the fundamental solutions for stresses and dis-
placements in a full plane, we first recall briefly
some basic solutions for a concentrated force in an
infinite elastic medium and the Eshelby theorem
for completeness.
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Fig. 11 Interfacial phase
angle for the H-shape
cracks subjected to tensile
residual stress. The circles
are extracted from the
numerical results given by
Lu (1996) for H-shape
cracks in homogeneous
materials
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A.1 Kelvin’s solution for a two-dimensional solid

Consider the Kelvin’s problem, that is, a unit line
force acting along xj-axis, lying at point x′ = (x′

1, x′
2)

in an infinite elastic solid. The Airy stress functions
for two-dimensional problems for unit line forces
in x1 and x2 are given by

φ1 = 1
2π(κ + 1)

[(κ − 1)ξ log r + (κ + 1)ηθ ] (A.1)

φ2 = 1
2π(κ + 1)

[(κ − 1)η log r + (κ + 1)ξθ ] (A.2)

where r = √
ξ2 + η2, θ = arctan[η/ξ ], in which ξ =

x1 − x′
1 and η = x2 − x′

2.

A.2 Dislocation dipoles and strain nuclei

Consider a slip plane S within an isotropic elastic
material. The upper surface S+ moves by the Burg-
ers vector b relative to the lower plane S−. Then
the eigenstrains can be written as

eT
ij (x) = −1

2
(binj + bjni)δ(S − x) (A.3)

where δ(S − x) is the Dirac delta satisfying∫
�

δ(S − x)dx =
∫

S
ds (A.4)

As an example, the displacement u2 experiences a
finite constant jump at point x′ along the x1 direc-
tion in a surface parallel to the plane (x1, 0). Hence,
we have

u2(x1, x′
2+)− u2(x1, x′

2−) = b2δ(x1)H(x2) (A.5)

where H(x) is the Heaviside step function,

H(x) =
{= 0 x < 0

= 1 x > 0
(A.6)

This problem can then modeled by distributed ei-
genstrain eT

ij = 0 except for eT
22 = b2 over the an

infinitesimal surface with a center at x′.

A.3 Eshelby theorem

In an elastic space, when a uniform eigenstrain eT
ij

is prescribed within an arbitrary closed subregion
V , eigenstress σT

ij can be expressed in terms of eT
ij

by means of Hooke’s law

σT
ij = 2µ

[
eT

ij + ν

1 − 2ν
eT

kkδij

]
(A.7)

For some general cases, the displacement fields due
to the disturbed eigenstresses can be expressed in
a form:

ui(x) =
∫

V
uj

i(x, x′)fj dx′ (A.8)

where uj
i(x, x′) is the Green’s function for the con-

centrated force which gives the value of the dis-
placement components ui at point x due to a point
force in the direction j applied at point x′, fj is the
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eigenforces. Actually, the eigenforces for a force
doublet are given by

fj = σT
jk(x

′) ∂
∂x′

k
(A.9)

see details in Mura (1987).
If we know the solutions φj for all Kelvin prob-

lems, the corresponding Airy stress function ψ for
different dislocation dipoles can be obtained in
terms of the Eshelby Theorem. In particular, it
leads to

ψ = σT
jk
∂φj

∂x′
k

(A.10)

A.3.1 Edge dislocation dipoles

The eigenstresses caused by the unit eigenstrain
eT

11 = 1 can be obtained as:

σT
11 = (1 − ν)P, σT

12 = 0, σT
22 = νP (A.11)

where P = 2µ/(1 − 2ν). Then,

ψ11∞ = σT
kl(x

′) ∂
∂x′

l
φj = σT

11
∂φ1

∂x′
1

+ σT
22
∂φ2

∂x′
2

(A.12)

Substituting φ1 and φ2 in the above equation, we
have

ψ11∞ = − 2µ
π(κ + 1)

