
Formal Methods in System Design
https://doi.org/10.1007/s10703-024-00462-1

RESEARCH

A verified durable transactional mutex lock for persistent
x86-TSO

Eleni Vafeiadi Bila1,2 · Brijesh Dongol1

Received: 5 November 2023 / Accepted: 19 July 2024
© The Author(s) 2024

Abstract
The advent of non-volatile memory technologies has spurred intensive research interest in
correctness and programmability. This paper addresses both by developing and verifying
a durable (aka persistent) transactional memory (TM) algorithm, dTMLPx86. Correctness
of dTMLPx86 is judged in terms of durable opacity, which ensures both failure atomicity
(ensuringmemory consistency after a crash) and opacity (ensuring thread safety).We assume
a realistic execution model, Px86, which represents Intel’s persistent memory model and
extends the Total Store Order memory model with instructions that control persistency. Our
TM algorithm, dTMLPx86, is an adaptation of an existing software transactional mutex lock,
but with additional synchronisation mechanisms to cope with Px86. Our correctness proof is
operational and comprises two distinct types of proofs: (1) proofs of invariants of dTMLPx86

and (2) a proof of refinement against an operational specification that guarantees durable
opacity. To achieve (1), we build on recent Owicki–Gries logics for Px86, and for (2) we use
a simulation-based proof technique, which, as far as we are aware, is the first application of
simulation-based proofs for Px86 programs. Our entire development has been mechanised
in the Isabelle/HOL proof assistant.

Keywords Persistent memory · Transactional memory · Verification · Refinement ·
Isabelle/HOL

1 Introduction

Non-volatile memory (NVM) technologies, e.g., Intel Optane, enable byte-addressable
accesses as allowed by DRAM, while retaining the benefits of persistent storage. NVM
has the potential to radically impact future systems since they can be designed to efficiently
recover from a system-wide crash. However, NVM also introduces new programming chal-
lenges and requires previous notions of correctness to be reconsidered. Such challenges are
particularly acute for concurrent programs, where one additionally has to understand inter-

B Brijesh Dongol
b.dongol@surrey.ac.uk

Eleni Vafeiadi Bila
eleni.vafeiadibila@arm.com

1 University of Surrey, Guildford, UK

2 Arm Ltd, Cambridge, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00462-1&domain=pdf

Formal Methods in System Design

actions between persistency (concerning the order in which memory updates are persisted)
and weak memory consistency (concerning the order in which memory updates in one thread
become visible to other threads).

There has been widespread interest on NVM, with several works characterising their
semantics in the context of hardwareweak memory models [12, 57, 59, 60]. Alongside these
low-level semantics, a separate line of work has focussed on adapting correctness conditions
such as linearisability [34] and opacity [33], obtaining corresponding conditions such as
durable linearisability [38] and durable opacity [5]. Such conditions provide a basis for
developing high-level synchronisation mechanisms such as concurrent objects, in the case
of (durable) linearisability, and transactional memory, in the case of (durable) opacity.

Our work brings these two lines of work together in the context of recoverable concurrent
transactional memory [14, 39, 41, 47]. In particular, we develop dTMLPx86, which is an
adaptation of the durable Transactional Mutex Lock (dTML) algorithm [5], which is itself
a durable extension of the Transactional Mutex Lock [15] with logging mechanisms that
support recoverability. The dTML algorithm has been designed for a strong memory model
(PSC) [44], which extends sequential consistency (SC) [48] with persistency. However, PSC
is a strong memory model that is unrealistic for modern architectures (e.g., Intel), which only
provide weak memory guarantees.

1.1 Designing, modelling and verifying dTMLPx86

Unlike prior works, as the name implies, dTMLPx86 assumes Intel’s x86 persistency and
consistency model (Px86) [37], which extends the x86 Total Store Order (TSO) model [64]
with a persistency semantics [12, 44, 57, 59, 60]. Here, like in TSO, each write is first cached
in a local FIFO store buffer (and only visible to the writing thread), then later propagated
to the volatile shared memory (whereby it becomes visible to other threads). Writes in the
volatile shared memory are later persisted by propagating them to NVM.

In Px86, the order in which writes become persistent may differ from the order in which
they were issued. To address this, Px86 provides instructions, e.g., flush, flushopt, that explic-
itly flush locations1 to NVM, ensuring that the corresponding locations are persisted. The
flush instruction flushes a location line in a synchronous manner, blocking the executing
thread until the prior write has been persisted. The optimised flush instruction (flushopt)
flushes a single location but in an asynchronous manner (without blocking the execution
of the corresponding thread). The flushopt instruction is not ordered with respect to any
following write, flushopt, or flush (when applied to an address in a different location) instruc-
tions [57, Fig. 3], and only serves to tag locations that are to be persisted later. As a result,
the execution of a flushopt on an address x , does not provide any guarantees about the value
of x in persistent memory. To restrict the additional weak behaviors that flushopt introduces,
Px86 provides a store fence (sfence) instruction that orders store instructions with flushopt.
The flushopt instruction is guaranteed to take effect (the contents of the given location reach
the persistent memory) when a following sfence instruction is executed.

dTMLPx86 is designed to make use of flushopt instructions for efficiency. However, this
introduces new verification challenges. Namely, flushopt instructions are difficult to reason
about and, in fact, some earlier logics [58] only provided partial support for flushopt instruc-
tions, requiring a program with flushopt instructions to be transformed into a program with

1 Instructions such as flush, flushopt and sfence actually apply to cache lines instead of locations. However,
as in [8], for brevity we make the assumption that each cache line only holds one location, eliminating the
need to reason about other locations on the same cache line.

123

Formal Methods in System Design

flush instructions only. This transformation technique was known to be incomplete [58]. Full
support for flushopt was only provided after development of the view-based semantics of
Px86 (which we call Px86view) [12] and a corresponding Owicki–Gries logic [8]. Our proofs
for dTMLPx86 represent the first large-scale proofs of correctness for a realistic program that
uses flushopt instructions.

We aim to achieve full operational proofs of correctness, therefore we build on the afore-
mentioned Px86view semantics [12] and Owicki–Gries logic [8]. However, using this logic
directly in our current work is not possible for two reasons.

(1) Like prior works on verifying Px86 programs [12, 58], Bila et al. [8] have only focussed
on reasoning about the behaviour upto the first crash of the program. To fully establish
correctness of dTMLPx86, it is critical to also reason about the program after restarting
the system.

(2) The assertions of Pierogi defined by Bila et al. [8] are inadequate for reasoning about
certain phenomena that occur in dTMLPx86. In particular, we must often reason about
memory patterns by considering the order in which writes occur.

One of our contributions is an extension of the view-based semantics [12] as well as the
associated logic [8] to enable reasoning about program recovery (after a crash), as well as
new assertions that enable reasoning about the last writes to a location.

Our correctness proof of dTMLPx86 uses forward simulation to establish a refinement with
respect to an abstract operational specification (called dTMS2 [5]). This, to our knowledge,
is the first operational proof of refinement for the Px86. Other works have used refinement to
verify durable linearisability directly under the declarative Px86 model [24, 56]. Unlike our
work, these prior works are not accompanied by any mechanisation. Dalvandi and Dongol
[16] have considered operational refinement proofs of transactionalmemory algorithms under
the RC11 memory model with full mechanisation in Isabelle/HOL. These proofs have a
different set of complexities (due to relaxed and release-acquire accesses), but do not require
consideration of durability or recovery as we do in dTMLPx86.

1.2 Contributions

This paper comprises the following main contributions.

(1) We develop a durable transactional memory dTMLPx86 that guarantees durable opacity
under Px86view (and hence Px86). As mentioned above, dTMLPx86 makes use of flushopt
instructions for improved efficiency, which increases the verification challenge.

(2) We develop a extension of the Px86view semantics to enable operational reasoning about
the behaviour of program after a crash, i.e., the recovery and subsequent execution. This
is coupled with an extended Owicki–Gries logic that is also capable of reasoning about
recovery steps.

(3) To take advantage of our operational reasoning technique, we apply a simulation-based
proof to show correctness of dTMLPx86 by refinement. The proof proceeds via a long-
established technique of establishing a forward simulation between the implementation
and an abstract specification [5, 18, 22]. In the context of transactional memory, we prove
that dTMLPx86 is a refinement of an operational model, dTMS2 [5], whose traces are
guaranteed to be durably opaque.

(4) Wemechanise our entire development in Isabelle/HOL, ranging from the semantics, logic
(including soundness of the atomic Hoare triples), and all proofs pertaining to dTMLPx86,
including proofs of the invariant and simulation.

123

Formal Methods in System Design

1.3 Supplementary material

The Isabelle/HOL development accompanying this paper is available at [7].

1.4 Overview

This paper is organised as follows. In Sect. refsec:motivation, we provide some background
and further motivation for our work, and in Sect. 3, we recap durable opacity as well as
an operational model that guarantees durable opacity. In Sect. 4, we present a view-based
operational model for Px86, including our extensions that model recovery after a crash. We
present our extended dTMLPx86 algorithm in Sect. 5. We present the Owicki–Gries proof
technique (further extended to cope with recovery) and the invariants of dTMLPx86 in Sect.
6. In Sect. 7 we present the durable opacity proof of dTMLPx86 and in Sect. 8 we discuss
related work.

2 Background andmotivation

In this section, we provide some basic high-level background and general motivation for our
work.

2.1 Px86 semantics

To illustrate the behaviours of different persistentmemory instructions,we use three examples
(see Fig. 1) by Raad et al. [59], which demonstrate the behaviour of flushopt instructions.
The assertion at the end of each program (indicated by �) expresses persistent invariant [8],
i.e., the persistent memory state if the corresponding program crashes.

The program in Fig. 1a first writes the value 1 to location x , then issues an optimised flush
instruction to x . Finally, it writes the value 1 to location y. During its execution, both values
0 and 1 possible values for both locations x and y in the persistent memory. This is because
flushopt x by itself does not guarantee that x is persisted before store y 1 is executed. In
fact, after executing store y 1, it may be the case that y may be set to 1 in persistent memory
before x is set to 1.

To prevent potential reorderings between optimised flushes and later instructions, one
can use the sfence (store fence) instruction as mentioned above. Other options would be
using (RMW) instructions such as a compare-and-swap (CAS) or fetch-and-add (FAA). As
illustrated in Fig. 1b adding an sfence instruction before store y 1 prevents the flushopt x
from being reordered after it. Thus, if the persistent value of y is 1, then store y 1 must
have been executed, and hence sfence must have also been executed, which means that the
persistent value of x is 1.

The program in Fig. 1c constitutes a message passing example. As in TSO, loading the
value 1 for y (stored in register r) in the second thread, indicates that the store of value 1 at
y from the first thread has been already evicted from its local store buffer. Since the store of
value 1 to x precedes the store to y in the first thread, this means that the write to x has also
been evicted from the first thread’s store buffer and therefore is visible to the second thread.
The flushopt x instruction in the second thread cannot be reordered before the preceding load.
Hence, when the flushopt x is executed, the value of x seen by the second thread must be
1. Moreover, after the sfence is executed, we can be sure that the value of x in persistent

123

Formal Methods in System Design

Fig. 1 Example Px86 programs by Raad et al. [59] where the assertion � defines the possible persisted values
during the execution. In all examples x , y, z are distinct locations with initial value 0, and r is a (thread-local)
register.

memory is 1. Thus, if the persistent value of z is 1 (meaning that the store to z has been
executed), then the persistent value of x is also 1.

2.2 Implementation challenges under Px86

Transactional memory (TM) aims to simplify concurrent programming by executing oper-
ations (loads, stores) within a transaction with an illusion of atomicity. That is, all changes
to data inside a transaction are performed as if they were a single operation. Transactions
also execute in an all-or-nothing manner—either all operations occur (i.e., the corresponding
transaction commits), or none occur (i.e., the corresponding transaction aborts). We aim to
develop a TM algorithm that ensures durable opacity [5], which we discuss in §3.

There are two main challenges when developing durable TM algorithms under weak
memory models such as Px86.

(1) The first challenge concerns thread synchronisation. In a weak memory context, a read
of a shared location may return a stale value, i.e., a value that is not the location’s last
written value. To address this, we must use instructions with strong ordering guarantees
(e.g., CAS) at key points within dTMLPx86 to prevent transactions from reading stale
values.

(2) The second challenge concerns durability. Without correct placement of explicit flush
instructions and the careful design of a recovery mechanism, there is no guarantee of
correctness after a system crash. To tackle this, we must strategically position flushopt
and sfence instructions in a way that does not compromise the algorithm’s efficiency. We
must also design a recovery process that enables the state to be reset to a consistent state
after a crash.

3 Durable opacity

Opacity has been extensively covered in the literature [2, 3, 17, 21, 33, 49], while the formal
definition of durable opacity may be found in [5, 6]. We provide these formal definitions in
Sect. C, and explain the key concepts here through example (Sect. 3.1). Formally, we only
require an operational characterisation of durable opacity called dTMS2 [5, 6], which we
present as an input/output automaton in Sect. 3.2. dTMS2 has been used in prior proofs of
durable opacity [5, 6, 23] including recent model checking encodings under Px86 [61].

123

Formal Methods in System Design

Note that in this paper, for simplicity, we conflate threads and transactions, i.e., each
thread is assumed to execute at most one transaction. This restriction can easily be lifted, but
at the cost of additional notational overhead [16], whereby we explictly track the transaction
executed by each thread in a special state variable. In the following sections, we often use
the terms thread and transaction interchangeably.

3.1 Opacity and durable opacity

The discussion and example below is adapted from our earlier work [23].
Correctness conditions for TMare defined in terms of histories of externally visible events,

which are the external calls (invocations) and returns (responses) of TMoperations. Typically,
we have a pair of events for operations TMBegin, TMRead, TMWrite and TMCommit,
noting that an operation call may return with an abort.

A concurrent history comprises an interleaving of (external) events from the different
operations executed by different transactions. Each history is assumed to bewell formed, i.e.,
the history, when restricted to a single transaction starts with a TMBegin, possibly followed
by a number of TMRead and TMWrite operations, possibly followed by a TMCommit oper-
ation (see Fig. 2). Moreover, each operation executed by a transaction must have responded
before the next operation is invoked.

A transaction is complete in a history if it has responded with TMCommit(ok) or an
abort event, and once completed, the transaction must not execute any further operations.
However, a transaction within a history may not be complete, i.e., may be a live transaction.

TM implementations are typically designed to be serialisable, i.e., there is a total order
of committed transactions that is consistent with a sequential history. The TM implemen-
tations of interest in this paper in fact guarantee strict serialisability, which means that the
total order of operations must additionally respect the real-time order, i.e., if transaction t1
commits before transaction t2 starts, then t1 must serialise before t2. Concurrent (i.e., over-
lapping) transactions may, however, be serialised in any order. TM implementations also
typically provide a semantics for live and aborted transactions. A well-studied condition here
is opacity [33], which ensures that there exists a total order across all transactions so that
the committed transactions are strictly serialised and the aborted transactions are consistent
with the serialisation order.

While the above provides semantics for transaction consistency, under NVM, we also
require a further guarantee of failure atomicity. To this end, we follow the notion of durable
opacity [5], where all transactions committed before a crash are persistent (after the crash),
and in addition, the effects of any partially executed transactions are generally not visible
after the crash. This concept is similar to that of durable linearisability [38], for concurrent
objects.

