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Abstract. The paper addresses the estimation of the fatigue limit of components weakened either by
U- and V-shaped notches or by defects, all under mode I stress distributions. When the influence of
the opening angle is absent, a single formula is able to summarise both the notch sensitivity and
the sensitivity to defects. Fatigue limit assessments need two material parameters, namely the plain
fatigue limit and the threshold value of the long crack stress intensity factor range. The formula is
compared with about 90 fatigue limits taken from the literature. Material properties and specimen
geometries are given in detail. Afterwards, in the case of V-notches with large opening angles, the
formula is modified, but without involving additional material parameters. A generalised Kitagawa
diagram is obtained, that encompasses fatigue behaviour of stress raisers of different size, opening
angle and notch tip radius.
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List of symbols

a = reference dimension of a component, for example the notch depth,

a∗, a∗
γ = characteristic values of “a” for a U- and a V-notched component,

respectively,

aD, aDγ = cut-off values of “a” for a U- and a V- notched component,

respectively,

ρ = notch tip radius,

r, θ = polar coordinates,

Ktg = elastic stress concentration factor referred to the gross section of the

specimen,

Ktg* = characteristic value of Ktg,

Kf = fatigue strength reduction factor,

KI = mode I Stress Intensity Factor,

�Kth = threshold range of mode I Stress Intensity Factor,

KV
I = mode I Notch-Stress Intensity Factor for a sharp V-notch,
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�KV
I,th = threshold range of mode I Notch-Stress Intensity Factor,

σg = gross nominal stress,

�σg = range of the gross nominal stress,

�σg,th = threshold range of the gross nominal stress,

�σ0 = plain specimen fatigue limit (in terms of stress range),

σy = yield strength,

R = nominal stress ratio,

a0 = El Haddad-Smith-Topper material constant used in Fracture

Mechanics studies,

aV
0 = characteristic length parameter for a V-notched component,

α = geometric shape factor for a component containing a crack,

αγ = non-dimensional coefficient, dependent on component geometry,

loading type and notch opening angle,

α0γ,w̄, α0γ,

LEFM ,

α0γ,PM = non-dimensional coefficients derived by means of the local energy,

the fracture mechanics and the point method approaches,

respectively,

ϕ = V-notch opening angle,

γ = degree of singularity of the stress distributions.

1. Introduction

The different behaviour of blunt and sharp notches has been known for a long time
(Frost et al., 1974; Smith and Miller, 1978). It is generally described in the so-called
Frost–Miller diagram shown in Figure 1 where the two curves are drawn by keeping
the notch depth “a” constant and varying the notch tip radius. The two curves inter-
sect at a particular value of the stress concentration factor referred to the gross sec-
tion, named K∗

tg. When Ktg is lower than K∗
tg, the fatigue limit of the notch in terms

of nominal stress referred to the gross section is �σg,th = �σ0/Ktg, �σ0 being the
material fatigue limit under the same load conditions. In other words the fatigue limit
is fully controlled by the range of the elastic peak stress �σpeak. When Ktg is greater
than K∗

tg, the notch behaves as a crack with the same depth “a” and the fatigue limit
can be estimated by means of the Linear Elastic Fracture Mechanics (LEFM) accord-
ing to the expression �σg,th =�Kth/(α ·√πa), where �Kth is the threshold value of
the stress intensity factor range for long cracks under the same load conditions and α

is a shape coefficient calculated for a crack having the same depth of the real notch.
The characteristic K∗

tg value ideally separates the regions of applicability of the two
criteria. As well known, beyond the branch point located in correspondence of K∗

tg,
there exist two different fatigue limits: the lower one is the critical stress for crack
nucleation; the higher one is the threshold stress of small cracks initiated at the notch
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Figure 1. Fatigue limit in terms of nominal stress range �σg,th vs. the theoretical stress concentration
factor Ktg for notches of constant depth a.

tip but unable to propagate beyond a certain distance from it (Smith and Miller,
1978; Nisitani and Endo, 1988).

Recently, Atzori and Lazzarin proposed for notched components a generalisation
of the Kitagawa diagram valid for cracked components (Kitagawa and Takahashi,
1976; Atzori and Lazzarin, 2001). The diagram is valid for a notch with parallel
flanks centred in an infinite plate and subjected to a remotely applied tensile stress
(Figure 2). It was drawn by analytically evaluating the fatigue limit of the notch with
respect to a scale variation of its absolute dimensions, being the stress concentration
factor unchanged. Given a certain notch acuity ζ , defined as the ratio between the
notch depth a and the root radius ρ (thus the stress concentration factor is fixed), the
fatigue limit is simply given by �σ0/Ktg, if the absolute dimensions are sufficiently
high. By reducing the notch dimensions the fatigue behaviour conforms to the �Kth

line when the notch depth a becomes smaller than the characteristic value a∗. Sche-
matically, if the notch depth is between a0 and a∗, then the fatigue behaviour is fully
governed by the LEFM (so that the fatigue limit is equal to that of a crack having
the same size), being a0 the El Haddad-Smith-Topper parameter (El-Haddad et al.,
1979), defined as:

a0 = 1
π

(
�Kth

�σ0

)2

. (1)

When a >a∗, the notch sensitivity is full; on the other side, when a <a0 the fatigue
limit approaches the material fatigue limit.

