
Formal Methods in System Design
https://doi.org/10.1007/s10703-024-00460-3

Formally understanding Rust’s ownership and borrowing
system at the memory level

Shuanglong Kan1 · Zhe Chen2 · David Sanán3 · Yang Liu4

Received: 2 January 2023 / Accepted: 20 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Rust is an emergent systems programming language highlighting memory safety through
its Ownership and Borrowing System (OBS). Formalizing OBS in semantics is essential
in certifying Rust’s memory safety guarantees. Existing formalizations of OBS are at the
language level. That is, they explainOBSonRust’s constructs. This paper proposes a different
view of OBS at the memory level, independent of Rust’s constructs. The basic idea of our
formalization is mapping the OBS invariants maintained by Rust’s type system to memory
layouts and checking the invariants for memory operations. Our memory-level formalization
of OBS helps people better understand the relationship between OBS and memory safety
by narrowing the gap between OBS and memory operations. Moreover, it enables potential
reuse of Rust’s OBS in other programming languages since memory operations are standard
features and our formalization is not bound to Rust’s constructs. Based on the memory
model, we have developed an executable operational semantics for Rust, called RustSEM,
and implemented the semantics inK-Framework (K).RustSEMcovers amuch larger subset of
the significant language constructs than existing formal semantics for Rust.More importantly,
RustSEM can run and verify real Rust programs by exploiting K’s execution and verification
engines.Wehave evaluated the semantic correctness ofRustSEMwrt. theRust compiler using
around 700 tests. In particular, we have compared our formalization of OBS in the memory
model with Rust’s type system and identified their differences due to the conservation of
the Rust compiler. Moreover, our formalization of OBS is helpful to identifying undefined
behavior of Rust programs with mixed safe and unsafe operations. We have also evaluated
the potential applications of RustSEM in automated runtime and formal verification for

B Zhe Chen
zhechen@nuaa.edu.cn

Shuanglong Kan
shuanglong@cs.uni-kl.de

David Sanán
david.miguel@singaporetech.edu.sg

Yang Liu
yangliu@ntu.edu.sg

1 Department of Computer Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany

2 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing, China

3 InfoComm Technology Cluster, Singapore Institute of Technology, Singapore, Singapore

4 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-024-00460-3&domain=pdf

Formal Methods in System Design

functional and memory properties. Experimental results show that RustSEM can enhance
Rust’s memory safety mechanism, as it is more powerful than OBS in the Rust compiler for
detecting memory errors.

Keywords Rust · Language Semantics · K-Framework · Formal Verification

1 Introduction

Developing formal semantics for a programming language could provide a mathematical
foundation for the language. The semantics can be used as a reference model and, more
importantly, as a foundation for proving language-level properties and constructing automated
verification tools.

Rust [1] is an emergent systemsprogramming language aiming at providingmemory safety
guarantees with its Ownership and Borrowing System (OBS). One of the most important
guarantees the OBS invariants maintain is the exclusive mutation capability for memory
locations, which can avoid various memory errors such as dangling pointers, double frees,
and data races.

Several formal semantics for Rust has been developed. RustBelt [2] formalizes a variant
λRust of Rust in Coq, to prove in Coq that the type system of Rust can guarantee the memory
and thread safety of λRust programs. Patina [3] formalizes the semantics of an early version
of Rust. Stacked Borrows [4] give an explanation of Rust’s OBS using alias stacks and further
define undefined behaviors of Rust.

All these existing works understand Rust’s OBS at the language-level. In other words,
their explanation of OBS is bound to Rust’s constructs. For instance, RustBelt formalizes
OBS using a type system over Rust’s constructs. Even though the language-level OBS can
provide clear instructions for users on how to followOBS in Rust programming, we still need
a deep insight into OBS over low-level memory management. Because language level can
only present the effect of OBS over Rust’s constructs, such as bindings and assignments, but
memory-level OBS can directly illustrate the effect of OBS over memory operations, such
as reading or writing a memory location.

In this paper, we propose a new executable operational semantics for Rust. The core of
our semantics is a formal memory model that includes memory layouts and the semantics of
memory operations. More importantly, the memory model gives a memory-level formaliza-
tion of OBS, which is independent of Rust’s constructs. Its basic idea is mapping the OBS
invariants to a language-independent memorymodel. The OBS invariants are checked during
the execution of memory operations. Besides the OBS invariants, the memory model formal-
izes the interaction between safe and unsafe operations in Rust. To show the correctness of
the memory model, we define a high-level abstraction of OBS (HOBS) and have proved the
refined relation between HOBS and the memory model.

The interests of the memory model are twofold. On the one hand, our memory-level
formalization of OBS helps people understand the relationship between OBS and memory
safety. On the other hand, our language-independent formalization of OBS makes it possible
to reuse OBS in different programming languages, as memory manipulation is a common
and essential feature of mainstream languages.

Based on the memory model, we have developed an executable operational semantics
called RustSEM. RustSEM consists of an operational semantics for the Core Language (CL)
and a semantics for the translation from Rust to CL. The CL is an intermediate representation

123

Formal Methods in System Design

(IR) for avoiding redundant semantics definitions of Rust’s constructs. Its semantics contain
the semantics of memory operations. To execute a Rust program, RustSEM first translates
the program into a corresponding CL program and then executes the CL program wrt. the
CL semantics, in which all memory accesses are carried out by invoking the interfaces of
the memory model. Recall that Rust also has an IR, namely Mid-level Intermediate Rep-
resentation (MIR) [5]. However, the gap between Rust and CL is much smaller than MIR,
simplifying the translation semantics from Rust to CL.

We have implemented RustSEM in the executable semantics modeling tool K-Framework
(K) [6].K is based on rewriting-logic. Thanks to its built-in parser, language semantics can be
defined on abstract syntax trees.K has been successfully applied in formalizing the semantics
of real-world programming languages, such as Java [7] and C [8, 9]. K’s execution and
verification engines facilitate the testing of RustSEM and constructing automated verifiers.

RustSEM distinguishes from the existing semantics of Rust in the following aspects.
Firstly, RustSEM directly formalizes the semantics based on Rust’s grammar instead of a

variant, thus covering amuch larger subset of the significant language constructs than existing
semantics. For instance, RustSEMsupports safe and unsafe constructs, concurrency, dynamic
OBS, closures, pattern matching, and polymorphism.

Secondly, RustSEM is an executable semantics, which means that RustSEM can execute
a Rust program concerning its semantics. This makes semantics-based runtime verification
and formal verification possible.

Thirdly, thanks to the integratedmemorymodel, RustSEMcan verify the runtime behavior
of Rust programs against the OBS invariants, i.e., reject the programs violating the OBS
invariants. RustSEM can also detect undefined behavior (cf. Stacked Borrows [4]) of the
programs with mixed safe and unsafe operations, by noting that unsafe constructs can escape
from OBS and make programs error-prone [10],

We have evaluated the semantic correctness of RustSEMwrt. the Rust compiler, including
semantic consistency (i.e., absence of ambiguities), functional correctness, and OBS imple-
mentation correctness, using around 700 tests which mainly come from the Rust benchmarks
[11], the Rust libraries, and the Rust textbook [12]. In particular, we have proposed a new
testing technique for detecting ambiguities, which has discovered more than 36 ambiguities
in the early versions of RustSEM.

We have also evaluated the potential applications of RustSEM in automated runtime ver-
ification and formal verification for both functional and memory properties. The application
in runtime verification is evaluated on 118 Rust programs for detecting memory errors.
The application in formal verification is evaluated on a collection of benchmarks, including
Vec_Deque in the Rust library implementing a ring buffer. Experimental results show that
RustSEM can enhance Rust’s memory safety mechanism, as it is more powerful than OBS
in detecting memory errors.

In summary, we make the following contributions:

1. We propose a high-level abstraction of OBS and a memory model containing the opera-
tional semantics of OBS. We have also proved the refinement relation between them.

2. We propose a new executable operational semantics for Rust, based on the memory
model. Our semantics supports a larger subset of the significant language constructs
(compared with existing semantics). It contains the semantics of unsafe raw pointers and
the executions with mixed safe and unsafe pointers.

3. We have evaluated the correctness of our semantics. In the evaluation, we have also
proposed a novel testing technique based on K’s verification engine for detecting ambi-
guities.

123

Formal Methods in System Design

4. We show that RustSEM can be applied to both runtime and formal verification against
functional and memory properties.

This paper is organized as follows: Sect. 2 recalls the OBS of Rust. Section3 presents a
high-level abstraction of OBS. Section4 defines the operational semantics of the memory
model while Sect. 5 presents the basic idea of the semantics of CL and the translation seman-
tics from Rust to CL. Section6 evaluates the proposed semantics. Section7 compares related
work. Section8 concludes.

2 The ownership and borrowing system

In this section, we recall Rust’s Ownership and Borrowing System (OBS) and the related
OBS invariants.

2.1 Ownership

A variable can declare a memory block’s unique ownership using a binding or an assignment.
The owner can read and write the block if the ownership is declared mutable with the mut
keyword. Otherwise, it is read-only. A read-only (resp. mutable) owner is called a shared
(resp. mutable) alias of the block.We denote by x →o B that variable x is the owner of block
B, i.e., x owns B. For instance, in Listing 1, the binding “let mut v = vec![1,2]” at
Line 1.1 first allocates a block B in the memory to store the vector [1,2], and then the
owner v obtains the ownership of B, denoted by v →o B.

Listing 1 Ownership

1.1 let mut v = vec ![1 ,2];
1.2 {
1.3 let v1 = v;
1.4 let t = v1[0];
1.5 v1[1] = 3;
1.6 }

v1

v

An ownership can be moved from one variable to another. Moving an ownership from
variable x to another variable y means that the ownership now belongs to y and x no longer
owns it. For instance, in Listing 1, the binding “let v1 = v” at Line 1.3 moves the
ownership of the vector from v to v1, i.e., v1 becomes the new owner of the vector and v
can no longer be used to access it. Indeed, the vector is read and written through v1 at Lines
1.4 and 1.5 , respectively.
The timestamp is a way to distinguish the execution order of program statements. This

section uses line numbers as timestamps. The lifetime of an owner begins from the timestamp
at which it obtains the ownership and ends at the timestamp at which it loses the ownership,
e.g., when the ownership is moved, or it goes out of the program scope (i.e., curly braces).
The owned block is automatically deallocated through its owner when the owner goes out of
scope. For instance, in Listing 1, the lifetime of owner v begins at Line 1.1 and ends at Line
1.3 , whilst the lifetime of owner v1 begins at Line 1.3 and ends at Line 1.6 . The vector
is deallocated through v1 at Line 1.6 as v1 goes out of scope.

123

Formal Methods in System Design

2.2 Borrowing and reborrowing

Borrowing is a way to create references from the owner of a memory block. There are two
kinds of references: shared references (read-only, created by &) and mutable references
(readable and writable, created by &mut). A shared (resp. mutable) reference is also called
a shared (resp. mutable) alias of the block.

A borrowing creating a shared (resp. mutable) reference is called a shared (resp. mutable)
borrowing.We denote by x →s y (resp. x →m y) that x is a shared (resp. mutable) reference
to y, i.e., x borrows y. For instance, in Listing 2, the borrowing “let b1 = &v[0]” at
Line 2.3 creates a shared reference b1 to v, denoted by b1 →s v, where b1 can only be
used to read the memory location v[0] owned by v. The borrowing “let b2 = &mut
v" at Line 2.4 creates a mutable reference, denoted by b2 →m v, where b2 can be used to
both read and write the block owned by v.

Listing 2 Borrowing

2.1 let mut v = vec ![1 ,2];
2.2
2.3 let b1=&v[0];
2.4 let b2=&mut v;
2.5 (*b2).push (2);
2.6 let t = *b1;

b1 →s vb2 →m v

Reborrowing is a way to create references from another reference, instead of an owner.
For instance, in Listing 3, b1 borrows the owner v at Line 3.2 and b2 reborrows b1 with
the referent ∗b1 at Line 3.3 , denoted by the link b2 →s b1 →m v. To access the first
element of the vector, we can use v[0], (*b1)[0] or (*b2)[0], where v, *b1 and *b2
are three paths to access the vector. Each path uses an alias as the entry to access the block.
For instance, the paths v, *b1 and *b2 use the alias entries v, b1 and b2, respectively.

Listing 3 Reborrowing

3.1 let mut v = vec ![1 ,2];
3.2 let b1=&mut v;
3.3 let b2=&(*b1);
3.4 let z=(*b2)[0];
3.5 (*b1).push (2);
3.6 let t = (*b2)[1];

b1 →m v
b2 →s b1

As borrowing and reborrowing are similar, we define unified relations for them.

Definition 1 (Unified borrowing relations) Let x and y be two variables, where y can be either
an owner or a reference. x borrows or reborrows y is denoted by x →b y. The borrowing
relation →b contains two sub-relations: shared borrowing →s and mutable borrowing →m ,
i.e., x →b y ⇐⇒ (x →s y) ∨ (x →m y).