A durable concurrent history is a concurrent history interleaved with crash events. A
durable concurrent history is well formed iff the history with crash events removed is well
formed and, moreover, no transaction that started before the crash continues executing after
the crash.

Durable opacity, defined over durable concurrent histories, simply requires that the given
history is opaque after all crash events are removed. Note that this means that any live
transactions before a crash are aborted, and the writes of any committed transactions are
persisted, i.e., are not lost after crash.

Example 1 (Dongol and Le-Papin [23]) Consider the history given below, where we elide the
response events as well as the TMBegin / TMCommit operations, focussing instead on the

123

Formal Methods in System Design

allowable order of the transactions t1-t9. We use Ri x v to denote a completed read operation
by transaction ti on variable x returning value v. (Similarly Wi x v.) We use Ri x _ to denote
a TMRead operation that has been invoked by ti but not returned. All transactions except for
transactions t4 and t5 are committed. Transaction t4 is a live transaction that is interrupted by
a crash, and transaction t5 is an aborted complete transaction.

R1 x 0 W1 y 1 R2 y 1

R3 y 1 W3 x 3 W4 y 4

R5 y 0 R5 x _

R6 x 3 R6 y 1

W7 x 9

R8 x 9

crash

To show that the history above is durably opaque, we must remove the crash events,
and show that the remaining history is opaque. Here, we must find a total order among all
(including live and aborted) transactions so that the values returned by the read operations are
consistent with thememory semantics w.r.t. the committed transactions. This total order must
respect the real-time order of transactions, e.g., t1 and t2 may not be reordered. Assuming all
variables are initialised to 0, an ordering that satisfies these constraints is: t5 ≺ t1 ≺ t3 ≺ t2 ≺
t4 ≺ t6 ≺ t7 ≺ t8. Other orders are possible, however, for example, t1 cannot occur before t5
even though t5 aborts (if it did, R5 y 0 would be inconsistent with the memory semantics).

One caveat of durable opacity pertains to transactions that have already invoked (but not
returned from) TMCommit when a crash occurs. When removing crash events from the
history, such transactions may either be treated as a committed transaction, or a live (and
hence aborted) transaction [5].

Example 2 Consider the history given below, which comprises committed transactions t1 and
t5 and live transactions t2, t3 and t4 that are interrupted by a crash. We assume that both t2
and t3 have started committing when crash occurs, but t3 has not.

W2 x 4

W3 y 4

W4 z 4W1 z 3

R5 x 0 R5 y 4 R5 z 3
crash

The history is durably opaque, e.g., t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 is a valid total order, where we
treat t2 as an aborted transaction, but t3 as a committed transaction. Transaction t4 can only
be considered as a live (and hence aborted) transaction.

3.2 The dTMS2 operational specification

While Sect. 3.1 provides a pedagogical overviewof durable opacity, the formal aspects needed
for this paper are provided by an operational specification, dTMS2 [5]. dTMS2 extends the
TMS2 operational model [20] with a crash-recovery operation (Crash). The transitions of
dTMS2 are given in Fig. 2. TMS2 has been shown to imply opacity [50], while dTMS2 has
been shown to imply durable opacity [5]. Thus every history of dTMS2 is guaranteed to be
durably opaque. Later in Sect. 6, we will show that dTMLPx86 is a refinement of dTMS2,
and hence also guaranteed to satisfy durable opacity.

The memory of dTMS2 is modelled as a sequence of mappings from locations to values
L ∈ (Loc → Val)∗. We refer to each such mapping as a memory snapshot. Interestingly,

123

Formal Methods in System Design

Fig. 2 Transitions of dTMS2 for a transaction t , where validIdx(t, n) = beginIdxt ≤ n < |L|∧rdSett ⊆ L(n)

and ⊕ denotes a functional override. For example f ⊕ {x → v} = λy. if y = x then v else f (y). Blue
arrows represent possible transitions for either an abort or crash. Red arrows represent transitions that are
possible for a crash only. Dashed arrows (e.g., doBegint) represent internal transitions.

as in other works on refinement-based proofs of durability [18], there is no need distinguish
between volatile and persistent memory state in the abstract specification, and the entire state
is considered to be persistent. Like dTMLPx86, dTMS2 supports operations (TMBegin), read
(TMRead), write (TMWrite) and commit (TMCommit).

Writing transactions of dTMS2 assume a deferred update policy, i.e., each transaction t
maintains a write set (wrSett) that records the values that t has written during its execution
(see doWritet (x, v) in Fig. 2). The memory is updated by writing back the elements of
the wrSett to memory when the transaction commits (TMCommit). In particular, when a
writing transaction t commits (see doCommitt in Fig. 2), t creates a new memory snapshot
by applying its write set to final memory in L , then appending the resulting memory snapshot
to L .

To ensure read consistency, the reads performed from memory are recorded in a local
read set (rdSett) for each transaction t (see the else case of doReadt (x) in Fig. 2). To judge
consistency, the largest memory index is stored in beginIdxt , recording the earliest memory
snapshot against which t can serialise (seedoBegint in Fig. 2). A read-only transactionmust
be validated w.r.t. somememory snapshot indexed at or after beginIdxt (see doReadt (x, n)

in Fig. 2). Validation only succeeds (see validIdx) against a memory snapshot L(n) if each
read in the given read set is consistent with L(n). A read in a writing transaction is similar
except that the validity check must be w.r.t. the last memory snapshot when the location
being read is not in the transaction’s write set. If the location being read is in the transaction’s
write set, then the value in the write set is returned.

123

Formal Methods in System Design

Fig. 3 Programming language syntax.

As shown inFig. 2, following the notionof a canonical automata [52], each ‘do’ transition is
internal, and is preceded and succeeded by a corresponding external invocation and response
transition. A transaction can abort (indicated by pc valueAborted) after invocation, but before
responding. It can crash by transitioning to Aborted from any state after starting, but before
it has committed or aborted.

4 View-based Px86model

This paper builds on the view-based model for Px86view proposed by Cho et al. [12], which
has been shown to be equivalent to Px86 [59]. Px86view abstractly captures underlying
architectural complexities in terms of timestamps. To support the modelling and verification
of our TM implementation, we extend Px86view as follows:

(1) We add a new crash transition to model a system-wide crash. This is needed because
in contrast to prior work [12, 58], we wish to allow reasoning about our TM execution
even after a crash/recovery event takes place.

(2) We introduce a syntax and semantics for high-level durably linearisable [38] objects.

In the following section, we provide a description of the Px86view programming language
and semantics, emphasising on our extensions.

4.1 Programming language

The syntax of our language is given in Fig. 3, which is the syntax from prior work [8, 12]
extended with high-level method calls.

Atomic statements (in ASt) may be a no-op (skip), a local assignment (a := e), a load of
a shared location (a := load x), a store to a shared location (store x e), an atomic compare-
and-swap (a :=CAS x e1 e2), a memory fence (mfence), a flush instruction (flush x), an
optimised flush instruction (flushopt x), a store fence (sfence) or a call to an atomic method
f of object o (o. f).
A labelled statement LSt is either:

(1) a statement of the form α goto j , comprising an atomic statement α to be executed and
the label j of the next statement;

(2) a conditional statement of the form if B goto j else to k, which facilitates branching,
directing execution to label j if B holds and to k, otherwise; and

(3) a statement incorporating an auxiliary update, denoted as 〈α goto j, â := ê〉. An aux-
iliary update behaves like α goto j , but additionally updates the value of the auxiliary
variable â with the auxiliary expression ê within the same atomic step.

123

Formal Methods in System Design

Following [8], a program � is represented as a function that maps pairs of the form (t, i ∈
Tid × Lab) to labelled statements in LSt, representing the next statement to be executed.

Control flow within each thread is tracked by a program counter function, pc, which
records the program counter of each thread. The initial label of each thread is a designated
label ι (in Lab). During a program’s execution, the pc value of a thread changes according
to � and at the end of the thread’s execution, pc is assigned to a designated value ζ ∈ Lab.

Example 3 (Program) The program Fig.1a, assuming that the executing thread has id 1, is
given as follows:

� �

⎧
⎨

⎩

(1, ι) �→ store x 1 goto 2,
(1, 2) �→ flushopt x goto 3,
(1, 3) �→ store y 1 goto ζ

⎫
⎬

⎭

4.2 The Px86view semantics

Our operational semantics is based on earlier work by Cho et al. [12]. A selection of
transition rules of the semantics is given in Fig. 4.

A state is modelled by a tuple σ = 〈pc, rec,T, M,G〉.
• pc : Tid → Lab maps each thread to the next instruction to be executed.
• rec : bool is a flag that indicates when a recovery process is in progress. In the event of

a crash, rec is set to true to indicate that an implementation-specific recovery process is
about to start its execution. We assume that after the recovery process completes, rec is
reset to false.

• T : Tid → Thread maps each thread to its current thread state, where Thread is a
record of thread views (see below) and local register store (regs : Reg → Val).

• M ∈ Memory is a list of messages modelling the current memory. The first message of
each memory is a store CM : Loc → Val, and the subsequent messages have the form
〈Loc :=Val〉. Initially, we assume M = 〈CM〉, where CM(x) = 0 for all x ∈ Loc.

• G : AuxVar → Val records the current values of auxiliary variable.

We denote the components of state σ as σ.T, σ.M , etc. We refer to the indices of a memory
list as timestamps. For ts > 0, the location and a value of a message m are denoted as
m.loc and m.val, respectively. The length of the memory list M is denoted as |M |. We say
that a message with timestamp ts1 and location x is not overwritten from timestamp ts2’s
perspective if the following holds: ∀ts ∈ (ts1, ts2]. M[ts].loc �= x . We denote the above
as x /∈ M(ts1..ts2]. Furthermore, we use � to obtain the maximum among timestamps (i.e.
ts1 � ts2 = max(ts1, ts2)).

The views of a thread state Thread comprises the following components.

• coh : Loc → N, modelling the coherence view, which is used to determine the last
write to the given location seen by the thread. In combination with vrNew below, coh
determines the range of observable values by t for a given location.

• vrNew : N, modelling the latest timestamp among all timestamps seen by the thread.
• vpReady : N, used to ensure that load, sfence, mfence and CAS instructions are ordered

w.r.t. subsequent flushopt instructions.
• vpAsync : Loc → N, modelling the asynchronous view, which is used to determine values

to be persistent after the execution of an sfence.
• vpCommit : Loc → N modelling the persistent view, which is used to determine the set

of values of a given location in persistent memory.

123

Formal Methods in System Design

Fig. 4 Sample of transition rules of Px86view for a program �.

123

Formal Methods in System Design

We assume that all the registers and views are initialised to 0.
As shown in Fig. 4, execution of a store x v instruction adds a message 〈x := v〉 to the

memory list and updates the coherence view. A r := load x instruction either reads from an
earlier write performed by the same thread (load- internal) or from a write performed by
another thread (load- external), which update different thread view components. If the
read happens to read the first message of the memory returns M[0](x), otherwise it returns
M[ts].val (assuming M[ts].loc). We capture both scenarios using the notation M[ts] ≡
〈x := v〉.

The CAS instruction is modelled by two transition rules (CAS- success and CAS-

failure). The CAS- success transition (for a :=CAS x e1 e2) takes place when the value
of register e1 is equal to the last write at x (the last memory message with location x). In this
case, a message 〈x := v2〉, where v2 is the value of register e2, is appended in the end of the
memory list and register a is assigned true. The CAS- failure transition takes place when
the last write at x does not have the value v1. In this case, register a is assigned false. The
effect of the CAS- failure transition is a equivalent to the effect of a load instruction on
location x .

A more detailed description of the views of a thread is given in §A, while an example
execution is given below.

Example 4 (Program execution) Fig. 5 illustrates how the view components of a thread state
T(t) change when t executes a program.

(1) Initially, the memory σ.M only includes the initial message, and all the components of
t’s view state point to timestamp 0 (i.e., the initial message).

(2) After the execution of store x 1 the message 〈x := 1〉 is added to the memory. The store
transition causes the coherence view of t for x (i.e., σ.T(t).coh(x)) to become 1.

(3) Execution of flushopt x causes σ.T(t).vpAsync(x) to point to memory index 1. Thus, after
executing a subsequent sfence, x := 1 will be guaranteed to have been persisted (after
step 4 below).

(4) The sfence instruction causes the σ.T(t).vpCommit(x) view for t to point to the same
message as the σ.T(t).vpAsync(x) view, indicating that x := 1 is now persisted.

(5) Finally, execution of store y 1 adds tomemoryM themessage 〈y := 1〉 at index 2.All the
views in T(t) remain the same apart from the coherence view of y (i.e., σ.T(t).coh(y)).

4.2.1 Modelling crashes and recovery

In contrast to prior works [8, 12], which only modelled execution upto the first crash, we
provide explicit mechanisms to enable reasoning about crashes and the subsequent recovery
operation. We introduce a crash transition that creates a new initial message and resets the
views of each thread.

Specifically, the memory component of the state, σ.M , satisfies CM immediately after a
crash in state σ if for every x ∈ Loc, there exists some ts such that σ.M[ts] ≡ 〈x :=CM(x)〉
and x /∈ σ.M(ts..

⊔
t σ.T(t).vpCommit(x)]. To formalise this, we first define the set of possible

persistent timestamps for location x in σ :

TSP(σ, x) �
{

ts | MemLoc(x, ts, σ.M) = x ∧ x /∈ σ.M(ts..
⊔

t

σ.T(t).vpCommit(x)]
}

whereMemLoc(x, t, M) � if (t = 0) then x else M[t].loc. The set of timestamps TSP(σ, x)
represent the set of timestamps of messages that have been persisted in state σ , and thus their

123

Formal Methods in System Design

Fig. 5 A depiction of a subset of the current views, the thread state (T(t)), and Px86view memory list (M). The
assertions over the thread state are explained in Example 8. The highlighted components of the state capture
the effects of each instruction.

corresponding values can be read for location x if a crash occurs at this point of execution.
This set corresponds to all the timestamps of the memory messages with location x that
are not overwritten before maximum of each thread’s vpCommit view for location x (i.e.,
⊔

t σ.T(t).vpCommit(x)).

Example 5 Consider the program executed in Example 4. The set TSP(σ, x) changes as fol-

lows: TSP(σ, x) = {} store x 1−−−−−→ TSP(σ, x) = {0, 1} flushopt x−−−−−→ TSP(σ, x) = {0, 1} sfence−−−→
TSP(σ, x) = {1} store y 1−−−−−→ TSP(σ, x) = {1}

The set of values corresponding to these timestamps is given by

[x]P � λσ.Vals(TSP(σ, x), x, σ.M)

123

Formal Methods in System Design

where Vals(T S, x, M) � {MemVal(x, t, M) | t ∈ T S} returns the values at the given set of
timestamps, assuming MemVal(x, t, M) � if (t = 0) then M[0](x) else M[t].val. We call
the set [x]P the persistent view of location x . The persistent view of any location x in Loc is
global (not specific to a thread) and captures the possible values of x in persistent memory.
It constitutes one of the view-based expressions that we use to form assertions in the proof
outlines of Px86view programs [8]. We present other view-based expressions in Sect. 6.1.

We assume that recovery is executed by a unique system thread, syst, that is different from
any program thread. Recovery is only enabled in state σ if σ.rec holds. Moreover, we assume
a special label, Recpending, which we assume is the label of the first recovery instruction.
Upon completion of the recovery procedure, we assume that pcsyst is set to Reccomplete, and
that there is a transition from this state to a state in which rec is set to false.

