
DOI 10.1007/s10704-005-2054-8
International Journal of Fracture (2005) 132:311–327

© Springer 2005

The strip dielectric breakdown model
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Abstract. This paper reports on the analysis of the strip dielectric breakdown (DB) model for an elec-
trically impermeable crack in a piezoelectric medium based on the general linear constitutive equa-
tions. The DB model assumes that the electric field in a strip ahead of the crack tip is equal to
the dielectric breakdown strength, which is in analogy with the classical Dugdale model for plastic
yielding. Using the Stroh formalism and the dislocation modeling of a crack, we derived the relation-
ship between the DB strip size and applied mechanical and electrical loads, the intensity factors of
stresses and electric displacement, and the local energy release rate. Based on the results, we discussed
the effect of electric fields on fracture of a transversely isotropic piezoelectric ceramic by applying the
local energy release rate as a failure criterion. It is shown that for an impermeable crack perpendicu-
lar to the poling direction, a positive electric field will assist an applied mechanical stress to propagate
the crack, while a negative electric field will retard crack propagation. However, for an impermeable
crack parallel to the poling direction, it is found that the applied electric field does not change the
mode I stress intensity factor and the local energy release rate, i.e., the applied electric field has no
effect on the crack growth.
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1. Introduction

In 1997, Gao et al. proposed a strip polarization saturation (PS) model by treating
piezoelectric ceramics to be mechanically brittle and electrically ductile. The electric
ductility is used to reflect the nonlinear relationship between the electric displace-
ment and the electric field strength. The PS model takes the advantage that the con-
stitutive relationship between the electric displacement and the electric field strength
is similar to that between the stress and the strain. In the PS model, the electric
displacement reaches a limited saturation value along a strip in front of an electri-
cally impermeable crack. The PS strip completely and electrically shields the crack
from applied mechanical and electrical loads such that the local intensity factor of
electric displacement nulls. In the modeling Gao et al. (1997) employed a simpli-
fied constitutive equation, which made the analysis simple and the results easy to be
understood. The corresponding analysis of the PS model based on the general lin-
ear constitutive equation was conducted and extended by Gao and Barnett (1996),
Ru (1999), Wang (2000) and Zhang et al. (2002). McMeeking (2001) gave compre-
hensive and suggestive comments on the PS model. From the energy point of view,
the electric displacement behaves like the strain, and the electric field strength like
the mechanical stress. Therefore, the PS model does not correspond to the classical
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Dugdale model (Dugdale, 1960) in which the stress is equal to the yield strength
along the strip in front of a crack tip. Instead, the PS model corresponds to a
mechanical Dugdale model in which the strain remains a constant value as the stress
increases. Very recently, Zhang and Gao (2004) proposed a strip dielectric breakdown
(DB) model for an electrically impermeable crack of a semi-infinite length and Zhang
(2004) further discussed the DB model with a finite length crack. The DB model
is exactly analogous to the classical Dugdale model from the energy point of view
because, in the DB model, the electric field strength on a strip adjacent to a crack
tip is taken as a constant. The physical arguments for the DB model are described
as follows. The theoretical results (Zhang and Tong, 1996; Zhang et al., 1998; Zhang
et al., 2002) based on linear electro-elasticity show that the electric field is consider-
ably high at the crack tip. Especially, if the electrically impermeable boundary con-
ditions are approximately applied to an electrically insulated crack, the theoretically
predicated electric field will approach infinity at the impermeable crack tip when
applied electric field has a component in the direction perpendicular to the crack.
Even when the electrically permeable boundary conditions are approximately applied
to an electrically insulated crack, the theoreticaly predicated electric field, in terms
of the electric field strength, will be about 1000 times higher in magnitude than the
applied electric field for most piezoelectric materials because most piezoelectric mate-
rials have about a 1000 times higher dielectric constant in magnitude than the crack
interior (air or vacuum). The local electric field may be much higher than the dielec-
tric breakdown strength. The dielectric breakdown strength is defined as a critical
electric field at which dielectric discharge occurs and leads to dielectric breakdown.
The characteristics of the breakdown strength are similar to those of the mechan-
ical fracture strength (Dissad and Fothergill, 1992), which is very sensitive to solid
defects such as flaws, voids and cracks, thereby indicating that partial discharge may
occur at the crack tip due to the high electric field. As a result, a local partial dis-
charge zone or electric breakdown zone, like a plastic deformation zone, is formed
adjacent to the crack tip, and in the partial discharge zone the electric field cannot
exceed the dielectric breakdown strength, Eb, which is analogous to the yield strength
in mechanically plastic deformation. In analogy with the mechanical Dugdale model,
the dielectric breakdown region is assumed to be a strip along the crack’s front line,
where the electric field strength is equal to the dielectric breakdown strength, Eb.
Therefore, the DB model proposed by Zhang and Gao (2004) and Zhang (2004) is
exactly analogous to the classical Dugdale model (Dugdale, 1960) from the energy
point of view.

