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Abstract. A novel bi-layer beam model is developed to account for local effects at the crack tip of a
bimaterial interface by modeling a bi-layer composite beam as two separate shear deformable beams.
The effect of interface stresses on the deformations of sub-layers, which is referred to as the elastic
foundation effect in the literature, is considered in this model by introducing two interface compli-
ance coefficients; thus a flexible joint condition at the crack tip is considered in contrast to the “rigid
joint” condition used in the conventional bi-layer model. An elastic crack tip deformable model is
presented, and the closed-form solutions of local deformation at the crack tip are then obtained. By
applying this novel crack tip deformation model, the new terms due to the local deformations at the
crack tip, which are missing in the conventional composite beam solutions of compliance and energy
release rate (ERR) of beam-type fracture specimens, are recovered. Several commonly used beam-type
fracture specimens are examined under the new light of the present model, and the improved solu-
tions for ERR and mode mixity are thus obtained. A remarkable agreement achieved between the
present and available solutions illustrates the validity of the present study. The significance of local
deformation at the crack tip is demonstrated, and the improved solutions developed in this study
provide highly accurate predictions of fracture properties which can actually substitute the full con-
tinuum elasticity analysis such as the finite element analysis. The new and improved formulas derived
for several specimens provide better prediction of ERR and mode mixity of beam-type fracture
experiments.

Key words: Compliance, crack tip deformation, energy release rate, fracture specimens, improved data
reduction, mode mixity, transverse shear deformation.

1. Introduction

Beam-type fracture specimens (Davies et al., 1998) are widely used to study the
interlaminar delamination, one of the most common failure modes in layered struc-
tures such as laminated composites. A compliance approach is commonly used to
determine the energy release rate (ERR) and mode mixity of the beam-type frac-
ture specimens and develop the related data reduction procedures. In this method,
the ERR of the specimen is calculated through the derivative of compliance; while
the compliance is obtained through modeling the specimen as a split beam, i.e., the
cracked portion is modeled as two separate beams and the virgin portion is mod-
eled as a composite beam. At the crack tip where a joint is formed connecting the
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cracked and virgin parts of the specimen, the cross-sections of the beams are assumed
to remain in one plane and perpendicular to the mid-plane of the virgin part. Thus,
the elastic deformation such as the differential extension and root rotation at the
crack tip is neglected (Sun and Pandey, 1994), and a “rigid joint” is formed. Such a
rigid joint beam model under-evaluates the compliance of the specimen and predicts
a relatively approximate ERR of the specimen.

Extensive efforts have been made to find better equations to determine the ERR
and mode mixity of beam-type specimens, which essentially are to account for the
local deformation at the crack tip. Sun and Pandey (1994) obtained an approximate
two dimensional elastic solution of root rotation at the joint (crack tip) of an
isotropic and materially homogeneous split beam. Sundararaman and Davidson
(1998) used a torsional spring to describe the deformation at the joint in order to
obtain reasonably accurate results in their analysis of an unsymmetric end-notched
flexure (ENF) specimen, in which the stiffness of the torsional spring was obtained
numerically. Shu and Mai (1993) used both the “rigid” and “soft” joint models to
evaluate the upper and lower bounds of buckling and vibration of bimaterial split
beam. A better solution of compliance and ERR with consideration of local defor-
mation at the crack tip (Williams, 1989; Wang and Williams, 1992; Corleto and
Hogan, 1995; Ozil and Carlsson, 1999; Qiao et al., 2003a,b) was obtained by using
a beam on elastic foundation model pioneered by Kanninen (1973, 1974) and the
local deformation was captured as the “elastic foundation effect” with two founda-
tion stiffness coefficients. However, the beam on elastic foundation model could only
be employed to model one sub-beam. In case of a general bi-layer beam-type inter-
face fracture specimen, a sub-layer (or sub-laminate in composite laminates) model
(Armanios et al., 1986; Wang and Qiao, 2004a) is more suitable. In this type of
model, each layer of the virgin beam near the crack tip was modeled as a single
sub-beam, instead of only considering the whole uncracked portion as a compos-
ite beam in the conventional way (Schapery and Davidson, 1990; Suo and Hutch-
inson, 1990). Thus, each layer has individual rotation, and the cross-section at the
joint does not remain a plane as assumed in the composite beam model. In this
regard, the joint (crack tip) is rotationally flexible and can be determined by the
beam analysis (Wang and Qiao, 2004a). However, the assumption that the interface
stresses have no effect on the deformations of sub-beams was used (Wang and Qiao,
2004a), which leads to a “semi-rigid joint” scenario at the crack tip of the two sub-
layers and the underestimated local deformation as compared to numerical finite ele-
ment solution (Li et al., 2004). A need exists to modify the semi-rigid joint model so
that a better estimation of local deformation at the crack tip can be obtained and
the ERR and mode mixity of the beam-type fracture specimens can be thus better
estimated.

To this end, an improved sub-layer beam model is first presented in this study. In
contrast to the aforementioned “semi-rigid joint” sub-layer model (Wang and Qiao,
2004a), the present method employs a “flexible joint” model, in which the deforma-
tions at the crack tip due to the interface stresses are considered by introducing two
interface compliances. The concept of crack tip element proposed by Davidson et al.
(1995) is herein adapted for the convenience of analysis, and a closed-form solution
of crack tip deformation is correspondingly obtained. The new crack deformation
solution is then used to derive the improved equations of ERR and mode mixity for
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Figure 1. Interface fracture in a bi-layer structure.

commonly used beam-type fracture specimens. Numerical analysis and comparisons
are also conducted to verify and illustrate the improved solutions.