5 dTMLPx86: a durable transactionmutex lock for Px86

In this section, we describe TML and the extensions required for durable opacity under Px86.
An adaptation of TML that ensures durable opacity under the simpler PSC memory model
(cf. [44]) has been presented in prior work [5]. In addition to assuming a more realistic
memory model, unlike Bila et al. [5], our adapted algorithm dTMLPx86, uses optimised
flush instructions to increase performance [37], but at the cost of significantly increasing the
verification challenge.

5.1 The dTMLPx86 algorithm

Pseudocode for dTMLPx86 is given in Fig. 6 as “fall-through” execution, which is notationally
more convenient than our goto language (Sect. 4.1). Our Isabelle/HOL encoding uses the
goto model (and hence is consistent with the language in Sect. 4.1).

In order to handle the weak behaviours introduced by Px86, we introduce several exten-
sions to the original TML implementation [15]. Specifically, the lines highlighted blue
ensure correct thread synchronisation underweakmemory,while the lines highlighted green

are required to ensure correctness under persistency. The variables highlighted grey are
auxiliary. All the local variables apart from the auxiliary ones are modelled as registers. To
distinguish them from global variables, we index the registers with the id of the transaction
that they belong to. As before, we assume that thread identifiers coincide with the transaction
identifiers. Moreover, for simplicity, line numbers for return statements are omitted. From
now on, will use the term internal read for a read that a transaction performs to a location
that the same transaction previously wrote, and external read for a read that a transaction
performs to a location that has been written by another transaction.

We assume that all locations, the registers for every transaction, the global variable glb
and the auxiliary variable recGlb, are initialised to zero. The auxiliary variable writer is
initialised to None. We explain the behaviour of dTMLPx86 in stages, starting with the basic
algorithm.

5.1.1 The basic TML algorithm

TML performs writes in an eager manner, also known as direct update, i.e., it updates shared
memory within the write operation itself. This is in contrast to lazy algorithms that store
writes locally in awrite set, and update sharedmemory at a later stage, e.g., during the commit

123

Formal Methods in System Design

Fig. 6 Durable Transactional Mutex Lock.

operation. Additionally TML adopts a strict policy for transactional synchronisation: as soon
as a transaction attempts to write to a variable, all other transactions running concurrently
will be aborted when they invoke a read or a write operation. To enforce this synchronisation
policy, TML uses a single global versioned lock [19], glb, and a local register loct to record
a snapshot of glb at the beginning of the transaction t . A writing transaction is in progress
iff the value of glb is odd.

A transaction t starts by calling TMBegin, then reading glb and storing the read value in
the register loct (Bp). If the value of glb is odd, another writing transaction is in progress so
t does not start. Instead, it reattempts to start by rereading glb.

Operation TMWrite(x, v) first checks whether loct is even (Wp). If not, then t must
already be the writing transaction, and hence, it can proceed and update the value of the
given location x to v (W7). If loct is even, it means that the current transaction is not
yet a writing transaction, thus it attempts to become a writing transaction by performing a
compare-and-swap (CAS) operation (W1). If this CAS succeeds, TMWrite becomes the
writing transaction and increments loct (W3), making loct odd, then proceeds to update x to
v (W7). In addition, at W3, the auxiliary variable writer is set to t . If the CAS at W1 fails,
the transaction t aborts.

Operation TMRead(x) first reads the value at the given location x and stores it in the
register rt (Rp). The lines R1 to R3 are used to ensure weak-memory synchronisation under
TSO and are explained below. At line R4, the operation reads the current value of glb. If
this value is the same as loct , then either this transaction is the writing transaction, or no
other transaction has performed any writes since this transaction started. In both cases the
transaction returns the read value. If the test at R5 fails, then the transaction aborts.

123

Formal Methods in System Design

Transaction t commits by first checking whether loct is odd (Cp). If so, it means that t
is a writing transaction (and hence glb is odd), thus it makes glb even by incrementing glb
and setting the auxiliary variable writer to None. If t is a read-only transaction (i.e., loct is
even), it simply commits.

We now describe the necessary extensions for adapting TML to the persistent x86 setting.
From now on, we assume that the underlying memory model is the persistent x86 and the
instructions that are used correspond to the atomic statements of the Px86view programming
language (see Sect. 4.1)

5.1.2 Correct synchronisation under Px86

Under Px86, in the presence of multiple writes to a location, a read may return a stale value,
i.e., a value that is not the last written value. To ensure that a writing transaction serialises
correctly, it must successfully perform a CAS at line W1, which guarantees that it reads the
last written value of glb. However, in the standard TML and dTML algorithms [5, 15, 17]
(which assume SC and PSC memory, respectively), this synchronisation is never performed
by read-only transactions. Using approach in the Px86 setting is problematic since a read-
only transaction may complete with a stale value of glb, without ever reading from the latest
write to glb.

Example 6 Consider the program in Fig. 6 without lines R1–R3 (which have been introduced
to address correctness under Px86). An execution of this program can reach a state with the
following memory sequence:

〈M0, 〈glb := 1〉, 〈x := 1〉, 〈glb := 2〉, 〈glb := 3〉, 〈x := 2〉, 〈glb := 4〉〉
after executing two transactions t1 and t2, where t1 writes 1 at location x and commits and
afterwards t2 writes 2 at location x and commits. Now suppose transaction t3 starts, reads
glb := 2 (i.e. loct = 2), allowing it to complete TMBegin, and then performs a TMRead(x)
operation. The Px86 semantics allows it to read from the stale write 〈x := 1〉 (which has been
written by transaction t1), and then commit. Since t1 ≺ t2 and t2 ≺ t3, t3 reading the value
of x written by t1, causes the generated history to violate the real-time ordering constraint of
opacity.

To address this, we follow a similar approach to Dalvandi and Dongol [16] in the RC11
memory model,2 and introduce a CAS in the TMRead operation (R2), mimicking a fetch-
and-add-zero, to ensure that the last value of glb is read. If this CAS succeeds, the executing
transaction can immediately return the read value, and if this CAS fails, the transaction can
immediately abort (R3). Note that this CAS only needs to performed if the corresponding
transaction has not previously performed a read or a write. Thus at line R1, we bypass R2
when loct is odd or hasReadt holds. To see how the introduction of lines R1− R3 addresses
the issues, consider the following example.

Example 7 Consider the program in Fig. 6 (with lines R1–R3). Execution of this program can
also reach the state in Example 6 after the execution of the transactions t1 and t2 described
in Example 6. Once again, suppose transaction t starts, then reads glb := 2 (i.e., loct = 2),

2 Note that although our solution to weakmemory synchronisation is similar to the RC11memorymodel [16],
there are subtle differences in the way our solution guarantees correctness of reads. Unlike RC11 memory
model which requires a “release” synchronisation on the read corresponding to Rp, in TSO, it is sufficient to
perform a standard read.

123

Formal Methods in System Design

allowing it to complete TMBegin. Suppose t then executes a TMRead(x) operation reading
the stale write 〈x := 1〉. However, now (unlike Example 6) t proceeds to line R2 and since
loct is not the last written value of glb, the CAS fails, and thus t aborts.

5.1.3 Read-only transactions in Px86

Like Dalvandi and Dongol [16], we observe new behaviours of dTMLPx86 that would not
be present under SC memory, but without violating durable opacity. In particular, a read-
only transaction, t , is not immediately invalidated when glb is updated by another writing
transaction, provided t continues to read from transactional locations that are consistent with
a stale value of glb. This read-only transaction would be able to successfully commit if
it never reads a value for x that is more recent than its copy of glb. In case a read-only
transaction reads a value of a location x at Rp that is more recent than its local copy of glb,
the load of glb at R4 would also read a more recent copy of glb and the transaction would
subsequently abort.3

5.1.4 Ensuring durability

Durability of dTML under PSC has been studied in previous work [5]. The main idea there
was to introduce a durably linearisable [38] persistent undo log that records the previous
values of locations that have been overwritten by incomplete writing transactions. The log
is reset to empty when the writing transaction commits. If a crash occurs when a incomplete
writing transaction t is in flight, the subsequent recovery operation sets the state to the last
consistent state by undoing the writes of t using the undo log. The recovery mechanism from
the undo log is similar to this previous work [5], but we use flushopt and sfence instructions
instead of flush.

As in earlier work [5], there is no need to explicitly persist glb. For transactions to suc-
cessfully execute TMBegin after a crash, there is no necessity for transactions to read a
particular value of glb at line Bp, as long as the read value is even. Lines Rec8–Rec10 of
TMRecover ensure that there is at least one even value visible for glb after a system crash.

5.1.5 Alternative designs

While developing dTMLPx86, we considered several design alternatives. For instance, one
option is to move theCAS instruction of line R2, to line Bp. In this way, a transaction t could
have retried loading the most recent value of glb into loct until it succeeds before starting.
This would have allowed the transaction to avoid aborting at a later stage. However, while
this design may have resulted in fewer aborts, it would likely lead to a considerable increase
in overall latency since transactions would be require to execute several CAS instructions
within the TMBegin operation.

Another design alternative is to use a flush instruction instead of the flushopt ; sfence
sequence in Rec4 and Rec5. Since the value of each location recorded in the log, is persisted
sequentially and by only one thread, we expect the flush instruction in this case to be equally
or more efficient than the current solution.

Both alternative designs would not affect significantly the verification effort.

3 Note that this particular synchronisation property is much simpler to guarantee in Px86 than in the RC11
model [16], which requires careful management of release-acquire annotations.

123

Formal Methods in System Design

5.2 dTMLPx86 model

We build a transition system model for dTMLPx86. In this model, we must clarify possible
histories of the algorithm, which in turn requires us to clarify the invocation and response
events. We assume that the algorithm is executed by a most-general client [22] that calls the
operations of dTMLPx86.

5.2.1 dTMLPx86 executions and histories

For each transaction t , we assume a program counter, pct , (initially NotStarted) that is used
to model the control flow of transaction t . When t is in flight, but not executing any operation,
we have pct = Ready. Similarly, pct = Aborted and pct = Committed iff t has aborted or
committed, respectively. Otherwise pct is a line number corresponding to the instruction of
the operation t is executing.

We assume each operationop ∈ {TMBegin,TMRead(x),TMWrite(x, v),TMCommit}
generates an event invt (op) when op starts executing and rest (op), when op completes.

5.2.2 Ensuring well-formed histories

To ensure well-formedness of histories, we must ensure that transaction identifiers are not
reused. Additionally, a live (i.e., in-flight) transaction before a crash must not continue its
execution after the crash. To this end, we implicitly assume a persistent transaction manager
that allocates new transaction identifiers. In our model, like earlier works [5] we use program
counters to concisely characterise this assumption. First note that we assume program counter
values of all threads except the system thread are unchanged after a crash transition (see
Fig. 4), thus any transaction t with pct = NotStarted can be executed after a crash. To ensure
that in-flight transactions are not resumed, we assume that recovery starts by setting pct
to Aborted for every transaction t such that pct /∈ {NotStarted,Aborted,Committed} (cf.
TMCrashRecovery in Fig. 2).

5.2.3 Modelling log operations

The final source of complexity is the durably linearisable [38] log, log, which we model as a
(persistent) mapping from locations to values. In our model, we use a sequential specification
of log that does not enforce any client-side memory synchronisation (see [16, 66]) because
the TML algorithm only allows a single writer at a time, and hence there is never any race
on log. Moreover, because we assume that log is durably linearisable, the effect of each log
operation is persisted before the operation returns, and hence its client (i.e., our dTMLPx86

algorithm) never accesses unpersisted log values. We assume that log supports the following
operations.

log.isEmpty() that returns true whenever the log is empty (i.e., all elements are mapped
to ⊥).
log.contains(x) that returns true whenever the log contains x (i.e., x is not mapped to
⊥).
log.contains(x) that updates the logged location x to value v.
log.getKey() that non-determinstically returns a location whose value is not ⊥.
log.getVal(x) that returns the value of x in log.

123

Formal Methods in System Design

Fig. 7 TMRead annotation.

The log is stored in theG state component in Fig. 4 and updated according to SC semantics. An
actual implementation of log may synchronise threads, e.g., with mfence operations, which
affects the persistency and thread views of the variables of dTMLPx86. Our proof makes no
such assumptions about log, namely we assume the weakest possible ordering guarantees.
Thus, an implementation of log that performs additional thread synchronisation would not
affect soundness of our result.

6 Invariants of dTMLPx86

This section describes the key invariants of dTMLPx86 and mechanisms for proving their
correctness. These will be used in the simulation proof in Sect. 7. Our work builds on the
Pierogi logic for Px86view [8], which uses view-based expressions derived from the view
components of the thread state. We only require a subset of the Pierogi assertions. However,
we also introduce new view-based expressions simplify reasoning about dTMLPx86 (see Sect.
6.1). This is combined with an Owicki–Gries style proof method to establish correctness of
proof outlines (Sect. 6.2). However, unlike Pierogi, because we additionally reason about
the behaviour of a program after a crash, we slightly modify the interpretation of a persistent
invariant as used in Pierogi (see Sect. 6.2). Pierogi requires that we establish a set of proof
rules for atomic statements. We present a subset of these, including our new view-based

123

Formal Methods in System Design

expressions for dTMLPx86 in §B. In Sect. 6.4, we present an example proof outline for the
TMRead operation and finally, in Sect. 6.3, we present the persistent invariant.

6.1 View-based expressions

We first recap two key Pierogi view-based expressions that are used in our proof.
The thread view expression, [x]t , of a thread t for a location x captures the values that are

visible to t for x . It indicates the values that can be read from t via the execution of a load
or CAS instruction on x . The formal definition of [x]t is constructed by firstly specifying
the set of timestamps of the visible to t memory messages with location x (TSt (σ, x)), and
then by extracting the set of the values that correspond to those timestamps using Vals. We
define:

[x]t � λσ.Vals(TSt (σ, x), x, σ.M) (thread view)

where TSt (σ, x) �
{
ts MemLoc(x, ts, σ.M) = x ∧

σ.T(t).coh(x) ≤ ts ∧ x /∈ σ.M(ts..σ.T(t).vrNew]
}

.

Similarly, the asynchronous view expression, [x]At , of a thread t for a location x is thread-
local and captures the values that can be persisted after the execution of an sfence instruction
by t . This only depends on the view vpAsync(x) of t , which potentially changes after a
flushopt on x by t . The formal definition of [x]At is constructed by firstly specifying the set of
timestamps of the asynchronous view of thread t for location x and state σ . Then, as before,
we extract the set of values that correspond to those timestamps using Vals. We define:

[x]At � λσ.Vals(TSAt (σ, x), x, σ.M) (asynchronous view)

where TSAt (σ, x) �
{
ts | MemLoc(x, ts, σ.M) = x ∧ x /∈ σ.M(ts..σ.T(t).vpAsync(x)]

}
.

Example 8 Consider again the example execution in Fig. 5. This time we consider the asser-
tions associated with each program state. Initially, views [z]t , [z]At and [z]P for z ∈ {x, y} all
comprise the set {0}, meaning that the only value they can read is from the initial message.

(1) After execution of store x 1, we have [x]t = {1}, since the coherence view changes,
while [x]At = [x]P = {0, 1} since these views can see the value for x in either the initial
message or 〈x := 1〉. The view assertions on y are unchanged.

(2) After execution of flushopt x , since vpAsync(x) is updated, the value 0 is no longer visible
to the asynchronous view, and hence [x]At = {1}. Note that the persistent memory may
still see both 0 and 1 and hence [x]P = {0, 1}.