The lifetime of a reference begins from the timestamp of its creation and ends at the last
timestamp at which it is used (read, written, or borrowed), according to the definition of

123

Formal Methods in System Design

Non-Lexical Lifetimes (NLL) [13]. Unlike the owner’s lifetime, which the program scope
can easily decide, the last use of it decides the lifetime of a reference. For instance, in Listing
2, the lifetime of b1 is from Line 2.3 to Line 2.6 , while the lifetime of b2 is from Line
2.4 to Line 2.5 .

2.3 The OBS invariants

Because multiple aliases can access a memory block, the OBS should ensure that a Rust
program fulfills the following guarantees

1. Each alias only accesses (reads or writes) one valid block. For owners, they should own
the block. For references, their owners should be in their lifetimes to ensure validity.

2. At any time in execution, each block can be accessed by either multiple shared aliases
(but no mutable alias) or exclusively accessed by a unique mutable alias.

These guarantees can be used to avoid memory errors such as dangling pointers (guarantee
1) and data races (guarantee 2).

To meet these two guarantees, the OBS checks Rust programs against a collection of
invariants.We have summarized the following five invariants by studying the Rust documents
and the compiler implementation. We will prove that these invariants precisely ensure the
guarantees in Sect. 3.

Definition 2 (The OBS invariants) The following invariants must be satisfied:

1. Unique owner invariant. Each block has a unique owner. The block is deallocated only
when the owner’s lifetime ends.

2. Lifetime inclusion invariant. If x →b y, then the lifetime of x should always be within
the lifetime of y.

3. Lifetime disjoint invariant. There are no two direct references to the same referent such
that their lifetimes intersect, and one of them is a mutable reference. For example, if
x →m y and z →b y, then the lifetimes of x and z should not intersect.

4. Write permission disabled invariant. If x →s y, then the write permission of y should
be turned off until the end of x’s lifetime.

5. Full permission disabled invariant. If x →m y, then both the read and write permissions
of y should be turned off until the end of x’s lifetime.

We now illustrate the above invariants by examples. The unique owner invariant is obvious.
The move operation preserves the invariant.

Listing 4 Invariant (2) Violation

4.1 let mut b;
4.2 {
4.3 let mut v = vec ![1 ,2];
4.4 b = &mut v;
4.5 let t=(*b)[1];
4.6 }
4.7 (*b)[1] = 2;

v
b →m v

123

Formal Methods in System Design

Listing 4 violates Invariant (2). The lifetime of owner v is from Line 4.3 to 4.6 and the
lifetime of reference b is from Line 4.4 to 4.7 . Therefore, the reference’s lifetime is not
within the owner’s, leading to a dangling pointer.

Listing 2 violates Invariant (3). The lifetime of b1 →s v is from Line 2.3 to 2.6 . The
lifetime of b2 →m v is from Line 2.4 to 2.5 . The intersection of the lifetimes of b1 →s v
and b2 →m v is not empty and one of them is a mutable reference. This is a potential
vulnerability. At Line 2.5 , if the memory space of the vector is already full then the push
operation will reallocate a memory block for the vector. But the reference b1 still points to
the old memory block and is used to read at Line 2.6 , resulting in a dangling pointer.

Listing 3 violates Invariant (4). The lifetime of shared reference b2 is from Line 3.3 to
3.6 . Since b2 reborrows b1, b1’s write permission should be disabled within the lifetime
of b2. Thus, the write through b1 at Line 3.5 is illegal.

2.4 Unsafe constructs

Note that the OBS only concerns safe pointers such as owners and references. Recall that
Rust also supports unsafe raw pointers, which can escape from OBS checking. Unsafe raw
pointers are widely used in real-world Rust programs to facilitate programming but may
introduce more memory errors. Raw pointers do not need to preserve the OBS invariants, but
they need to know safe pointers’ ownership and borrowing information. For instance, when
a raw pointer tries to read through an owner, we need to know whether the ownership has
been moved away to check dangling pointers. We will formalize raw pointers in our memory
model in Sect. 4.

Besides unsafe pointers, Rust also supports other unsafe features, including unsafe scopes
and unsafe functions, in which unsafe raw pointers are used. We will model these unsafe
features in our Core Language and translation semantics in Sect. 5.

3 A high-level abstraction of OBS

In this section, we propose a new high-level abstraction of OBS, which formalizes the own-
ership and borrowing relations among aliases and memory blocks as graphs. At the end of
this section, by using this abstraction, we will formalize the OBS invariants in Sect. 2.3 and
prove that they precisely ensure the OBS guarantees.

Definition 3 (Timestamp) Let Tim be an infinitely countable set of timestamps. (Tim,≤) is a
Totally Ordered Set (TOS). A strict order < over Tim is defined as t < t ′ iff t ≤ t ′ ∧ t
= t ′.
The function Su : Tim → Tim is the successor function of timestamps, such that Su(t) = t ′
iff t < t ′ ∧ �t ′′.t < t ′′ < t ′.

Definition 4 (Lifetime) A lifetime t1 ∼ t2, where t1, t2 ∈ Tim, is defined as {t | t1 ≤ t ≤ t2},
which is a subset of Tim. Let LT be the set of all lifetimes.

An OBS graph consists of a memory block, its aliases and their relations.

Definition 5 (OBS graph) An OBS graph G is a tuple (B, V , E,F), where

• B is a memory block.
• V is a set of aliases of B, e.g., owners and references.

123

Formal Methods in System Design

Fig. 1 The OBS graph of the program in Listing 5

• E : V → {o, s, m} × ({B} ∪ V) is a set of edges, i.e., a total mapping from aliases to
the product of {o, m, s} and {B} ∪ V , where E(a) = (o, B) iff a →o B, i.e. a owns
B; E(a) = (s, a′) iff a →s a′, i.e., a is a shared reference to a′; E(a) = (m, a′) iff
a →m a′, i.e., a is a mutable reference to a′.

• F : E → LT is the lifetimes of edges.

Listing 5 An example demonstrating OBS graphs

5.1 let mut v = vec![1,2,...,n];
5.2 let b1 = & mut v;
5.3 let b2 = & (* b1);
5.4 println !((*b2)[0]);
5.5 (*b1)[0] = 2;
5.6 let b3 = & mut v;
5.7 (*b3)[0] = 3;

b1 →m vb2 →s b1

b3 →m v

Note that E is a total mapping, as each alias holds exactly one value. In sequel, E(a) =
(∗, a′) and (a →∗ a′) ∈ E are used interchangeably, where ∗ ∈ {o, s, m}. We also reuse the
notation →b in Sect. 2 to denote either →m or →s .

Figure1 shows an OBS graph corresponding to the program in Listing 5, where B denotes
the memory block that stores the vector vec![1,2,...,n]. Each edge is labeled with the
mutability of the borrowing and its lifetime. For instance, the edge from b2 to b1 is labeled
with s[5.3 ∼ 5.4], which denotes b2 →s b1 and F(b2 →s b1) = 5.3 ∼ 5.4 .

To formalize the OBS invariants in Definition 2, we define well-formed OBS graphs (for
Inv 1, 2, 3) and the read and write permission functions (for Inv 4, 5).

Definition 6 (Well-formed OBS graph) An OBS graph G = (B, V , E,F) is well-formed if
and only if it satisfies:

1. There is a unique a ∈ V such that E(a) = (o, B).
2. ∀a, a′, a′′ ∈ {B}∪ V . E(a) = (∗, a′)∧ E(a′) = (∗, a′′) �⇒ F(a →∗ a′) ⊂ F(a′ →∗

a′′).
3. ∀a, a′, a′′ ∈ V . E(a′) = (b, a) ∧ E(a′′) = (m, a) �⇒ F(a′ →b a) ∩F(a′′ →m a) =

∅.
For example, the OBS graph in Fig. 1 is well-formed. Indeed, the block B is uniquely

owned by v. The lifetime of b2 →s b1 is within the lifetime of b1 →m v. The lifetimes of
b1 →m v and b3 →m v do not intersect. One property of a well-formed OBS graph is that
it is acyclic. The proof is in Appendix A.

123

Formal Methods in System Design

Lemma 1 A well-formed OBS graph is acyclic.

The read and write permission functions permit an alias to read or write at a specific
timestamp only if the read or write permission function returns true, respectively.

Definition 7 (Read and write permission functions) Let G = (B, V , E,F) be anOBS graph.
The read permission function RG : V × Tim → B is defined as

RG(a, t) =
{

true if (∃a′.a →∗ a′ ∈ E ∧ t ∈ F(a →∗ a′)) ∧ (�a′′.t ∈ F(a′′ →m a))

false otherwise

where t ∈ F(a →∗ a′) ensures that t is in the lifetime of a and �a′′.t ∈ F(a′′ →m a)

ensures that a’s read permission is not disabled at t .
The write permission function WG : V × Tim → B is defined as

WG(a, t) =
{

true if (∃a′.a →{o,m} a′ ∈ E ∧ t ∈ F(a →{o,m} a′)) ∧ (�a′′.t ∈ F(a′′ →b a))

false otherwise

where a →{o,m} a′ denotes a →o a′ or a →m a′.

For example, in Fig. 1, WG(b1, 5.3) = false as there exists b2 such that 5.3 ∈ F(b2 →s

b1). RG(b3, 5.7) = true as 5.7 ∈ F(b3 →m v) and �a′.a′ →b b3 ∈ E .
The relations between the permission functions in Definition 7 and Inv 4 and 5 in Defi-

nition 2 can be specified as: (1) an alias’s reading (resp. writing) operation is disabled at the
timestamp t due to Inv 4 or 5 if and only if the read (resp. write) permission function for the
alias at t returns false.

We can show in the following two theorems that a well-formed OBS graph satisfying the
permission functions precisely ensures the OBS guarantees. The proof is in Appendix B.

Theorem 1 Let G = (B, V , E,F) be a well-formed OBS graph satisfying the permission
functions and t be a timestamp. We have either (1) ∀a ∈ V , WG(a, t) = false or (2) ∃!a ∈ V ,
WG(a, t) = true ∧ ∀a′.(a
= a′ ⇒ RG(a′, t) = WG(a′, t) = false). The notation ∃! denotes
unique existential quantification.

Theorem 2 Let G = (B, V , E,F) be a well-formed OBS graph satisfying the permission
functions and t be a timestamp. For any a ∈ V , if RG(a, t) = true or WG(a, t) = true, then
a is not a dangling pointer.

In other words, Theorem 1 shows that the exclusive mutation guarantee is fulfilled if all
reads andwrites performed by an alias are executed at the timestampswhen the corresponding
permission functions return true. Theorem 2 shows that the memory block accessed by an
alias is valid at the timestamp when the permission function returns true.
Discussions. Our high-level abstraction of OBS is language-independent and flexible.

Firstly, the definitions of OBS graphs and permission functions do not use Rust’s con-
structs. This is potentially helpful to reuse OBS in other programming languages, such as C,
to improve their memory safety.

Secondly, there is another definition of lifetime in Rust, called two-phase borrowing [14],
in which the lifetime of amutable reference starts from the timestamp of its first use instead of
the timestamp of its creation. Our high-level abstraction is also compatiblewith this definition
by simply overriding the lifetime definition of reference, For instance, in Fig.1, with two-
phase borrowing, F(b3 →m v) = 5.7 ∼ 5.7. Definitions 6 and 7 remain unchanged.
Theorems 1 and 2 still hold.

123

Formal Methods in System Design

4 Thememorymodel

In this section, we introduce our memory model, the core of RustSEM that formalizes OBS.
It can be viewed as an implementation or a refinement of the high-level abstraction of OBS.
The memory model supports the dynamic checking of OBS invariants. Moreover, it also
supports sequential consistency checking for concurrent accesses.

We first illustrate dynamic lifetime extension using a motivating example in Fig. 2. Line
6.1 creates a block B for vec![1,2] and assume the block location of B isb. An ownership
relation v →o B that variable v is the owner of B is also created. The notation v �→ own(b)

denotes that variable v starts to own the block whose location is b where own(b) indicates
the ownership of B. Line 6.2 creates a borrowing relation b1 →m v. We introduce value
mut(6.2 ∼ 6.2,v) to denote a reference value to v in the memory model, where 6.2 ∼ 6.2
is a timestamp span in which b1 is used, since we have only scanned the code up to Line
6.2. When we scan Line 6.3, b1 is used to write the vector, thus the timestamp span of the
reference b1 should be extended. The new span is 6.2 ∼ 6.3. This treatment of lifetimes is
called dynamic lifetime extension. Line 6.4 writes the vector via its owner v. Note that b1
does not disable v here since its lifetime has not been extended to Line 6.4. Line 6.5 creates
a relation b2 →s v. We introduce the value shr(6.5 ∼ 6.5,v) to denote a shared reference
value to v, whose lifetime is from Line 6.5 to 6.5 at this moment. Line 6.6 writes the vector
via its owner; this is allowed at this moment since the existing two references cannot disable
it up to now. But at Line 6.7, since b2 is used to read, the lifetime of the reference b2 should
be extended to 6.7. Now, an error occurs, i.e., the write by v at Line 6.6 is within the lifetime
of the shared reference b2.