(
log r − cos 2θ

2

)
(A.13)

where cos 2θ = [ξ2 − η2]/r2.
In the same way, the Airy stress function for the

unit eigenstrain eT
22 = 1, is given by

ψ22∞ = − 2µ
π(κ + 1)

(
log r + cos 2θ

2

)
(A.14)

A.3.2 Glide dislocation dipoles

In this case, the non-zero eigenstresses can be writ-
ten as:

σT
12 = σT

12 = µ, σT
11 = σT

22 = 0 (A.15)

Then we can obtain the Airy stress function by the
Eshelby theorem in the form

ψ12∞ = σT
12
∂φ1

∂x′
2

+ σT
21
∂φ2

∂x′
1

(A.16)

Therefore, we have

ψ12∞ = 2µ
π(κ + 1)

sin 2θ
2

(A.17)

where sin 2θ = 2ξη/r2. It is found that the forms of
the Airy stress functions for edge and glide disloca-
tion dipoles are exactly the same as those obtained
by Dundurs (1968) and Korsunsky (1994) by using
a differentiation method.

A.4 Green’s functions for dislocation dipoles
in infinite media

Based on the Airy stress functions obtained above
for edge and gilding dislocation dipoles, we can
obtain the Green’s functions through the defini-
tion of the Airy stress functions. Let us denote the
stresses by

σij∞ = 2µ
π(κ + 1)

Lkl
ij∞�ukl (A.18)

where �ukl denotes the strength of dislocation
dipoles. The detailed expressions of Lkl

ij∞ can be
found in Hills et al. (1996).

Appendix B: Green’s functions for a dipole
in bimaterials

Based on Aderogba (1977), we can derive the Airy
stress functions for the bimaterial elasticity prob-
lems from their counterparts for full-plane prob-
lems. If there is no net forces on the internal
boundaries, the elastic solutions depend on only
two dimensionless Dundurs parameters α and β,
defined as

α = µ2(κ1 + 1)− µ1(κ2 + 1)
µ2(κ1 + 1)+ µ1(κ2 + 1)

(B.1)

β = µ2(κ1 − 1)− µ1(κ2 − 1)
µ2(κ1 + 1)+ µ1(κ2 + 1)

(B.2)

where µ1,µ2 are shear moduli and κ1 = 3 − 4ν1,
κ2 = 3 − 4ν2 for the upper and lower half plane,
respectively. Note that the choice of the constants
is not unique. Following Aderogba (1977) for sim-
plicity, we employed the elastic constants A and B
are given by

A = β − α

1 + β
B = −α + β

1 − β
(B.3)

Assume that the dislocation dipoles are situated
in material 1 and the corresponding Airy stress
function in infinite elastic medium is denoted as
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�0(x1, x2, x′
1, x′

2). To meet the stress and displace-
ment continuities across the interface, the new Airy
stress function can be written as: for material 1

�1 = �0 +�1 (B.4)

and for material 2,

�2 = �0 +�2 (B.5)

where �1 and �2 are biharmonic functions. Substi-
tuting the Airy stress functions to the continuity
conditions on the interface x2 = 0

u1
1 = u2

1 u1
1 = u2

1 (B.6)

σ 1
11 = σ 2

11 σ 1
12 = σ 2

12 (B.7)

Observe that the solution to the biharmonic
equation can be expressed as �0(x1, x2, x′

1, x′
2) =

�0(s, t) if s = x1 − x′
1 and t = x2 − x′

2. Therefore,
�0(x1, x2, −x′

1, x′
2) = �0(s, t̄) if t̄ = x2 + x′

2. Follow-
ing the observations by Aderogba (1977), the gen-
eral solutions with each layer can be written in the
form of an operator

�i = h̄i�0 (B.8)

h̄i = Ai + Bix1
∂

∂x1
+ Cix2

1∇2 + Dix1

∫
∇2 dx2

+Ei

∫ ∫
∇2dx2dx2 (B.9)

where the subscript i is used for reference to re-
gions 1 and 2, and the associated coefficients are
undetermined constants.