(3) Next sfence is executed, whereby the both vpCommit(x) and vpReady are updated, and this
means that we have [x]P = {1}.

(4) Finally store y 1 is executed, which has a similar effect to the first step, but on y instead
of x .

Next, we present an extension toPierogi that enable reasoning aboutwritten values before
a given timestamp. The last entry views return the timestamp of the memory message with
location equal to the given location and a timestamp less than or equal to the given limit.

MemLastEntryLim(x, t, M) �
⊔

{ts | MemLoc(x, t, M) = x ∧ ts ≤ t}
LE(x) � λσ.MemLastEntryLim(x, |σ.M | − 1, σ.M)

LEcoh(y, t, x) � λσ.MemLastEntryLim(x, coht (y)(σ), σ.M)

�x � λσ.MemVal(x, LE(x)(σ), σ.M)

123

Formal Methods in System Design

MemLastEntryLim(x, t, M) returns the maximum timestamp of the memory messages with
location x and timestamp less or equal to timestamp t , LE(x) returns the timestamp of the last
memory message on location x , and LEcoh(y, t, x) returns the timestamp of the last write to
x before t’s coherence view for y. The expression �x returns the value of the last message of
the memory with location x in the given state.

6.2 Owicki–Gries reasoning

In this section, we describe our Owicki–Gries style framework that we used to show that
a proof outline is valid. Our framework follows Pierogi [8], but we revise the notion of a
persistent invariant to enable one to describe the execution of a program after a crash. In
particular, given a multi-threaded program �, in addition to the local correctness and global
correctness checks, we also check that the persistent invariant is maintained by all program
transitions, including those of the recovery operation. As such the persistent invariant can be
used as an assumption when proving local correctness and global correctness. The use of a
global invariant to simplify Owicki–Gries proofs is a well known technique [26].

We refer to the set of assertions (i.e. predicates over Px86view states) that use view-based
expressions (§6.1) as an Assertionpv. A proof outline is a tuple (in, ann, I, fin), where
in, fin ∈ Assertionpv are the initial and final assertions, I is the persistent invariant and
ann is an annotation function that models program annotations. Specifically, ann ∈ Ann =
Tid×Lab → Assertionpv, associates each programpoint (t, i)with its associated assertion.
We let Recovery denote the set of all statements of the recovery operation and crash be a
statement corresponding to a crash transition.

Definition 1 (Valid proof outline) A proof outline (in, ann, fin, I) is valid for a program �

iff the following hold:

Initialisation. For all t ∈ Tid, in ⇒ I ∧ ann(t, ι).
Finalisation. I ∧ (

∧
t∈Tid ann(t, ζ)) ⇒ fin.

Local correctness. For all t ∈ Tid and i ∈ Lab, either:

• �(t, i) = α goto j and
{
I ∧ ann(t, i)

}
α

{
I ∧ ann(t, j)

}
; or

• �(t, i) = if B goto j else to k and both
− I ∧ ann(t, i) ∧ B ⇒ ann(t, j) and
− I ∧ ann(t, i) ∧ ¬B ⇒ ann(t, k) hold; or

• �(t, i) = 〈α goto j, â := ê〉 and {
I ∧ ann(t, i)

}
α

{
(I ∧ ann(t, j))[ê/â]}.

Global Correctness. For all t1, t2 ∈ Tid such that t1 �= t2 and i1, i2 ∈ Lab:

• if �(t1, i1) = α goto j , then
{
I ∧ ann(t2, i2) ∧ ann(t1, i1)

}
α

{
ann(t2, i2)

}
;

• if �(t1, i1) = 〈α goto j, â := ê〉, then {
I ∧ ann(t2, i2) ∧ ann(t1, i1)

}
α{

ann(t2, i2)[ê/â]}.
Crash invariance. Both of the following hold:

• for all α ∈ Recovery,
{
I
}

α
{
I
}

• {
I
}
crash

{
I
}

Initialisation (resp. Finalisation) ensures that the initial (resp. final) assertion of each
thread holds in the initial (resp. final) state. Local correctness ensures the validity of the
program annotation of each thread, while global correctness ensures the global correctness
of the program annotation of each thread under the execution of other threads. In essence,

123

Formal Methods in System Design

the local correctness proof for a thread t checks for each atomic statement of t if its post-
condition (given as annotation) can be established by its pre-condition (given as annotation).
Similarly, the global correctness proof for a thread t checks that the pre-condition of each
atomic statement of t is stable against the atomic statements of the other threads. Note that
if B goto j else to k does not generate a global correctness proof obligation since B is an
expression over thread-local variables, thus does not change the global state.

To show that a proof outline is valid (Definition 1) we use two types of rules: standard
decomposition rules and rules for atomic statements.

6.2.1 Standard decomposition rules

The standard decomposition rules of Hoare logic such as weakening preconditions, strength-
ening postconditions, and decomposing conjunctions and disjunctions apply (see [8]).

6.2.2 Rules for atomic statements and correctness of view-based assertions

The proof rules that we use constitute all the rules of the Pierogi framework [8] as well as
some additional rules developed enable proofs of correctness for dTMLPx86. All the proof
rules used in this work have been mechanised and proved sound against our extensions to
Px86view in Isabelle/HOL.Each rule captures the impact of the executionof atomic statements
(discussed in §4.1) on assertions formed by view-based expressions (outlined in §6.1).

We have two general types of rules used to discharge local and global correctness proof
obligations. Local correctness proof rules often describe how views are changed through the
execution of a thread:

Example 9 Assuming that the statement in question is executed by thread t , the rule{[x]At = S
}
flushopt x

{[x]At ⊆ S
}
states that the asynchronous view of x for thread t in

the post-state is equal or a subset of its asynchronous view in the pre-state, after executing
flushopt x .

Global correctness proof rules are often used to show stability of assertions.

Example 10 Assuming that the statement in question is executed by thread t and t �= t ′, the
rule

{[y]t ′ = S
}
sfence

{[y]t ′ = S
}
states that the thread view of any address y for any thread

remains unchanged after the execution of sfence.

Other global correctness rules describe how the memory (and hence available values for
a thread to observe change).

Example 11 Assuming that the statement in question is executed by thread t and t �= t ′,
the rule

{[x]t ′ = S
}
store x v

{[x]t ′ = S ∪ {v}} states that the value v for x is available for
thread t ′ to read after the execution of store x v.

A full set of rules for proving local and global correctness of view-based assertions is
presented in Sect. B.

6.3 Persistent invariant of dTMLPx86

To prove corrrectness of dTMLPx86, we construct a multithreaded program �dTMLPx86 based
on themodel introduced in Sect. 5.2.�dTMLPx86 includes all dTMLPx86 operations, invocation

123

Formal Methods in System Design

events, response events and the system crash event. With the exception of the system thread,
which is only capable of executing the TMRecover operation, any thread t in Tid is free to
perform any number of operations (excluding the recovery operation) as long as the resulting
execution history conforms to the control flow and well-formedness constraints.

In this section, we present the most important aspects of the persistent invariant, which
comprises a collection of properties that the dTMLPx86 implementation guarantees in every
program state. The corresponding proofs have been mechanised in Isabelle/HOL.

6.3.1 Memory properties

The first three properties describe memory patterns that occur during the execution of
dTMLPx86. In each of the properties below, we assume that i, j ∈ dom(M) and that i < j .

Property 1 The values of glb are monotonically increasing within the memory sequence M ,
i.e.,

∀vi , v j . M[i] ≡ 〈glb := vi 〉 ∧ M[j] ≡ 〈glb := v j 〉 �⇒ vi ≤ v j

Property 1 is needed because unlike in prior work [5], the recovery process of dTMLPx86

does not reset glb to 0. This is actually necessary to avoid TMRead operations returning stale
values (i.e., values that were in persistent memory, but subsequently modified) after a crash.
The following example demonstrates this phenomenon.

Example 12 Consider the program in Fig. 6 that resets glb to zero (store glb 0) after Rec6
instead of executing lines Rec7 − Rec10. An execution of this program can reach a state
with the following memory sequence:

〈{glb �→ 2, x �→ 5, _ �→ 0
}
, 〈x := 3〉, 〈glb := 0〉, 〈glb := 1〉, 〈y := 1〉, 〈glb := 2〉〉

which is reached from the initial state after a

(1) A writing transaction updates x to 3 then commits (so glb = 2),
(2) Another writing transaction writes updates x to 5 (so log(x) = 3),
(3) A crash occurs (resulting in the intial state above),
(4) The modified recovery operation described above executes (appending 〈x := 3〉 then

〈glb := 0〉 to the memory),
(5) A third writing transaction that updates y to 1 commits successfully.

Now assume that another transaction t starts, then reads 2 for glb from the initial message,
allowing it to complete TMBegin, then performs a TMRead(x) operation. In this case,
according Px86 semantics the initial value of x (i.e., 5) is still observable at Rp. The test at
R1 succeeds and the CAS instruction at R2 can still succeed, since the last value of glb is
2. As a result, t can successfully complete the TMRead operation and subsequently commit,
violating durable opacity.

Property 2 If there exists a write between two writes to glb such that the value of glb is
unchanged, then the location of any intermediate write between these two writes must be on
glb, i.e.,

∀v. M[i] ≡ 〈glb := v〉 ∧ M[j] ≡ 〈glb := v〉 �⇒ ∀k ∈ [i, j]. M[k].loc = glb

123

Formal Methods in System Design

Property 2 holds since this memory pattern described by the antecedent only occurs when
two or more transactions that have not yet executed a TMRead or TMWrite invoke TMRead
operations and successfully execute their CAS instruction at R2. The first of these reading
transactions introduces a write to glb that immediately follows either

(1) The initial message, or
(2) A write to glb by a writing transaction at C3, or
(3) A message added by the TMRecover process at Rec9 or Rec10.

The subsequent TMRead operations introduce writes to glb with unchanged values.

Property 3 Between amemorymessage onglbwith even value and anothermemorymessage
on a location different from glb, there exists a message with location on glb with odd value,
i.e.,

i > 0 ∧ M[i].loc = glb ∧ even(M[i].val) ∧ M[j].loc �= glb �⇒
∃k ∈ (i, j). M[k].loc = glb ∧ odd(M[k].val)

Property 3 describes amemory pattern that occurs when a transaction successfully performs a
TMWrite. Note that excluding the initial message and themessages added from the recovery
process, the onlyway thatmessageswith a locationdifferent fromglb are added to thememory
is by executing W7. Prior to this, the writing transaction performs a successful CAS at W1.
The execution of W1 adds a message to memory with location glb and odd value.

6.3.2 Coherence property for non-writing transactions

The next property uses maxcoht � λσ.
⊔

x (σ.T(t)).coh(x), which denotes the maximum
coherence value for t across all locations and vrnewt � λσ. (σ.T(t)).vrNew, which retrieves
the value of vrNew for t . We let Recovering � λσ. σ.rec = true.

Property 4 When a TMRecover process is not in progress, for any transaction that is not a
writing transaction, the coherence view for all the locations in memory is less than or equal
to its vrNew view, i.e.,

∀t ∈ Tid. ¬Recovering ∧ writer �= t �⇒ maxcoht ≤ vrnewt .

Property 4 holds because the only cases in which coht (x) > vrnewt , is when t is executing
a write on x or performing an internal read to x . Both cases are precluded for non-writing
transactions.

6.3.3 Properties about tracked locations and log

We now describe a set of properties describing the memory locations that are tracked by Px86
and log. Note thatwe assume that all locations inLoc different fromglb can be transactionally
written and read.

Property 5 The domain of log does not contain the location glb, i.e.,

∀x ∈ dom(log). x �= glb

Property 6 For all locations x �= glb that is not in log, the persistent view includes only their
last written value, i.e.,

∀x ∈ Loc. x �= glb ∧ x /∈ dom(log) �⇒ [x]P = {�x}

123

Formal Methods in System Design

6.3.4 Properties about glb and recGlb

Next we have three properties for glb and the auxiliary variable recGlb.

Property 7 In the presence of a writing transaction, last value of glb in the memory must be
odd, i.e.,

writer �= None �⇒ odd(
−→
glb)

Property 7 holds due to the successful execution of W1. Note that the implication does not
hold in the other direction because, in our model, we reset the auxiliary variable writer to
None during a crash, yet the last value of glb after a crash may be odd. One could have

defined a stronger invariant: ¬Recovering �⇒ (writer �= None ⇔ odd(
−→
glb)), however,

we have not needed this strengthening in our proofs.

Property 8 With the exception of the initial message, the value of glb is greater than or equal
to recGlb, i.e.,

∀i ∈ dom(M). 0 < i ∧ M[i].loc = glb �⇒ M[i].val ≥ recGlb

Property 9 After a transaction t successfully executes TMBegin, the value of loct must be

less than or equal to the last value of glb (
−→
glb). Moreover, after a successful TMWrite and/or

TMRead operation has taken place (i.e. hasReadt ∨ hasWrittent holds), the value of recGlb
is less than or equal to loct , i.e.

∀t ∈ Tid. (pct /∈ {NotStarted, Bp, B1, B2, Aborted,Committed} �⇒ loct ≤ −→
glb) ∧

(hasReadt ∨ hasWrittent �⇒ recGlb ≤ loct)

6.3.5 Properties about recovery

Finally, we have a set of properties about the state immediately after a crash (before recovery
has begun) and after recovery has finished.

Property 10 When a TMRecover process is in progress, all the transactions are either
NotStarted, Aborted or Committed, i.e.,

Recovering �⇒ (∀t . pct ∈ {NotStarted,Aborted,Committed})
Property 11 When a TMRecover process is not in progress (i.e., has completed), the value
of glb in the initial message is less than the value of the auxiliary variable recGlb, which in
turn is at most the final value of the value of recGlb. Moreover, the value of even(recGlb) is
even, i.e.,

¬Recovering �⇒ M[0](glb) < recGlb ∧ recGlb ≤ −→
glb ∧ even(recGlb)

6.4 dTMLPx86 program annotation

We now enumerate the local properties of each thread by adding program annotations at each
atomic step. The program annotation is formed by view-based expressions (see Sect. 6.1).
As an example, we give the annotated proof outline of TMRead in Fig. 7. The assertions of
dTMLPx86 can be classified into three categories:

123

Formal Methods in System Design

Fig. 8 Example execution for read-only transactions.

(1) Transactions that have not yet performed a read or a write (green assertions),

(2) Read-only transactions (pink assertions), and

(3) Writing transactions (blue assertions).

The assertions highlighted yellow in Fig. 7 capture the effects of the preceding instruction.
We define an assertion readyt , which holds when an in-flight transaction is in an idle state

(i.e., not executing any transactional operation):

readyt =
(

¬hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer �= t ∧ (
loct = −→

glb �⇒ ∀y.[y]t = {�y})
)

∨ (
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer �= t ∧ (∀y. y �= glb �⇒ readpre(t, y)

))

∨
(

hasWrittent ∧ odd(loct) ∧ writer = t ∧ loct = −→
glb ∧

(∀y.[y]t = {�y}) ∧ (∀y ∈ dom(log). [y]At = {�y})

)

The first disjunct captures two local conditions of t : that the local snapshot of glb is even
and the writer is not t , as well as a visibility guarantee that if t’s the local snapshot of glb
is consistent with the last write to glb, then the thread’s view of each location y is the last
write to y. The visibility guarantee ensures that the transaction t can be serialised after the
last writing transaction in case t successfully performs its reads and commits.