2. Bi-layer beam model with flexible joint

Consider a split bi-layered beam under general loading of Figure 1, where a crack
lies along the straight interface of the top beam “1” and bottom beam “2” with
thickness of h1 and h2, respectively. Two beams are made of homogenous, orthotrop-
ic materials, with the orthotropy axes along the coordinate system. The length of the
uncracked region L is relatively large compared to the thickness of the whole beam
h1 +h2 so that the effect of boundary conditions of the virgin part is negligible. This
configuration essentially represents a crack tip element, a small element of a split
beam where the cracked and uncracked portions are joining, on which the generic
loads are applied, as already determined by a global beam analysis. It is assumed that
the length of cracked and uncracked parts of the beam is relatively large compared
to the bi-layer beam thickness. Therefore, a beam theory can be used to model the
behavior of the top and bottom layers.

Considering a typical infinitesimal isolated body of bi-layer beam system (Figure 2),
the following equilibrium equations are established:

dN1(x)

dx
=bτ(x), dN2(x)

dx
=−bτ(x),

dQ1(x)

dx
=bσ(x), dQ2(x)

dx
=−bσ(x), (1)

dM1(x)

dx
=Q1(x)− h1

2
bτ(x),

dM2(x)

dx
=Q2(x)− h2

2
bτ(x),

where N1(x) and N2(x), Q1(x) and Q2(x), and M1(x) and M2(x) are the axial forces,
transverse shear forces, and bending moments in layers 1 and 2, respectively, b is the
width of the beam, h1 and h2 are the thickness of layers 1 and 2, respectively, σ(x)
and τ(x) are the interface normal (peel) and shear stresses, respectively.

By making use of the constitutive equations of the individual layers, we can relate
the stress resultants and displacements of plates as

Ni =Ai dui
dx
, Mi =Di

dφi

dx
, Qi =Bi

(
φi + dwi

dx

)
, (2)
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Figure 2. Free body diagram of sub-layers.

Figure 3. Displacement continuity conditions along the interface of sub-layers.

where Ai , Bi , and Di(i= 1,2) are the axial, shear and bending stiffness coefficients
of layer i, respectively, and they are expressed as

Ai =E(i)11 bhi, Bi = 5
6
G
(i)

13bhi, Di =E(i)11

bh3
i

12
,

where E(i)11 and G
(i)

13 (i = 1,2) are the longitudinal Young’s modulus and transverse
shear modulus of layer i, respectively.

The overall equilibrium requires (Figure 1)

N1 +N2 =N10 +N20 =NT , Q1 +Q2 =Q10 +Q20 =QT ,

M1 +M2 +N1
h1 +h2

2
=M10 +M20 +N10

h1 +h2

2
+QT x=MT (3)

where Ni0, Qi0 and Mi0 (i = 1,2) are the external forces in layers 1 and 2, respec-
tively, NT , QT and MT are the resulting forces expressed by the right equality in the
above equations.

To overcome the drawback of the semi-rigid joint condition used in the existing
bi-layer beam model (Wang and Qiao, 2004a) aforementioned, the continuity condi-
tions of deformation along the interface (Figure 3) are therefore modified by the new
terms of compliance contributions from the interface stresses and become

w1 (x)−Cn1σ =w2 (x)+Cn2σ, (4)

u1 (x)− h1

2
φ1 (x)−Cs1τ =u2 (x)+ h2

2
φ2 (x)+Cs2τ, (5)
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where Cni and Csi are the interface compliance coefficients of the bi-layer beam under
peel and shear stresses, to account for the contribution of interface stresses to the
displacement components at the interface of two layers. The concept of the inter-
face compliance was first introduced by Suhir (1986) to study the stresses in the
bi-metal thermostats. In this way, the existing sub-laminate model (Armanios et al.,
1986; Chartterjee and Ramnath, 1988; Zou et al., 2001; Wang and Qiao, 2004a) is a
special case of Equations (4) and (5) by assuming that the two interface compliance
coefficients are zero, which is equivalent to a semi-rigid joint case (Qiao and Wang,
2005, in press). As recently demonstrated by Wang and Qiao (2004b), a good estima-
tion of these two compliances is given by

Cni = hi

10E(i)33

, Csi = hi

15G(i)

13

. (6)

The governing equation of a bi-layer beam system is thus established as

d6N1

dx6
+a4

d4N1

dx4
+a2

d2N1

dx2
+a0N1 +aMMT +aNNT =0, (7)

where,

a0 =−b2KnKs

((
1
D1

+ 1
D2

)
η+ ξ (h1 +h2)

2D2

)
,

a2 =bKn
(
bKs

(
1
B1

+ 1
B2

)(
η+ h1

2
ξ

)
+
(

1
D1

+ 1
D2

))
,

a4 =−b
(
Ks

(
ξh1

2
+η

)
+Kn

(
1
B1

+ 1
B2

))
,

aM =−b2KnKs

((
1
D1

+ 1
D2

)
h2

2
+ ξ

)
1
D2
,

aN =−b2KnKs

(
1
D1

+ 1
D2

)
1
A2
,

Ks = 1
Cs1 +Cs2 , Kn= 1

Cn1 +Cn2
, ξ = h1

2D1
− h2

2D2
, η= 1

A1
+ 1
A2

+ (h1 +h2) h2

4D2
.