Substitute �1 and �2 into the continuity condi-
tions and consider that the normal stresses caused
by �0 are the same on both sides of the interface,
while the shear stresses have a sign convection.
Manipulations of all terms in left-hand and right-
hand sides of the continuity conditions, we can
determine the unknown coefficients in Eq. (B.9).
Finally, the operators of material 1 and 2 for edge
dislocation dipoles are given by, respectively,

L1 = −A
[

1 − 2x2
∂

∂x1
+ x2

2∇2
]

−0.25(A − B)
∫ ∫

∇2 dx2dx2 (B.10)

L2 = −A − 0.25(A − B)

×
[∫ ∫

∇2 dx2dx2 − 2x2

∫
∇2 dx2

]
(B.11)

It should be mentioned that the operators for glide
dislocation dipoles are −L1 and L2.

B.1 Edge dislocation dipoles

The Airy stress function for an edge dislocation
dipole in an infinite medium is ψ11∞. Therefore,
the reflection part of the Airy stress function for
an edge dislocation dipole in material 1 along the
x1 direction is

ψ11R = 2µ1

π(κ1 + 1)

×
[

A + B
2

log r̄ − A
2

cos 2θ̄
(

1 + 4
x2x′

2

r̄2

)]

(B.12)

and the transmission part is

ψ11T = 2µ1

π(κ1 + 1)

[(
−1 + A + B

2

)

× log r + 1 − A
2

cos 2θ − (A − B)
ηx′

2

r2

]

(B.13)

where η̄ = x2 + x′
2, r̄ = √

ξ2 + η̄2, θ̄ = arctan[η̄/ξ ].
In the same way, the reflection part of the Airy

stress function for an edge dislocation dipole in
material 1 along the x2 direction is

ψ22R = 2µ1

π(κ1+1)

[
3A − B

2
log r̄

+A
2

cos 2θ̄
(

1 + 4
x2x′

2

r̄2

)]
− 4A

η̄x′
2

r̄2 (B.14)

and the transmission part is

ψ22T = 2µ1

π(κ1 + 1)

[(
−1 + A + B

2

)

× log r − 1 − A
2

cos 2θ − (A − B)
ηx′

2

r2

]

(B.15)
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B.2 Glide dislocation dipoles

The Airy stress function for a glide dislocation di-
pole in an infinite medium is ψ12∞. Therefore, the
reflection part of the Airy stress function for an
glide dislocation dipole in material 1 is

ψ12R = 2µ1

π(κ1 + 1)

[
−A

sin 2θ̄
2

− 2A
x′

2

r̄2 (ξ cos 2θ̄

−x′
1 sin 2θ̄ )− A − B

2
arctan

(
ξ

η̄

)]
(B.16)

and the transmission part is

ψ12T = 2µ1

π(κ1 + 1)

[
(1 − A)

sin 2θ
2

− (A − B)
ηx′

2

r2

− A − B
2

arctan

(
ξ

η̄

)]
(B.17)

Appendix C: Image method for three-layered
media

C.1 A coordinate translation and transformation
rules

Suppose that the interface between material 1 and
2 is perfectly bonded along x′

2 = H. With a coor-
dinate transition x∗

2 = x′
2 − H, the interface is ref-

ormated based on the new coordinate system with
x∗

2 = 0. If the singularity is situated in material 1,
the material constants are defined as

A12 = β − α

1 + β
B12 = −α + β

1 − β
(C.1)

Therefore, the operators L112 and L212 are given
by

L112 = −A12

[
1 − 2ρ

∂

∂η̂
+ ρ2∇2

]

−0.25(A12 − B12)

∫ ∫
∇2 dη̂dη̂ (C.2)

based on the substitutions

η̂ = x2 + x′
2 − 2H ρ = x2 − H (C.3)

and

L212 = 1 − A12 − 0.25(A12 − B12)