In developing the DB model, however, Zhang and Gao (2004) and Zhang
(2004) used the simplified electroelasticity constitutive equations to simplify analy-
ses. Although such simplification makes it easy for one to capture a clear physical
picture, it may lead to great error when the model is used to quantitative calcula-
tion of the energy release rate. In the present work, we study the DB model (Zhang
and Gao, 2004; Zhang, 2004) based on the general linear constitutive equation. To
compare the results from the generalized DB model with those of Gao et al. (1997),
Zhang and Gao (2004), and Zhang (2004), a crack is still assumed to be electrically
impermeable. Following the Stroh formalism in Section 2, we first outline the linear
solutions of an impermeable crack, and then study the interaction of a piezoelectric
dislocation with a finite impermeable crack in Sections 3 and 4, respectively, as prior
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works. In Section 5, we develop a generalized strip dielectric breakdown model by
means of the dislocation modeling of a crack, and then present explicit expression
for the local energy release rate. In Section 6, we use the local energy release rate as
a failure criterion to discuss the effect of electric fields on fracture of piezoelectric
ceramics. Finally, we conclude the present work in Section 7.

2. Stroh formalism

Following the previous overview articles (Zhang et al., 2002; Zhang and Gao, 2004),
we briefly introduce the two-dimensional theoretical results for an electrically imper-
meable crack in a piezoelectric material based on linear electro-elasticity. Note that
matrix and vector notations in this article are more consistent with those used in
Zhang and Gao (2004), but may differ from the notations used in Zhang et al.
(2002).

In a rectangular coordinate system, xi (i =1,2,3), the complete set of basic equa-
tions for a linear piezoelectric solid without any body forces and free charges is given
by the equilibrium equation, Equation (1), and the kinematic equation, Equation (2),
and the constitutive equation, Equation (3) (Zhang et al., 2002; Zhang and Gao,
2004):

σij,j =0, Di,i =0, (1)

εij = 1
2

(
ui,j +uj,i

)
, Ei =−ϕ,i, (2)

σij =Cijklεkl − ekijEk, (3a)

Dk = ekij εij +κklEl, (3b)

where σij , εij ,Di , and Ei denote stress tensor, strain tensor, electric displacement vec-
tor and electric field vector, respectively; ui and ϕ are the elastic displacements and
electric potential, respectively; and Cijkl, eijk, and κij stand for the elastic constants,
the piezoelectric constants and the dielectric constants, respectively.

For generalized two-dimensional deformations in which the generalized displace-
ment vector u = (u1 u2 u3 ϕ)T depends on x1 and x2 only, the general solution takes
the form (Zhang et al., 2002; Zhang and Gao, 2004):

u =Af(z)+ Āf(z), (4)

φ =Bf(z)+ B̄f(z), (5)

where A = (a1 a2 a3 a4) and B = (b1 b2 b3 b4) with aα and bα for α = 1,2,3,4 being
both four dimensional eigen-vectors, f(z) = (f1(z1) f2(z2) f3(z3) f4(z4))

T is an ana-
lytic function vector, zα = x1 +pαx2, and pα is a complex eigen-root with a positive
imaginary part, and φ is the generalized stress function vector such that

�2 = (σ21 σ22 σ23 D2)
T =φ,1, (6a)

�1 = (σ11 σ12 σ13 D1)
T =−φ,2. (6b)
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It is convenient to calculate pα by solving the following standard eigen-equation:
(