This motivating example shows that we need to store the lifetimes of references to support
dynamicOBS invariant checkingwithout lookingbackward.Moreover,we alsoneed to record
the timestamps at which an alias is used to read or write. For instance, in Fig. 2 the owner v
is recorded to be used to write at Lines 6.4 and 6.6.

Figure3 illustrates the grammar of the memory model. Note that semantic rules gener-
ate timestamps instead of line numbers. We will explain these constructs in the following
subsections.

Fig. 2 A motivating example for dynamic lifetime extension. An error exists at Line 6.7, since b2 should
disable the write permission of v during the lifetime 6.5 ∼ 6.7, but v writes at Line 6.6

123

Formal Methods in System Design

Fig. 3 The grammar of the memory model

Listing 7 An example of memory layout

7.1 struct T {x:i32 ,y:B}
7.2 enum B {Empty ,L([i32 :3])}
7.3 let a = [1,2,3];
7.4 let b = B::L(a);
7.5 let t = T{x:1,y:b};

4.1 Memory configurations

A memory configuration is defined as a 4-tuple mem = (S, H ,P, ms), where S is a set of
stacks, H is the heap, P stores the latest timestamps at which alias is used to read or write
as we explained in the motivating example, ms is used for sequential consistency checking
of concurrent access. We elaborate on them as follows.

The stacks are modeled as a finite partial map S : Ls
fin−⇀ (Val×T) from stack locations

in the set Ls (“Stack locations” in Fig. 3. POR denotes Partially Ordered Set) to typed values,
denoted as v : t, where v ∈ Val is a value and t ∈ T is its type. Different stacks have
disjoint location spaces in Ls to ensure they are local to their corresponding threads. Ls is
partial order under ≤s since only stack locations in the same thread are ordered to denote the
creation order of local variables. Various strategies could be selected to implement Ls . For
instance, a stack location could be a pair (tid,n), where tid is a thread id and n is a natural
number to denote a local stack location of tid.

—–
The heap is defined as a set of blocks H = {B1, . . . , Bn}. A block Bi is 4-tuple

(bi ,ni , mi ,ti), where bi ∈ Lb, Lb is a set of block locations (“Block locations” in

123

Formal Methods in System Design

Fig. 4 An example of the stacks and heap

Fig. 3) and each block has a unique block location, ni ∈ N is the size of the block,
mi : [0,ni − 1] → Val × T is a map from the offsets in the range [0,ni − 1] to the
corresponding typed values ([n1,n2] denotes the set of natural numbers n1,n1 +1, . . . ,n2),
and ti ∈ T is the block’s type. A heap location is defined as a pair (b,m) (“Heap locations”
in Fig. 3), where b is a block location and m is the offset within the block b.

The definitions of stacks and heaps are capable of storing values of various types, such
as primitive types (integers, boolean values, among others), pointers, arrays, product types,
and sum types. Heap blocks storing values of primitive types or pointers have size 1. Blocks
storing arrays or values of product types have size greater or equal than 1, according to the
number of elements the types are composed of, and two elements in the case of sum types:
one for the value itself and another to indicate the constructor that the sum type selects to
construct the value. Figure4 illustrates the stacks and heap created by the program in Listing
7.

Three variables a,b,t created at lines 7.3 , 7.4 , and 7.5 have the corresponding
stack locations s0, s1, s2, respectively. Line 7.1 and 7.2 define a struct type and an
enum type, respectively. Line 7.3 creates a block to store an array of the type [i32:3] (a
32-bits integer array of the size 3). The location, size, and type of the block are b1, 3, and
[i32:3] respectively. The offsets 0, 1, 2 store the values 1, 2, 3 of type i32, respectively.
Line 7.4 creates two blocks b2 and b3. The block b2 stores the value of the type L defined
by the constructor L in the enumeration type B. The symbol own(b1) denotes a value
storing the address of the block b1. The block b3 stores the value of the type B, which has
two constructors: Empty and L. The value “1” at the offset 0 in the block b3 indicates the
constructor L is selected, otherwise if it is 0 then the constructor Empty is selected. Line
7.5 creates the block b4 storing the value of type T.
In order to access memory locations, paths are introduced (Paths in Fig. 3). A path

could be a stack location, a dereference, or a field. Consider a struct type: "struct
P{x:i32,y:i32}" and the code "let v = P{x:1,y:2}; let z = & v; ”, if
we want to access the field x of v with the alias z then the path is (∗z).x. Assume the stack
location of z is s and the field x corresponds to the offset 0. The path in the memory model
is (* s).0.

123

Formal Methods in System Design

The third element in the configuration mem is a finite partial map P : Lm
fin−⇀ Tim×Tim

from memory locations (“Memory locations” in Fig. 3) to pairs of timestamps, which stores
the latest timestamps atwhich a locationwas used to read andwrite, respectively. For instance,
s �→ (ts1,ts2) ∈ P means that the latest read and write using s happened at ts1 and ts2,
respectively. This information is used to check whether a read or write is disabled by other
references (cf. the motivating example).

Finally, ms : Lm
f in−−⇀ N × N is a finite partial map from memory locations to pairs

of natural numbers, used to detect data races with respect to sequential consistency, where
l �→ (n1,n2) ∈ ms represents that there are n1 reads and n2 writes that simultaneously
access from/to the location l. This idea is inspired by Jung et al. [2].

At the end of this subsection, we introduce some notations for mem = (S, H ,P, ms).
For a partial map M , M(k) denotes value of the key k in the map. If k has no value in M
then M(k) is undefined. The notation M[k ← v] denotes a new map obtained from M by

replacing the value of k with v, which is defined as: M[k ← v](k′) �
{

v k = k′

M[k′] k
= k′ . Let

B = (b,n, m,t) be a block in H and l = (b,n′), 0 ≤ n′ < n. H(l) � m(n′) denotes the
value stored in the heap location l. H [l ← v] � (H\{B}) ∪ {(b,n, m[n′ ← v],t)} denotes
a new heap by replacing the value in l with v. Moreover, we use mem(l) = v to denote
S(l) = v ∨ H(l) = v and mem[l ← v] to denote a new memory configuration in which S is
replaced with S[l ← v] or H is replaced with H [l ← v] when l is a stack or a heap location,
respectively.

4.2 Memory values

We now introduce the kinds of values used in the memory. Generally speaking, there are
three kinds of values: primitive values, pointers, and ⊥ denoting the uninitialization of a
memory location. Primitive values include integers, floating-pointer values, boolean values,
characters, and strings, which are standard. Here we focus on elaborating pointer values
(“Pointer Values” in Fig. 3). Pointer values consist of the following 3 kinds:

1. Own pointers (own(b)) to indicate the ownership of a block b, a location holds an own
pointer means it owns the block.

2. Shared and mutable reference values. The shared (resp. mutable) reference values have
two forms shr(lt, p) and shr(p) (resp. mut(lt, p) and mut(p)). The reason is that
lifetimes are transparent for users using the model, whilst, in the memory, a reference
should be attached with a lifetime for OBS checking.

3. Unsafe pointers (raw(l)), which are raw pointers to memory locations. Unsafe pointers
belong to the unsafe features of Rust.

Own pointers and shared and mutable reference values are safe pointers. Rust distinguishes
safe and unsafe pointers to decide whether to carry out OBS invariant checking.

The values shr(p) and mut(p) are reference values to p. For instance, we can write a
borrowing like “let x = & (*v); ” in Rust. Assume the stack locations of v and x are
s and s1 respectively then the reference value to be assigned to s1 (the location of x) is
shr(∗s). Moreover, we have the relation s1 →s s created by the binding statement.

For two locations l and l ′ in the memory mem, if l is a shared (resp. mutable) reference
to l ′ then we write l →s l ′ ∈ mem (resp. l →m l ′ ∈ mem). The notation L(l, mem) denotes
the lifetime of l →b l ′.

123

Formal Methods in System Design

4.3 Lifetime-freememory operation interfaces

The memory operation interfaces (“Memory Operations” in Fig. 3) are lifetime-free, which
means that the parameters of memory operations have no lifetimes. This design aims at
abstracting lifetime information from the memory interfaces to enable reusability, since other
languages may not have the notion of lifetimes. Memory operations include:

1. Allocation (alloc(n,t)), allocates a new memory block of size n for storing the value
of the type t. Free (free(b)), deallocates the memory block b.

2. Raw read and write (rawRead(l), rawWrite(l, v)) provide non-atomic read and write
without integrating OBS invariant checking.

3. Atomic read and write (aRead(l), aWrite(l, v)) provide atomic read and write without
integrating OBS invariant checking.

4. Safe read and write (read(p), write(p, v)) provide read and write with the integration
of OBS invariant checking.

5. Lvalue (lv(p)), computes the Lvalue of the path p. Lvalue of a path is the memory
location identified by the path that is to be read or written and Rvalue is the value stored
in the Lvalue of the path.

Here we need to restrict that if the parameter v in either rawWrite, aWrite, or write
is a reference value then it can only beshr(p) ormut(p), i.e., no lifetimes. Actually, lifetime
computation is hidden in the implementation ofmemory operations, whichwill be introduced
in the following.

4.4 Operational semantics for memory operations

The semantics is definedby twokindsof transition relations.Thefirst one is 〈mem, tm〉ts �m

〈mem′, tm′〉ts′
. tm and tm′ are terms that can be a value, a memory operation, or “.” indi-

cating that the operation is consumed (empty sequence). The symbols ts and ts′ are the
timestamps of the pairs and satisfying ts ≤ ts′. The second one is 〈mem, tm〉ts �m

stuck indicating the semantics gets stuck. Some of S, H ,P, ms can be omitted in rules if
they are not used to make rules more concise.

Rule Allocation defines the semantics for alloc(n,t), where n and t are the size
and type of the new block, respectively. It creates a new block with a fresh block location
(fresh(H)) and adds the new block to the heap H . Moreover, it also initializes ms for the
new block. initBlk(n) denotes the map {0 �→ ⊥, . . . ,n − 1 �→ ⊥}. initMS(b,n) =
{(b,0) �→ (0, 0), . . . ,(b,n-1) �→ (0, 0)}. Free removes a block from H . The set
bLoc(H) denotes all the block locations used in H , i.e., for any b ∈ bLoc(H), there is a
block (b,n, m,t) in H . “_” matches anything. The timestamps are increased by Su(ts).

Allocation: b = fresh(H) H ′ = H ∪ (b,n,initBlk(n),t)

ms′ = ms ∪ initMS(b,n)
〈(H , ms),alloc(n,t)〉ts �m 〈(H ′, ms′),own(b)〉Su(ts)

Free: b ∈ bLoc(H) H ′ = H\{(b,n, _, _)} n ≥ 0
ms′ = ms\{(b,0) �→ _, . . . ,(b,n-1) �→ _}
〈(H , ms),free(b)〉ts �m 〈(H ′, ms′), .〉Su(ts)

123

Formal Methods in System Design

4.4.1 Operational semantics for non-atomic raw read and write

The rules for rawWrite and rawRead are non-atomic write and read that are directly
applied to raw pointers. The execution of a raw operation will get stuck under data races. For
a location l and l �→ (n1,n2) ∈ ms, data races are defined as (1) (n1 + n2 ≥ 2) ∧ (n2 ≥ 1),
i.e., there are at least two threads accessing the location and at least one of them writes the
location. In order to simulate non-atomic operations, both raw read andwrite are decomposed
into two steps that can be interleaved.

The raw write is defined by Rule RawWrite and RawWrite
′. It is a two step operation

where the first step modifies ms and translates rawWrite(l, v) to rawWrite′(l, v) and
ms(l) = (0, 0) ensures that the write will not cause a data race. The second step writes v in
the heap location l, and resets ms. The two steps can be interrupted by other threads. The
semantics of raw read is similar to the raw write, which is defined by Rule RawRead and
RawRead

′. Timestamps are not increased, since they are not for safe pointers. We still need
the semantics for detecting race conditions. Rule Race- RawRead defines the semantics for
the race conditions of the read. It evolves into the stuck state. The race semantics for other
operations are similar.