The two length parameters are correlated to each other by means of the simple
expression (Ting and Lawrence, 1993; Atzori and Lazzarin, 2001)

a∗ =K2
tga0. (2)

Dealing with cracks, El-Haddad-Smith-Topper proposed the following expression
to estimate the fatigue limit of both long and short cracks (El-Haddad et al., 1979):

�Kth =�σg,th

√
π (a +a0). (3)
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This expression shows a dependency of the type �σ 2
g,th · a = const only for long

cracks. In the past, Frost (1961) proposed the relation �σ 3
g,th · a = const, where the

different value of exponent was due to the particular range of crack lengths that had
been measured during experiments, as pointed out by Murakami and Endo (1994).

In the case of real components it is necessary to account for a shape coefficient α

(Du Quesnay et al., 1988). A convenient form for Equation (3) is then (Atzori et al.,
2003)

�Kth =�σg,th

√
π
(
α2a +a0

)
. (4)

In this expression a0 continues to be the material parameter obeying Equation (1).
It depends on the nominal load ratio R, but not on the geometry of the compo-
nent. By so doing, the diagram already shown in Figure 2 is still valid, provided that
the notch depth a is substituted by (α2a). That diagram was validated by the pres-
ent authors by means of a number of experimental data reported in the literature
for different materials, notch geometries and loading conditions (Atzori et al., 2003,
2004).

The diagrams of Figures 1 and 2, showing the notch behaviour from two different
viewpoints, were summarised in a single three dimensional diagram where the fatigue
limit of a notched components was plotted as a function of both the stress concen-
tration factor Ktg and the parameter (α2a) (Atzori and Lazzarin, 2002). A slightly
modified version of that three-dimensional diagram is shown in Figure 3, where (α2a)
is substituted by an equivalent length aeq, as discussed later.

It is well known that the fatigue behaviour described by Figures 1 and 2 is
schematic, a gradual transition from the peak criterion (controlled by Ktg) to the field
criterion (controlled by �Kth) really taking place. Then in Figure 2, there are two
transition zones, where the material exhibit a sensitivity to notches (close to a∗) and
a sensitivity to defects (close to a0).

The aim of this paper is to provide an equation for estimating the fatigue limit for
different stress raisers (i.e. defects, cracks, crack-like notches and blunt notches with a
small opening angle) and to extend the Kitagawa diagram to V-shaped notches hav-
ing large opening angles and an arbitrary notch root radius.

Depth a 

Short cracks 

Linear Elastic 
Fracture Mechanics 

Long cracks

a0 a*

Experimental 
data

Fatigue limit, ∆σg,th   (log scale) 

 (log scale)

∆Κ=∆Κth

Linear Elastic 
Notch Mechanics 

∆σ0

Ktg

∆σ0

2a
ρ

∆σg,th

Figure 2. Scale effect in the fatigue behaviour of a crack or a notch.
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Figure 3. Fatigue limit of notched components in terms of an equivalent notch size equal to
(α2 ·a +a0) (Atzori et al., 2002b).

2. Fatigue strength of U-notches

Equation (4) valid for short and long cracks can be re-written in the following way:

�Kth =�σg,th
√

πaeq, (5)

where

aeq =α2a +a0. (6)

In Equation (5) the quantity (α2a +a0) can be thought of as the length aeq of an
equivalent crack centred in an infinite plate and subjected to the same gross nominal
stress applied to the real component. By using the definition for a0 given by Equation
(1), Equation (5) becomes

�σg,th

�σ0
= 1√

α2a+a0
a0

=
√

a0

aeq
. (7)

On the other hand, blunt notches obey the following simple equation:

�σg,th

�σ0
= 1

Ktg
. (8)

By equating the right hand sides of Equations (7) and (8), one can find the char-
acteristic value K∗

tg that ideally separates sharp and blunt notch behaviour

K∗
tg =

√
α2a +a0

a0
. (9)

In Equation (9) the parameter α2a quantifies the influence of the absolute dimen-
sions of the component. By combining Equations (2) and (9), one obtains the link
between the characteristic parameters K∗

tg and a∗

K∗
tg

Ktg
=
√

aeq

a∗ . (10)



66 B. Atzori et al.

Making use of Equations (7) and (8), the three dimensional diagram can be pre-
sented in the form shown in Figure 3, where the equivalent notch depth and the
stress concentration factor are used as design variables (Atzori et al., 2002b). By so
doing two intersecting planes can be obtained

the sharp notch plane (defined by Equation (7) for a given Ktg, value);
the blunt notch plane (defined by Equation (8) for a given equivalent notch size).

The two planes intersect in correspondence of a so-called branch line (Nisitani
and Endo, 1988), where fatigue behaviour switches from one regime to the other,
according to the present schematic representation. Intersections of the three dimen-
sional diagram with planes which are normal to the Ktg axis provide the modified
Kitagawa diagram recently proposed by Atzori and Lazzarin for given Ktg values.
Conversely, intersections with planes normal to the aeq/a0 axis provide the classical
Frost–Miller diagram for a given notch size.