The second disjunct covers read-only transactions as described in Sect. 5.1 using the
predicate readpre(t, y) below. We let coht (x) � λσ. (σ.T(t)).coh(x).

readpre(t, y) = coht (glb) > 0 ∧ M[coht (glb)] ≡ 〈glb := loct 〉
Predicate readpre(t, y) is established a successful CAS- success transition (see Fig. 4).
Namely, the successful CAS transition at R2 in Fig. 7 shifts the coherence view of glb to the
length of the memory in the pre-state, which is greater than zero since the memory includes
always the initial message. Furthermore, the second conjuct of readpre holds because the
successful CAS transition appends the message 〈glb := loct 〉 to the end of the memory.

The third disjunct of ready is straightforward since a writing transaction takes the lock
(by making glb odd). The only additional guarantee one required is that t’s asynchronous
view of each location in log is maximal. This guarantees that when t later performs an sfence
at C1, all of the writes performed by t are persisted.

We discuss correctness of read-only transactions (pink assertions), which is the most
challenging aspect of the proof. We use the example in Fig. 8 with an abstract history h

123

Formal Methods in System Design

comprises three transactions t1-t3. Transactions t1 and t2 cannot be reordered due to the
real-time order constraint of durable opacity (see Definition 4). Moreover, since the first read
of transaction t3 has returned 1 for x , the only valid sequential history corresponds to the
ordering (t1 ≺ t3 ≺ t2). Thus, the second read in transaction t3 must either return 7 for y, or
abort.

In the implementation, we must identify the timestamp of the write that a read-only
transaction reads from and does not lead to an abort. To this end, let

LEcoh(y, t, x) � λσ.MemLastEntryLim(x, coht (y)(σ), σ.M)

where LEcoh(y, t, x) returns the timestamp of the last write to x before t’s coherence view
for y. In the example in Fig. 8, we have LEcoh(glb, t3, y) = 3 since t3’s coherence view of
glb is memory index 5, and the last write to y before index 5 is at index 3.

Provided that t3 reads from the memory at index 3, the message at index 5 will still be
observable to t3. Therefore, it can read this message at R4 so that the check at R5 does not
fail. We can prove that the second read of t3 can only succeed if it reads from index 3 by
contradiction.

Case 1: t3 reads a message with timestamp greater than LEcoh(glb, t3, y) at Rp. In Fig. 8,
the only such message is at index 8. Using Property 3, in the post-state of Rp, there exists
a timestamp ts between coht3(glb) (i.e., 5 in our example) and coht3(y) (i.e., 8 in our
example), such that M[ts] ≡ 〈glb := v〉 and odd(v). In our example, ts = 6 and v = 3.

By Property 4, every observable timestamp for glb must be greater than or equal to ts
(i.e. 6) and thus greater than coht3(glb) (i.e., 5). Thus, t3 must read a value for glb at
R4 that is different from loct3 . By the third conjunct of the pink disjunct of readyt3 , we
have even(loct3). Moreover by Property 1, each value of glb after ts is at least v. Since
odd(v), we have v �= loct3 , thus t3 cannot observe loct3 for glb.
Case 2: t3 reads a message with timestamp less than LEcoh(glb, t3, y) at Rp. In Fig. 8,
such a message is the initial message (with timestamp 0). By Property 4, vrnewt must be
at least coht3(glb) (i.e., timestamp 5). However, LEcoh(glb, t3, y) overwrites this earlier
message and hence the earlier timestamp is no longer visible to t3.

The annotations for the remaining dTMLPx86 operations are given in Sect. B.1.

Theorem 1 () The proof outline for dTMLPx86 is valid.

7 Durable opacity via refinement

We now are now ready to prove durable opacity. The proof proceeds by showing refinement
between dTMLPx86 and the dTMS2 operational specification (see Sect. 3.2). In particular,
we establish a forward simulation (Definition 2) between the dTMLPx86 transition system
and the dTMS2 specification. It is well known that a forward simulation is a sound proof
technique for refinement. As in proofs of linearisability [22], refinement must guarantee trace
inclusion, i.e., every externally observable behaviour of the concrete system (e.g., dTMLPx86)
is an externally observable behaviour of the abstract system (e.g., dTMS2). The external steps
(transitions) correspond to invocations and responses of transactional operations as well as
the system crashes.

123

Formal Methods in System Design

Definition 2 (Forward simulation) For an abstract system A and a concrete system C , a
relation R between the states of A and C is a forward simulation iff each of the following
holds.

Initialisation. For any initial state cs0 of C , there exists an initial state as0 of A such that
R(as0, cs0).
External step correspondence. For any external transition from cs to cs′ in C and
any state as of A such that R(as, cs), there exists a corresponding external transition
(performing the same action) from as to as′ such that R(as′, cs′).
Internal step correspondence. For any internal transition from cs to cs′ of C and any
state as of A such that R(as, cs), either:

• R(as, cs′), or (stuttering step)
• There is an internal transition of A from as to as′ such that R(as′, cs′) (non-
stuttering step)

The forward simulation relation (simRel) is split into two relations: a global relation,
globalRel (see Sect. 7.1), and a transaction relation, txnRel (see Sect. 7.2). The global relation
describes how the shared states of the two transition systems are related, while the transaction
relation specifies the relation between the state of each transaction in the concrete and abstract
transition systems. In particular, we have:

simRel(as, cs) � globalRel(as, cs) ∧ ∀t ∈ Tid. txnRel(as, cs, t)

where as and cs are states of dTMS2 and dTML, respectively.
To explain these relations, we start by identifying the linearisation points of the dTMLPx86

operations.
Operation TMBegin linearises at B1 provided loct is even. For transactions that have

not performed any TMRead or TMWrite, the linearisation point of TMRead is a successful
CAS at R2. For any other type of transaction, TMRead linearises at R5 provided the value
read from glb is loct . Operation TMWrite linearises when the memory is updated at W7.
Operation TMCommit has two linearisation points depending on whether the transaction has
successfully executed a TMWrite operation. For a writing transaction (i.e., when loct is
odd), TMCommit linearises at C2. Otherwise, TMCommit linearises at Cp.

Our simulation relation assumes the following auxiliary definitions. We let intHalf(n) �⌊ n
2

⌋
, be integer division of n by 2.

writes(as, cs) � if cs.writer = t ∧ pct �= C3 then as.wrSett else ∅
logicalGlb(cs) � if cs.writer = t ∧ pct = C3

then
−→
glb(cs) − cs.recGlb + 1 else

−→
glb(cs) − cs.recGlb

wrCount(cs) � intHalf(logicalGlb(cs))

inFlight(t, cs) � t ∈ Tid ∧ pct /∈ {NotStarted,Aborted,Committed}
The functionwrites returns the abstractwrSett of a writing transaction. Note that the abstract
wrSett is empty after the writing transaction has cleared its log, and hence TMCommit
linearises at C2. The function logicalGlb is used to determine the logical value of glb (since
initialisation or the last recovery) and compensates for the fact that a committing writing
transaction has linearised but not yet incremented glb at C3. The function wrCount(cs)
returns the number of committedwriting transactions in the concrete state, taking into account
the fact that each writing transaction updates glb twice. Finally, inFlight is used to determine

123

Formal Methods in System Design

whether the given transaction t in state cs is live (has been started but has not been committed
or aborted).

7.1 Global relation

The global relation globalRel comprises conditions (1)-(4) below. The definition relies on
LE(t, x) � λσ.MemLastEntryLim(x, t, σ.M), which returns the timestamp of the last write
to x before timestamp t .

¬Recovering �⇒ (∀x . x �= glb �⇒ �x = (last(as.L) ⊕ writes(cs, as))(x) (1)

¬Recovering �⇒ (wrCount(cs) = |as.L| − 1) (2)

∀x . x �= glb �⇒ last(as.L)(x) = if x /∈ dom(cs.log)
then �x else (cs.log)(x)

(3)

∀i . ∀v. cs.M[i] ≡ 〈glb := v〉 �⇒ ∀x . ∀w. x �= glb ∧ cs.M[LE(i, x)] ≡ 〈x := w〉 �⇒
as.L[intHalf(v − cs.recGlb)](x) = w (4)

Condition (1) states that, for each location x different from glb, the last written value for
x in dTMLPx86 is the value of x in the last memory snapshot of dTMS2 overwritten by
the write set of an in-flight writing transaction (if there is any).
Condition (2) states that the number of memory snapshots in dTMS2 memory since
initialisation or the last crash is equal to wrCount(cs).
Condition (3) states that, for each location x different from glb, the value of x in the last
memory snapshot of dTMS2 is the last written value for x in dTMLPx86 whenever x is
not in log and is the corresponding value in log, otherwise.
Condition (4) states that whenever dTMLPx86’s memory index i contains a write to
glb with value v, for any location x different from glb, the value of the last write to
x before index i is precisely the value of x in the abstract memory snapshot indexed
intHalf(v − cs.recGlb).

7.2 Transaction relation

The transaction relation (t xnRel) comprises conditions (5)-(10) given below, as well as a
condition matching abstract and concrete program counters, return values, and validity of
completing transactions, which we discuss later.

∀t . inFlight(t, cs) ∧ ¬cs.hasWrittent ∧ ¬cs.hasReadt �⇒ as.rdSett = ∅ (5)

∀t . inFlight(t, cs) ∧ cs.hasReadt �⇒ as.rdSett �= ∅ (6)

allt . inFlight(t, cs) ∧ (¬cs.hasWrittent ∨ even(cs.loct)) �⇒ as.wrSett = ∅
∀t . inFlight(t, cs) ∧ odd(cs.loct) ∧ (7)

cs.pct /∈ {Bp − B1,W4 − W7} �⇒ as.wrSett �= ∅ (8)

∀t . inFlight(t, cs) ∧ writer = t ∧ cs.pct /∈ {W4 − W7} �⇒ as.wrSett �= ∅ (9)

∀t . ∀x ∈ dom(as.wrSett). cs.writer = t �⇒ (as.wrSett)(x) = cs.�x
(10)

123

Formal Methods in System Design

The first five conditions, relate the dTMLPx86 state of an inFlight transaction t with thewrSett
and rdSett variables of the corresponding dTMS2 state. Condition (10) resolves internal reads
and states that the write set (of the dTMS2 state) of a writing transaction t contains the last
written value to that location by dTMLPx86 for each location in its domain.

We elide formal presentation of the final condition of txnRel, and instead provide a textual
description of its remaining parts. We refer the interested reader to our mechanisation [7] for
full details.

(1) txnRelmaps dTMLPx86 program counter values to their dTMS2 counterparts, which also
enables one to identify the linearisation points of dTMLPx86.

(2) txnRel ensures that the value returned by a dTMLPx86’s successful read on x (TMRead(x))
in its linearisation point is the same as the value returned in the corresponding non-
stuttering step of dTMS2. For this, the last condition leverages both the global relation
and the TMRead annotation (Fig. 7). The way in which abstract and concrete values are
matched differs for read-only and writing transactions. We give an overview of the proof
for identifying the corresponding abstract and concrete values below.
Read-only transaction. The first read (i.e., TMRead(x)) of a read-only transaction t suc-
ceeds if cs.loct obtains the maximum value of glb in cs. Otherwise, the CAS instruction
at R2 fails. Based on the precondition of R2 (P2) (see Fig. 7), if the CAS instruction

succeeds, we can deduce that
−→
glb(cs) = cs.loct and cs.loct is even. Additionally, we can

infer that there is no message with a timestamp greater than or equal to the timestamp
corresponding to the last write to glb in cs with a location different from glb. This is
because, according to Property 3, if such a write existed, the value of the last write of glb
would be odd. Therefore, the timestamp of the message read for x precedes the times-
tamp of the message of the last write to glb in cs and must have the form LE(i, x), where
cs.M[i] ≡ 〈glb := cs.loct 〉. By instantiating Condition (4), we can infer that the value
read for x corresponds to the abstract value as.L[intHalf(cs.loct − cs.recGlb)](x).

For any subsequent read operation (i.e., TMRead(x)) performed by a read-only
transaction t , we can derive the index of the memory snapshot of dTMS2 that con-
tains the returned write directly by the TMRead program annotation. Specifically, the
TMRead program annotation (assertion P5 in Fig. 7) imposes that the only value that
can be successfully returned by dTMLPx86 corresponds to the concrete memory mes-
sage with timestamp LEcoh(glb, t, x). By expanding the definition of LEcoh, we obtain
LEcoh(glb, t, x) = M[LE(coht (glb), x)]. Given this, and by using condition (4), we can
determine that the index of the memory snapshot of dTMS2 containing this write is
as.L[intHalf(cs.loct − cs.recGlb)].
Writing transaction. By the TMRead program annotation (assertion P5 in Fig. 7), a read
operation on x (i.e., TMRead(x)) of a writing transaction t can only return the last value
written on x (�x(cs)). In case the read is external, by utilising condition (1), we can deduce
that the corresponding abstract value is equal to last(as.L)(x). In case the read is internal
by condition (10) the corresponding abstract value is equal to (as.wrSett)(x).

(3) It ensures that the ordering (validity) constraints of dTMS2 are met. For this it guarantees
that in the linearisation points of the dTMLPx86’s TMRead and TMCommit operations,
we have:

as.rdSett ⊆ as.L[intHalf(cs.loct−cs.recGlb)] ∧
as.beginIdxt ≤ intHalf(cs.loct − cs.recGlb)

(11)

123

Formal Methods in System Design

For a transaction t , the validity constraint of dTMS2 requires that if its read set (as.rdSett)
is not empty, itmust be consistentwith amemory snapshot indexed greater than or equal to
beginIdxt and less than the length of the abstractmemory (as indicated indoReadt (x, n)

and doCommitt in Fig. 2). By condition (11), condition (2), and property (9), an index
satisfying these conditions exists and is equal to intHalf(cs.loct − cs.recGlb). In the case
where t is a writing transaction (wrSett �= ⊥), this index should correspond to the last
element of the abstract memory (as defined in doCommitt in Fig. 2). The TMCommit
annotation (see Appendix) specifies that at the linearisation point of the TMCommit
operation for a writing transaction, cs.loct = glb. Combining this with condition (11),
we can deduce that as.rdSett ⊆ as.L[intHalf(�(glb)(cs) − cs.recGlb)]. According to
condition (2), this corresponds to the last element of the abstract memory.

(4) It ensures that immediately after a crash, the length of the dTMS2 memory list is 1,
the transaction that executes the TMRecover operation is syst and the value of each
location x that is read and cleared from the cs.log in each recovery loop is equal to the
corresponding value of x the memory snapshot of dTMS2.

Theorem 2 () simRel is a forward simulation is a between dTMS2 and dTMLPx86.

7.3 Mechanisation

The refinement proof has been fully mechanised in Isabelle/HOL. This mechanisation builds
on the Pierogi framework [8]. This comprised three main steps:

(1) Encoding the necessary modifications to the Px86view model [12] to reflect the revised
version presented in Sect. 4, then adapting a selection of the Pierogi proof rules to the
new context and proving the additional proof rules of Pierogi (Sect. B).

(2) Proving validity of the persistent invariant of dTMLPx86 (Sect. 6.3) and the proof outline
for dTMLPx86 (Theorem 1).

(3) Proving that the dTMLPx86 implementation refines the dTMS2 specification (Theorem2).
Specifically, we established the simulation relation for each step of the dTMLPx86 tran-
sition system, resulting in a total of 47 sub-proofs.