N1 N2

N3 NT
1

)(
a
b

)
=p

(
a
b

)
, (7)

where N1 =−T−1RT, N2 =T−1 =NT
2 , N3 =RT−1RT −Q=NT

3 , and Q=
(

Ci1k1 e11i

eT
11i −κ11

)
,

R =
(

Ci1k2 e21i

eT
12i −κ12

)
, T =

(
Ci2k2 e22i

eT
22i −κ22

)
, i, k = 1,2,3. The A and B matrices have the

following relationship (Zhang et al., 2002; Zhang and Gao, 2004):
(

BT AT

B̄T ĀT

)(
A Ā
B B̄

)
=
(

I 0
0 I

)
, (8)

where I is a 4×4 unit matrix. In addition, two matrices, Y and H, are often used in
the following analysis, which are defined by

Y = iAB−1, (9a)

H =2Re[Y]. (9b)

Matrix Y is a Hermitian matrix and can be partitioned into

Y =
(

Ye Y31

Y13 Y44

)
, (10)

where the upper left block, Ye, is a 3 × 3 matrix, and Y44 is a real element. For a
stable material, Ye is positive definite and Y44 <0, which leads to H44 <0.

Figure 1. An impermeable crack in a piezoelectric material under applied remote loads.
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3. Solutions for a finite impermeable crack under applied loading

Consider an electrically impermeable crack, as shown in Figure 1, lying on the x1-axis
from −a to a in a piezoelectric material under remotely uniform electrical and/or
mechanical loading. The mechanical traction-free and the electrically impermeable
boundary conditions require

�2 = (σ21 σ22 σ23 D2)
T =φ,1 =0 for −a <x1 <a. (11)

The analytic function, f(z), satisfying the boundary conditions along the crack faces
is given by (Zhang et al., 2002)

fα = (a1)α(zα +√
z2
α −a2)

2
+ a2(a2)α

2(zα +√
z2
α −a2)

,

fα,1 =
(

(a1)α − a2(a2)α

(zα +√
z2
α −a2)2

)
zα +√

z2
α −a2

2
√

z2
α −a2

, (12)

fα,2 =pαfα,1, α =1,2,3,4 (α not summed),

where a1 and a2 are both four-dimensional vectors with the relationship of Ba2 +
Ba1 =0, and a1 is determined by the remote loading conditions,

(
σ∞

12 σ∞
22 σ∞

32 D∞
2

)T =Ba1 +Ba1, (13a)
(
σ∞

11 σ∞
21 σ∞

31 D∞
1

)T =−B〈pα〉a1 −B〈pα〉a1, (13b)

where 〈pα〉, α =1,2,3,4, is for a 4×4 diagonal matrix. Because there are only seven
independent remote input loads in Equation (13), we take the null rotation around
the x3-axis at infinity as a supplementary condition (Zhang et al., 2002) by requiring

A2a1 − (A 〈pα〉)1 a1 +A2a1 − (A 〈pα〉)1 a1 =0. (14)

Note that a constant vector, f0, can be added into the solution of f(z) in Equa-
tion (12). The constant vector, f0, is related to the reference states of the general-
ized displacements and the generalized stress functions, but does not affect the stress
and electric fields. Therefore, we may ignore the constant vector, f0, and its associated
constant generalized displacement and stress function vectors for simplicity.

We define an intensity factor vector at the right crack tip as

K∗ = lim
zα→a

B
〈√

2π (zα −a)
〉
f,1 (15)

Equation (15) gives

f,1 =
〈

1
√

2πz∗
α

〉

B−1K∗ for
∣∣z∗

α

∣∣�a, (16)
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where z∗
α = zα − a and

∣
∣z∗

α

∣∣ is the absolute value of the complex variable z∗
α. For∣∣z∗

α

∣∣�a, we consequently have

f =
〈

2
√

z∗
α√

2π

〉
B−1K∗, (17a)

f,2 =
〈

pα√
2πz∗

α

〉

B−1K∗. (17b)

A substitution of Equation (12) into Equation (15) yields

K∗ =
√

πa

2






σ∞
12

σ∞
22

σ∞
32

D∞
2




≡ 1

2






KII

KI

KIII

KD




= 1

2
K, (18)

which shows that the intensity factor vector K∗ is real and its components equal half
of the stress intensity factors of mode II, I, and III and the electric displacement
intensity factor. Then, the mechanical and electrical fields near the crack tip can be
approximately expressed by

u = 1√
2π

[
A
〈√

z∗
α

〉
B−1 + Ā

〈√
z∗
α

〉
B̄−1

]
K, (19a)