Figure 3 illustrates how to derive a∗, for a given Ktg value, and K∗
tg, for a given

aeq value, while dealing with a notch characterised by an equivalent depth aeq and
a stress concentration factor Ktg. Practical use of such parameters will be illustrated
later on.

Validation of the diagram proposed by Atzori and Lazzarin has already been pre-
sented in other papers (Atzori et al., 2002b, 2003). In the present work, in order to
put in evidence the experimental behaviour of different materials near to the branch
point, the two dimensional diagrams derived by intersecting the three dimensional
diagram reported in Figure 3 will be presented in a different, non-dimensional form.

All experimental data were taken from the literature. The considered materials are
listed in Table 1 and include low strength steels, carbon steels, high strength steels,
wrought aluminium alloys and one cast aluminium alloy. Both static (yield strength
σy) and fatigue properties (�σ0, a0 and �Kth for a given load ratio R) have been
reported in the table. We note that both �σ0 and �Kth are expressed in terms of
range, i.e. maximum minus minimum value. Concerning the R-ratio effects, they are
included in the parameter a0, which is influenced by both the mean stress effect on
the fatigue limit and the crack closure effect on �Kth. In order to avoid the depen-
dence on crack closure, the effective component of the threshold stress intensity fac-
tor range should be adopted. Nevertheless the data found in the literature usually do
not report the effective component of �Kth so that the authors adopted the original
El Haddad-Smith-Topper parameter a0, defined by �Kth and �σ0. With respect to a
previous synthesis (Atzori et al., 2003), Table 1 summarises additional data obtained
by the present authors by testing a low carbon deep drawing steel and a cast alumin-
ium alloy, both used in European automotive manufacturing. Figure 4 together with
Tables 2 provides details on the notch and defects geometries, loading conditions,
stress concentration factors and shape factors. From Table 2 the wide variation of
notch acuities can be appreciated, ranging from 0.1 up to about 100. The re-analysis
presented here will include also 26 fatigue limits obtained in the past by Murakami
and Endo (1983) by testing specimens containing artificial defects, more precisely the
small drilled holes shown in Figure 4. All these data are reported in Table 3. Val-
ues of �Kth of the relevant materials are reported in Table 1, taken from the litera-
ture (Akiniwa et al., 1997; McEvily et al., 2003). Then, about 90 experimental fatigue
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Table 1. Materials and mechanical properties.

Materials References σy �σ0 a0 �Kth R

(MPa) (MPa) (µm) (MPa·m0.5)

Annealed 0.45 (Nisitani and Endo, 1988) 364 582 61a 8.1a −1
carbon steel

Annealed 0.36 (Nisitani and Endo, 1988) / 446a 92a 7.6a −1
carbon steel

Annealed 0.46 (Murakami and Endo, 1983) 284 480 152 10.5 −1
carbon steel

(Akiniwa et al., 1997)
Annealed 0.13 (Murakami and Endo, 1983) 206 362 294 11 −1

carbon steel
(McEvily et al., 2003)

SAE 1045 (Du Quesnay et al., 1988) 466 606 70 9.0 −1
steel

2024-T351 Al alloy (Du Quesnay et al., 1988) 360 172 172b 4.0 0
2024-T351 Al alloy (Du Quesnay et al., 1988) 360 248 100b 4.4 −1
G40.11 steel (Du Quesnay et al., 1988) 376 540 144 11.5 −1
Mild steel (0.15% C) (Frost, 1959) 340 420 296 12.8 −1

(Harkegard, 1981)
NiCr steel (Frost, 1957) 834 1000 52 12.8 −1

(Harkegard, 1981)
304 stainless steel (Ting and Lawrence, 1993) 222 720 88 12.0 −1

(Harkegard, 1981)
FeP04 steel (Lazzarin et al., 1997) 185 247 522 10 0.1
AA 356-T6 cast Al (Lazzarin et al., 1997) 182 140 406 5 0.1

alloy

a Values estimated by means of a best fitting of experimental results based on Equation (4).
b Determined by means of Equation (1).

limits of specimens containing notches and defects have been considered in the pres-
ent contribution.

Figure 5 presents the experimental fatigue limits in the diagram obtained by inter-
secting the three dimensional diagram with planes perpendicular to the Ktg axis
(Atzori and Lazzarin, 2002). By so doing the size effect found for the sharp notches
is described by the sloping line of the diagram. Conversely, the size effect is null for
blunt notches, as shown by the flat lines departing from the sloping one. In order to
evaluate the equivalent notch or defect size aeq (6), the parameter α2 · a can be cal-
culated by using the Stress Intensity Factor (SIF) equality:

α2a = 1
π

(
KI

σg

)2

. (11)

In the general case of a two-dimensional crack, KI is the maximum SIF value cal-
culated along the crack front by applying a nominal stress σg (Akiniwa et al., 1997).
As an example, in case of the surface crack generated by the small drilled holes at
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Figure 4. Geometry of specimens weakened by notches and defects: (a) V-shaped notch in a cylindri-
cal bar (CNB), (b) double lateral notch in a flat plate (DENP), (c) hole in a flat plate (CNP), (d)
drilled hole in a cylindrical bar (DHB).

the fatigue limit, Murakami and Endo suggested the following equation (Murakami
and Endo, 1983):

KI =0.65σg

√
π

√
area, (12)

where “area” is the surface of the defect projected in the direction of the maximum
principal stress. In the case of U- and V-notches reported in Table 2, the parameter
α was determined by means of accurate finite element analyses where the notch was
modelled as a crack having the same depth.