It is interesting to point out that the present approach accounting for the effects
of interface shear and peel stresses on the deformation of each sub-beam is similar
to a beam on elastic foundation model (Kanninen, 1973, 1974; Williams, 1989), in
which the additional deformation due to the interface stresses are captured as “elas-
tic foundation effect” with two foundation stiffnesses. In this sense, the present model
can be viewed as a generalization of the beam on elastic foundation model.
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3. Flexible joint at the crack tip

3.1. Joint deformation

Based on the above established novel bi-layer beam model, the following local defor-
mation at the crack tip can be obtained (Qiao and Wang, 2004) and expressed as



u1 (0)
φ1 (0)
w1 (0)
u2 (0)
φ2 (0)
w2 (0)




=




u1C (0)
φ1C (0)
w1C (0)
u2C (0)
φ2C (0)
w2C (0)




−




S11 S12 S13

S21 S22 S23

S31 S32 S33

S41 S42 S43

S51 S52 S53

S61 S62 S63





NM
Q


 , (8)

where {u1(0), φ1(0),w1(0), u2(0), φ2(0),w2(0)}T represents the displacement compo-
nents of the respective sub-layers at the crack tip of this study; {u1C(0), φ1C(0),
w1C(0), u2C(0), φ2C(0), w2C(0)}T represents the displacement components at the
crack tip based on the conventional composite beam model (the rigid joint model);
{�u1(0),�φ1(0),�w1(0),�u2(0),�φ2(0),�w2(0)}T are the difference between the
conventional composite beam model and the present study; S = {Sij }6×3 is a matrix
representing the local deformation compliance at the crack tip and given in Appen-
dix A; and {N,M,Q}T is the self-equilibrated loading parameters acting at the crack
tip and defined by

N =N10 −N1C |x=0 ,M=M10 −M1C |x=0 ,Q=Q10 −Q1C |x=0 , (9)

where,

N1C = (D1 +D2) h2 + ξD1D2 (h1 +h2)

2D2 (D1 +D2) η+ ξD1D2 (h1 +h2)
MT + 2 (D1 +D2)

C2 (2 (D1 +D2) η+ (h1 +h2)D1ξ)
NT ,

Q1C =
(
η

ξ
+ h1

2

)
(D1 +D2) h2 +D1D2ξ

2D2 (D1 +D2) η+ ξ (h1 +h2)
QT , M1C = η

ξ
N1C − 1

ξ

(
NT

C2
+ h2

2D2
MT

)
.

Equation (8) provides a new and improved continuity condition at the crack tip, and
it represents an elastic deformable joint (Figure 4b) and is therefore more realistic
than the rigid joint model used commonly in the literature (Figure 4a). Based on
Equation (8), the new and improved solution of a cracked bi-layer beam with inclu-
sion of crack tip deformation can be obtained.

Considering the conventional beam-type fracture specimens, such as the double
cantilever beam (DCB) and ENF, in which the loads are applied at the end or
the mid-span of the specimens, the compliance can be therefore modified based on
Equation (8) to account for the crack tip deformation as

C=CC +Cj (10)

where C is the total compliance of the specimen, CC is the compliance of the speci-
men calculated based on the conventional composite beam model (with a rigid joint
at the crack tip). Cj is a new term representing the contribution of the crack tip
deformation to the total compliance of the specimen and is given by

Cj =− n

2P
(�φa+�w) (11)
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Figure 4. Joint (crack-tip) deformation.

where a is the crack length, and P is the applied load, n is a value corresponding to
the load point position, i.e., n=2 if the load is applied at the beam end (e.g., DCB)
and n=1 if at the mid-span of the specimen (e.g., ENF). Consequently, ERR is given
as

G=GC +Gj, GC = P 2

2b
dCC

da
, Gj = P 2

2b
dCj

da
, (12)

where G is the improved ERR of the specimen, GC is the ERR of the rigid joint
model by the conventional composite beam theory, and Gj is the additional ERR
induced by the crack tip deformation. Again, Gj is the missing term in the con-
ventional rigid joint model and is recovered here to represent the crack tip local
deformation effect. With the local deformation considered and captured by a new
term Cj in Equations (10) and (12), it is expected that the accuracy in determina-
tion of ERR and mode mixity can be improved. Since the local deformation at the
crack tip is solved analytically, the improved fracture parameters for the beam-type
fracture specimens can be thus determined in the closed-form solutions as illustrated
later for several commonly used specimens.

3.2. Numerical verification

To verify the above solutions, the deformations at the joint of a simple split beam
configurations shown in Figure 5a is examined by the present method and the finite
element analysis (FEA). The specimen is modeled by a commercial finite element
package ANSYS as a two-dimensional problem with 8-node structural plane ele-
ment (PLANE82). The geometries in Figure 5a are chosen as h1 =h2 = 1,L/h1 = 1.
Two sets of materials are considered in this study: (a) symmetric DCB specimen:
E1 =E2 =1, ν1 =ν2 =0.3 and; (b) an asymmetric double cantilever beam (ADCB)
specimen: E2 = 5E1 = 5, ν1 = ν2 = 0.3. Figure 5b and c compare the deformed cross-
section (the axial displacement) at the crack-tip based on the present solution and
FEA at a/h1 = 16. Excellent agreements between the two methods are achieved,
which shows that the significant rotations at the joint are captured by the present
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Figure 5. Comparisons of joint deformation between the present solution and FEA.
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model for both the DCB and ADCB specimens; while in the conventional composite
beam model, a zero joint (crack tip) rotation is assumed. In fact, considering
Equation (11), the present method provides almost identical solution as that of finite
element analysis of Cj for both the DCB and ADCB specimens as demonstrated in
Figure 5d.