�2 = 1

2
√

2π



B
〈

1√
z∗
α

〉
B−1 + B̄

〈
1

√
z∗
α

〉

B̄−1



K, (19b)

�1 =− 1

2
√

2π



B
〈

pα√
z∗
α

〉
B−1 + B̄

〈
pα√
z∗
α

〉

B̄−1



K. (19c)

The generalized crack opening near the crack tip is

�u =
√

2r√
π

HK. (20)

Using the J -integral (Cherepavon, 1979; Zhang et al., 2002)

J =
∫

	

(
hn1 −σijnjui,1 +DiE1ni

)
d	, (21a)

where

h= 1
2
σij εij − 1

2
DiEi, (21b)

denotes the electric enthalpy per unit volume, we obtain the J -integral or the energy
release rate

G=J =KT H
4

K. (22)
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4. Interaction of a piezoelectric dislocation with a finite impermeable crack

For a piezoelectric dislocation located at zd
α in an infinite piezoelectric medium, the

analytic function vector is given by

f(z)= 〈
ln(zα − zd

α)
〉
q, (23)

where the q vector represents the feature of a generalized piezoelectric dislocation
and combines the generalized Burgers vector, b, and the generalized force, F,

q = 1
2πi

(
ATF +BTb

)
. (24)

The generalized Burgers vector, b, and the generalized force, F, are defined as
b = (b1 b2 b3 �ϕ)T and F= (F1 F2 F3 −q)T, respectively, where bi and Fi denote the
component of the Burgers vector and a line force per unit length along the xi direc-
tion, respectively, �ϕ is the electric potential jump, and q stands for a line charge per
unit length.

When the dislocation is near a finite length impermeable crack, the solution, sat-
isfying the boundary conditions of Equation (11) along the impermeable crack faces,
takes the form:

f,1 =
〈

1
√

z2
α −a2



 zα +√
z2
α −a2

zα +√
z2
α −a2 − zd

α −
√(

zd
α

)2 −a2





〉

q +Z,1q, (25a)

Zij,1 =
4∑

k=1

B−1
ik Bkj

1
√

z2
i −a2






a2

a2 −
(

zi +
√

z2
i −a2

)(

zd
j +

√(
zd
j

)2
−a2

)






, (25b)

f,2 =
〈

pα√
z2
α −a2



 zα +√
z2
α −a2

zα +√
z2
α −a2 − zd

α −
√(

zd
α

)2 −a2





〉

q +Z,2q, (25c)

Zij,2 =
4∑

k=1

B−1
ik Bkj

pi√
z2
i −a2








a2

a2 −
(

zi +
√

z2
i −a2

)(

zd
j +

√(
zd
j

)2
−a2

)







. (25d)

The intensity factor vector at the right crack tip induced by the dislocation at zd
α is

K∗ = lim
zα→a

B
〈√

2π(zα −a)
〉
f,1

=−√
πa



B

〈
1

zd
α −a +√

(zd
α)

2 −a2

〉

q +B

〈
1

zd
α −a +

√
(zd

α)
2 −a2

〉

q̄



 . (26)

Equation (26) indicates that the intensity factors induced by a dislocation are real
such that K∗ = K/2 holds. As a consequence, Equations (19)–(22) give also the
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crack tip fields and the energy release rate produced by the piezoelectric dislocation,
respectively.

5. Dielecrtic breakdown model

Following the successful treatment of the problem of plastic yielding at a crack tip
by Dugdale (1960), Bilby et al. (1963) developed a dislocation model to formulate the
strip plastic yielding. In the dislocation model (Bilby et al., 1963), the crack and the
strip plastic zone are simulated by an array of dislocations. We shall adopt the dis-
location approach to develop the DB model.