In order to clarify the fatigue behaviour close to the branch line shown in Fig-
ure 3, all the available experimental data are plotted in two-dimensional diagrams of
Figures 6 and 7 by using the normalised notch size aeq/a

∗ and the normalised stress
concentration factor Ktg/Ktg*, respectively. Doing so, the branch line obviously col-
lapses into a single point having unit coordinates. Concerning the asymptotic fatigue
behaviour of sharp notches shown by the sloping line in Figure 6, substitution of
Equation (2) into Equation (7) leads to the expression

Ktg

Kf
= 1√

α2a+a0
a∗

, (13)

where the fatigue reduction factor Kf is defined as the ratio between the plain fatigue
limit and the notch fatigue limit, i.e. Kf = �σ0/�σg,th. As it is well known such a
ratio is equal to one for blunt notches and is increasingly greater than unity the
sharper is the notch. Moving to the Frost–Miller diagram shown in Figure 7, the
experimental data for blunt notches conform to Equation (8) re-arranged in terms of
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Ktg = 17.2 

Al alloys 
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Stainless steel 304 

Carbon steels 

from eq. (7) 

Figure 5. Comparison between Equation (7) and experimental data in terms of equivalent notch depth
aeq.

K∗
tg/Kf , that is in terms of ratio between the fatigue reduction factor for a crack hav-

ing the same depth of the notch and the actual fatigue reduction factor. This ratio
equals unity for sharp notches and is increasingly greater than unity the more blunt
is the notch.

The actual fatigue behaviour is somehow smooth around the knee point. Then, in
order to take into account both the defect sensitivity and the notch sensitivity of the
material, the following formula is proposed:

0.3
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0.02 0.1 10

10.0 

FeP04 steel 
G40.11 steel 

Ni-Cr steel 
Stainless steel AISI 304 

Carbon steels 

Al alloys 
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aeq

a∗ =

blunt notches sharp notches 
and defects

Present model Eq. (15) 
Ktg=3 
Kt =30 

Previous model 
[Ciavarella and 
Meneghetti 2004] 

α

Figure 6. Transition between the sharp and blunt notch fatigue behaviour vs. the equivalent notch size
normalised with respect to a∗.
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Figure 7. Transition between sharp and blunt notch fatigue behaviour vs. the normalised stress con-
centration factor.

Ktg

Kf
= 4

√√√√1+
(

K2
tga0

α2a +a0

)2

. (14)

Equation (14) needs the knowledge of two material properties, �Kth and �σ0, and
two stress parameters, Ktg and α. By using definitions (2,6), Equation (14) becomes

Ktg

Kf
= 4

√
1+

(aeq

a∗
)−2

. (15)

Alternatively, by taking advantage of Equation (10), Equation (15) can be written
in the form:

K∗
tg

Kf
= 4

√
1+

(
K∗

tg

Ktg

)4

. (16)

Equations (15) and (16) are plotted in Figures 6 and 7, where analytical estima-
tions and experimental data are compared. These Figures display also the results of
a very recent model proposed in the literature (Ciavarella and Meneghetti, 2004).
Differently from present Equations (15) and (16), that model gave a transition of the
fatigue limit curve dependent on Ktg value. More precisely, a more smooth transi-
tion between blunt and sharp notch fatigue behaviour was expected for higher Ktg

values. In Figures 6 and 7 two different values of Ktg are chosen, namely Ktg = 3
and Ktg =30. The large amount of experimental data show that the transition is sub-
stantially independent of Ktg and this fact supports the use of Equations (15) and
(16). However, one could note that the dependence on Ktg was quite weak also in
Ciavarella and Meneghetti’s model: when the stress concentration factor is varied of
one order of magnitude, fatigue strength predictions vary at most of only 17%.
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As a final remark, one should note that the two ratios used in the y-axis of Fig-
ures 6 and 7 can be also written in the following way:

Ktg

Kf
= �σpeak,th

�σ0
, (17)

K∗
tg

Kf
= �σg,th

�σg,th,ρ=0
, (18)

where �σpeak,th is the fatigue limit in terms of range of the elastic peak stress at the
notch tip and, thanks to the definition of K∗

tg, �σg,th,ρ=0 is the fatigue limit of the
cracked geometry, obtained by decreasing the notch root radius to zero and keep-
ing constant the notch depth. This fact gives a sound meaning to diagrams shown
in Figures 6 and 7 and provides precise guidelines to notched component design. In
fact, thanks to (Equations (15) and (16)), the fatigue limit of a notched components
can be expressed with reference to either the fatigue limit of the base material or the
fatigue limit of the cracked material, so that material characterisation can be done
by using either smooth specimens or, alternatively, cracked specimens.