×
[∫ ∫

∇2 dηdη − 2ρ
∫

∇2 dη
]

(C.4)

C.1.1 Edge dislocation dipoles in 1-direction

The reflection part of the Airy stress function for
an edge dislocation dipole in material 1 along the
x1 direction is

ψ11R
12 = 2µ1

π(κ1 + 1)

[
A12 + B12

2
log r̂

− A12

2
cos 2θ̂

(
1 + 4

ρ(η̂ − ρ)

r̂2

)]
(C.5)

and the transmission part is

ψ11T
12 = 2µ1

π(κ1 + 1)

[(
−1 + A12 + B12

2

)
log r

+1 − A12

2
cos 2θ + (A12 − B12)

ξ(ξ − ρ)

r2

]

(C.6)

where r̂ = √
ξ2 + η̂2, θ̂ = arctan[η̂/ξ ]. It should be

noted that x′
2 should be replaced by 2H − x′

2 for
the position of the image point.

C.1.2 Edge dislocation dipoles in 2-direction

The reflection part of the Airy stress function for
an edge dislocation dipole in material 1 along the
x2 direction is

ψ22R
12 = 2µ1

π(κ1 +1)

[
3A12 −B12

2
logr̂+ A12

2
cos2θ̂

(
1+4

ρ(η̂−ρ)
r̂2

)]
− 4A12

η̂(η̂−ρ)
r̂2

)
(C.7)

and the transmission part is

ψ22T
12 = 2µ1

π(κ1 + 1)

[(
−1 + A12 + B12

2

)
log r

−1 − A12

2
cos 2θ − (A12 − B12)

η(η̂ − ρ)

r2

]

(C.8)

C.1.3 Glide dislocation dipoles

The reflection part of the Airy stress function for
an glide dislocation dipole in material 1 is

ψ12R
12 = 2µ1

π(κ1 + 1)

{
−A12

sin 2θ̂
2

− 2A12
η̂ − ρ

r̂2

×[ξ cos 2θ̂−(η̂−ρ) sin 2θ̂ ]

−A12 − B12

2
arctan

(
η̂

ξ

)}
(C.9)

and the transmission part is
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ψ12T
12 = 2µ1

π(κ1 + 1)

[
(1 − A12)

sin 2θ
2

− (A12−B12)

×η(η̂ − ρ)

r2 − A12 − B12

2
arctan

(
η̂

ξ

)]

(C.10)

Upon obtaining the Airy stress functions, the stress
components associated with the specified singular-
ity can be determined by Eq. (5).

C.2 Image method

Consider a singularity embedded in the three-lay-
ered materials, which have two parallel interfaces.
It is known that there are infinite images for this
problem. One possible way to solve this problem
has been proposed by Aderogba (2003), which
resembles the Schwarz–Neumann’s alternating in
complex variable theory with analytical continu-
ity across interfaces (see Choi and Earmme 2002).
Since it is difficult to meet the continuity conditions
along two interfaces simultaneously, the continuity
can be applied to each interface alternatively dis-
regarding the existence of the another interface.
This is the basis of the image method to deal with
an infinite series of images.

The introduction about the implementation of
the image method has been described in Section
2. Without loss of generality, let us consider the
case when the singularity is located within the in-
terlayer. With regard to x2 = 0, the corresponding
Airy stresses functions for the first order image
have been given in the last subsection. Then, let us
consider the images with respect to x2 = H. Intro-
ducing the coordinate translation x∗∗

2 = x′
2 +H, we

can obtain the Airy stress functions for the singu-
larity source based on the above formulation. But
we need to consider the image induced by the first
order image. It must be noted that the strength of
the second-order image is not the full-plane solu-
tion, but the reflection part of Airy stress function
with regards to x2 = 0 after replacing η̂ by η. Re-
peat this procedure for the image with respect to
x2 = 0 based on Eqs. (C.2) and (C.4) and add its
contribution to the full-plane Airy stress function.
It should be mentioned that the undisturbed Airy
stress function for the third order image is also

the reflection part of Airy stress function for the
second-order image after replacing η̂ by η.