4. Applications to fracture specimen analyses

The beam-type fracture specimens such as the DCB and ENF specimens have been
commonly employed to assess and predict the growth of interface crack of lay-
ered structures, such as delamination of composite laminates, debonding of adhesive
joints, and decohesion of thin film from substrates. The compliance-based method is
one of the most popular techniques to determine the fracture parameters (e.g., ERR
and mode mixity) of the beam-type specimens. Varieties of analytical models based
on beam theories have been developed for different specimens (Ozil and Carlson,
1999). For the DCB and ENF specimens, very accurate closed-form solutions based
on the beam on elastic foundation or higher-order beam theory are available due to
the simplicity of the specimen configurations. However, there are no highly accurate
analytical solutions for a generic bimaterial interface fracture specimens, such as an
asymmetric DCB specimen discussed next. Due to neglecting the local deformation
at the crack tip, the existing solutions based on simple beam or Timoshenko’s beam
theory can only give very approximate predictions when the crack length is compar-
ative to the thickness of the specimen. Meanwhile, unlike the symmetric specimens
such as the DCB and ENF, of which the mode mixity is unambiguously defined,
there is no accurate way to determine the mode mixity for a generic bimaterial inter-
face specimen. The available solution for the determination of mode mixity (Suo
and Hutchinson, 1990; Schapery and Davidson, 1990) was primarily based on simple
beam theory, and the transverse shear was not considered. Based on the flexible joint
model presented in this study, the compliance-based equations to determine ERR
and mode mixity (i.e., for the compliance, ERR and mode mixity) are given in this
section, and they account for the local deformation at the crack tip. As illustrated
in the following, the resulting solutions of the flexible joint model provide improved
accuracy and achieve refined explicitness of fracture parameter equations compared
to other available solutions in the literature.

4.1. Double cantilever beam (DCB) specimen

For a DCB (Figure 6) under consideration, three loading parameters of Equation (9)
are given by N =0,M=−Pa,Q=−P . According to Equation (8) and Appendix A,
the deformation at the crack tip is obtained as

�w1 =− P

D1k
2
2k

2
3

((
k2

2 +k2
3 +k2k3

)
h2a+ (k2 +k3) h

3)+ Pa

B1
,

�φ1 =− 1
D1k2k3

(
(k2 +k3) ha+h2)P. (13)
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Figure 6. Correction factor for the DCB specimen.

Then, based on Equation (11), the compliance of the DCB specimen at the joint is

1
2
Cj =−(�w+�φa)

P
= k2 +k3

D1k2k3
ha2 + (k2 +k3)

2

D1k
2
2k

2
3

h2a+ k2 +k3

D1k
2
2k

2
3

h3 − a

B1
. (14)

The compliance of the DCB by the conventional composite beam (the rigid joint)
model is simply expressed as

1
2
CC = a3

3D1
+ a

B1
. (15)

Therefore, the improved compliance for the DCB specimen is

C=CC +Cj = 2
3D1

a3 +2
k2 +k3

D1k2k3
ha2 +2

(k2 +k3)
2

D1k
2
2k

2
3

h2a+2
k2 +k3

D1k
2
2k

2
3

h3. (16)
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Figure 7. Effect of crack-tip deformation on compliance and ERR of DCB specimen.

Consequently, the ERRs of the DCB specimen are obtained as

GC = 12P 2a2

b2E11h3
+ P 2

bB1
,

(17)

Gj = 12P 2

b2E11h3

(
2 (k2 +k3)

k2k3
ha+ (k2 +k3)

2

k2
2k

2
3

h2

)
− P 2

bB1
,

G= P 2

2b
dC

da
= 12P 2a2

b2E11h3

(
1+χI

(
h

a

))2

, (18)

where χI = (k1 +k2) /k1k2. Note that Equation (18) has the same form as Williams’s
solution (1989) based on a beam on elastic foundation and Suo et al.’s solution
(1991) based on the numerical analysis, with the only difference in the expression of
χI which was called the correction factor by Williams (1989). The expression of the
correction factor (χI ) by Williams (1989) is given as

χI =
√

1
18K

(
a66

a11

)[
3−2

(
	

1+	
)2
]1/2

, 	= 1
K

a66√
a11a22

, (19)

where aii(i= 1,2,6) are the compliance coefficients of orthotropic materials, and K

is the shear correction factor.
A comparison of the values of χI by the above three methods (i.e., the present

model, Williams’s solution (1989) based on a beam on elastic foundation, and Suo
et al.’s solution (1991) based on the numerical analysis) is presented in Figure 6. It
can be observed that the present closed-form solution is very close to the numerical
solution of Suo et al. (1991) with an error less than 1%; while the solution given by
Williams (1989) underestimates the correction factor χI .