3. Extension of Kitagawa diagram to open notches

The Kitagawa diagram valid for cracks can be extended to sharp V-notches charac-
terised by a notch opening angle ϕ greater than zero. The extension proposed here
is of a phenomenological type, based on analytical treatment of local models for
high cycle fatigue that have recently become available in the literature. Modelling of
the actual fatigue phenomenon, consisting in short crack propagation influenced by
the notch plastic zone and crack closure effects (Usami, 1987; Verreman and Bailon,
1987; Rose and Wang, 2001) is avoided in the present work.

Consider a V-notch subjected to mode I loading as shown in Figure 8 and the
definition of the Notch-Stress Intensity factor according to Gross and Mendelson
(1972)

KV
I =

√
2π lim

r→0
[σθθ (r, θ =0)r1−λ1 ], (19)

where r and θ are the polar coordinates and λ1 is the first eingenvalue for Mode I
(Williams, 1952).

For V-notched members, we can express the N-SIF as:

KV
I =αγ

√
πaγ σg =√

π(α1/γ
γ a)γ σg, (20)

where
• γ =1−λ1 is the degree of singularity of the stress distributions,
• a is a whichever characteristic dimension, for example the notch depth,
• and αγ is a non-dimensional coefficient, which depends on the component

geometry, loading type and notch opening angle ϕ.
In Equation (20) the quantity between round brackets can be thought as an effec-

tive notch depth. Any dimension of a component weakened by a V-notch can be cho-
sen in order to calculate the N-SIF by means of Equation (20). The shape factor αγ

will change accordingly, in order to satisfy the definition of the governing parameter
KV

I given by Equation (19).
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a

σg

r
θ

σg

σrr

σθθ

τrθ

ϕ

Figure 8. Adopted frame of reference for a sharp V-notch having an opening angle ϕ and subjected
to mode I loading.

3.1. Problem statement

When applied at threshold conditions Equation (20) becomes

�σg,th = �KV
I,th

√
π
(
α

1/γ
γ a

)γ . (21)

In order to account for both “small” and “deep” V-notches, an engineering gener-
alisation of Equation (21) can immediately be written by extending the El-Haddad-
Smith-Topper Equation (4). Then

�σg,th = �KV
I,th

√
π
(
α

1/γ
γ ·a +aV

0

)γ , (22)

where the parameter aV
0 , to be found later, accounts for the sensitivity to “small”

V-notches and can be thought of as the natural extension of the material parameter
a0 (El-Haddad et al., 1979).

In order to apply Equation (21) the threshold value of the N-SIF, �KV
I,th should

be experimentally evaluated. This was done, for example, for fillet-welded joints
(Lazzarin and Tovo, 1998; Atzori and Meneghetti, 2001; Lazzarin and Livieri, 2001),
where fatigue crack initiation occurred at the weld toe and the local toe geometry
was assumed to be a sharp V-notch with a notch angle equal to 135◦. On the other
hand, standard fracture mechanics tests provide the threshold range of the SIF for a
crack, i.e. the value of �Kth. Then Equation (21) can be applied as soon as a link
between �K1,th and �Kth is established: this task can be accomplished on the basis
of known local models for fatigue limit estimations. Finally the characteristic value
aV

0 of the effective notch depth can be found by forcing into Equation (21) the con-
dition �σg,th =�σ0 when a =aV

0 . By so doing, one obtains

aV
0 =

(
�KV

I,th√
π�σ0

)1/γ

. (23)
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Figure 9. Three different models for fatigue limit assessments. Models are based on Finite-Volume
Energy (a), Fracture Mechanics (b) and the Point Method (c).

In the next paragraphs three local approaches available in the literature will
be used to derive a relation between �Kth and �K1,th and an expression for aV

0 :
the local strain energy approach, the Fracture Mechanics approach and the Point
Method.

3.2. Application of the local approach based on the strain energy in a
finite size volume

The mean value of the strain energy within a finite size volume located at the notch
tip was proposed as a parameter suitable for summarising static strength data from
V-notched specimens in brittle material as well as high cycle fatigue properties of
mechanical components weakened by the same geometrical features (Lazzarin and
Zambardi, 2001; Lazzarin et al., 2003, 2004). The model is presented in Figure 9a:
the critical volume surrounding the notch tip was assumed to be a circular sector of
radius R. The size of the structural volume and the critical energy were thought of as
a material parameters at the fatigue limit, for a given nominal load ratio. The energy
within the structural volume was derived by using linear elastic stress distributions
ahead of the notch tip. Then the critical energy at the fatigue limit and the radius of
the structural volume were found by matching the experimental conditions for a plain
and a cracked specimen, respectively. By so doing, the authors were able to deliver
Equation (24), which enables one to estimate the threshold range of the N-SIF from
the plain fatigue limit and the threshold SIF for long cracks:

�KV
I,th =βw�σ0

(
�Kth

�σ0

)2·γ
=βw�σ

(1−2γ )

0 �K
2γ

th . (24)

Values for βw are given in Table 4 with reference to plain strain conditions and
a Poisson’s coefficient ν =0.3. Substitution of Equation (24) into Equation (23) leads
to

aV
0 =

[
β

1/γ

w π

(
1− 1

2γ

)]
a0 =α0γ,w a0. (25)
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Table 4. Values of parameters β and α0γ .