RawWrite: ms(l) = (0, 0) ms′ = ms[l ← (0, 1)]
〈(H , ms),rawWrite(l, v)〉ts �m 〈(H , ms′),rawWrite′(l, v)〉ts

RawWrite
′
: ms(l) = (0, 1) H ′ = H [l ← v] ms′ = ms[l ← (0, 0)]

〈(H , ms),rawWrite′(l, v)〉ts �m 〈(H ′, ms′), .〉ts

RawRead: ms(l) = (n, 0) n ≥ 0 ms′ = ms[l ← (n + 1, 0)]
〈(H , ms),rawRead(l)〉ts �m 〈(H , ms′),rawRead′(l, v)〉ts

RawRead
′
: ms(l) = (n, 0) H(l) = v v
= ⊥ n ≥ 1

ms′ = ms[l ← (n − 1, 0)]
〈(H , ms),rawRead′(l)〉ts �m 〈(H , ms′), v〉ts

Race- RawRead: mem = (S, H ,P, ms) ms(l) = (n1,n2) ∧ n2 > 0
〈mem,rawRead(l)〉ts �m stuck

Concur- Stuck: 〈mem, t1〉ts �m stuck or 〈mem, t2〉ts �m stuck
〈mem, t1 || t2〉 �c stuck

Concur- 1:

〈mem, t1〉ts �m 〈mem′, t〉ts
〈mem, t1 || t2〉 �c 〈mem′, t || t2〉

Concur- 2:

〈mem, t2〉ts �m 〈mem′, t〉ts
〈mem, t1 || t2〉 �c 〈mem′, t1 || t〉

For instance, we consider the concurrent execution of two operations rawRead(l) and
rawWrite(l, v) under a concurrent semantics based on interleaving, whose grammar is
con ::= tm || tm, where tm can be a memory operation, a value, or “.” The semantics is
defined by the Rule Concur- 1, Concur- 2, and Concur- Stuck, with the relation �c

(The concurrent semantics is only for illustration here. RustSEM concurrent semantics is
implemented in CL level.

Assume the initial memory configuration satisfies ms(l) = (0, 0) and H(l)
= ⊥, there
are 4 possible execution sequences as follows:

(Sequence 1) rawRead(l); rawRead′(l); rawWrite(l, v); rawWrite′(l, v);
(Sequence 2) rawWrite(l, v); rawWrite′(l, v); rawRead(l); rawRead′(l);

123

Formal Methods in System Design

(Sequence 3) rawRead(l); rawWrite(l, v); stuck;
(Sequence 4) rawWrite(l, v); rawRead(l); stuck.
Sequences (1) and (2) are safe, but Sequence (3) and (4) are unsafe. For instance, in

Sequence (4), after executing rawWrite(l, v), we have that ms(l) = (0, 1), which makes
rawRead(l) get stuck (Rule Race- RawRead). We will not present atomic read and write
without OBS invariant checking as their semantics rules are trivial.

4.4.2 The semantics of safe read and write

The read andwrite operations for the safe pointers need tomaintain the invariants ofOBS. The
sketch of the semantic rules for read(p) and write(p) is the following: (1) compute the
lvalue of p, (2) reads value from or writes value to the lvalue of p, (3) update the lifetimes of
references during the read andwrite, and finally (4) check the OBS invariants for the resulting
memory configuration.

The OBS invariants mapped in memory configurations are defined as follows.

Definition 8 (Well-formed memory configurations) Let mem = (S, H ,P, ms) be a memory
configuration. It is well-formed, denoted as wellform(mem), iff it satisfies the following
invariants.

1. ∀b, l, l ′.(mem(l) = mem(l ′) = own(b)) �⇒ l = l ′.
2. ∀l, l1, l2.l1 →m l ∈ mem ∧ l2 →b l ∈ mem �⇒ L(l1, mem) ∩ L(l2, mem) = ∅.
3. ∀l, l ′.l →s l ′ ∈ mem �⇒ P(l ′) = (ts,ts′) �⇒ ts′ /∈ L(l, mem).
4. ∀l, l ′.l →m l ′ ∈ mem �⇒ P(l ′) = (ts,ts′) �⇒ ts /∈ L(l, mem)∧ts′ /∈ L(l, mem).

Invariant 1 ensures that no block is owned by more than one location. Invariant 2 ensures
that a location cannot be borrowed by two references simultaneously with one of them being
mutable. Invariant 3 ensures if a location is borrowed by a shared reference then its latest
write timestamp cannot be in the lifetime of the reference. Invariant 4 ensures if a location is
borrowed by a mutable reference then both its latest read and write timestamps cannot be in
the lifetime of the reference.

Compared with well-formed OBS graphs, well-formed memory configurations also con-
tain unique owner and lifetime disjoint invariants, but no lifetime inclusion invariant. Lifetime
inclusion invariant will be maintained by the semantic rules directly. Invariants 3 and 4 of
well-formed memory configurations correspond to the permission functions, but not exactly
since it only disable the latest read and write. We will prove that it is enough to enforces
memory operations to follow the permission functions later in Sect. 4.5.

Lv- Deref: (1) 〈mem,lv(p)〉ts �m 〈mem1, (l, wp1)〉ts
(2) �mem1�.ms(l) = (n, 0) ∧ n ≥ 0

(3) mem1(l) = ref(lt, p′) (4) mem2 = extLT(mem1, l,ts)

(5) 〈mem2,lv(p′)〉ts �m 〈mem3, (l ′, wp2)〉ts
(6) wellform(mem3)

(7) wp = (mem1(l) = mut(lt, p′)?true : false)
〈mem,lv(∗p)〉ts �m 〈mem3, (l ′, wp ∧ wp1 ∧ wp2)〉ts

Lv- Location: 〈mem,lv(l)〉ts �m 〈mem′, (l, true)〉ts

123

Formal Methods in System Design

Lv- Deref:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, wp1)〉ts
(2) �mem1�.ms(l) = (n, 0) ∧ n ≥ 0 (3) mem1(l) = ref(lt, p′)

(4) mem2 = extLT(mem1, l,ts)

(5) 〈mem2,lv(p′)〉ts �m 〈mem3, (l ′, wp2)〉ts (6) wellform(mem3)

(7) wp = (mem1(l) = mut(lt, p′)?true : false)
〈mem,lv(∗p)〉ts �m 〈mem3, (l ′, wp ∧ wp1 ∧ wp2)〉ts

Lv- Location:

〈mem,lv(l)〉ts �m 〈mem′, (l, true)〉ts

Lv- Field:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, wp)〉ts
(2) mem1(l) = own(b) (3) b ∈ bLoc(mem1)

〈mem,lv(p.n)〉ts �m 〈mem1, ((b,n,), wp)〉ts

Write- Ref:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, true)〉ts
(2) �mem1�.ms(l) = (0, 0)

(3) mem2 = mem1[l ← ref(ts ∼ ts, p′)]
(4) mem3 = addWrite(mem2,alias(p),ts)

(5) wellform(mem3)

〈mem,write(p,ref(p′))〉ts �m 〈mem3, .〉Su(ts)

Write- Own:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, true)〉ts
(2) �mem1�.ms(l) = (0, 0)

(3) mem2 = mem1[l ← own(b)]
(4) mem3 = addWrite(mem2,alias(p),ts)

(5) wellform(mem3) (6) b ∈ bLoc(mem)

〈mem,write(p,own(b))〉ts �m 〈mem3, .〉Su(ts)

Write- Primitive:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, true)〉ts
(2) v ∈ SV (2) �mem1�.ms(l) = (0, 0)

(3) mem2 = mem1[l ← v]
(4) mem3 = addWrite(mem2,alias(p),ts)

〈mem,write(p, v)〉ts �m 〈mem3, .〉Su(ts)

123

Formal Methods in System Design

Read- Ref:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, _)〉ts
(2) �mem1�.ms(l) = (n, 0) ∧ n ≥ 0

(3) v = mem1(l) (4) v = ref(lt, p′)
(5) mem2 = addRead(mem1,alias(p),ts)

(6) mem3 = extLT(mem1, l,ts)

(7) wellform(mem3)

〈mem,read(p)〉ts �m 〈mem3, v〉Su(ts)

Read- NonReference:

(1) 〈mem,lv(p)〉ts �m 〈mem1, (l, _)〉ts
(2) �mem1�.ms(l) = (n, 0) ∧ n ≥ 0 (3) v = mem1(l)

(4) v is not a reference (5) v
= ⊥
(7) if v = own(b) then b ∈ bLoc(mem)

(6) mem2 = addRead(mem1,alias(p),ts)

〈mem,read(p)〉ts �m 〈mem2, v〉Su(ts)

The Semantics of Lvalue
We first introduce the semantics of Lvalue, as both read and write operations need to use
Lvalue. The lifetimes of references accessed during the computation of lv should be extended
since the references are used. The result of lv(p) is pair (l, wp) where l is the Lvalue and
wp is a boolean value indicates whether p is permitted to write.

The first rule for Lvalue is Lv- Deref, which computes the Lvalue of ∗p, where p is a
path. We use ref(p′) (resp. ref(lt, p′)) to denote a reference, which can be either a shared
reference shr(p′) (resp. shr(lt, p′)) or a mutable reference mut(p′) (resp. mut(lt, p′)).

1. Premise (1) recursively computes the Lvalue of p, which is l. Lvalue semantics does not
increase the timestamp as it is one of the sub-steps for read and write.

2. Premise (2) checks whether the location is being written by a non-atomic operation.
�mem1�.ms denotes the element ms in the memory configuration mem1. For a location
l and ms(l) = (n,m), n and m denotes the number of threads, which are reading and
writing the location using raw pointers, respectively. It requires that the number of writes
is 0 and the number of reads is greater than or equal to 0. Therefore it could be used
to check the data races that a non-atomic write is carrying out but interleaved by safe
operations.

3. Premise (3) requires that the location l must be a shared or mutable reference, since we
can only dereference a reference.

4. As the reference l is used, its lifetime is extended to the timestamp ts (Premise (4))
by the function extLT. Assume mem(l) = ref(ts1 ∼ ts2, p′), it is defined as:
extLT(mem, l,ts) � mem[l ← ref(ts1 ∼ ts, p′)].

5. Since the referent p′ is a path, its Lvalue needs to be further computed (Premise (5)).
6. Premise (6) ensures the memory configuration is still well-formed after the computation.
7. Premise (7) checks whether l is a mutable reference (The notation e?v1 : v2 denotes that

if e is true then v1 otherwise v2).

The resulting permission is decided by wp ∧ wp1 ∧ wp2, i.e., whether all references
accessed by the semantic rule are mutable references. Rule Lv- Location and Lv- Field

compute the Lvalues of a location (which is itself) and a field, respectively.

123

Formal Methods in System Design

For instance, assume in the memory, we have s1 �→ mut(1 ∼ 2,s2), s2 �→ own(b) and
ms(s1) = (0, 0), ms(s2) = (0, 0). If we try to compute lv(∗s1), Rule Lv- Deref works
as follows.

• Premise (1) computes 〈mem,lv(s1)〉 and gets (s1, true) by Rule Lv- Location.
• Premise (2) and (3) are true as ms(s1) = (0, 0) and s1 holds mut(1 ∼ 2,s2).
• Premise (4) extends its lifetime to the current timestamp (assume it is 4). Thus value of

s1 is updated as mut(1 ∼ 4,s2) now.
• Premise (5) further computes the lvalue of lv(s2), which is (s2, true). Therefore

lv(∗s1) is s2.
• The write permission is true as s1 a mutable reference and the write permission of both

lv(s1) and lv(s2) are true.

The Semantics of Write
The semantics of write(p, v), writes the value v to the Lvalue of p. Rule Write- Ref

defines the semantics for writing a reference value ref(p′) to the Lvalue of the path p. The
semantics is elaborated as follows.

1. Premise (1) computes the Lvalue of the path p by lv(p) and requires the permission to
write.

2. Premise (2) ensures no read nor write to l,
3. Premise (3) writes the value v to the location l. The reference value should be attached

with the lifetime ts ∼ ts, i.e., the reference starts to have a lifetime.
4. Premise (4) updates the latest write timestamp of p’s alias by the function addWrite.

Assume mem = (S, H ,P, ms), the function addWrite is defined as:
addWrite(mem,a,ts) � (S, H ,P[a ← (ts1,ts)], ms) if P(a) = (ts1,ts2).

The functionalias is defined as:alias(p) �
{

p p = s or p = s.n1 . . .nm

alias(p′) p = ∗p′ or p = (∗p′).n
.

It is the entry alias used by the path p.
5. Premise (5) ensures that the memory configuration is well-formed after the write.

Rule Write- Own is the semantics for writing an owner to a memory location. Rule
Write- Primitive is the semantics for writing primitive values, such as integers.
The Semantics of Read
The operation read(p) reads a value from the Lvalue of a path p. Read- Ref and
Read- NonReference define the semantics for reading reference and non-reference val-
ues, respectively. The function addRead updates the latest timestamp, at which the alias of
p is read, which is similar to addWrite.

4.5 Refinement relation between high-level OBS andmemorymodel

In this subsection, we prove the refinement relation between high-level abstraction of OBS
and the memory model. We begin with the definition of safe sequences.

Definition 9 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1),

opn, (memn,tsn) be an alternating sequence of memory configurations with timestamps
and operations. For each pair (mem,ts), mem is a memory configuration and ts is the
timestamp reaching mem. π is a safe sequence iff

1. mem0 is an empty configuration, i.e., S, P, ms are empty maps and H is an empty set,
2. opi , 1 ≤ i ≤ n, is one of thememory operations:alloc(n,t),read(p),write(p, v),

free(b),

123

Formal Methods in System Design

3. 〈memi , opi+1〉tsi �m 〈memi+1, re〉tsi+1 , for all 0 ≤ i < n, where re can only be a
value if opi+1 is read or alloc, otherwise consumed “.”.