In Equations (16) and (18), the new terms Cj and Gj represent the contribution of
local deformation at the crack tip, in addition to the conventional solutions of com-
pliance CC and ERR GC based on the rigid joint model in which the two sub-beams
in the cracked portion of the specimen are assumed cantilevered at the crack tip. As
illustrated in Figure 7, Cj and Gj are quite significant when the crack length is short
enough compared to the thickness of the specimen. For example, the crack tip deforma-
tion contributes 17% and 30% to the total compliance, 12% and 22% to the total ERR



234 J. Wang and P. Qiao

0.1

0.3

0.5

0.7

0.9

0 0.5 1 1.5 2

Bao et al. (1992)

Williams (1989)

Present

ρ=4

ρ=2

ρ=1

λ

χ II

2L
a

Figure 8. Correction factor for the ENF specimen.

for isotropic and orthotropic materials, respectively, when a= 10h. In Figure 7, the
isotropic material properties are determined by λ= 1 and ρ= 1; while the orthotropic
material properties are defined by λ= 0.2 and ρ= 2. λ and ρ are the two nondimen-
sional parameters defined by Suo et al. (1991) as λ= E33

E11
, ρ=

√
E11E33
2G13

−√
ν13ν31.

4.2. End-notched-flexural (ENF) specimen

The ENF specimen is a standard specimen commonly used in measuring the mode-II
fracture toughness of materials. Similar to the procedures for the DCB specimen, the
local deformation at the crack tip for the ENF specimen (Figure 8) is obtained as

�φ1 =− 3Pah
16D1k1

, �w1 =− 3Pah2

16D1k
2
1

. (20)

Then the improved expression of compliance and ERR accounting for the crack tip
deformation can be presented as

Cj =− 1
2P

(�φ1a+�w1)= 3
32D1

(
a2h

k1
+ ah2

k2
1

)
,CC = L

4B1
+ L3

48D1
+ a3

32D1
, (21)
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C= L

4B1
+ L3

48D1
+ 1

32D1

(
a3 + 3a2h

k1
+ 3ah2

k2
1

)
, (22)

GC = 9P 2a2

16b2E11h3
, Gj = 9P 2a2

16b2E11h3

(
2ah
k1

+ h2

k2
1

)
, (23)

G= 9P 2a2

16b2E11h3

(
1+χII h

a

)2

, (24)

where χII =1/k1. Similar expressions of the ERR were obtained by Williams (1989)
based on the beam on elastic foundation and Bao et al. (1992) based on the numeri-
cal analysis. However, the different formulas were presented in their study to calculate
the correction factor χII . A revised expression of χII obtained by Wang and Williams
(1992) were given as

χII =
√

1
63

(
a66

a11

)[
3−2

(
	

1+	
)2
]1/2

, 	= 1
K

a66√
a11a22

, (25)

where aii(i= 1,2,6) are the compliance coefficients of orthotropic materials, and K

is the shear correction factor.
Equation (25) shows that χII =0.42χI . A comparison of χII based on Wang and

Williams’s approach (1989) (Equation (25)), Bao et al.’s numerial result (1992) and
the present solution is given in Figure 8. It can be observed that the present closed-
form solution is very close to the numerical solution of Bao et al. (1992) with an
error less than 1%; while the solution given by Williams (1989) predicts a little larger
value of χII . As indicated in Equation (22), the influence of crack tip deformation on
the total compliance of the ENF specimen is not significant when the crack length
is large; while the contribution of crack tip deformation to the total ERR is quite
pronounced (see Equation (24)). By observing Figures 6 and 8, it indicates the cor-
rection factor (χI ) for the DCB specimen is about three times of χII for the ENF
specimen.

4.3. Asymmetric DCB specimen

An ADCB specimen (Figure 9) is a simple but effective specimen for measurement of
polymer/polymer and polymer/non-polymer bimaterial interface fracture toughness. It
has a similar loading configuration as the DCB specimen but with different materi-
als and thickness for each sub-beam. Accordingly, the expressions of compliance and
ERR can be solved as

CC = a3

3

(
1
D1

+ 1
D2

)
+a

(
1
B1

+ 1
B2

)
, (26)

Cj = (S22 −S52) a
2 + (S32 −S62 +S23 −S53) a+S33 −S63, (27)

C= a3

3

(
1
D1

+ 1
D2

)
+a

(
1
B1

+ 1
B2

)
+ (S22 −S52) a

2

+ (S32 −S62 +S23 −S53) a+S33 −S63, (28)
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GC = P 2a2

2b

(
1
D1

+ 1
D2

)
+ P 2

2b

(
1
B1

+ 1
B2

)
,

Gj = P 2

2b
(2 (S22 −S52) a+S32 −S62 +S23 −S53) ,

(29)

G= P 2

2b

((
1
D1

+ 1
D2

)
a2 +2 (S22 −S52) a

+
(

1
B1

+ 1
B2

+ (S32 −S62)+ (S23 −S53)

))
. (30)

To obtain the mode mixity, the complex stress intensity factor is defined by using
the combination Khiε1 as suggested by Rice (1988) as

Khiε1 =KI + iKII =|K| eiψ . (31)

Then the individual stress intensity factors are given based on J-integral approach of
Qiao and Wang (2004) as

KI = p√
2

(√
CMa sin (ω+γ1)+

√
CQ sin (ω+γ2)

)
, (32)

KII = p√
2

(
−
√
CMa cos (ω+γ1)−

√
CQ cos (ω+γ2)

)
. (33)

The phase angle ψ is therefore obtained as

ψ= tan−1

(
−√

CMa cos (ω+γ1)−
√
CQ cos (ω+γ2)√

CMa sin (ω+γ1)+
√
CQ sin (ω+γ2)

)
. (34)

The related coefficients in Equations (32) and (34) are defined by Qiao and Wang
(2004) and given as follows:

CN = 1
C1

+ 1
C2

+ (h1 +h2)
2

4D2
, CQ= 1

B1
+ 1
B2

+S23 −S53,

CNQ=S21 −S51, CMQ=S22 −S52, CMN = h1 +h2

D2
,

sin (γ1)= CMN

2
√
CMCN

, sin (γ2)= CNQ

2
√
CNCQ

.