First, we consider a conventional dislocation, which has only the Burgers vector,
b∗ = (b1 b2 b2)

T, and a pure electric dislocation, which is characterized by a nonzero
value of �ϕ. Hereafter, we shall use the subscripts, ‘m’ and ‘e’, to denote properties
associated with the conventional dislocation and the electric dislocation, respectively.
For example,

qm = 1
2πi

BT
(

b∗

0

)
, (27a)

qe = 1
2πi

BT
(

0
�ϕ

)
. (27b)

If a conventional dislocation is located at xd
1 on the x1-axis in an infinite body

without any crack, the dislocation induces a generalized stress, �2,m, and an electric
strength component, E2,m, along the x1-axis:

�2,m = 1

x1 −xd
1

1
2πi

(
BBT −BB

T
)(b∗

0

)
≡ 1

π(x1 −xd
1 )

(
F1

F2

)
b∗, (28a)

E2,m =− 1

x1 −xd
1

1
2πi

(
A 〈pα〉BT − Ā 〈p̄α〉 B̄T)

4

(
b∗

0

)
≡ 1

π(x1 −xd
1 )

G1b∗, (28b)

where (F1)kl = 1
2i

(BBT−BB
T
)kl for k, l=1,2,3 is a 3×3 matrix, (F2)l = 1

2i
(BBT−BB

T
)4l

and (G1)l =− 1
2i

(A〈pα〉BT − Ā 〈p̄α〉 B̄T)4l for l = 1,2,3 are two row vectors with each
having three elements. Similarly, if an electric dislocation is located at xd

1 on the
x1-axis in an infinite body without any crack, the dislocation induces a generalized
stress, �2,e, and an electric strength component, E2,e, along the x1-axis:

�2,e = 1

x1 −xd
1

1
2πi

(
BBT −BB

T
)( 0

�ϕ

)
≡ 1

π(x1 −xd
1 )

(
FT

2
F44

)
�ϕ, (29a)

E2,e =− 1

x1 −xd
1

1
2πi

(
A 〈pα〉BT − Ā 〈p̄α〉 B̄T)

4

(
0

�ϕ

)
≡ 1

π(x1 −xd
1 )

G2�ϕ, (29b)

where F44 = 1
2i

(BBT − BB
T
)44 and G2 = − 1

2i
(A 〈pα〉BT − Ā 〈p̄α〉 B̄T)44 are two scalars.

From Equations (8) and (9), we have

1
2i

(
BBT −BB

T
)

=H−1 (30)
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Figure 2. The schematic distribution of an electric dislocation array in the DB model.

such that

H−1 =
(

F1 FT
2

F2 F44

)
. (31)

Equations (28) and (29) are the Green functions for the formulations of the DB
model.

Figure 2 shows the DB model (Zhang and Gao, 2004; Zhang, 2004), where (−c, a)

and (a, c) denote the dielectric breakdown strips. The external loading is applied
uniformly at infinity. The boundary conditions along the crack faces are the same
as these given by Equation (11), while the boundary conditions along the dielectric
breakdown strips are

ui(x1,0+)=ui(x1,0−), E2(x1,0+)=E2(x1,0−)=Eb, a < |x1|<c. (32)

where Eb is the breakdown electric strength.
We introduce four distribution functions, gi(x1) for i = 1,2,3,4, that are corre-

spondingly associated with the Burgers vector components, b1, b2, b3, and the jump of
electric potential, �ϕ, such that gi(x1)bi dx1, for i =1,2,3,4 and b4 ≡�ϕ, represents
the strength of the Burgers vector located at x1 in the interval dx1. Thus, using the
Green functions and the boundary conditions of Equations (11) and (32), we have
the following integral equations

∫ a

−a

1
π(x1 −x ′

1)
F1 〈gi〉b∗ dx ′

1+
∫ c

−c

1
π(x1 −x ′

1)
FT

2 g4�ϕ dx ′
1 + t∗ =0, |x1|�a, (33a)

∫ a

−a

1
π(x1 −x ′

1)
F2 〈gi〉b∗ dx ′

1+
∫ c

−c

1
π(x1 −x ′

1)
F44g4�ϕ dx ′

1 +D∞
2 =0, |x1|�a, (33b)

∫ a

−a

1
π(x1 −x ′

1)
G1 〈gi〉b∗ dx ′

1+
∫ c

−c

1
π(x1 −x ′

1)
G2g4�ϕ dx ′

1 +E∞
2 =Eb, a � |x1|� c,

(33c)

where 〈gi(x1)〉 , i =1,2,3, is a 3×3 diagonal matrix and

t = (
σ∞

12 σ∞
22 σ∞

32 D∞
2

)T = (
t∗T D∞

2

)T
, t∗ = (

σ∞
12 σ∞

22 σ∞
32

)T
. (33d)
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In Equation (33) the Cauchy principal values of the integral are to be taken at x1 =x ′
1

to avoid divergence and the same treatment should be taken in following integral
equations. The conventional dislocations are distributed along the crack, from −a to
a, whereas the range of the electric dislocation distribution is from −c to c, covering
the DB zones and the crack. Substituting Equation (33b) into (33a) yields