Steps (1) and (2) together took approximately 3months of full-timework and step (3) required
approximately 2 months.

The core development, including semantics, view-based assertions, and the soundness of
proof rules, consists of approximately 10,000 lines of Isabelle/HOL code. With this founda-
tion in place, the proof of the persistence invariant, and the validity of the proof outline for
dTMLPx86 encompass approximately 20,000 lines of Isabelle/HOL code.

7.3.1 Lessons learnt

The initial step involves developing a persistent invariant and program annotations for dTML,
which we expressed using Pierogi [8] view-based expressions. While it was necessary
to extend the Pierogi expression syntax to account for memory patterns that occurred in
dTMLPx86, a substantial subset of them remained applicable without modification. Thus,
we believe that Pierogi [8] can be widely utilised or easily extended to verify persistent
memory algorithms in general. We extend the existing semantics [12] to model both crash
and recovery. Additionally, we use an extended Owicki–Gries [54] logic that makes use of a
persistent invariant, which is shown to hold for all program transitions, including the crash

123

Formal Methods in System Design

transition and the subsequent recovery process. These extensions can also be readily applied
to model and reason about other programs, including after a crash.

The subsequent step comprises proving forward simulation [52] together with the
dTMLPx86 persistent invariant and program annotation, establishing refinement between
dTMLPx86 and dTMS2 [5] (which in turn guarantees durable opacity). Although, this was not
used in the current proof, a strength of a simulation-based approach lies in its ability to enable
hierarchical reasoning, e.g., if one was required to use intermediate model to establish both
a forward and backward simulation [22, 49]. Our simulation relation is inspired by existing
works [18], showing that established concepts and methods for verifying volatile algorithms
provide a stepping stone to the more complex Px86 domain.

Each Px86view assertion that we use requires introduction of proof rules for this asser-
tion for different atomic program statements (see §B), which must be proved sound against
the operational semantics. Proving correctness of these rules can be challenging because it
requires examination of the low-level operational semantics and their effect on the views of
different system components. However, once soundness is established, they can be reused
to validate proof outlines without extra effort. In particular, Isabelle/HOL can generate the
required proof obligationswithminimal interaction and then automatically identify the appro-
priate set of high-level proof rules needed to resolve each obligation using the integrated
Sledgehammer tool [9].

In our proof (see [7]), there are several repeated patterns of unfoldings and theorem
application. These could be automated through specific tactics (e.g., using Eisbach [53]).
One could also make further improvements to the proof structure and modularisation (e.g.,
using locales [43]). However, we leave these aspects for future work.

8 Related work

Various works focus on adapting algorithms for the conventional volatile RAM model
to non-volatile memory (NVM). FliT [70] is a C++ library that can be used for mak-
ing any linearisable [34] data structure durable linearisable [38] by selectively flushing
only writes that are subsequently read. NVTraverse [28] and Mirror [29] are able to
translate automatically lock-free data structures into a durable data structures. In par-
ticular NVTraverse requires the given lock-free data structure to be in a traversal form
while Mirror employs a shadowing data technique which requires maintaining two repli-
cas of data, a persistent memory version which is updated first, and a volatile version
which is updated second and is used for fast data access. In this work we are focussing
on adapting a software transactional memory implementation to the persistency set-
ting.

Our example implementation, dTMLPx86 extends TML [15] with a persistent undo log,
and associated modifications such as the introduction of a recovery operation. The undo log
technique is used by several persistent STMs [11, 13, 46] as a means of achieving failure
atomicity. An alternative technique comprises using a redo log [30, 32, 51, 62, 69]. Other
persistent transactional memory algorithms rely on applying hardware modifications for
achieving failure atomicity [40, 63, 67]

The literature includes numerous notions of correctness for software transactionalmemory
many of which have been introduced as consistency conditions of database system transac-
tions. As an example, strict serialisability [55], requires that all non-aborted completed
transactions must be ordered to form a sequential history that is valid (i.e. respect the mem-

123

Formal Methods in System Design

ory semantics) and respects the real-time order of the transactions. Although opacity can
offer robust safety guarantees that render it suitable for transactional memory, it may be
viewed as overly restrictive and needlessly complex to implement in TM systems. This is
primarily due to its requirement that every live and abort transaction must be consistent with
all prior committed transactions. To this end a number of correctness conditions have been
suggestedwhich aim tomodify various aspects of opacitywhile preserving its essential safety
guarantees such as elastic opacity [27], live opacity [25], virtual world consistency [35] and
last-use opacity [65].

In the context of non-volatile memory, Raad et al. [57] proposed a notion of durable seri-
alisability under weak memory which extends the concept of serialisability to the persistency
setting. However, this correctness condition does not handle aborted transactions. Here we
are focusing on durable opacity which was first introduced in by Bila et al. [5].

The Pierogi logic, including the extensions developed in the current work, is proven
sound against the Px86view semantics of Cho et al. [12]. Other operational semantics for
persistent TSO include [1, 44, 59] and [60] which extend the model introduced in [59] to
encompass non-temporal writes and reads and writes to a richer set of Intel-x86 memory
types. In terms of program logics, apart from Pierogi, POG [58] also addresses persistent
memory programs. However, it is not mechanised and can not directly handle examples
that involve flushopt instructions. Vindum and Birkedal [68] have recently developed a not
architecture-specific concurrent separation logic for weak persistency. This logic is built upon
the Perenial [10] and Iris logic framework [42] and has been mechanised in the Coq proof
assistant.

Numerousworks have aimed to simplify proofs of persistent memory programs (including
persistent TMalgorithms).Gorjiara et al. [31] have developed a notion of robustness for Px86,
which holds if every post-crash execution of a program under Px86 is a post-crash execution
under a strict persistency model. Here, strict persistency is defined in terms of TSO, i.e., if
two stores are ordered under the TSO semantics, they must be persisted in the same order.
Thus, when a program is robust, one can reason about Px86 programs using TSO semantics,
simplifying verification.However, there are efficient bugfinding tools for checking robustness
violations, as far as we are aware, there is currently no technique that enables robustness for
Px86 to be checked for all possible executions.

Beillahi et al. [4] have notions of robustness for causally consistent transactions, which
aims to reduce weak transactional consistency models to serialisability. This work studies
transactional consistency as opposed to implementations of transactional memory, thus is
orthogonal (but complementary) to our work.

Two recent works have developed modular proofs for durable opacity. Bila et al.
[6] develop a durable library that supports transformation of simulation-based proofs of
opaque TM implementations to proofs of durable opacity for the same TM that uses a
persistency library. Given that TML has already been verified to be opaque [17], tech-
nically, such a proof could be reused. However, the library currently only supports the
stronger PSC memory model. Raad et al. [61] present another modularisation technique
that builds on the PMDK transactional library [36], which provides support for failure
atomic transactions, but not concurrency. In particular, they show that PMDK transac-
tions can be embedded within an STM to achieve both failure atomicity and thread safety,
including under Px86, with validation performed using the FDR model checker [23].
Our intention is to directly support proofs of durable opacity, rather than rely on a third
party.

123

Formal Methods in System Design

9 Conclusions

In this work, we presented a revised version of the Px86 model [12] and Pierogi [8], which
allows reasoning about Px86 programs even after a system crash. Subsequently, we presented
a durably opaque STM implementation under Px86 (dTMLPx86) and demonstrated a proof
technique based on refinement for establishing correctness.

A possible extension of this work is exploring the connection between durable opacity and
contextual refinement. This is particularly relevant in the case of persistent STM implemen-
tations like dTMLPx86, which are primarily used as libraries. Relevant work in the context
of C11 has been conducted by Dalvandi and Dongol [16], demonstrating the insufficiency of
TMS2 in providing client guarantees under the weak memory model of C11. In this work,
a more adequate specification is proposed which constitutes an adaptation of TMS2, along
with a program logic for verifying client programs. In the context of persistent memory,
Khyzha and Lahav [45] have introduced a correctness criterion for contextual refinement.

We believe that the methodology can also be applied to construct a program logic for other
weak persistent memory models such as the PArmv8 model. A potential starting point for
this, could be the PArmv8 view-based semantics presented in Cho et al. [12].

Finally, formalising more weak correctness conditions for persistent STMs (e.g., buffered
durable opacity, which can be defined in the same fashion as buffered durable linearisabil-
ity [38]) as well as exploring their performance implications can be an interesting subject for
future work.

A Overview of the thread-state views for Px86view

Below, we provide a short description of the views of the thread state of Px86view. We denote
the pre-state state as σ , the post-state as σ ′, and the executing thread as t .

View: coh : Loc → N

Moved by: store, load,CAS: Both a store and a successfulCAS on x updateσ.T(t).coh(x)
to match the length of the memory in the pre-state. A load and a failed CAS on
x updates σ.T(t).coh(x) to the timestamp of the message of the read value.

Purpose: In conjunction with vrNew, we use coh to determine the range of observable
values by t for the specified location.When amemorymessagewith the location
x is about to be added to thememory by a store or a successfulCAS operation, its
timestamp in the post-state is equal to σ.T(t).coh(x). Additionally, a message
that is accessed by a load or CAS instruction must have a timestamp that is
greater than or equal to the value of σ.T(t).coh(x).

View: vrNew : N
Moved by: mfence, load(external),CAS(fail-external/success):When t executes anmfence,

σ.T(t).vrNew is updated to the timestamp of the latest write performed by t , pro-
vided that it is greater than the current value of vrNew (σ.T(t).vrNew). When t
executes an external load or an external failed CAS, vrNew is updated to the
timestamp of the read message, again provided that it is greater than the current
value of vrNew. When t executes a successful CAS, it updates σ.T(t).vrNew to
the length that memory had in the pre-state.

Purpose Together with coh determines the set of visible values for the given location
to t . No memory message that is read by t (via a load or a CAS instruction)
obtains a timestamp that is overwritten from the (σ.T(t).vrNew)’s perspective.

123

Formal Methods in System Design

View: vpReady : N
Moved by: load(external), CAS(fail-external/success), mfence, sfence: Instructions

load(external), CAS(fail-external/success) and mfence update vpReady in the
same way that they update vrNew. The sfence instruction updates σ.T(t).vpReady
in similar manner as mfence.

Purpose: It is used to order load sfence, mfence and CAS instructions with subsequent
flushopt instructions.

View: vpAsync : Loc → N

Moved by: flush, flushopt: When t executes a flush on x , σ.T(t).vpAsync(x) is updated to
the timestamp of the latest write performed by t , provided that it is greater than
σ.T(t).vpAsync(x). When t executes a flushopt on x , vpAsync(x) is updated to the
maximum between σ.T(t).coh(x), σ.T(t).vpReady(x) and σ.T(t).vpAsync(x).

Purpose: Determines the set of values thatmay hold for a given location in persistentmem-
ory after the execution of an sfence preceded by the execution of a flushopt. Any
memory message the value of which is about to be persisted after the execution
of a barrier (sfence,mfence,CAS), is not overwritten from theσ ′.T(t).vpAsync’s
perspective in the post-state of a flushopt execution.

View: vpCommit : Loc → N

Moved by: flush,CAS(success),mfence and sfence: A flush on x updates σ.T(t).vpCommit
(x) to the maximum between the timestamp of the latest write by t , and
σ.T(t).vpCommit(x). Instructions sfence andmfence update σ.T(t).vpCommit(x)
of all x ∈ Loc to the maximum between σ.T(t).vpAsync(x) and σ.T(t).vpCommit
(x). A successfulCAS instruction updates σ.T(t).vpCommit(x) to the length that
the memory had in the pre-state.

Purpose: Contributes to determining the set of values that may hold for a given loca-
tion in persistent memory. The set of values for a location x that a thread can
observe in persistent memory is common for all the threads. The set is deter-
mined by the maximum value of σ.T(t).vpCommit(x) among all the threads
(
⊔

σ.vpCommit(x)). No memory message whose value reached the persistent
memory after the execution of a persistent barrier or a flush instruction has a
timestamp that is overwritten from the

⊔
σ.vpCommit(x)’s perspective after the

completion of flush persist barrier execution.

B Hoare logic rules for atomic statements and stability of view-based
assertions

In this section, we present a selection of the proof rules we employ to demonstrate the
correctness of dTMLPx86. All the proof rules utilised in our refinement proof have been
mechanised in Isabelle/HOL.

In Fig. 9, we provide a selection of rules for atomic statements where the statement is
assumed to be exectuted by thread t . The first column presents the pre/post condition triple,
the second column specifies any additional constraints, and the third column consists of labels
that are used to reference these rules in our descriptions below. It should be noted that unless
explicitly stated as a constraint, we do not assume that threads, locations, and values are
distinct.

Rule LP1 states that if the thread view of t for x is the set S, then after the execution of a
load instruction to x the value read belongs to the visible in the pre-state values of t for x

123

Formal Methods in System Design

Fig. 9 Selected proof rules for atomic statements executed by thread t . Note t may be equal to t ′ and x may
be equal to y unless explicitly ruled out.

Fig. 10 Selection of stable assertions for atomic statements executed by thread t . Note x may be equal to y
and t may be equal to t ′ unless explicitly ruled out.

(S), and the thread view of t for x might become a subset of S (this is because of the possible
update of the coh(x) and vrNew views). Rule LP2 states that if the thread view of t for x
contains only one element then after the execution of a load instruction to x the value read
is surely the value of the last write at x . This is ensured by our well-formedness condition
for Px86view which state that the thread, asynchronous and persistent view for a location x
will always contain the last written value on x .

123

Formal Methods in System Design

Rules SP1-SP6 refer to the store instruction. By SP1, after t executes a store of value
v to x , its only visible value for x becomes v. However, as stated in rule SP2 any other
thread continues to see the previously written values on x as well as the last written value
v. Similarly, the asynchronous view for x of any thread (SP3), and the persistent view for x
(SP4) are updated to contain the newly written value v. Rule SP5 states that in the post-state
the timestamp of the last message in memory with location x (LE(x)), becomes the index
of the last message in memory (|M|-1). In addition, the last written value at x (�x) becomes
equal to v. Since the coherence view of x (coh(x)) becomes equal to |M |−1 the expressions
LE(x) and LEcoh(x, t, x) are equivalent in the post-state. Therefore, as stated in rule SP6, in
the post-state LEcoh(x, t, x) becomes equal to |M | − 1 and its value becomes equal to v.

Rule FP refers to the flushopt instruction and it states that the asynchronous view of x for
t in the post-state is equal or a subset of its asynchronous view and its thread view in the
pre-state.

By rule SFP, after the execution of an sfence instruction by t the persistent view of x
becomes equal to or a subset of the asynchronous view of t for x and the persistent view of
x in the pre-state.

Rules CS1–CS7 refer to the CAS instruction. A returned value true (resp. false) indicates
a CAS success (resp. failure). Rule CS1 states that given that x �= y the thread view of t
for x after executing a CAS instruction is a subset or equal to its thread view for x in the
pre-state. Rules CS2–CS6 describe the conditions that hold in case of aCAS success. In brief,
when a CAS succeeds, it stores at x the value of e2. Similar to the store instruction post
conditions, in the post-state LE(x) becomes equivalent to the LEcoh(x, t, x) expression and
equal to |M | − 1 (rule CS2). Moreover, its value is updated to e2, which is the last written
value on x (rule CS3). Most importantly after a successful execution of CAS, the thread
view of all the locations for t is updated to include only their last written value (rule CS4).
Furthermore, the asynchronous view of t for x and the persistent view of x are updated to
include e2 (rules CS5, CS6). Finally, rule CS7 states that in the post-state the last written value
at x either remains the same, indicating a CAS failure, or it changes to e2.