As a verification of the present solution, an ADCB specimen is studied, and then
the proposed analytical solution is compared with the finite element results of Li et
al. (2004). A value of 0.3 is chosen for the Poisson’s ratio of both substrate materi-
als, and an excellent agreement (with a maximum error of 1%) is achieved when com-
pared to the FEA results for both the ERR and phase angle (Figure 9). Note that
the high accuracy of the present solution is valid for the entire material mismatch
ranging from α=−0.8 to 0.8. To show the necessity of including crack tip deforma-
tion in the formulation, the ERR and phase angle are also calculated by the conven-
tional rigid joint model and presented in Figure 9. It is not surprising to observe that
the large discrepancy exists between the conventional rigid joint model and either the
current flexible joint model or finite element analysis when the crack length is small
or comparable to the thickness of the specimen. Meanwhile, the classical solution
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Figure 10. Effect of crack-tip deformation on compliance and ERR of ADCB specimen.

of phase angle (Suo and Hutchinson, 1990; Schapery and Davidson, 1990) could
only produce a constant phase angle for this specimen; however, the phase angle in
fact varies with the length of the crack as revealed by the finite element analysis.
The reason for this shortcoming of the classical solution is that the transverse shear
force is ignored in the model. Since the transverse shear force is not considered in
the classical solution, there are some misunderstandings in the available literature,
such as Williams (1988) and Nilsson et al. (2001) in which both assumed that the
transverse shear only produces the mode-I ERR. Equations (32)–(34) show that the
transverse shear is contributive to both the mode-I and mode-II fracture, and this
feature is verified by the excellent agreement with finite element analysis. Ignoring
the effect of transverse shear leads to overestimation of loading phase angle as indi-
cated in Figure 9, especially when the crack length is small. By accounting for the
local deformation at the crack tip, the transverse shear effect on the phase angle is
fully considered in the present model. The significant effect of local deformation on
the compliance and ERR can be further illustrated by Figure 10. It can be observed
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Figure 11. Mixed-mode fracture specimens.

that the crack-tip deformation contributes about 10% and 16% to the total compli-
ance, and around 7% and 12% to the total ERR for isotropic and orthotropic mate-
rials, respectively, when a= 10h1. In Figure 10, h1 = 2h2, λ= 1 and ρ= 1 are chosen
for isotropic material, λ=0.2 and ρ=2 for orthotropic material. The close agreement
with the finite element analysis solution shows that the current solution improves the
prediction accuracy of ERR and mode mixity for the ADCB specimen. It should
be pointed out that the fracture experiment using the ADCB specimen is an inher-
ently non-linear test (Sundararaman and Davidson, 1997). While both the finite ele-
ment solution of Li et al. (2004) and the present analytical solution are based on the
assumption of linear elastic deformation. Cautions should be taken when applying
the present solution in the experimental data analysis and reduction.

4.4. Modified end notched flexure specimen

Two mixed mode specimens presented in Figure 11 have the same loading configura-
tion at the crack tip, except that the load in the mixed mode End-Loaded Split (ELS)
specimen is two times as the modified ENF specimen. Therefore, a similar solution of
crack tip deformation can be obtained based on Equation (8). For the sake of brev-
ity, only the solution of modified ENF specimen is presented below.

Based on the present flexible joint model, the related equations for the modified
ENF specimen are given as

CC = 2L+a (R1 −1)
4BT

+ 2L3 +a3 (R2 −1)
12DT

, (35)

Cj = 1
4

(
(S21An+S22Am)a

2 + (S31An+S32Am+S23Aq
)
a+S33Aq

)
, (36)

C= 2L+a (R1 −1)
4BT

+ 2L3 +a3 (R2 −1)
12DT

+ 1
4

(
(S21An+S22Am)a

2

+ (S31An+S32Am+S23Aq
)
a+S33Aq

)
, (37)

GC = P 2

2b

(
R2 −1
4DT

a2 + R1 −1
4BT

)
,

(38)

Gj = P 2

4b

(
(S21An+S22Am)a+ 1

2

(
S31An+S32Am+S23Aq

))
,

G= P 2

2b

(
R2 −1
4DT

a2 + R1 −1
4BT

+ (S21An+S22Am)
a

2
+ 1

4

(
S31An+S32Am+S23Aq

))
, (39)
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where R1 =BT /B1,R2 =DT /D1;BT and DT are the shear and bending stiffness of the
virgin portion of the specimen, respectively. Other coefficients are given as

An= aM

a0
, Am=1+ aM

a0

η

ξ
+ h2

2D2ξ
, Aq =1+ aM

a0

(
h1

2
+ η

ξ

)
+ h2

2D2ξ
.