The memory configurations are the data refinement of the high-level OBS graphs. For
each memory configuration, it has an underlying OBS graph.

Definition 10 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn,

(memn,tsn) be a safe sequence and B be a block in memi , (0 ≤ i ≤ n), whose loca-
tion is b. The OBS graph (B, V , E,F) of memi is defined as:

• V is a set of locations in memi that can access B,
• for any node a in V ,

E(a) =

⎧⎪⎨
⎪⎩

(o, B) if mem(a) = own(b)

(s, a′) if a →s a′ ∈ memi

(m, a′) if a →m a′ ∈ memi

• F(a →b a′) = L(a, memi). F(a →o B) = ts j ∼ tsi where for all j ≤ k ≤ i ,
memk(a) = own(b) and mem j−1(a)
= own(b).

It is now sufficient to present Theorem 3, which specifies the refinement relation between
the high-level abstraction and the memory model.

Theorem 3 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1),

opn, (memn,tsn) be a safe sequence and B be a block. Assume the OBS graph of B in
memi (0 ≤ i ≤ n) is G = (B, V , E,F) then we have

1. (Data refinement) G is well-formed.
2. (Operation refinement) For any two nodes a, a′ ∈ V ∪ {B} such that F(a →∗ a′) = lt ,

for any operation opk (0 < k ≤ n), which is executed at the timestamp ts ∈ lt ,

• if opk is an operation that reads B by the alias a then RG(a,ts) = true,
• if opk is an operation that writes B by the alias a then WG(a,ts) = true.

The proof is in Appendix C. Theorem 3 shows that all operations by an alias a follow the
permission functions of memi ’s OBS graph for B.

5 The core language and translation semantics

In this section, we present the basic idea of the Core Language (CL) and translation semantics
and explain the supportedRust’s constructs and the efforts of developingRustSEM.For aRust
program, RustSEM first translates it to a CL program and then invokes the CL semantics
to execute the CL program. Because the core of RustSEM, i.e., OBS, has already been
formalized in the memory model, in CL semantics, we do not need to be concerned about
modeling OBS invariant checkings.

The design of CL is intended to reduce the Rust grammar to a simple core to avoid
redundant formalization. The key to the translation semantics from Rust to CL is that the
semantics of a Rust program should be preserved in the corresponding CL program.
CL language
Fig. 5 illustrates some selected grammar rules of CL. All constructs in CL are expressions
e that can be evaluated to values. The notion of variables (x), values (v), dereferences (∗e),
fields (e.e′), arithmetic and boolean expressions, print, skip (clskip), and assertions are all

123

Formal Methods in System Design

Fig. 5 Selected grammar rules and configurations of CL

standard. The operator move(e) moves the value of an expression. Shared (&e) and mutable
(& mut e) references are identical to those in Rust.

CL functions are expressions that can be evaluated and assigned to variables. Functions can
represent Rust closures, which are anonymous functions with environments. Two function
call forms are call and pcall. The former directly calls the function f with a sequence
of arguments, whilst the latter is a polymorphic call pcall(e′, f , �e) implementing dynamic
dispatches. For instance, for expressions like e′. f (e1, . . . , en) in Rust, we only know that e′
is an object implementing a trait (like an interface) containing f . Since there may be more
than one type implementing the trait, the concrete function f to be invoked depends on the
type of e′ at run time. As we model the memory as typed, i.e., each memory location stores
values and their types, the type of e′ at runtime can be obtained by reading the memory.
Branches in CL are defined by the case construct. Each case e → e′ is a guarded action
such that e′ can be executed only if e evaluates to true. The constructs of threads (thread),
bindings (binding), assignments (assign), and sequences (seq) are standard. The memory
operations mop are also constructs in CL. It means that the memory access in CL invokes
the memory operations in Sect. 4. As the OBS is formalized in the memory model, the CL
semantics does not need to be concerned about it.

CL language is independent of Rust and can be reused by other programming languages.
In the following, we briefly discuss how to reuse CL for C. Most language constructs in CL
are general for all programming languages. The only distinguishing constructs are move
and &mut. As C also has the reference operator, mapping C constructs to move is modeling
direct pointer assignments as move operations. But for &mut, we have two ways to model
it: (1) add user-specified comments to clarify which references are mute, (2) do a static
analysis over the code to check whether the reference has the potential to be modified in the
code.
The translation from Rust to CL.
Now let us elaborate on the translation semantics from Rust to CL. The first important topic
we need to present in the translation semantics is the type system. Table 1 illustrates a subset
of types used in the translation. The types i32, bool, and str are the primitive types for inte-

123

Formal Methods in System Design

Table 1 Main types in RustSEM

T ype := i32 |bool | str | CompT y | PointT y | FnT y | trait(I dt)

PointT y := own(T ype) | ref(T ype)

CompT y := sumTy(T ype+) | prodTy(T ypes+)

FnT y := fnTy(T ype+, T ype)

Table 2 Configuration for Rust Level

V � T ype × N

FCtx � Map〈I d f , FnT y〉
CCtx � Map〈I dc, CompT y〉
T env � Map〈I dv, V 〉
EnvStack � List〈T env〉
Con f igr � { f Ctx : FCtx, cCtx : CCtx, tenv : T env, stack : EnvStack}
R ∈ Con f igr

Table 3 Modeled Rust Features

Modeled Rust features (37 Features)

• Primitive values • shared references • mutable references • Casting pointers

• Arithmetic • print • assertion • Move semantics

• Dereference • field access • array access • Binding

• Execution block • assignment • function • Impl block

• Trait definition • trait impl • function call • Method call

• dynamic dispatch • polymorphism • closure • Branch

• Pattern matching • loop • sequential • Concurrency

• Raw pointers • intrinsic function • struct types • Enum type

• Generic types • Box • Array • Vector

ger, boolean, and string values, respectively. Pointer types include own(T ype), representing
the owner of a resource, and reference type (ref(Type)), for references to other variables.
Compound types include the sum type sumTy(T ype+), representing unions, and the product
type prodTy(T ype+), representing structs or tuples. The function type fnTy(T ype+, T ype)
contain two elements: the first one is the types for parameters and the second one is the return
type. trait(I dt) denotes the types of traits, where I dt represents the name of the trait. In our
semantics, traits are considered as types.

The translation semantics translates a Rust program to a CL program. Table 3 shows the
constructs in Rust that can be translated into corresponding CL constructs. The translation
semantics covers all the important features related to operational semantics, which enables
RustSEM to run real Rust programs.

The configuration for the semantics of this level is shown inTable. 2.V � T ype×N is used
to record the information of variables, which has two elements: (1) the type of the variable
and (2) the lifetime, which is a natural number. The notation T env (type environment) is
a type of maps from variable identifiers to their type and lifetime. The configuration keeps

123

Formal Methods in System Design

context types for functions and compound types that are necessary to check the types of
function identifiers and compound type identifiers. This information is stored in types FCtx
and CCtx , respectively mapping function and compound identifiers to function types and
compound types.

It is possible for a program to declare bindings of variables with the same name but
different types in nested scopes. When this happen, the type environment of the outer scope
must be recovered after the inner scope finishes. This is performed by introducing a stack
EnvStack for type environments. The translation semantics pushes the current environment
in the stack when a new scope is created, and will recover the top of the stack when the scope
finishes. In this way, any possible type overwriting in the inner scope will be removed.

Finally, Con f igr is the type of the configuration, containing: function and compound
types definitions, the type environment and its stack.

The translation semantics is defined by the relation (Con f igr ×N× Ruste)×(Con f igr ×
N×C Le), notated by Rc |lt ER →r R′

c |lt ′ Ecl , indicating that given an initial configuration
Rc and a lifetime lt , the semantics translates the Rust program ER to the CL expression Ecl

with the new configuration R′
c and lifetime lt ′. Giving R = (f Ctx, cCtx, tenv, stack) with

R ∈ Con f igr , R. f Ctx = f Ctx , R.cCtx = cCtx , R.tenv = tenv, and R.stack = stack.
We present our translation semantics for variable bindings, functions, and traits in the

following.
Variable Bindings in Rust.
A variable binding in Rust creates a new variable and binds it to the value of an expression.
The translation from a binding to CL constructs needs to know the lifetime of the binding.
Therefore, the translation cannot be done by only scanning the binding. It also needs to scan
the whole scope of the variable before finishing the translation.

Binding- Noncopyable:

(1) e : T T is not copyable T implements the Drop trait
(2) R |lt e →+

r R′ |lt ecl (4) R′′ |lt stmts →+
r R′′′ |lt S

(3)tenv′ = R′.tenv ∪ (x �→ (T , tl)) R′′ = R′(v I n f o/v I n f o′, tenv/tenv′)
R |lt let x = e; stmts →rR′′′ |lt let x =
#move(ecl) in {S; pcall(x, drop, .args)}

RuleBinding- Noncopyable defines the translation semantics of a variable binding from
a non-copyable expression e of a type implementing the Drop trait to the variable x (Premise
1). The rule translates let x = e, into a CL binding, where ecl is a CL expression translated
from e (Premise 2). The expression ecl is translated first with the initial configuration R,
resulting in a configurationR′.R′ is updated with the information of the binding, storing the
type and lifetime of x in the environment tenv (Premise 3). The type is T inherited from e
and the lifetime is lt .

In Rust, non-copyable expressions must do a ownership transfer to the assigned value,
therefore the CL binding must move the ownership from ecl . The translation must also
consider that x is only available in the statements stmts within its scope. Therefore, the
translation from stmts to its CL expression S, should use the configuration R′′, which stores
the information of x (Premise 4). Finally, since T implements the trait Drop, the call to the
drop function of x should be executed after the execution of S.
Traits and Functions.
Traits in Rust are like interfaces in Java or some other object-oriented programming lan-
guages. The provide are a way to implement polymorphism and to tell the Rust compiler
about the functionality that a type must implement.

123

Formal Methods in System Design

CL supports dynamic dispatch with the support of typed memory model greatly easing
the translation from Rust to CL.

Trait- Definition :

(1) ∀1 ≤ i ≤ k, ∃n, F Ni = fn fi (xi1 : ti1, . . . , xin : tin)->ti
(2) f Ctx ′ = f Ctx ∪ {I dt (T , fi) �→ fnTy(ti1, . . . , tin; ti)}
R |lt trai t T {F N1 . . . F Nk} →r R(f Ctx/ f Ctx ′) |lt Skip

Rule Trait- Definition defines the translation semantics for trait definitions in Rust. The
symbol I dt creates a function identifier combining a trait identifier with a function identifier.
For each function declaration with n argumets fn fi (xi1 : ti1, . . . , xin : tin)->ti in a trait
T (Premise 1), the pair I dt (T , fi) �→ f nT y(ti1, . . . , tin; ti) is added to the type context
(Premise 2). This characterizes the function type of the method fi in the trait T . In order to
make the rule easy to explain, here we only give a simplified version function declaration,
which has no lifetime variables and other type parameters.

Type- Trait- Impl :

∀1 ≤ i ≤ k, ∃n, F Ni = fn fi (xi1 : ti1, . . . , xin : tin)->ti {stmtsi }
(1)F N ′

i =
fn I d f (T , fi)(xi1 : replace(ti1, T), . . . , xin : replace(tin, T))-> ti {stmtsi }

(2)R |lt F N ′
1 . . . F N ′

k →+
r R′ |lt C L P

R |lt impl tt f or T {F N1 . . . F Nk} →r R′ |lt C L P

Rule Type- Trait- Impl defines the translation semantics of the implementation of the
trait t t for the type T . Each function definition fn fi (xi1 : ti1, . . . , xin : tin)->ti {stmtsi } in
the trait t t is translated to

fn I d f (T , fi)(xi1 : replace(ti1, T), . . . , xin : replace(tin, T))->ti {stmts}
The notation I d f (T , fi) creates a function identifier that combines the type implementing
the trait, the trait and the function implemented by the type. Functions in traits may use sel f
in types of the input arguments to refer to the type T . The type of each parameter is modified
by replace(ti , T), where replace simply replaces sel f by T in ti flattening function fi

(Premise 1). The sequence of flattened function definitions F N ′
1 . . . F N ′

k is translated to CL
functions one by one with the rule for general function definition (Premise 2).

Function calls in Rust have different forms. For instance, f (e1, . . . , ek), where f is
a function name, calls the function f with the arguments e1, . . . , ek . The expression
x . f (e1, . . . , ek), where e is an expression and f is a function name, calls the function f
of the type of x with the arguments e1, . . . , ek . This form of function calls may trigger
dynamic dispatch.