∫ a

−a

1
π(x1 −x ′

1)
F∗

1 〈gi〉b∗ dx ′
1 +T∗ =0, |x1|�a, (34)

where

F∗
1 =F1 − FT

2 F2

F44
, T∗ = t∗ −

(
FT

2

F44

)
D∞

2 . (35)

The solution to Equation (34) is given by

〈gi(x1)〉b∗ =F∗−1
1 T∗ x1

(
a2 −x2

1

)1/2 . (36)

Substituting Equation (36) into Equations (33b) and (33c) yields
∫ c

−c

1
π(x1 −x ′

1)
F44g4�ϕ dx ′

1 +D∗
2 =0, |x1|�a, (37a)

∫ c

−c

1
π(x1 −x ′

1)
F44g4�ϕ dx ′

1 +D∗
2 =D∗

b, a � |x1|� c, (37b)

where

D∗
2 =D∞

2 −F2F∗−1
1 T∗, D∗

b = (Eb −E∞
2 +G1F∗−1

1 T∗)
F44

G2
+D∗

2 . (38)

The solution to this singular integral equation of Equation (37) is obtained by the
method developed by Muskhelishvili (1953) and given by

g4(x1)�ϕ = D∗
b

πF44

[
ch−1

∣∣∣
∣
c2 −ax1

c(a −x1)

∣∣∣∣− ch−1
∣∣∣
∣
c2 +ax1

c(a +x1)

∣∣∣∣

]
. (39)

The following equation must be satisfied to ensure the non-singularity at |x1|= c

a

c
= cos

(
πD∗

2

2D∗
b

)
. (40)

From Equation (40) we can calculate the size of the dielectric breakdown zone,

rb = c−a =a sec
(

πD∗
2

2D∗
b

)
−a. (41)

Under the small yielding condition, rb � a, which corresponds to πD∗
2/(2D∗

b) → 0,
Equation (41) can be approximately reduced to

rb = a

2

(
πD∗

2

2D∗
b

)2

. (42)
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The stress ahead of the crack tip on the x1-axis is calculated by

�2≡(σ12 σ22 σ32 D2)
T

=
∫ a

−a

1
π(x1 −x ′

1)

(
F1

F2

)
〈
gi(x

′
1)
〉
b∗ dx ′

1+
∫ c

−c

1
π(x1 −x ′

1)

(
FT

2
F44

)
g4(x

′
1)�ϕ dx ′

1+t. (43)

Using the definition of the intensity factor vector, K = limx1→a

√
2π(x1 −a)�2, we

obtain

K(l) =√
πa

(
F1

F2

)
F∗−1

1 T∗, (44)

where the superscript ‘(l)’ on a parameter denotes the local value at the crack tip of
the parameter. Consequently, we have the local J -integral

J (l) =K(l)T H
4

K(l). (45)

These results from the DB model will be discussed in detail for two cases that the
poling direction is perpendicular to the crack and the poling direction is parallel to
the crack.

6. Discussion

6.1. A crack perpendicular to the poling direction

Figure 3 shows a finite crack perpendicular to the poling direction. In this case, the
constitutive relationship is explicitly expressed by






σ11

σ22

σ33

σ32

σ31

σ12






=






c11 c13 c12 0 0 0
c13 c33 c13 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 (c11 − c12)/2 0
0 0 0 0 0 c44











ε11

ε22

ε33

2ε32

2ε31

2ε12






−






0 e31 0
0 e33 0
0 e31 0
0 0 e15

e15 0 0
0 0 0











E1

E2

E3





, (46a)

Figure 3. A crack perpendicular to the poling direction.
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




D1

D2

D3





=



0 0 0 0 e15 0

e31 e33 e31 0 0 0
0 0 0 e15 0 0










ε11

ε22

ε33

2ε32

2ε31

2ε12






+



κ11 0 0
0 κ33 0
0 0 κ11










E1

E2

E3





. (46b)

For simplicity, remotely uniform loads considered here are σ∞
22 and E∞

2 and the other
loading components are zero. Using the constitutive relationships, we have