The stress intensity factors are given by

KI= p√
2

(√
CNAna cos (ω)+

√
CMAma sin (ω+γ1)+

√
CQAq sin (ω+γ2)

)
, (40)

KII= p√
2

(√
CNAna sin (ω)−

√
CMAma cos (ω+γ1)−

√
CQAq cos (ω+γ2)

)
. (41)

The phase angle ψ is then given by

ψ= tan−1

(√
CNAna sin (ω)−√

CMAma cos (ω+γ1)−
√
CQAq cos (ω+γ2)√

CNAna cos (ω)+√
CMAma sin (ω+γ1)+

√
CQAq sin (ω+γ2)

)
. (42)

To validate the present solution, we analyze a modified ENF specimen studied in
detail by Davidson and Sundararaman (1996) (referred as the single leg bending
(SLB) test in their study). In their work, the ERR and mode mixity of the SLB
test were obtained through two approaches: rigid joint model (crack tip element)
analysis and finite element (FE) analysis. Three types of specimens with bimaterial
interfaces were considered: homogeneous, aluminum/niobium, and glass/epoxy, which
essentially “spanned” the range of the material property mismatch ratios one would
expect to encounter in practical applications. Details of material properties and spec-
imen geometry were given in their paper (Davidson and Sundararaman, 1996) and
therefore omitted here for brevity. The ERR and mode mixity are calculated using
Equations (39) and (42), and they are compared with the rigid joint model and FE
analyses in Davidson and Sundararaman (1996) (Figure 12). The ERR values in Fig-
ure 12 are normalized by the FE analysis results, which are regarded as the accu-
rate ones in this study, and they are in a function of the thickness ratio of upper
(top) and lower (bottom) plates. As observed in Figure 12, the rigid joint analy-
sis provides very approximate prediction, underestimating the ERR up to 13.7% for
the glass/epoxy interface specimen when compared to the FE analysis. An excellent
agreement with finite element analysis is achieved by the present study of flexible
joint model, in which the error is within 0.3%. Therefore, by considering the effect
of local deformation at the crack tip, the present prediction of the ERR using Equa-
tion (39) has significantly improved the accuracy when compared to the conventional
approach based on the rigid joint model. It further indicates that the local deforma-
tion effect is significant in the interface fracture analysis, especially for the specimens
with low transverse shear modulus and moderate thickness.

The comparisons of the phase angles ψ of the SLB test among the rigid joint
model, the present study of flexible joint, and FE analysis are presented in Figure 13.
It is observed that compared to the rigid joint model analysis, the phase angle by the
present study (Equation (42)) is more close to the FE analysis data. Similar to the
ADCB specimen, the rigid joint model seems to overestimate the phase angle of the
mode mix (if the sign of the phase angle is ignored) due to ignoring the transverse
shear, although the difference from the FE analysis is not significant. Both of these
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two specimens show that the transverse shear deformation reduces the phase angle,
and the accuracy of the phase angle provided by the present formula Equation (42)
is improved. The effect of transverse shear on the phase angle is further illustrated in
Figure 14 where the phase angle of the SLB specimen is not a constant as assumed in
the conventional rigid joint model (Davidson and Sundararaman, 1996). As a matter
of fact, the phase angle of SLB specimen varies with the crack length as reflected in
Equation (42), in which the phase angle ψ is expressed as a function of crack length
a. Figure 14 shows that the existing classical equation tends to overestimate the phase
angle considerably when the crack length is small, and a fixed mode mixity using the
SLB specimen can only be achieved approximately with a very slender geometry.

To evaluate the accuracy of the present solution for the different thickness ratios,
we further examine a homogeneous modified ENF specimen for which a highly accu-
rate solution of the ERR was obtained by Bao et al. (1992) through a finite element
analysis and data fitting approach. The ERRs by the present solution are normal-
ized by the conventional rigid joint solution (Williams, 1988), and compared with
the numerical results by Bao et al. (1992) (Figure 15). It has been shown in Fig-
ure 15 that for the thickness ratio range of 0.2–0.8, the present analytical solution
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Figure 13. Comparison of phase angles of SLB specimen.

predicts very close values of the ERR to Bao et al. (1992)’s results; the difference
between these two methods is less than 1%. Figure 15 also shows clearly the signifi-
cance of local deformation in the calculation of ERR; even when the crack length is
relatively large, a considerable error still can be introduced by neglecting the crack-tip
deformation.

5. Conclusions

In this study, a novel bi-layer beam model is developed to accurately capture the
crack-tip deformation, which in turn leads to improved solution of fracture param-
eters (e.g., compliance, ERR and mode mixity) for beam-type specimens. In this
model, a bi-layer beam with interface crack is treated as two separate shear deform-
able sub-beams bonded perfectly along the interface, and a flexible joint is formed
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at the crack-tip by employing the concept of two compliance coefficients along the
interface to account for the effect of the interface stresses on the deformation of
the sub-beams (elastic foundation effect). The crack-tip deformation is obtained in
the closed-form and then used to obtain the formulas of compliance and ERR for
beam-type fracture specimens. New terms are introduced in the solutions of com-
pliance, ERR and mode mixity, and they are purely due to the crack-tip deforma-
tion. These terms are ignored in the conventional rigid joint model solution because
of the ignorance of the local deformation at the crack-tip. Using the proposed flexi-
ble joint model, the highly accurate equations for determination of ERR and mode
mixity of four commonly used fracture specimens, i.e., DCB, ENF, ADCB and SLB
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(or modified ENF), are given explicitly. Calculations and comparisons are also made
for the specific specimens, of which the accurate solutions are available based on
other approaches or numerical analysis. Remarkable agreements with the available
solutions and finite element results demonstrate the validity of the present improved
analytical solution, as well as the significance of the local deformation at the crack-
tip, which cannot be captured by the conventional rigid joint model. As a matter of
fact, the error in the available fracture parameter equations commonly used in the
data reduction procedure of fracture tests, which are primarily based on the rigid
joint model, is mainly caused by the missing terms due to the local deformation at
the crack-tip. By adding these missing terms through the present novel flexible joint
model, the improved solution provided in this study can produce highly accurate pre-
dictions, which can be used to replace the full continuum elasticity analysis such as
the finite element analysis.
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Appendix A: Compliance matrix of flexible joint in Equation (8)

The governing equation (Equation (7)) derived in Section 2 can be solved through
the characteristic equation as

x6 +a4x
4 +a2x

2 +a0 =0. (A1)

The roots of the above equation for the given material and geometry parameters can
be expressed as: (a) ±R1, ±R2 and ±R3, or (b) ±R1 and ±R2 ± iR3. Here R1, R2 and
R3 are positive real numbers and i=√−1.