Appendix D: General expressions for equations
of equilibrium

Following Hills et al. (1996), we rewrite the equa-
tion of equilibrium in an alternative way based on
the influence functions for dislocation dipoles

π(κ2 + 1)
2µ2

σij(xm) =
M∑

m=1

lm∫
0

{L11
ij (x

m, xn,α,β)b11(xn)

+L22
ij (x

m, xn,α,β)b22(xn)

+L12
ij (x

m, xn,α,β)[b12(xn)

+b21(xn)]} ds(xn) (D.1)

in which bij is the strength of the dipole, which is
the negative crack opening/sliding displacement in
the ith direction measured in the direction normal
to j.

For convenience in implementing the numeri-
cal method, the stress components should be ex-
pressed in the local coordinate system at node m
and the strength of the dipole expressed in the local
coordinate system at node n. To this end, the stress
components in the global set are first expressed in
terms of the local dipole strength in local coordi-
nates of node n. Then the stress components are
transformed into the local coordinate system at
node m. According to the transformation of the
tensor of rank 2, we find that
⎧⎨
⎩

b11
b22

b12 + b21

⎫⎬
⎭ = A

⎧⎪⎨
⎪⎩

b̂11

b̂22

b̂12 + b̂21

⎫⎪⎬
⎪⎭ (D.2)

in which the 3 × 3 matrix A is

A =
⎡
⎣ cos2 θn sin2 θn − sin θn cos θn

sin2 θn cos2 θn − sin θn cos θn

sin2 θn − sin2 θn cos2 θn

⎤
⎦ (D.3)

We now insert it in (D.1), the new influence func-
tions in the local set are obtained as follows⎡
⎢⎣

L̂11
11 L̂22

11 L̂12
11

L̂11
22 L̂22

22 L̂12
22

L̂11
12 L̂22

12 L̂12
12

⎤
⎥⎦ =

⎡
⎢⎣

L11
11 L22

11 L12
11

L11
22 L22

22 L12
22

L11
12 L22

12 L12
12

⎤
⎥⎦ A (D.4)
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The non-zero components of dipole strength in
the local set are b̂12 and b̂22. Hence, we have

π(κ + 1)
2µ

σij(xm) =
M∑

m=1

∫ lm

0
{L̂22

ij (x
m, xn,α,β)b̂22(xn)

+L̂12
ij (x

m, xn,α,β)b̂12(xn)} ds(xn)

(D.5)

The next step is to evaluate the normal and shear
stresses in the local coordinate system of node m.
This can be achieved by the stress transformation⎧⎨
⎩
σ̃11
σ̃22
σ̃12

⎫⎬
⎭ = AT

⎧⎨
⎩
σ11
σ22
σ12

⎫⎬
⎭ (D.6)

in which AT is the transpose of A.
Finally, the equation of equilibrium of traction

along the fracture is written as

π(κ + 1)
2µ

σ̃ij(xm) =
M∑

m=1

∫ lm

0
{L̃22

ij (x
m, xn,α,β)b̃22(xn)

+L̃12
ij (x

m, xn,α,β)b̂12(xn)} ds(xn)

(D.7)

in which the two-point influence functions are de-
fined as⎡
⎣ L̃11

11 L̃22
11 L̃12

11
L̃11

22 L̃22
22 L̃12

22
L̃11

12 L̃22
12 L̃12

12

⎤
⎦ = AT

⎡
⎣ L11

11 L22
11 L12

11
L11

22 L22
22 L12

22
L11

12 L22
12 L12

12

⎤
⎦ A

(D.8)
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