Rules C1–C3 concern theCrash event. Rule C1 states that in the post-crash state the initial
message of the memory maps its location to its last stored value. This is trivial to show
as after a crash only a single value (namely, the one that was persisted prior to the crash)
remains observable for each location in the memory. By rule C2 the thread, asynchronous
and persistent view for each location x in the post-crash state contain only the value to which
it is mapped in the initial message. Finally C3 states that if the persistent view of any location
x include only one value v in the pre-crash state, the last stored value on x (�x) after a crash
takes place, will definitely be v.

Figure 10 contains a selection of assertions (middle column) that are proven stable against
the corresponding atomic statements (left column) taking into account the constraints men-
tioned in the right. An assertion P is stable over a statement a executed by t iff {P}a{P}
holds. These proof rules are mostly used for establishing global correctness of the dTMLPx86

annotation.

B.1 Program annotations of dTMLPx86

Below, we provide a summary of the dTMLPx86 program annotations, apart from the program
annotation of TMRead that is demonstrated in Sect. 6.4. As in Sect. 6.4, we colour the asser-
tions of transactions that haven’t performed a read orwrite yet in green colour, the assertions

of read-only transactions in pink colour, and the assertions of writing transactions in blue

123

Formal Methods in System Design

Fig. 11 TMBegin annotation.

colour. Assertions that refer to more than one category of transactions are not highlighted.
The yellow highlighted assertions capture the effects of the preceding instruction.

The TMBegin annotation

We start with discussing the annotation of the TMBegin operation. In the initial state, all the
registers are initialised to zero, therefore both the hasWrittent and hasReadt registers are set
to zero (indicating false). The implication at PB1 states that if the value read for glb is even,
and is consistent with the last write of glb then t’s thread view for every locations contains
only its last value. The program annotations for TMRead and TMWrite guarantee that a
subsequent read or write operation can only succeed if loct remains consistent with the last
value of glb after the execution of Bp. PB1 is adequate to esptablish readyt , in particular
its first disjunct (Fig. 11).

The TMWrite annotation

Fig. 12 depicts the TMWrite annotation. The check performed at Wp determines whether
a transaction t has previously executed a write operation. If the number of locations loct
written by t is even, it means that t has not performed any writes yet. Consequently, PW1
asserts that hasWrittent is f alse and writer �= t . Additionally, PW1 ensures that if t is a
writer, the asynchronous view for t of all locations in log, except for location x , is maximal.
This guarantees that if t becomes a writing transaction and executes an sfence at C1, all of
its writes will be persisted. Location x is excluded because, between the write operation at x
(W7) and the asynchronous flush of the newwrite (W8), the asynchronous view of x contains
both its old value and the newly written value (�x). Finally, PW1 states that the address to be
written (x) is not equal to glb, which is necessary to establish Property 5.

Next, t attempts to acquire the single global versioned lock glb by executing CAS at
W1. A successful CAS operation sets the hasWrittent register to true, indicating that t has
become a writing transaction. As stated in PW2, in this case, the last written value at glb is
set to loct incremented by one, and the thread view of t for all memory locations is updated
to include only their last written values. On the other hand, if CAS fails, it indicates the
presence of another concurrent writing transaction, causing t to abort.

The subsequent execution of W3 increments loct by one. Therefore, according to PW4,
loct becomes equal to the last value of glb. Additionally, the auxiliary variable writer is set
to t .

LinesW4–W9 encompass the following operations: updating the log (W4–W6), perform-
ing thewrite at x (W7), and subsequently asynchronouslyflushing it (W8). The corresponding
assertions remain unchanged, except for the final condition of PW6. This condition states
that x is going to be updated to its last written value (ct) in log. Establishing the condition

123

Formal Methods in System Design

Fig. 12 TMWrite annotation.

Fig. 13 TMCommit annotation.

123

Formal Methods in System Design

Fig. 14 TMRecover annotation.

ready, particularly its third disjunct, from PW8 is straightforward. It should be noted that
after the execution of W8, the asynchronous view of x contains only its last written value
(as per the FP rule in Fig. 9). The combination of the above rule with PW8 is sufficient to
establish that the asynchronous view of t for all locations in the domain of log contains only
their last written value ((∀y ∈ dom(log). x �= y �⇒ [y]At = �y).

The TMCommit annotation

Fig. 13 illustrates the TMCommit annotation. Transactions that have not performed any read
or write and read-only transactions commit without any further check. In the case of a writing
transaction t , according to the assertion ready, loct is odd, hasWrittent is true, writer = t ,
the thread view of t for any location y includes only the last stored value at y, and the
asynchronous view of t for any location y that belongs to the domain of log includes only

123

Formal Methods in System Design

Table 1 TML history events where t ∈ Tid, x ∈ Loc and v ∈ Val

Invocations Possible matching responses

invt (TMBegin) rest (TMBegin(ok)), rest (TMBegin(abort))

invt (TMCommit) rest (TMCommit(commit)), rest (TMCommit(abort))

invt (TMRead(x)) rest (TMRead(v)), rest (TMRead(abort))

invt (TMWrite(x, v)) rest (TMWrite(ok)), rest (TMWrite(abort))

the last stored value at y. It is worth noting that the locations that belong to the domain
of log, are the only locations that have been updated by a writing transaction t . As seen at
the postcondition of C1, after the execution of sfence the asynchronous views of t for the
aforementioned locations become equal to their persistent views. Having the above stated
prior to emptying the log (i.e. at PC2) is sufficient for establishing locally Property 6.
Property 6, guarantees that during the execution and commit of read-only transactions, and
after writing transactions commit, the value can be observed in persistent memory for any
location x apart from glb is deterministic and equal to the last written value on x .

The TMRecover annotation

Fig. 14 illustrates the TMRecover annotation. The TMRecover annotation serves three
purposes. (1) It provides sufficient information about the memory state after a crash event and
during the TMRecover process, in order to establish that Property 1 and Property 2 locally
hold. The above is enabled by the assertion: ∀ts ∈ dom(M). ts > 0 �⇒ M[ts].loc �= glb,
which ensures that during recovery all thememorymessages apart for the initial one, represent
writes to locations different from glb. For showing this during copying and emptying the
log we use the Property 5. (2) It guarantees the consistency of memory upon completion
of the recovery process. This is accomplished by Property 6 in combination with rules C1
and C3 (see Figure 9). By applying Property 6 and the aforementioned rules, any location
y within the initial message is mapped to its persisted value �y, which represents the last
value written to y by a committed transaction prior to the system crash. Moreover, the
recovery process sequentially restores all the locations recorded in the log. The TMRecover
annotation guarantees that the recovered values correspond to those stored in the log. (3) It
guarantees that by the completion of the recovery process the last written value in glb is even
and greater than its initial value.

C Durable opacity

We now provide a series of definitions that gradually lead to the formal definition of
durable opacity [5], which is the correctness criterion against which we validate our STM
implementation (dTMLPx86).

Histories

Correctness conditions for concurrent objects, such as TM, are predominantly defined over
histories of an implementation, which is a sequence of events (invocations and responses)
that records all the interactions between the object and its clients. Typical TM operations

123

Formal Methods in System Design

are summarised in Fig. 1. For a response event e, we let rval(e) ∈ {ok,⊥, abort, commit}
denote the value returned by e.

In an NVM setting, a history must also record system-wide crash events, crash. Thus, a
history H , in this case, has the form H = h0c0h1c1 . . . hn−1cn−1hncn , where each hi is a
history (containing no crash events) and ci is the i th crash event. We refer to each hi as an
era of H .

We use standard list notation for histories. For a history, h, h|t is the projection onto the
events of the transaction t and h[i .. j] is the subsequence of h from h(i) to h(j) (inclusive).
We let ops(h) denote the subsequence of h with all crashes removed.

A history h is alternating if h = ε or is an alternating sequence of invocation andmatching
response events starting with an invocation.

In a history h, the real-time order of transactions t1 and t2 is defined as t1 ≺h t2 if t1 is
a completed transaction and the last event of t1 in h occurs before the first event of t2 in h.
If neither t1 ≺h t2 nor t2 ≺h t1 holds, we consider transactions t1 and t2 to be concurrent. A
history h is non-interleaved if it does not contain concurrent transactions.

Well-formed Histories

A crash-free history iswell-formed iff for every t ∈ Tid, either h|t = ε, or h|t = 〈s0, . . . , sm〉
is an alternating history such that s0 = invt (TMBegin), for all 0 < i ≤ m, event si �=
invt (TMBegin) and rval(si) /∈ {commit, abort}. A history h is durably well-formed iff
ops(h) is well-formed and every transaction identifier appears in at most one era.

Sequential specification

We now describe the sequential semantics of TM implementations, which we note is by
definition crash-free.

Let h = ev0, . . . , ev2n−1 be a crash-free sequence of alternating invocation and matching
response events starting with an invocation and ending with a response. We say h is valid iff
there exists a sequence of stores σ0, . . . , σn ∈ (Loc → Val)∗ such that σ0(x) = 0 for all
x ∈ Loc, and for all i such that 0 ≤ i < n and t ∈ Tid:

(1) If ev2i = invt (TMWrite(x, v)) and ev2i+1 = rest (TMWrite(ok)) then σi+1 =
σi [x := v],

(2) If ev2i = invt (TMRead(x)) and ev2i+1 = rest (TMRead(v)) then σi (x) = v and
σi+1 = σi ,

(3) For all other pairs of events (reads and writes with an abort response, as well as begin
and commit events) we require σi+1 = σi .

Let hs be a crash-free non-interleaved history and i an index of hs. Let hs′ be the projection
of hs[0..(i − 1)] onto all events of committed transactions plus the events of the transaction
to which hs(i) belongs. Then we say hs is legal at i whenever hs′ is valid. We say hs is legal
iff it is legal at each index i . A well-formed history hs is sequential if it is non-interleaved
and legal. We denote by S the set of all possible well-formed sequential histories.

Durable opacity

A concurrent history is a sequence of events corresponding to operations executed by differ-
ent transactions. A history of transactions may be incomplete, i.e., it may contain pending

123

Formal Methods in System Design

operations, represented by invocations that do not have matching responses, or it may obtain
transactions that have not yet invoked a commit operation (live transactions). To enable rea-
soning about these, we use a function complete(h) that constructs the set of all possible
completions of h by appending successful matching responses (rest (TMCommit(commit)))
for some pending TMCommit invocations, appending matching abort responses to all other
pending operations and appending an TMCommit invocation and aborted response event to
all live transactions.

Informally, a history h that contains crash events is durably opaque if the resulting history
after removing the crash events (ops(h)) is opaque (as defined by Guerraoui and Kapalka
[33]) and each thread id appearing in h appears to only one of its crash free eras. The latter
condition corresponds to the well-formedness requirement of durable opacity.

Definition 3 A crash-free history h is end-to-end opaque iff for some hc ∈ complete(h),
there exists a sequential history hs ∈ S such that for all t ∈ Tid, h|t = hs|t and ≺hc ⊆ ≺hs .
A history h is opaque iff each prefix h′ of h is end-to-end opaque.

Definition 4 (Durable opacity) A history h is durably opaque iff it is durably well-formed
and ops(h) is opaque. A TM implementation is opaque iff each of its histories is opaque.

Acknowledgements Vafeiadi Bila is supported by VeTSS. Dongol is supported by VeTSS and EPSRC grants
EP/Y036425/1, EP/X037142/1, EP/X015149/1, EP/V038915/1, and EP/R025134/2.

Author Contributions Vafeiadi Bila did all the proofs in consultation with Dongol. Both authors wrote and
revised the main manuscript text.

Declarations

Conflict of interest The authors declare no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abdulla PA, Atig MF, Bouajjani A et al (2021) Deciding reachability under persistent x86-TSO. Proc
ACM Program Lang 5(POPL):1–32. https://doi.org/10.1145/3434337

2. Armstrong A, Dongol B, Doherty S (2017) Proving opacity via linearizability: a sound and complete
method. In: Bouajjani A, Silva A (eds) FORTE, LNCS, vol 10321. Springer, pp 50–66

3. Attiya H, Gotsman A, Hans S, et al (2013) A programming language perspective on transactional memory
consistency. In: Fatourou P, Taubenfeld G (eds) PODC ’13. ACM, pp 309–318. https://doi.org/10.1145/
2484239.2484267

4. Beillahi SM, Bouajjani A, Enea C (2021) Robustness against transactional causal consistency. LogMeth-
ods Comput Sci 17(1). URL https://lmcs.episciences.org/7149

5. BilaE,Doherty S,DongolB, et al (2020)Defining andverifying durable opacity:Correctness for persistent
software transactional memory. In: Gotsman A, Sokolova A (eds) FORTE, LNCS, vol 12136. Springer,
pp 39–58. https://doi.org/10.1007/978-3-030-50086-3_3

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434337
https://doi.org/10.1145/2484239.2484267
https://doi.org/10.1145/2484239.2484267
https://lmcs.episciences.org/7149
https://doi.org/10.1007/978-3-030-50086-3_3

Formal Methods in System Design

6. Bila E, Derrick J, Doherty S et al (2022)Modularising verification of durable opacity. LogMethods Com-
put Sci. https://doi.org/10.46298/lmcs-18(3:7)2022 https://doi.org/10.46298/lmcs-18(3:7)2022 https://
doi.org/10.46298/lmcs-18(3:7)2022

7. Bila EV,DongolB (2024) Isabelle/HOLfiles for “Averified durable transactionalmutex lock for persistent
x86-TSO”. URL https://figshare.com/articles/thesis/DTML_correctness_proof/25037312

8. Bila EV, Dongol B, Lahav O et al (2022) View-based Owicki–Gries reasoning for persistent x86-tso. In:
Sergey I (ed) ESOP, LNCS, vol 13240. Springer, pp 234–261. https://doi.org/10.1007/978-3-030-99336-
8_9

9. Böhme S, Nipkow T (2010) Sledgehammer: judgement day. In: Giesl J, Hähnle R (eds) Automated
reasoning, 5th international joint conference, IJCAR2010, Edinburgh,UK, July 16-19, 2010. Proceedings,
LNCS, vol 6173. Springer, pp 107–121. https://doi.org/10.1007/978-3-642-14203-1_9

10. Chajed T, Tassarotti J, KaashoekMF, et al (2019) Verifying concurrent, crash-safe systemswith perennial.
In: Proceedings of the 27th ACM symposium on operating systems principles, pp 243–258

11. Chakrabarti DR, Boehm H, Bhandari K (2014) Atlas: leveraging locks for non-volatile memory consis-
tency. In: Black AP, Millstein TD (eds) OOPSLA. ACM, pp 433–452. https://doi.org/10.1145/2660193.
2660224

12. Cho K, Lee SH, Raad A, et al (2021) Revamping hardware persistency models: view-based and axiomatic
persistencymodels for Intel-x86 andArmv8. In: Freund SN,Yahav E (eds) PLDI. ACM, pp 16–31. https://
doi.org/10.1145/3453483.3454027

13. Coburn J, Caulfield AM, Akel A, et al (2011) Nv-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories. In: Gupta R, Mowry TC (eds) ASPLOS. ACM, pp 105–118.
https://doi.org/10.1145/1950365.1950380

14. Correia A, Felber P, Ramalhete P (2018) Romulus: efficient algorithms for persistent transactional mem-
ory. In: SPAA, pp 271–282

15. Dalessandro L, Dice D, Scott M, et al (2010) Transactional mutex locks. In: Euro-Par, Springer, pp 2–13
16. Dalvandi S, Dongol B (2022) Implementing and verifying release-acquire transactional memory in C11.