Case (a). The characteristic equation (Equation (A1)) with roots of ±R1, ±R2 and
±R3

S1i = 1
A1

(
c1i

R1
+ c2i

R2
+ c3i

R3

)
, i=1,2,3,

S2i = 1
D1

(
c1iS1

R1
+ c2iS2

R2
+ c3iS3

R3

)
, i=1,2,3
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Si =−R
2
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+ η

ξ
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
 c11 c12 c13

c21 c22 c23

c31 c32 c33


= 1

Y


S3T2 −S2T3 T3 −T2 S2 −S3

S1T3 −S3T1 T1 −T3 S3 −S1

S2T1 −S1T2 T2 −T1 S1 −S2


 ,

Y =S2T1 −S3T1 −S1T2 +S3T2 +S1T3 −S2T3 (A3)

Case (b). The characteristic equation (Equation (A1)) with roots of ±R1 and
±R2 ± iR3
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+
(
S3
(
R2

2 −R2
3

)+2R2R3S2

D1
(
R2

2 +R2
3

)2 + T2R3 +T3R2

B1
(
R2

2 +R2
3

)
)
c3i , i=1,2,3,

S4i =− 1
A2

(
c1i

R1
+ c2iR2

R2
2 +R2

3

+ c3iR3

R2
2 +R2

3

)
, i=1,2,3,

S5i =− 1
D2

(
c1i (((h1 +h2)/2)+S1)

R1
+ c2i ((((h1 +h2)/2)+S2)R2 +R3S3)

R3
2 +R2

3

+c3i ((((h1 +h2)/2)+S2)R3 +R2S3)

R3
2 +R2

3

)
, i=1,2,3,
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S6i =−
(
((h1 +h2)/2)+S1

D2R
2
1

+ T1

B2R1

)
c1i

−
(
(((h1 +h2)/2)+S2)

(
R2

2 −R2
3

)+2R2R3S3

D2
(
R2

2 +R2
3

)2 − T2R2 +T3R3

B2
(
R2

2 +R2
3

)
)
c2i

−
(
S3
(
R2

2 −R2
3

)+2R2R3 (((h1 +h2)/2)+S2)

D2
(
R2

2 +R2
3

)2 − T2R3 +T3R2

B2
(
R2

2 +R2
3

)
)
c3i , i=1,2,3,

(A4)

where

S1 =− R2
1

ξbKs
+ η

ξ
, S2 =−R

2
2 −R2

3

ξbKs
+ η

ξ
, S3 = 2R2R3

ξbKs
,

Ti =−R1S1 − h1

2
R1, T2 =−R2S2 +S3R3 − h1

2
R2, T3 =−R2S3 +S2R3 − h1

2
R3,


 c11 c12 c13

c21 c22 c23

c31 c32 c33


= 1

Y


S3T2 −S2T3 T3 −S3

S1T3 −S3T1 −T3 S3

S2T1 −S1T2 T2 −T1 S1 −S2


 ,

Y =−S3T1 +S3T2 +S1T3 −S2T3. (A5)

Case (c). Same material and geometry for both sub-layers

S1i = 1
A1

(
c1i

k1

)
, i=1,2,3,

S2i = 1
D1

(
c1iS

k1
+ c2i

k2
+ c3i

k3

)
, i=1,2,3,

S3i =− 1
B1

((
S+ h1

2

)
c1i + c2i + c3i

)
− 1
D1

(
Sc1i

k2
1

+ c2i

k2
2

+ c3i

k2
3

)
, i=1,2,3,

S4i =− 1
A1

(
c1i

k1

)
, i=1,2,3,

S5i =− 1
D2

(
c1i
(
S+ h1

2

)
k1

+ c2i

k2
+ c3i

k3

)
, i=1,2,3,

S6i = 1
B2

((
S+ h1

2

)
c1i+ c2i + c3i

)
+ 1
D2

((
S+ h1

2

)
c1i

k2
1

+c2i

k2
2

+c3i

k2
3

)
, i=1,2,3, (A6)

where

k1 =
√

60G13/E11,

k2,3 =

√√√√ 10E33
κG13

±
√
((10E33/κG13))

2 − (480E33/E11)

2
,
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S= −(h1/2)k4
1 + ((bKnk2

1h
3
1)/2) ((1/B1)+ (1/B2))− ((bKn (h1 +h2) h

4
1)/2D2)

k4
1 −b2Kn ((1/B1)+ (1/B2)) k

2
1h

2
1 +bKn ((1/D1)+ (1/D2))

,


 c11 c12 c13

c21 c22 c23

c31 c32 c33


= 1

k2 −k3


 k2 −k3 0 0

− (k1 −k3) S− h1
2 k1 −k3 −1

(k1 −k2) S+ h1
2 k1 k2 1


 . (A7)