D∞
2 = κ̂⊥E∞

2 + ê⊥σ∞
22 and D∞

1 =D∞
3 =0, (47)

where κ̂⊥ = κ33 + eT
⊥s⊥e⊥, e⊥ = (e31 e33 e31)

T, s⊥ is the inverse matrix of

c⊥ =



c11 c13 c12

c13 c33 c13

c12 c13 c11



, and ê⊥ = eT
⊥s⊥ (0 1 0)T. The H and H−1 matrixes take the forms

(Wang, 2000):

H =






2
CL

0 0 0
0 2

CT
0 2

e

0 0 2
CA

0
0 2

e
0 − 2

κ






, (48a)

H−1 =






CL
2 0 0 0
0 CT

2ρ0
0 CTκ

2ρ0e

0 0 CA
2 0

0 CTκ
2ρ0e

0 − κ
2ρ0






, (48b)

where ρ0 =1+CTκ/e2. From Equations (31b), (35) and (48b), we have

F∗
1 = 1

2




CL 0 0
0 CT 0
0 0 CA



 , (49a)

T∗ = (
0 σ∞

22 +D∞
2 CT /e 0

)T
. (49b)

Then, the local intensity factor vector is explicitly expressed by

K(l) =
√

πa

ρ0

(
σ∞

22 +D∞
2 CT /e

)






0
1
0

κ/e




 . (50)

Equation (50) indicates that the local mode I stress intensity factor and the local
intensity factor of electric displacement have nonzero values, which can be rewritten
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in terms of the applied ones:

K
(l)

I = 1
ρ0

(
K

(a)

I +K
(a)

D
CT

e

)
, (51a)

K
(l)

D = κ

e
K

(l)

I = κ

ρ0e

(
K

(a)

I +K
(a)

D
CT

e

)
. (51b)

Using Equations (22), (48a), and (51), we have the local energy release rate, which is
given by

J
(l)

DB = 1
2

(
1

CT
+ κ

e2

)
(K

(l)

I )2 = 1
2CTρ0

(
K

(a)

I +K
(a)

D
CT

e

)2

. (52)

Wang (2000) derived the intensity factors from the PS model, with which we cal-
culated the local energy release rate, J

(l)

PS , in terms of the applied stress intensity fac-
tor and the applied electric intensity factor:

J
(l)

PS = 1
2CT

(
K

(a)

I +K
(a)
D

CT

e

)2

. (53)

Comparing Equation (52) with Equation (53), we find

J
(l)

PS

J
(l)

DB

=ρ0 =1+ CTκ

e2
>1. (54)

This means that the PS model gives a higher value of the local energy release rate
than that derived from the DB model and this phenomenon has been observed in the
previous works (Zhang and Gao, 2004; Zhang, 2004). However, Equations (52) and
(53) both indicate that positive electric field will assist an applied mechanical stress
to propagate the impermeable crack if the local J -integral is adopted as a failure
criterion, while a negative electric field will retard crack propagation. Note that to
ensure the crack open, the local mode I stress intensity factor must be positive, which
requires K

(a)

I >

∣∣
∣K(a)

D

∣∣∣CT/e if the electrical field is negative. The relationship between
the applied stress intensity factor and the applied electric intensity factor is identical
in the two models. In this sense, the DB model gives the same result as the PS model.

As described above, the energy release rate can be apparently divided in the elec-
tric energy release rate and mechanical energy release rate. Due to the piezoelectric
effect, an electric field contributes to the mechanical release rate and a stress field is
involved in the electric energy release rate. In the DB model the electric field strength
at the crack tip is completely shielded by the dielectric breakdown zone, whereas the
electric displacement at the crick tip is completely shielded by the polarization satura-
tion zone in the PS model. Either the complete shielding of the electric field strength
or the complete shielding of the electric displacement leads to a zero value of the
local electric energy release rate and results in the local energy release rate to be
purely local mechanical energy release rate.

When the local energy release rate is purely mechanical, applying the local stress inten-
sity factor as a failure will be equivalent to applying the local energy release rate. In the
DB model, the local stress intensity factor is given by K

(l)

I,DB = (1/ρ0)(K
(a)

I +K
(a)

D CT/e),
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Figure 4. A crack parallel to the poling direction.

whereas the local stress intensity factor is given by K
(l)

I,PS =K
(a)

I +K
(a)

D CT/e in the PS model
(Wang, 2000). Clearly, the ratio of K

(l)

I,PS/K
(l)

I,DB is the same as that of J
(l)

PS /J
(l)

DB, as shown in
Equation (54).