Type- Fun- Call:

(1) �id.T = T rait(id) (2) R |lt e →r R1 |lt e′
1

(3)e : T I d f (T , f) �→ f nT y(t1, . . . , tk; t) ∈ R1. f Ctx
(4)(isSelf t1) (5) ∀1 <= i <= n.Ri |lt ei →r Ri+1 |lt e′

i+1
R |lt e. f (e1, . . . , en) →r Rn+1 |lt call(I d f (T , f),mod_self e′

1 t1, . . . , e′
n+1)

Type- Fun- PCall:

(1) ∃id.T = T rait(id) (2) R |lt e →r R1 |lt e′
1

(3) e : T (I d f (T , f) �→ f nT y(t1, . . . , tk, ; t)) ∈ R1. f Ctx
(4)(¬isSelf t1) (5) ∀1 <= i <= n.Ri |lt ei →r Ri+1 |lt e′

i
R | e. f (e1, . . . , en) →r Rn+1 | pcall(e′

1, f , e′
2, . . . , e′

n+1)

123

Formal Methods in System Design

We illustrate the translation semantics for function calls e. f (e1, . . . , ek), where e is an
expressionof typeT and e1 . . . , ek are arguments, byRuleType- Fun- Call andType- Fun-
PCall. We assume that a type does not implement two functions with the same function
name.

In Rule Type- Fun- Call, we assume the expression e is of type T and it is not a trait
(Premise 1). Therefore, the version of the function definition for the identifier I d f (T , f) can
be decided at compilation time, and the Rust call is translated into a static CL call. On the
other hand, in Rule Type- Fun- PCall, the type of e can only be inferred as a trait (Premise
1), for which we do not know during translation which version of the functions needs to be
executed, but only the function type, invoking a polymorphic call pcall.

In both cases, the argument e is translated to e′
1 (premise 2). The function type of I d f (T , f)

is obtained from f Ctx (premise 3). The first argument of a function for a type can be “sel f ",
or a reference to “sel f " (Premise 4). In such case, e′

1 should be added as the first argument
after modifying it by mod_self e′

1 t1. The term mod_selfmodifies the CL expression e′
1

according to the type t to obtain the CL reference of e′
1 if t is a reference of “sel f ". Finally,

input parameters ei are translated into e′
i (Premise 5). Rule Type- Fun- PCall shows the

case where the first argument does not refer to self.
Developing a formal semantics for real-world languages from scratch always requires

huge efforts. RustSEM is formalized in K and consists of around 1100 semantic rules, taking
two and a half man-years.

6 Evaluation on correctness and applicability to verification

In this section, we evaluate the correctness of our RustSEM (Sect. 6.1) and its applicability
to runtime verification (Sect. 6.2) and formal verification (Sect. 6.3). All experiments are
conducted on a computer with an Intel Xeon(R) E5-1650-v3 CPU at 3.50GHz × 12 and a
16GB DDR4 RAM.

6.1 The correctness of the semantics

We first formally define the notions of semantics and its correctness. Then, we will show
the correctness of our semantics by testing its consistency (i.e., absence of ambiguities),
functionality correctness (compared with the Rust compiler), and OBS invariant correctness
in detecting memory errors.

Definition 11 (Semantic rules and semantics) Let C be a set of configurations and M be a
set of terms, where a term could be a program, a statement, or a value. A semantic rule is
a partial function: Ru : C × M −⇀ C × M , i.e., mapping (or reducing) a pair (c, m) of
configuration c and term m to a new pair (c′, m′) of configuration c′ and term m′. A semantic
rule is also denoted by (c, m) � (c′, m′), where c, c′ are configurations and m, m′ are terms.
A semantics is a set of semantic rules: Sem = {Ru0, . . . , Run}.

Definition 12 (Execution traces of semantics) Let Sem be a semantics. A finite execution
trace of Sem is a sequence π = (c0, m0)(c1, m1) . . . (cn, mn), such that for each 0 ≤ i < n,
∃Ru ∈ Sem such that Ru(ci , mi) = (ci+1, mi+1). The trace π is called terminating if
for all rule Ru ∈ Sem, Ru((cn, mn)) is undefined. An infinite or divergent trace is an
infinite sequence π = (c0, m0)(c1, m1) . . ., such that for each 0 ≤ i , ∃Ru ∈ Sem such

123

Formal Methods in System Design

that Ru(ci , mi) = (ci+1, mi+1). We denote by TraceSem(c, m) the set of all terminating or
infinite traces of Sem with (c, m) as the initial pair.

Definition 13 (Correctness of semantics) Let Sem be the semantics of a language, P be a
program written in the language, preP ⊆ C (a subset of configurations) be the precondition
of P and postP ⊆ C × (C ∪ {∞}) be the postcondition of P , where ∞ denotes that the
computation is divergent.

The semantics Sem is called partially correct iff, for any program P and any con-
figuration c ∈ preP , there exists either a terminating trace (c, m) . . . (c′, m′) satisfying
((c, m), (c′, m′)) ∈ postP or an infinite trace starting from (c, m) satisfying ((c, m),∞) ∈
postP .

The semantics Sem is called completely correct iff, for any program P and any configu-
ration c ∈ preP , any terminating trace (c, m) . . . (c′, m′) satisfies ((c, m), (c′, m′)) ∈ postP

and any infinite trace starting from (c, m) satisfies ((c, m),∞) ∈ postP .

We have used over 400 test programs for testing the memory operations and the CL
semantics and over 300 test programs for the translation semantics. These test programs
mainly come from the Rust benchmark [11], the Rust libraries, and the Rust textbook [12].
Besides, we have also developed new test programs for testing our new grammar for memory
operations and CL.
Ambiguity testing. The first correctness criterion is the consistency of semantics, i.e., the
absence of ambiguities (no more than one semantic rule can be applied to the same pair
of configuration and term). An ambiguous semantics may be partially correct but is not
completely correct. Thus, wemust detect ambiguities to ensure complete correctness. Indeed,
partially correct semantics yield an unsound formal verifier.

Let us demonstrate ambiguities by example. Consider the if-else construct “if e
B1 else B2” where e is an expression and Bi is an execution block for i = 1, 2. The
semantics of the construct is as follows:

Branch:
(c, e) � (c′, v)

(c, if e B1 else B2) � (c′, if v B1 else B2)

True:

v = true
(c, if v B1 else B2) � (c, B1)

False:

(c, if v B1 else B2) � (c, B2)

Rule Branch evaluates the expression e to a value v under the configuration c and
c evolves to a new configuration c′ since the evaluation may have side effects. Thus the
if-else construct is reduced to another if-else construct with e replaced by its value
v. Rule True is for the case that v equals true, in which the first block should be executed.
RuleFalse is for the case that v equalsfalse, inwhich the second block should be executed.
Note that we have deliberately removed the premise v=false fromRule False, which leads
to ambiguity. Indeed, both Rule True and Rule False can match an if-else construct
with v being true.

At the implementation level, the execution engine of K always selects the first matching
rule to execute. That is, if K first matches Rule True, then the execution is correct. Unfortu-
nately, if Rule False is matched before Rule True, then the execution is incorrect. That is,

123

Formal Methods in System Design

the ambiguity results in the inconsistency of the semantics. This bug can be fixed by adding
v=false as the premise of Rule False.

This example contains another ambiguity. If we do not distinguish expressions (e.g., e)
and values (e.g., v), then the construct “if true B1 else B2 ” can match both Rule
Branch and Rule True, since the value true is also an expression. Further, Rule Branch
can match it infinitely many times, resulting in an incorrect infinite trace. Obviously, such
ambiguities should be avoided in our semantics.

Note that the consistency of semantics cannot be automatically checked byK, asK is not a
theorem prover like Coq [15] or Isabelle [16] that can prove given properties of a semantics.
As a solution, we propose a new testing strategy that exploits K’s execution engine and
verification engine to test our semantics. The following two steps are carried out for each test
case.

1. Run K’s execution engine on the test case. This can quickly detect some bugs. However,
this is insufficient in detecting ambiguities as the engine always executes the first match-
ing rule in case of ambiguity. That is, formally, the engine selects one of the traces in
TraceSem(c, m).

2. Run K’s verification engine on the test case. This can detect some ambiguities by explor-
ing all possible execution traces. That is, formally, the verification engine searches for
all possible execution traces in TraceSem(c, m).

This testing strategy has detected more than 36 ambiguities, showing that our testing
technique is efficient and effective. It is efficient because the test cases are small and the inputs
are fixed, thus no state explosion exists. The semantics of one construct in Rust is usually
formalized with a collection ofK rules, and thus, one test case can cover a collection of rules.
It is effective because it can detect ambiguities, even with simple test cases. For instance, the
following test case with the if-else construct could detect the two ambiguities in Rules
Branch, True, and False by running the verification engine.

if (true) {assert(true)} else {assert(false)} if (false) {
assert(false) } else { assert(true) }

Functionality testing.Wehave tested the functional correctness of our semantics by compar-
ing the execution output of every input of every test program with the output of the machine
code generated by the Rust compiler version 1.78.0.

Even thoughwe comparedwith a specific version of theRust compiler, our initial objective
is to separate Rust’s constructs from CL. CL holds all the ownership and borrowing features.
Rust’s constructs may evolve in the future, but our semantics does not need to modify CL;
instead, only the translation from Rust’s new constructs to CL needs to be modified.
OBS invariant testing.We have tested the correctness of OBS formalization and comparing
the results with the compilation result of the Rust compiler. The experimental results show
that:

(1) Some programs are accepted by RustSEM but rejected by the Rust compiler due to its
over-approximation of lifetimes to improve the efficiency of its OBS analysis. For instance,
Listing 9 shows a function that fails to pass the Rust compiler. It is a function with one
parameter y, which refers to an integer value. The Rust compiler always requires the lifetime
of the reference (the parameter y) passed to the function foo to outlive the function body. As
z is only available inside foo, after the call to foo, the Rust compiler reports that y points
to an invalid memory location. However, the value of y is not returned by foo. Therefore it
cannot be used by the caller of foo, and we do not need to enforce its lifetime to outlive the
function body of foo. Therefore, the program has no memory error. It is understandable for

123

Formal Methods in System Design

the Rust compiler to enforce such restrictions, since it makes the OBS checking of the Rust
compiler very efficiently. But RustSEM aims at providing a more accurate understanding of
OBS and thus relaxes such restrictions.

(2) Some programs are rejected by RustSEM but accepted by the Rust compiler. Most of
those programs are mixed with safe and unsafe operations.

For instance, the program in Listing 8 contains a dangling pointer. Indeed, Line 8.1
creates a vector vec and assigns it to the variable p (called owner in Rust). Line 8.2 creates
a raw pointer r (an unsafe pointer) to p. Line 8.3 moves the value of p to y. The variable
p will lose ownership of the vector after the move action; therefore, p should not access the
vector hereafter. Line 8.4 tries to access the vector via the raw pointer r and implicitly via p
(as *r accesses p), resulting in a dangling pointer error. In stacked borrows [4], this program
is also identified as an undefined behavior. Stacked borrows also give a model of OBS using
dynamic OBS checking, but stacked borrows strictly follow Rust’s type system. This means
that the OBS semantics in RustSEM and stacked borrows are Different. For instance, Listing
9 is an example that also cannot pass stacked borrows’ OBS checking.

Listing 8 A Dangling Pointer Example

8.1 let p = vec ![1 ,2];
8.2 let r = & p as *const Vec <i32 >;
8.3 let y = p;
8.4 println !("{}" , unsafe {(*r)[1]});

Listing 9 An Example Rejected by Stacked Borrows

9.1 fn foo(mut y:&i32){
9.2 let z = 1;
9.3 y = & z;
9.4 }

6.2 Runtime verification

RustSEM provides a runtime checker for detecting memory errors, since the memory model
integrates a checking mechanism for detecting invalid memory accesses (c.f. Sect. 4). Rust-
SEM can detect memory errors: accessing uninitialized locations, reading dangling pointers,
double frees, data races, and deadlocks, ownership and borrowing errors, and buffer over-
flows. Our runtime checker is implemented using a semantics instrumentation technique
rather than the source code instrumentation techniques used by most existing runtime check-
ers such as Chen et al. [17].

Table 4 shows the results for runtime verification. For each type of memory error, we
collected a set of test programs with several inputs that can trigger the errors. RustSEM can
successfully detect all the memory errors in the test programs with memory errors, Also,
note that data races are not always detected in every execution since the executions are
non-deterministic.

Compared with other runtime checkers, RustSEM is slower and depends on the efficiency
ofK’s execution engine. Note that, to execute a program,K first constructs its abstract syntax

123

Formal Methods in System Design

Table 4 Results for runtime
verification

Memory errors TC IN Time Mem

Read uninit. values 22 10 6.16 387,240

Read dangling pointers 11 10 5.89 390,356

Double frees 10 10 5.73 346,096

Data races, deadlocks 14 10 7.36 394,152

Ownership and borrowing 40 10 6.64 344,088

Buffer overflows 21 10 7.16 379,788

In the table head, “TC”, “IN”, “Time” and “Mem” denote the number
of test cases, the number of inputs for each test case, average execution
time in seconds and average memory consumption in KB, respectively

tree and searches for the corresponding semantic rules for the tree at each execution step.
Thus, the time spent parsing and interpreting the source code leads to slower execution.