Proc ACM Program Lang 6(OOPSLA2):1817–1844. https://doi.org/10.1145/3563352
17. Derrick J,Doherty S,DongolB et al (2018)Mechanized proofs of opacity: a comparison of two techniques.

Formal Asp Comput 30(5):597–625. https://doi.org/10.1007/s00165-017-0433-3
18. Derrick J,Doherty S,DongolB et al (2021)Verifying correctness of persistent concurrent data structures: a

sound and complete method. Formal Aspects Comput 33(4–5):547–573. https://doi.org/10.1007/s00165-
021-00541-8

19. Dice D, Shalev O, Shavit N (2006) Transactional locking II. In: International symposium on distributed
computing, Springer, pp 194–208

20. Doherty S, Groves L, Luchangco V et al (2013) Towards formally specifying and verifying transactional
memory. Form Aspect Comput 25:769–799

21. Doherty S, Dongol B, Derrick J, et al (2016) Proving opacity of a pessimistic STM. In: Fatourou P,
Jiménez E, Pedone F (eds) OPODIS, LIPIcs, vol 70. Schloss Dagstuhl–Leibniz–Zentrum für Informatik,
pp 35:1–35:17

22. DongolB,Derrick J (2015)Verifying linearisability: a comparative survey.ACMComputSurv 48(2):19:1-
19:43. https://doi.org/10.1145/2796550

23. Dongol B, Le-Papin J (2021) Checking opacity and durable opacity with FDR. In: Calinescu R, Pasareanu
CS (eds) SEFM, LNCS, vol 13085. Springer, pp 222–242. https://doi.org/10.1007/978-3-030-92124-
8_13

24. D’Osualdo E, Raad A, Vafeiadis V (2023) The path to durable linearizability. Proc ACM Program Lang
7(POPL):748–774. https://doi.org/10.1145/3571219

25. DziumaD, Fatourou P, Kanellou E (2014) Consistency for transactional memory computing. Bull EATCS
113

26. Feijen WHJ, van Gasteren AJM (1999) On a method of multiprogramming. Monographs in computer
science. Springer. https://doi.org/10.1007/978-1-4757-3126-2

27. Felber P, Gramoli V, Guerraoui R (2009) Elastic transactions. In: DISC, Springer, pp 93–107
28. Friedman M, Ben-David N, Wei Y, et al (2020) Nvtraverse: in NVRAM data structures, the destination

is more important than the journey. In: Donaldson AF, Torlak E (eds) PLDI. ACM, pp 377–392. https://
doi.org/10.1145/3385412.3386031

29. Friedman M, Petrank E, Ramalhete P (2021) Mirror: making lock-free data structures persistent. In:
Freund SN, Yahav E (eds) PLDI. ACM, pp 1218–1232. https://doi.org/10.1145/3453483.3454105

30. Giles E, Doshi KA, Varman PJ (2015) Softwrap: a lightweight framework for transactional support of
storage class memory. In: IEEEMSST. IEEE Computer Society, pp 1–14. https://doi.org/10.1109/MSST.
2015.7208276

123

https://doi.org/10.46298/lmcs-18(3:7)2022
https://doi.org/10.46298/lmcs-18(3:7)2022
https://doi.org/10.46298/lmcs-18(3:7)2022
https://doi.org/10.46298/lmcs-18(3:7)2022
https://figshare.com/articles/thesis/DTML_correctness_proof/25037312
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1007/978-3-642-14203-1_9
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3563352
https://doi.org/10.1007/s00165-017-0433-3
https://doi.org/10.1007/s00165-021-00541-8
https://doi.org/10.1007/s00165-021-00541-8
https://doi.org/10.1145/2796550
https://doi.org/10.1007/978-3-030-92124-8_13
https://doi.org/10.1007/978-3-030-92124-8_13
https://doi.org/10.1145/3571219
https://doi.org/10.1007/978-1-4757-3126-2
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1109/MSST.2015.7208276
https://doi.org/10.1109/MSST.2015.7208276

Formal Methods in System Design

31. Gorjiara H, Luo W, Lee A, et al (2022) Checking robustness to weak persistency models. In: Jhala R,
Dillig I (eds) PLDI. ACM, pp 490–505. https://doi.org/10.1145/3519939.3523723,

32. Gu J, Yu Q, Wang X, et al (2019) Pisces: a scalable and efficient persistent transactional memory. In:
Malkhi D, Tsafrir D (eds) USENIX ATC. USENIX Association, pp 913–928

33. Guerraoui R,KapalkaM (2010) Principles of transactionalmemory. synthesis lectures on distributed com-
puting theory,Morgan&Claypool Publishers. https://doi.org/10.2200/S00253ED1V01Y201009DCT004

34. Herlihy M, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans
Program Lang Syst 12(3):463–492. https://doi.org/10.1145/78969.78972

35. Imbs D, Raynal M (2012) Virtual world consistency: a condition for STM systems (with a versatile
protocol with invisible read operations). Theor Comput Sci 444:113–127. https://doi.org/10.1016/j.tcs.
2012.04.037

36. Intel (2022) Persistent memory development kit, libpmemobj library. URL https://pmem.io/pmdk/
libpmemobj/

37. Intel Corporation (2021) Intel 64 and IA-32 architectures optimization reference manual
38. Izraelevitz J,MendesH, ScottML (2016)Linearizability of persistentmemory objects under a full-system-

crash failuremodel. In: Gavoille C, IlcinkasD (eds) DISC, LNCS, vol 9888. Springer, pp 313–327. https://
doi.org/10.1007/978-3-662-53426-7_23

39. Jeong J, Hong J,Maeng S, et al (2020) Unbounded hardware transactional memory for a hybrid dram/nvm
memory system. In: MICRO, IEEE, pp 525–538

40. Joshi A, Nagarajan V, Viglas S, et al (2017) ATOM: atomic durability in non-volatile memory through
hardware logging. In: HPCA. IEEE computer society, pp 361–372. https://doi.org/10.1109/HPCA.2017.
50

41. Joshi A, Nagarajan V, Cintra M, et al (2018) Dhtm: durable hardware transactional memory. In: ISCA,
IEEE, pp 452–465

42. JungR,Krebbers R, Jourdan JH et al (2018) Iris from the ground up: amodular foundation for higher-order
concurrent separation logic. J Funct Program 28:e20

43. Kammüller F, Wenzel M, Paulson LC (1999) Locales a sectioning concept for isabelle. In: TPHOLs,
Springer, pp 149–165

44. Khyzha A, Lahav O (2021) Taming x86-TSO persistency. Proc ACM Program Lang 5(POPL):1–29.
https://doi.org/10.1145/3434328

45. Khyzha A, Lahav O (2022) Abstraction for crash-resilient objects. In: Sergey I (ed) ESOP, LNCS, vol
13240. Springer, pp 262–289. https://doi.org/10.1007/978-3-030-99336-8_10

46. Kolli A, Pelley S, Saidi AG, et al (2016) High-performance transactions for persistent memories. In:
Conte T, Zhou Y (eds) ASPLOS. ACM, pp 399–411. https://doi.org/10.1145/2872362.2872381

47. Krishnan RM, Kim J, Mathew A, et al (2020) Durable transactional memory can scale with timestone.
In: ASPLOS, pp 335–349

48. Lamport L (1979)How tomake amultiprocessor computer that correctly executesmultiprocess programs.
IEEE Trans Comput 28(9):690–691. https://doi.org/10.1109/TC.1979.1675439

49. Lesani M, Palsberg J (2014) Decomposing opacity. In: Kuhn F (ed) DISC, LNCS, vol 8784. Springer, pp
391–405. https://doi.org/10.1007/978-3-662-45174-8_27

50. Lesani M, Luchangco V, Moir M (2012) Putting opacity in its place. In: Workshop on the theory of
transactional memory, pp 137–151

51. Liu M, Zhang M, Chen K, et al (2017) Dudetm: Building durable transactions with decoupling for
persistent memory. In: Chen Y, Temam O, Carter J (eds) ASPLOS. ACM, pp 329–343.https://doi.org/10.
1145/3037697.3037714

52. Lynch NA (1996) Distributed algorithms. Morgan Kaufmann
53. Matichuk D,Murray T,Wenzel M (2016) Eisbach: a proof method language for Isabelle. J Autom Reason

56(3):261–282. https://doi.org/10.1007/s10817-015-9360-2
54. Owicki SS, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Inform 6:319–340.

https://doi.org/10.1007/BF00268134
55. Papadimitriou CH (1979) The serializability of concurrent database updates. J ACM (JACM) 26(4):631–

653
56. Raad A, Doko M, Rozic L et al (2019) On library correctness under weak memory consistency: speci-

fying and verifying concurrent libraries under declarative consistency models. Proc ACM Program Lang
3(POPL):68:1-68:31. https://doi.org/10.1145/3290381

57. RaadA,Wickerson J, Vafeiadis V (2019)Weak persistency semantics from the ground up: formalising the
persistency semantics of armv8 and transactional models. Proc ACM Program Lang 3(OOPSLA):135:1-
135:27. https://doi.org/10.1145/3360561

123

https://doi.org/10.1145/3519939.3523723
https://doi.org/10.2200/S00253ED1V01Y201009DCT004
https://doi.org/10.1145/78969.78972
https://doi.org/10.1016/j.tcs.2012.04.037
https://doi.org/10.1016/j.tcs.2012.04.037
https://pmem.io/pmdk/libpmemobj/
https://pmem.io/pmdk/libpmemobj/
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1145/3434328
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-662-45174-8_27
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/BF00268134
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3360561

Formal Methods in System Design

58. Raad A, Lahav O, Vafeiadis V (2020) Persistent Owicki–Gries reasoning: a program logic for reasoning
about persistent programs on Intel-x86. Proc ACMProgram Lang 4(OOPSLA):151:1-151:28. https://doi.
org/10.1145/3428219

59. Raad A, Wickerson J, Neiger G et al (2020) Persistency semantics of the Intel-x86 architecture. Proc
ACM Program Lang 4(POPL):11:1-11:31. https://doi.org/10.1145/3371079

60. RaadA,Maranget L, Vafeiadis V (2022) Extending Intel-x86 consistency and persistency: formalising the
semantics of Intel-x86 memory types and non-temporal stores. Proc ACM Program Lang 6(POPL):1–31.
https://doi.org/10.1145/3498683

61. Raad A, Lahav O, Wickerson J et al (2024) Intel PMDK transactions: Specification, validation and
concurrency. In: Weirich S (ed) ESOP, LNCS, vol 14577. Springer, pp 150–179. https://doi.org/10.1007/
978-3-031-57267-8_6

62. Ramalhete P, Correia A, Felber P, et al (2019) Onefile: a wait-free persistent transactional memory. In:
DSN. IEEE, pp 151–163. https://doi.org/10.1109/DSN.2019.00028

63. Ren J, Zhao J, Khan SM, et al (2015) ThyNVM: enabling software-transparent crash consistency in
persistent memory systems. In: Prvulovic M (ed) MICRO. ACM, pp 672–685. https://doi.org/10.1145/
2830772.2830802

64. Sewell P, Sarkar S, Owens S et al (2010) x86-TSO: a rigorous and usable programmer’s model for x86
multiprocessors. Commun ACM 53(7):89–97

65. Siek K, Wojciechowski PT (2022) Last-use opacity: a strong safety property for transactional memory
with prerelease support. Distribut Comput 35(3):265–301. https://doi.org/10.1007/s00446-022-00420-2

66. Singh AK, Lahav O (2023) An operational approach to library abstraction under relaxed memory con-
currency. Proc ACM Program Lang 7(POPL):1542–1572. https://doi.org/10.1145/3571246

67. Sun L, Lu Y, Shu J (2015) Dp2: reducing transaction overhead with differential and dual persistency in
persistent memory. In: Napoli CD, Salapura V, Franke H, et al (eds) CF. ACM, pp 24:1–24:8. https://doi.
org/10.1145/2742854.2742864

68. Vindum SF, Birkedal L (2022) Spirea: a mechanized concurrent separation logic for weak persistent
memory

69. Volos H, Tack AJ, Swift MM (2011) Mnemosyne: lightweight persistent memory. In: Gupta R, Mowry
TC (eds) ASPLOS. ACM, pp 91–104. https://doi.org/10.1145/1950365.1950379

70. Wei Y, Ben-David N, FriedmanM, et al (2022) Flit: a library for simple and efficient persistent algorithms.
In: Lee J, Agrawal K, Spear MF (eds) PPoPP. ACM, pp 309–321. https://doi.org/10.1145/3503221.
3508436

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/3428219
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3498683
https://doi.org/10.1007/978-3-031-57267-8_6
https://doi.org/10.1007/978-3-031-57267-8_6
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1007/s00446-022-00420-2
https://doi.org/10.1145/3571246
https://doi.org/10.1145/2742854.2742864
https://doi.org/10.1145/2742854.2742864
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3503221.3508436
https://doi.org/10.1145/3503221.3508436

	A verified durable transactional mutex lock for persistent x86-TSO
	Abstract
	1 Introduction
	1.1 Designing, modelling and verifying dTMLPx86
	1.2 Contributions
	1.3 Supplementary material
	1.4 Overview

	2 Background and motivation
	2.1 Px86 semantics
	2.2 Implementation challenges under Px86
	3 Durable opacity
	3.1 Opacity and durable opacity
	3.2 The dTMS2 operational specification
	4 View-based Px86 model
	4.1 Programming language
	4.2 The Px86view semantics
	4.2.1 Modelling crashes and recovery

	5 dTMLPx86: a durable transaction mutex lock for Px86
	5.1 The dTMLPx86 algorithm
	5.1.1 The basic TML algorithm
	5.1.2 Correct synchronisation under Px86
	5.1.3 Read-only transactions in Px86
	5.1.4 Ensuring durability
	5.1.5 Alternative designs

	5.2 dTMLPx86 model
	5.2.1 dTMLPx86 executions and histories
	5.2.2 Ensuring well-formed histories
	5.2.3 Modelling log operations

	6 Invariants of dTMLPx86
	6.1 View-based expressions
	6.2 Owicki–Gries reasoning
	6.2.1 Standard decomposition rules
	6.2.2 Rules for atomic statements and correctness of view-based assertions

	6.3 Persistent invariant of dTMLPx86
	6.3.1 Memory properties
	6.3.2 Coherence property for non-writing transactions
	6.3.3 Properties about tracked locations and log
	6.3.4 Properties about glb and recGlb
	6.3.5 Properties about recovery

	6.4 dTMLPx86 program annotation

	7 Durable opacity via refinement
	7.1 Global relation
	7.2 Transaction relation
	7.3 Mechanisation
	7.3.1 Lessons learnt

	8 Related work
	9 Conclusions

	A Overview of the thread-state views for Px86view
	B Hoare logic rules for atomic statements and stability of view-based assertions
	B.1 Program annotations of dTMLPx86
	The TMBegin annotation
	The TMWrite annotation
	The TMCommit annotation
	The TMRecover annotation

	C Durable opacity
	Histories
	Well-formed Histories
	Sequential specification
	Durable opacity
	Acknowledgements
	References