ϕ(deg) γ =1−λ1 Local energy Fracture mechanics Point method

βw α0γ,w βLEFM α0γ,LEFM βPM α0γ,PM

0 0.5 1 1 1 1 1 1
15 0.4998 0.9805 0.9609 1 0.999 1 1
30 0.4986 0.9653 0.9287 1.002 1.001 1.003 1.002
45 0.495 0.9578 0.9061 1.011 1.011 1.009 1.007
60 0.4878 0.9610 0.8956 1.030 1.032 1.023 1.017
90 0.4555 1.017 0.9274 1.107 1.118 1.085 1.070

120 0.3843 1.186 1.103 1.277 1.338 1.237 1.232
135 0.3264 1.345 1.350 1.424 1.605 1.376 1.446
150 0.248 1.591 2.032 1.641 2.303 1.589 2.022
160 0.1813 1.828 3.719 1.846 3.934 1.796 3.382
170 0.1 2.152 21.846 2.125 19.255 2.086 16.00

Values of α0γ,w are also listed in Table 4 for different notch angles. It is worth not-
ing that, unlike the shape factor αγ of Equation (20), the factor α0γ,w depends only
on the notch opening angle and not on the component geometry.

Substitution of Equation (25) into Equation (22) leads to the following El-Haddad
type equation for sharp V-notches:

�σg,th = �KV
I,th

√
π
(
α

1/γ
γ a +α0γ,w a0

)γ . (26)

Accuracy of Equation (26) will be later proved against a number of experimental
results from fatigue tests.

3.3. Application of the local approach based on fracture mechanics

It is well known that the fatigue limit of sharp notches is the threshold condition
for the propagation of small cracks nucleated at the notch tip (Lukas and Klesnil,
1978; Smith and Miller, 1978; Tanaka and Nakai, 1983). The authors of the present
paper found the small crack size to be equal to a0s, being a0s =a0/1.122 (Atzori et al.,
2002a), as depicted in Figure 9b.

The SIF of a small crack (a0s in length) at the tip of a notch can be calculated
by means of Albrecht–Yamada’s simplified approach which makes use of Bueckner’s
superposition principle (Bueckner, 1970; Albrecht and Yamada, 1977)

KI =1.12
2
π

a0s∫
0

σθθ (r,0)√
a2

0s − r2
dr ·√πa0s. (27)
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The asymptotic stress field is given by

σθ(r,0)= KV
I√

2πrγ
. (28)

Substitution of this expression into Equation (27), taking into account the defini-
tion of a0s and changing the variable inside the integral leads to

KV
I =

[
1.12(2γ−1) ·

√
2

π
·
∫ 1

0

1

ξγ ·
√

1− ξ 2
dξ

]−1

KIa
(γ−(1/2))

0 . (29)

At the threshold condition, Equation (29) gives

�KV
I,th =


1.12(2γ−1)

√
2π(γ−(3/2))

1∫
0

1

ξγ ·
√

1− ξ 2
dξ




−1

�σ
(1−2γ )

0 �K
2γ

th (30)

or, more simply

�KV
I,th =βLEFM�σ

(1−2γ )

0 �K
2γ

th . (31)

Equation (31) can be directly compared with Equation (24): the threshold value of
the N-SIF can be obtained from the threshold SIF for long cracks and the material
fatigue limit. In both equations β depends only on the notch opening angle.

Substitution of Equation (31) into Equation (23) leads to an equation formally
analogous to Equation (25), provided that βw must be substituted by βLEFM in order
to obtain the expression for α0γ,LEFM.

Albrecht–Yamada’s simplified approach results in increasing errors as the notch
opening angle decreases. As an alternative, for estimating the SIF value for a crack
originated from a sharp V-notch in (Figure 9a), the following formula can be used,
which was derived from one proposed by Murakami (1990) and is valid for a semi-
infinite plate subjected to mode-I tension loading

KI =C (ϕ)KV
I

√
πb((1/2)−γ ), (32)

where b is the length of the crack emanated from the V-notch and C(ϕ) is the fol-
lowing function

C(ϕ)=−4.658×106 ·ϕ2 +1.840×104 ·ϕ +5.629×10−1 (33)

ϕ being in degrees.
By indicating with “a” the V-notch depth, estimations for KI based on Equation

(32) with an error lower than 5% result in some limits of applicability. Such limits
are: when 0◦ ≤ϕ ≤90◦ then the ratio b/a must be lower than 0.1, when 90◦ <ϕ ≤120◦

then the ratio b/a must be lower than 0.2 and, finally, when 120◦ ≤ϕ ≤160◦ then the
ratio b/a must be lower than 0.5.

By imposing b=a0s in Equation (32) at threshold conditions we have

�Kth =C (ϕ) ·�KV
I,th ·√π ·a0s

( 1
2 −γ ). (34)
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Substitution of definition of a0s into Equation (34) leads again to an expression of
the type

�KV
I,th =βLEFM ·�σ

1−2·γ
0 ·�K

2·γ
th , (35)

where the parameter β must be updated according to the present model

βLEFM = 1.121−2·γ

C(ϕ) ·πγ
(36)

Values of βLEFM and α0γ,LEFM, the latter obtained by simply updating Equation
(25), are given in Table 4. This table makes it possible a comparison with the coeffi-
cients already determined on the basis of the energy-based model.