There is another method to construct a runtime checker for Rust based on semantics,
which first generates the binary code of Rust programs based on the semantics and then runs
the binary code. One of such case is the C semantics in K-Framework [18]. One of our future
works is to apply this method to our Rust semantics.

One advantage of RustSEM is that the runtime verification is based on semantics instru-
mentation instead of code instrumentation. To the best of our knowledge, RustSEM is the
first runtime verification tool capable of checking the ownership and borrowing constraints
in Rust programs.

6.3 Formal verification for bothmemory and functional properties

K has a verification engine, which can be used to construct a program verifier for a language
by instantiating it with the operational semantics of that language. K’s verification engine
takes an operational semantics given in K and generates queries to a theorem prover (for
example, Z3 [19]). The programcorrectness properties are given as reachability rules between
matching patterns in K semantic rules. Internally, the verifier uses the operational semantics
to perform symbolic execution. Also, it has an internal matching logic prover for reasoning
about implications between patterns (states), which reduces to SMT reasoning (refer to the
K verification infrastructure [20] for more details).

For the verification, it is necessary to specify a pre- and postcondition similar to Hoare
logic, and loops must be annotated with invariants. For simplicity, we show the verified
properties as a pair {Precondition}{Postcondition}, indicating that if the program’s input
satisfies the precondition, the result satisfies the postcondition. Thanks to the memory access
check formalized in RustSEM, we can uniformly specify memory properties such as data
races, buffer overflows, or borrowing errors, as {T rue}{¬stuck}, which means that for
any input, the program cannot get stuck. For other kinds of properties, such as functional
properties, the program should satisfy both the OBS invariants and the properties being
specified.

Table 5 shows the verification results of several programs verified in RustSEMusing theK

verifier. The program sum(N) is a function that computes the sum from 1 to the input N , and
the verified property is {N ≥ 1}{N × (N + 1)/2}. The program sumvec(V) computes the
sumof all elements in V , and the verified property is {[v1, . . . , vn] ∈ vec<i32>}{�1≤i≤nvi }
where the precondition specifies a vector of n random integers and the postcondition speci-

123

Formal Methods in System Design

Table 5 Results for formal
verification

Programs LOC Time Mem

sum(N) 15 44.65 698,240

sumvec(V) 18 63.92 1,470,880

insertion_sort(V) 43 125.43 8,736,592

polymorphism 60 42.20 678,992

closure 22 36.45 663,268

trait 50 39.22 654,672

concur-race 58 47.25 647,328

concur-order 57 60.82 2,931,760

VecDeque new 210 76.90 1,160,640

push_front 115.33 1,667,140

push_back 140.70 2,025,244

reserve 85 1,859,304

In the table head, “LOC”, “Time” and “Mem” denote the lines of code,
execution time in seconds, andmemory consumption inKB, respectively

fies the sum of the n elements. The program insertion_sort implements an insertion
sort algorithm and the verified property is {V ∈ vec<i32>}{V ′ ∈ vec<i32> s.t.
sameElem(V , V ′)∧order(V ′)}where the precondition specifies an integer vector and the
postcondition specifies a new vector with the same elements (checked by sameElem) and
ensures that the vector is ordered (checked by order). The programs polymorphism,
closure and trait use polymorphism, closures and traits, respectively, and we have
verified some functional properties. The program concur-race is a multi-threaded pro-
gram with a data race bug and the verified property is {T rue}{¬stuck}, i.e., the program
terminates without getting stuck. The verifier can successfully detect the bug. The program
concur-order is a multi-threaded program without data races and the verified property is
the same asconcur-race. The verifier explores all possible interleavings in the concurrent
program without bugs detected.

The benchmark “VecDeque” is a module from the Rust standard library. It is a library
implementing a ring buffer in which an element can be pushed to its head or tail. One of
its previous versions contains a bug [21]. VecDeque is a non-trivial standard library, as it
implements more than 15 methods and invokes other low-level Rust libraries such as ptr
and RawVec. Here, we only illustrate the verification of methods new, push_front,
push_back, and reserve. The method new creates a new VecDeque. The methods
push_front andpush_back push a new element to the head and the tail of aVecDeque,
respectively. Themethod reserve reserves a memory space of a specific size for the vector.
These four methods implement non-trivial functions. For instance, push_front tries to
push an element to the vector by first checking whether the vector is full. If not full, it just
pushes the element and updates its head. Otherwise, it reallocates a memory space, copies
elements to the new memory space recomputes the vector’s head and tail and finally pushes
the element.

The property to be verified is: {0 ≤ head < cap ∧ 0 ≤ tail < cap}{0 ≤ head′ <

cap′ ∧ 0 ≤ tail′ < cap′}. VecDeque has a head to indicate the memory location for
push_front and and a tail to indicate the memory location for push_back. The
variable cap is the capacity of the VecDeque. The property requires that the head and
tail of a VecDeque have to be within the range [0,cap) before and after executing any of

123

Formal Methods in System Design

its methods. The primed variables denote the variables’ values after executing the methods.
The bug [21] can be rediscovered by RustSEM in the method reserve, resulting in a buffer
overflow. RustSEM does not support infinite heap structure specification and verification
now. For the verification, we use an approach similar to bounded model checking, setting a
bound in the maximum capacity of vecDeque to 16, limiting the state space exploration.

Now, we discuss the limitations of formal verification. Firstly, the property specification
language inK needs to specify pre- and post-conditions and loop invariants for eachmemory
location, which requires much effort. We only give an abstract description of the properties
being verified here. More details of specification languages could be found in K verification
infrastructure [20]. Secondly, we cannot specify infinite heap data structures like trees.K has
the capability to reason about infinite heap data structures, such as binary search trees,which is
shown inK verification infrastructure [20]. The challenge is thatK verification infrastructure
uses a memory model different from RustSEM, as RustSEM incorporates OBS. Therefore,
we cannot directly inherit the framework from it. More work needs to be done to define a
language that could be used to define infinite data structures in RustSEM inductively. One
solution is discovering the relations between RustSEM’s memory model and separation logic
[22][23]. In this paper, we focus on the semantics of Rust. Amore user-friendly and powerful
verifier is our future work.

7 Related work

Rust semantics Table 6 compares the existing semantics for Rust on their target languages
(lang), their formalization of OBS (language-level OBS or memory-level OBS), as well
as their verification capabilities, i.e., whether they support automatic verification (AV) and
machine-checked manual verification (MV).

Except forRustSEM, all other semanticsworksmodelOBSat the language level. RustBelt,
Oxide, and Patina formalize either a variant or an outdated version of Rust. RustHornBelt
combines RustBelt and RustHorn [24] to extend RustBelt with the verification ability for the
interaction between safe and unsafe constructs. However, it still uses a type system instead of
a memory-level operational semantics. KRust gives semantics directly on the Rust grammar,
but it covers a limited subset. For instance, they do not model traits, closures, concurrency,
and pattern matching. RustSEM covers a much larger set of Rust’s constructs than KRust.

For the verification, RustSEMandKRust can be used for automated verification. RustBelt,
implemented in the Coq theorem prover, can verify λRust programs using Coq; the verifi-
cation is interactive and needs expertise and manual inspection. Patina and Oxide have yet
to be implemented in any tool. Thus, they provide neither automated nor machine-checked
verification.

Rust verification CRust [25], SMACK-Rust [26] and Viper-based Prusti [27] can verify
Rust programs by translating them into the input languages of existing verification tools,
instead of building formal semantics for Rust. For instance, SMACK-Rust compiles Rust
programs into the LLVM code which can be verified by SMACK [28]. Prusti translates a
subset of safe constructs to the intermediate language of Viper [29] to construct core proofs.
Aeneas [30] is an interesting work to leverage Rust’s type system to eliminate memory
reasoning for safe Rust programs and instead focus on Rust programs’ functionalities.

Stacked borrows [4] presents an alias model to regulate unsafe pointers in Rust by propos-
ing a dynamicOBSchecking. The differences between stacked borrows and ourwork include:

123

Formal Methods in System Design

Table 6 A comparison of semantics works

Language Language-level OBS Memory-level OBS AV MV

RustBelt [2] λRust � �
RustHornBelt [38] λRust � �
Patina [3] Old Rust �
Oxide [39] Oxide �
KRust [40] Rust � �
RustSEM Rust � �

(1) Stacked borrows formalize OBS at the language level, whilst our work formalizes OBS
at the memory level. (2) Stacked borrows strictly follow Rust’s type system, whilst our work
relaxes some restrictions of Rust’s type system to yield a more accurate OBS semantics.

Ownership andborrowing The concept of ownership has been proposed formany years and
most related works exploit type systems to enforce various ownership disciplines. Cyclone
[31] is designed to be a safe dialect of the C language by using region based memory man-
agement [32]. Mezzo [33] and Alms [34] follow the ML tradition and employ substructural
type systems for managing ownership. There are also many type systems associating read
and write permissions to aliases [35], such asMezzo [33], Pony [36] and AEminium [37]. All
these works have different technique details with Rust and exploit type systems to enforce
memory safety. Our work aims to explain Rust’s techniques from an operational aspect at
the memory level to provide new insight into OBS.

8 Conclusion

We have proposed a memory model integrating of OBS checking and an executable oper-
ational semantics for Rust. Compared with existing works, it covers a larger subset of the
major language constructs of Rust. The core of the semantics is the memory model with the
operational semantics of OBS, which other languages can potentially reuse to improve mem-
ory safety. We have proved the refinement relation between OBS’s high-level abstraction and
the memory model’s operational semantics. Moreover, we proposed a technique for testing
semantic consistency to detect ambiguities and provide completely correct semantics. We
have shown that RustSEM can be applied in automated runtime and formal verification.

In future works, we are working on reusing our memory model for the K semantics of the
C programming language to improve C memory safety by checking the preservation of the
OBS invariants. Moreover, we are also working on developing a more efficient Rust verifier
based on the semantics.

Appendix: A Proof of Lemma 1

Proof Assume there is a cycle in a well-formed OBS graph, there must exist a →b a′ and
a′ →b a1 . . . a2 →b a. We can infer that F(a →b a′) ⊂ F(a2 →b a) and F(a2 →b a) ⊂
F(a →b a′) by the condition (2) of Definition 6, which cannot be true, ��

123

Formal Methods in System Design

Fig. 6 The proof idea of Theorem
1

Appendix: B Proof of Theorem 1 and 2

The proof of Theorem 1 This theorem specifies that exclusive mutation guarantee are main-
tained in a well-formed OBS graph with respect to the permission functions.

If the owner and all references are shared aliases then the theorem is trivially proved. If
there is a mutable alias enabled at the timestamp t then it is proved by two cases.

Case 1: Assume the owner is the mutable alias. We can infer that there is no reference that
has the write or read permission to the memory location at t . Otherwise the reference should
disable the owner according to the definition of the permission functions and the unique
owner invariant of well-formed OBS graphs.

Case 2: Assume there is a mutable reference a to the memory block enabled at t , and
the owner of the memory block is x , we have that there exists a link a →m a1 . . . x →o B.
The owner and all other references in the link should be disabled by a and thus their write
permissions are not enabled.

Now assume there is another reference a′
= a enabled at t . It should not be in the link
from a to x . We have that there exists another link a′ →m a′

1 . . . x→o B. Then there must
exists a2, a′

2, a3 such that a →m a1 . . . a2 →b a3 . . . x →o B and a′ →m a′
1 . . . a′

2 →b

a3 . . . x →o B (See Fig. 6). According to Invariant (3) of the definition for well-formed
OBS graphs (Definition 6), the lifetimes of a2 →b a3 and a′

2 →b a3 should not intersect.
According to Invariant (2) of Definition 6, the lifetime of a →m a1 should be within the
lifetime of a2 →b a3 and the lifetime of a′ →m a′

1 should bewithin the lifetime of a′
2 →b a3.

Thus the lifetimes of a →m a1 and a′ →m a′
1 cannot intersect. Therefore the lifetime of

a′ →m a′
1 does not contain the current timestamp t and a′ is not permitted to write. ��

The proof of Theorem 2 It can be proved by the definition of permission functions RG and
WG that both requires t is in the lifetime of the alias a, and the second condition (lifetime
inclusion invariant) in Definition 6. ��

Appendix: C Proof of Theorem 3

The first claim that G is a well-formed OBS graph is proved by Lemmas 2 and 4. Lemma 2
proves that each memory configuration in a safe sequence is a well-formed configuration and
Lemma 4 proves the lifetime inclusion variant for well-formed configurations. The second
claim is proved by Lemmas 5 and 6.

Lemma 2 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn,

(memn,

tsn) be a safe sequence. Then all memi , 0 ≤ i ≤ n, are well-formed.