6.2. A crack parallel to the poling direction

In a similar manner, we describe the results for a finite crack parallel to the poling
direction, which is shown in Figure 4. In this case, the constitutive relationship is
explicitly expressed by






σ11

σ22

σ33

σ32

σ31

σ12



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=







c33 c13 c13 0 0 0
c13 c11 c12 0 0 0
c13 c12 c11 0 0 0
0 0 0 (c11 − c12)/2 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44








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ε11

ε22

ε33

2ε32

2ε31

2ε12


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−







e33 0 0
e31 0 0
e31 0 0
0 0 0
0 0 e15

0 e15 0












E1

E2

E3





, (55a)






D1

D2

D3





=



e33 e31 e31 0 0 0
0 0 0 0 0 e15

0 0 0 0 e15 0










ε11

ε22

ε33

2ε32

2ε31

2ε12






+



κ33 0 0
0 κ11 0
0 0 κ11










E1

E2

E3





. (55b)

As did in the previous works (Gao et al., 1997; Wang, 2000), remotely uniform loads
considered here are σ∞

22 and E∞
1 and the other loading components are zero. Using

the constitutive relationships, we have

D∞
1 = κ̂||E∞

1 + ê||σ∞
22 and D∞

2 =D∞
3 =0, (56)
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where κ̂|| =κ33 +eT
|| s||e||, e|| =(e33 e31 e31)

T , s|| is the inverse matrix of c|| =



c33 c13 c13

c13 c11 c12

c13 c12 c11



,

and ê|| = eT
|| s||(0 1 0)T. The H and H−1 matrixes take the forms (Wang, 2000):

H =







2
CT

0 0 2
e

0 2
CL

0 0
0 0 2

CA
0

2
e

0 0 − 2
κ







, (57a)

H−1 =







CT
2ρ0

0 0 CTκ
2ρ0e

0 CL
2 0 0

0 0 CA
2 0

CTκ
2ρ0e

0 0 − κ
2ρ0







. (57b)

Then, from Equations (31b) and (35), we have

F∗
1 = 1

2




CT 0 0
0 CL 0
0 0 CA



 , (58a)

T∗ = (
0 σ∞

22 0
)T

. (58b)

Using Equation (44), we express the local intensity factor vector explicitly as:

K(l) =√
πa






0
σ∞

22
0
0




 . (59)

Equation (59) indicates that the only nonzero local intensity factor is the local mode
I stress intensity factor, which is exactly the same as the applied one,

K
(l)

I =K
(a)

I . (60)

Consequently the local energy release rate is given by

J (l) = 2
CL

(K
(l)

I )2 = 2
CL

(K
(a)

I )2 =J (a). (61)

Equations (60) and (61) indicate that the applied electric field does not change the
mode I stress intensity factor and the energy release rate if the crack is parallel to
the poling direction. The results from the DB model are consistent with the results
from the PS model (Gao et al., 1997; Wang, 2000).

7. Concluding remarks

The present work reports the DB model for an electrically impermeable crack with a
finite length based on the general linear constitutive equation. Although the general
linear constitutive equation differs from the simplified constitutive equation used in
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the previous work (Zhang and Gao, 2004; Zhang, 2004), the derived results are quali-
tatively consistent with those reported in the previous work, as expected. In addition,
comparing the obtained results from the PS model (Wang, 2000), it is found that the
PS model gives a higher value of the local energy release rate than that derived from
the DB model. However, both models are qualitatively consistent in the predication
of the effect of electric fields on the fracture behavior. Finally, it should be noted
that the analysis of the DB model has been restricted to the case of an imperme-
able crack to keep the consistency of the present work with the previous works (Gao
et al., 1997; Wang, 2000; Zhang and Gao, 2004; Zhang, 2004), although the exper-
imental results (Schneider et al., 2003) indicate that the permeable boundary condi-
tion might be super to the impermeable boundary condition in representing the real
cases. We shall be able to theoretically extend the DB model to the cases of perme-
able cracks and/or semi-permeable cracks, however, the more challenging task is to
experimentally verify the DB model.
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