3.4. Application of the point method

Sound basis to all critical distance approaches are in pioneering paper by Ritchie
et al. (1973). More recently, the parameter a0 was explicitly included in the critical
distance methods when applied to fatigue limit assessments of components weakened
by cracks, crack-like notches (Tanaka, 1983; Lazzarin et al., 1997)) and common
notches (Taylor, 1999). For a given notch subjected to mode I loading, the “Point
method” results in a distance from the notch tip equal to a0/2 (Figure 9c) to obtain
the fatigue limit of plain specimens.

By imposing the condition invoked by the point method into Equation (28), at
threshold one obtains

�KV
I,th√

2π
(

a0
2

)γ =�σ0. (37)

Recalling the definition of a0, Equation (37) becomes

�KV
I,th =

√
2

2γ
π((1/2)−γ )�σ

(1−2γ )

0 �K
2γ

th =βPM�σ
(1−2γ )

0 �K
2γ

th , (38)

which is again formally identical to Equation (24), where now parameter βPM,
according to the point method, is given by

βPM =
√

2
2γ

π((1/2)−γ ). (39)

Thus the expression for α0γ,PM as a function of βPM is analogous to Equation (25).
Values of βPM and α0γ,PM are also reported in Table 4.

3.5. Comparison among the considered approaches

Fatigue limit of a sharp V-notch in terms of nominal stresses can be carried out by
using Equations (22) and (23), where �KV

I,th is linked to two material parameters,
namely the plain fatigue limit �σ0 and the threshold value of the stress intensity fac-
tor range for long cracks �Kth.

Since the three models considered here leads to expressions for �KV
I,th and aV

0
which are formally identical to one another, a comparison can be made in terms of
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the parameters β, as shown in Table 4. The parameter β equals unity when the notch
opening angle is zero (the crack case) and it is is nearly constant up to a V-notch
opening angle of about 100◦. For greater values of the angle, β rapidly increases
beyond unity.

As far as α0γ is concern, the three criteria conform to an expression formally
equal to Equation (25). From Table 4 it can be deduced that the cut-off value of the
effective notch depth aV

0 (obeying Equation (25)) can be considered nearly equal to
a0 when the notch angle is less than 100◦. Beyond such a value, aV

0 rapidly increases.
As an example, for a notch opening angle equal to 160◦, aV

0 ranges from 3.4a0 to
3.7a0.

Finally, Figure 10 shows the generalised Kitagawa diagram for sharp V-notches
plotted according to Equation (22). The effect of the notch opening angle on the
cut-off value aV

0 can be appreciated. The only geometrical feature that distinguishes
the theoretical curves plotted in Figure 10 is the notch opening angle ϕ, which deter-
mines the degree of singularity of the local stress distributions (Williams, 1952). Inde-
pendence on the chosen dimension “a”, which accounts for the scale effect, is assured
by the adoption of the effective dimension (α1/γ

γ · a) in the abscissa of the diagram:
for a given notch opening angle, the fatigue limit is a unique function of (α1/γ

γ · a),
as shown by Equation (20), �KV

I,th being a material parameter.

4. Experimental validation of the generalised Kitagawa diagram

The accuracy of Equation (22) was tested against the experimental data obtained by
Kihara and Yoshi by testing mild and high strength steel plates (Kihara and Yoshii,
1991). Specimen geometry is shown in Figure 11: three series of specimens were char-
acterised by lateral V-notches with notch angles equal to 90◦ and 120◦. Other two
series were weld-like geometries, having an opening angle equal to 135◦ and 150◦.
Mode II stress distributions are absent in the former three series, while they are

1 ⋅a

ti
mil

eugitaF
ht,g

=0°

0

Eq. (22) 
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th,I

V
I KK =
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Figure 10. Generalised Kitagawa diagram for V-notches.
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negligible in the latter two series, due to the great value of the notch opening angle.
During the fatigue tests, the adopted load ratio was equal to 0.05, while tests were
stopped when the crack length was about 0.2 mm.

A comparison between numerical predictions and experimental results is reported
in Figures 12 and 13 for the two materials. Theoretical calculations were performed
by means of the energy-based model, i.e. by means of Equation (26) combined with
Equation (24). Values of the shape coefficient αγ used in Equation (26) were calcu-
lated by means of accurate finite element analyses and are reported in Figure 11.

The dimension “a” reported in the abscissa is the depth of the V-notch for the
plates containing lateral V-notches while is the main plate thickness for the weld-like
geometries. Had the dimension “a” been chosen equal to the specimen width for all
cases, then diagrams reported in Figures 12 and 13 would have been unchanged by
virtue of Equation (20). That is because the cut-off dimension aV

0 defined by Equa-
tion (23) does depends only on the notch opening angle (see Equation (27)).

Both figures show the good agreement between the theoretical models and the
experimental results. Due to the small variability of coefficients (see Table 4 for a
notch angle ranging from 90◦ to 150◦) the comparison between theoretical predictions
and experimental results would not have changed by using the other two models.

ϕ=90˚ - αγ=1.312 
ϕ=120˚ - αγ=1.528 =90˚, 120˚ 

01

350
25 

φ20 

05

ϕ=120˚ - αγ=3.000 

05 φ20 

25 
350

=120˚ 

02

ϕ=135˚ - αγ=0.5600 
ϕ=150˚ - αγ=0.7890 

350

450

50 

06

φ20

R10 

10 

01
04

20 

50 

=135˚, 150˚ 

ϕ

ϕ

ϕ

Figure 11. Geometry of the specimens used by Kihara and Yoshii (Kihara and Yoshii, 1991). All
dimensions in mm.
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Figure 12. Comparison between Equation (26) and experimental results for the HT60 high strength
steel.
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Figure 13. Comparison between Equation (26) and experimental results for the SS41 mild steel.

5. Final remarks

In order to find the real dimension “a” in correspondence to aV
0 , i.e. the reference

dimension of the component below which the fatigue behaviour is not affected by the
presence of the notch, the following formula should be applied:

aDγ = α0γ ·a0

α
1/γ
γ

, (40)

α0γ being evaluated according to one of the models presented in the present work.
For example, in the case of the weld-like specimens with ϕ =135◦ made of SS41 steel
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(see Figure 11), the cut-off thickness aDγ is equal to 1.97 mm ≈ 2 mm (α0γ = 1.350,
αγ = 0.560, γ = 0.326, a0 = 0.247 mm). It is worth noting that in the case of a crack
α0γ equals unity and γ = 0.5 so that Equation (40) simply matches the expression
aD =a0/α

2 (Atzori et al., 2003)
Finally an extension of Equation (14) is proposed in order to include V-notches

with large opening angles. By updating the exponents the following equation is
obtained:

Ktg

Kf
=

1+

(
K

1/γ
tg ·α0γ ·a0

α
1/γ
γ ·a +α0γ ·a0

)1/γ



γ 2

. (41)

The proposed equation can be used in order to estimate the fatigue reduction fac-
tor Kf for members weakened by V-notches of arbitrary opening angle and notch
root radius subjected to prevailing mode I stress distribution. Figure 14 plots Equa-
tion (41) for different notch opening angles. It can be thought of as an extension to
V-notches of the diagram already shown in Figure 6 for U-notches. Symbols in the
abscissa of Figure 14 have been conveniently updated, being now

aeq,γ =α1/γ
γ a +α0γ a0 (42)

and

a∗
γ =K

1/γ
tg α0γ a0. (43)

Figure 14 highlights that scale effect in fatigue of sharp V-notches is almost the
same when the notch opening angle ranges from 0◦ to 90◦, being the singularity
exponent in Williams equation almost constant (Williams, 1952). This fact provides
a justification to what has been done in the first part of the present work, where
V-notches having a notch opening angle equal to 60◦ have been treated as U-notches.
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Figure 14. Scale effect of V-notched members subjected to mode I stress distribution in high cycle
fatigue conditions.
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6. Conclusions

The present work has presented a unified treatment of U- and V-notches having an
arbitrary notch opening angle and notch tip radius and subjected to prevailing mode
I fatigue loadings. In particular the problem of estimating the fatigue limit in terms
of applied nominal stresses has been addressed and formulas for estimating the ratio
between the elastic stress concentration factor and the fatigue reduction factor have
been proposed.

Concerning U-notched members, Equation (14) is proposed which satisfy the two
asymptotic fatigue behaviours of smooth and cracked components. An engineering
approximation is assumed in the fatigue regimes where the material exhibits a sen-
sitivity to defects and to notches, respectively, the former being the same proposed
by El-Haddad-Smith-Topper. Two material parameters are needed among the follow-
ing three ones: the plain fatigue limit, the threshold value of the SIF for long cracks
and the El-Haddad-Smith-Topper length parameter. The new formula was validated
by means of about 90 experimental fatigue limits generated by 12 different materials,
including carbon steels, low strength steels, high strength steels, wrought aluminium
alloys and one cast aluminium alloy.

Concerning V-notched members, an analytical relation was established between the
threshold value of the N-SIF and the threshold SIF for long cracks. This task could
be accomplished by applying local approaches valid in notch fatigue that became
recently available from literature. By so doing, additional material parameters were
not needed in order to extend the Kitagawa diagram, valid for cracks, to sharp
V-notches. The new diagram was validated by means of experimental results taken
from literature generated by low and high strength steels. As a results Equation (22)
is proposed, which account also for the short notch effect by extending the El-Had-
dad et al. equation proposed in the past.

Finally Equation (41) is proposed for fatigue limit estimation of V-notched mem-
bers, which encompasses all cases of practical interest, i.e. short/long notches with
arbitrary notch opening angles and notch tip radii. Lack of experimental data did
not enabled us to validate the proposed formula for open V-notches in the region
where notch sensitivity or defect sensitivity exist. In any case, the asymptotic fatigue
behaviours, namely the plain fatigue limit, the full scale effect and the full notch sen-
sitivity, are correctly matched.
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