Proof Sincem0 is an empty configuration, it is triviallywell-formed. The allocation operation
does not change the well-formedness of a memory layout. The free operation also does not
change thewell-formedness of amemory configuration, since it only removes a block from the

123

Formal Methods in System Design

heap. For read and write operations, the semantic rules always ensure the resulting memory
configurations are well-formed. ��
Lemma 3 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn, (memn,

tsn) be a safe sequence. Let memi , 0 ≤ i ≤ n be a memory configuration.. We have:

1. For any a →s a′ ∈ memi , there is no write by a′ during the lifetime of a in memi .
2. For any a →m a′ ∈ memi , there is no read nor write by a′ during the lifetime of a in

memi .

Proof We first prove the claim (1). Assume a’s lifetime is tsb ∼ tse in memi (i.e.,
L(a, memi) = tsb ∼ tse) and ts is a timestamp at which a′ is used to write and
ts ∈ tsb ∼ tse.

The write by a′ at ts should not be the latest write in memi , that is, if memi =
(S, H ,P, ms) and P(a′) = (_,ts′) then ts
= ts′, otherwise it should be disabled accord-
ing to Definition 8. Therefore we have ts′ > tse.

Without loss of generality, we assume there is no write by a′ during ts ∼ tse. Then
we have that the memory configuration memk in (memk,tsk) with tsk = tse is not a
well-formed memory configuration as the write by a′ at ts is the lasting write by a′ in memk

but the lifetime of a in memk is tsb ∼ tse. The write should be disabled according to
Definition 8. This contradicts to Lemma 3. ��
Lemma 4 Let π = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn,

(memn,tsn) be a safe sequence. Let memi , 0 ≤ i ≤ n be a memory configuration and
B be a block with the location b. Let the OBS graph of B in memi be G = (B, V , E,F).
We have that G is well-formed.

Proof FromLemma 2,memi is well-formed, which ensures that G satisfies the unique owner
invariant and no intersection invariant. We still need to prove the lifetime inclusion invariant.

For references, according the definition of L(a, mem), we know that the lifetime of a
will always include the lifetime of a′, where a′ →b∗ a ∈ mem.

We need to consider the owner. If an owner’s write permission is always disabled by its
references then the ownership cannot be moved. In this case, its lifetime always includes it’s
references’ lifetimes. From Lemma 3, we know that the owner is always disabled. ��
Lemma 5 Letπ = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn, (memn,tsn)

be a safe sequence. Let G = (B, V , E,F) be the OBS graph of B in memi , 0 ≤ i ≤ n, we
have for any two nodes a, a′ ∈ V ∪{B}, if a read operation read(p), where alias(p) = a,
is carried out at the timestamp ts ∈ F(a →∗ a′) then RG(a,ts) = true.

Proof The key to prove the lemma is to ensure that during the lifetime of a, the read by a at
ts is not disabled. Actually it is proved by Lemma 3. ��
Lemma 6 Letπ = (mem0,ts0), op1, (mem1,ts1), . . . , (memn−1,tsn−1), opn, (memn,tsn)

be a safe sequence. Let G = (B, V , E,F) be the OBS graph of B in memi , 0 ≤ i ≤ n,
we have for any two nodes a, a′ ∈ V ∪ {B}, if a write operation write(p, v), where
alias(p) = a, is carried out at the timestamp ts ∈ F(a →∗ a′) then WG(a,ts) = true.

Proof Proof is similar to Lemma 5. ��
Theorem 3 is proved by Lemmas 2, 4, 5, and 6.

123

Formal Methods in System Design

Acknowledgements This work was supported in part by the National Natural Science Foundation of China
under Grant 62172217 and 61902180, in part by the Joint Research Funds of the National Natural Science
Foundation of China and the Civil Aviation Administration of China under Grant U1533130, the National
Satellite of Excellence in Trustworthy Software Systems and the Award No. NRF2014NCR-NCR001-30,
funded by NRF Singapore under National Cyber-security R&D (NCR) programme.

Declarations The datasets generated during and/or analysed during the current study are available in the
Rust-Semantics repository, https://github.com/MEM-Group/Rust-Semantics.

References

1. Rust-Team: the Rust language homepage. https://www.rust-lang.org/en-US/ (2016)
2. Jung R, Jourdan J-H, Krebbers R, Dreyer D (2018) RustBelt: Securing the foundations of the Rust

programming language. In: Proceedings of the ACM Program. Lang. 2, POPL, Article. https://doi.org/
10.1145/3158154

3. Reed E (2015) Patina: a formalization of the Rust programming language. Technical report, University
of Washington

4. JungR,DangH,Kang J, DreyerD (2020) Stacked borrows: an aliasingmodel for rust. ProcACMProgram
Lang 4(POPL):41–14132

5. Matsakis N (2016) Introducing MIR. https://blog.rust-lang.org/2016/04/19/MIR.html
6. Roşu G, Şerbănuţă TF (2010) An overview of the K semantic framework. J Logic Algebr Program

79(6):397–434
7. Bogdănaş D, RoşuG (2015)K-Java: a complete semantics of Java. In: Proceedings of the 42nd symposium

on principles of programming languages (POPL’15. ACM, New York), pp 445–456. https://doi.org/10.
1145/2676726.2676982

8. Hathhorn C, Ellison C, Roşu G (2015) Defining the undefinedness of c. In: Proceedings of the 36th ACM
SIGPLAN conference on programming language design and implementation (PLDI’15). ACM, New
York, pp 336–345. https://doi.org/10.1145/2813885.2737979

9. Ellison C, Rosu G (2012) An executable formal semantics of c with applications. In: Proceedings of the
39th ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL’12). ACM,
New York, pp. 33–544. https://doi.org/10.1145/2103656.2103719

10. Davidoff SS (2018) How Rust’s standard library was vulnerable for years and nobody noticed. https://
medium.com/@shnatsel/how-rusts-standard-library-was-vulnerable-for-years-and-nobody-noticed-
aebf0503c3d6

11. Rust-Benchmark: Rust Benchmark. https://github.com/rust-lang/rust/tree/master/src/test (2020)
12. Rust-Team (2018)TheRust programming language.MozillaResearch.MozillaResearch. https://doc.rust-

lang.org/book/foreword.html
13. Rust-team: non-lexical lifetimes. https://doc.rust-lang.org/edition-guide/rust-2018/ownership-and-

lifetimes/non-lexical-lifetimes.html (2018)
14. Matsakis N (2017) Nested method calls via two-phase borrowing. http://smallcultfollowing.com/

babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
15. The Coq Proof Assistant. http://coq.inria.fr
16. Nipkow T, Klein G (2014) Concrete Semantics—with Isabelle/HOL. Springer, Heidelberg. https://doi.

org/10.1007/978-3-319-10542-0
17. Chen Z, Yan J, Kan S, Qian J, Xue J (2019) Detecting memory errors at runtime with source-level

instrumentation. In: Zhang D, Møller A (eds) Proceedings of the 28th ACM SIGSOFT international
symposium on software testing and analysis, ISSTA 2019, Beijing, China, July 15-19, 2019. ACM, New
York, pp 341–351. https://doi.org/10.1145/3293882.3330581

18. Team K-F (2024) C-Semantics in KFramework. https://github.com/kframework/c-semantics
19. de Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan CR, Rehof J (eds) Tools

and Algorithms for the Construction and Analysis of Systems, 14th international conference, TACAS
2008, Held as part of the joint european conferences on theory and practice of software, ETAPS 2008,
Budapest, Hungary, March 29–April 6, 2008. Proceedings. Lecture Notes in Computer Science. Springer,
Heidelberg, vol 4963, pp 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

20. Ştefănescu A, Park D, Yuwen S, Li Y, Roşu G (2016) Semantics-based program verifiers for all lan-
guages. In: Proceedings of the 31th conference on object-oriented programming, systems, languages, and
applications (OOPSLA’16). ACM, New York, pp 74–91. https://doi.org/10.1145/2983990.2984027

21. issue 44800, V. https://github.com/rust-lang/rust/issues/44800 (2017)

123

https://github.com/MEM-Group/Rust-Semantics
https://www.rust-lang.org/en-US/
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://blog.rust-lang.org/2016/04/19/MIR.html
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2813885.2737979
https://doi.org/10.1145/2103656.2103719
https://medium.com/@shnatsel/how-rusts-standard-library-was-vulnerable-for-years-and-nobody-noticed-aebf0503c3d6
https://medium.com/@shnatsel/how-rusts-standard-library-was-vulnerable-for-years-and-nobody-noticed-aebf0503c3d6
https://medium.com/@shnatsel/how-rusts-standard-library-was-vulnerable-for-years-and-nobody-noticed-aebf0503c3d6
https://github.com/rust-lang/rust/tree/master/src/test
https://doc.rust-lang.org/edition-guide/rust-2018/ownership-and-lifetimes/non-lexical-lifetimes.html
https://doc.rust-lang.org/edition-guide/rust-2018/ownership-and-lifetimes/non-lexical-lifetimes.html
http://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
http://smallcultfollowing.com/babysteps/blog/2017/03/01/nested-method-calls-via-two-phase-borrowing/
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1145/3293882.3330581
https://github.com/kframework/c-semantics
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2983990.2984027
https://github.com/rust-lang/rust/issues/44800

Formal Methods in System Design

22. Ishtiaq SS, O’Hearn PW (2001) BI as an assertion language for mutable data structures. In: Hankin C,
Schmidt D (eds) Conference record of POPL 2001: the 28th ACM SIGPLAN-SIGACT symposium on
principles of programming languages, London, UK, January 17–19, 2001. ACM, New York, pp 14–26.
http://dl.acm.org/citation.cfm?id=360204

23. Reynolds JC (2002) Separation logic: a logic for sharedmutable data structures. In: 17th IEEE symposium
on logic in computer science (LICS 2002), 22–25 July 2002, Copenhagen, Denmark, Proceedings. IEEE
Computer Society, Washington DC, pp 55–74. https://doi.org/10.1109/LICS.2002.1029817

24. Matsushita Y, Tsukada T, Kobayashi N (2021) Rusthorn: CHC-based verification for rust programs. ACM
Trans Program Lang Syst 43(4):15–11554. https://doi.org/10.1145/3462205

25. Toman J, Pernsteiner S, Torlak E (2015) Crust: a bounded verifier for Rust (N). In: Cohen MB, Grunske
L, Whalen M (eds) 30th IEEE/ACM international conference on automated software engineering, ASE
2015, Lincoln, NE, USA, November 9–13, 2015. IEEE Computer Society, Washington DC, pp 75–80.
https://doi.org/10.1109/ASE.2015.77

26. Baranowski MS, He S, Rakamaric Z (2018) Verifying Rust programs with SMACK. In: Lahiri SK,
Wang C (eds) Automated technology for verification and analysis—16th international symposium, ATVA
2018, Los Angeles, CA, USA, October 7–10, 2018, Proceedings. lecture notes in computer science.
Springer, Heidelberg, vol 11138, pp 528–535. https://doi.org/10.1007/978-3-030-01090-4. https://doi.
org/10.1007/978-3-030-01090-4_32

27. Astrauskas V, Müller P, Poli F, Summers AJ (2019) Leveraging Rust types for modular specification
and verification. In: To appear in object-oriented programming systems, languages, and applications
(OOPSLA). ACM, New York. https://doi.org/10.1145/3360573

28. Carter M, He S, Whitaker J, Rakamaric Z, Emmi M (2016) SMACK software verification toolchain.
In: Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th international conference on software
engineering, ICSE 2016, Austin, TX, USA, May 14–22, 2016—Companion Volume. ACM, New York,
pp 589–592. https://doi.org/10.1145/2889160.2889163

29. Müller P, Schwerhoff M, Summers AJ (2016) Viper: a verification infrastructure for permission-based
reasoning. In: Jobstmann B, Leino KRM (eds) Verification, model checking, and abstract interpretation—
17th international conference, VMCAI 2016, St. Petersburg, FL,USA, January 17–19, 2016. Proceedings.
Lecture notes in computer science. Springer, Heidelberg, vol 9583, pp 41–62. https://doi.org/10.1007/
978-3-662-49122-5_2

30. Ho S, Protzenko J (2022) AENEAS: Rust verification by functional translation. Proc ACMProgram Lang
6(ICFP):711–741. https://doi.org/10.1145/3547647

31. Jim T, Morrisett JG, Grossman D, Hicks MW, Cheney J, Wang Y (2002) Cyclone: a safe dialect of C.
In: Ellis CS (ed) Proceedings of the general track: 2002 USENIX annual technical conference, June 10–
15, 2002, Monterey, California, USA, pp. 275–288. USENIX, Berkeley (2002). http://www.usenix.org/
publications/library/proceedings/usenix02/jim.html

32. Tofte M, Talpin J (1994) Implementation of the typed call-by-value lambda-calculus using a stack of
regions. In: Boehm H, Lang B, Yellin DM (eds) conference record of POPL’94: 21st ACM SIGPLAN-
SIGACT symposium on principles of programming languages, Portland, Oregon, USA, January 17–21,
1994. ACM Press, New York, pp 188–201. https://doi.org/10.1145/174675.177855

33. Balabonski T, Pottier F, Protzenko J (2016) The design and formalization of Mezzo, a permission-based
programming language. ACM Trans Program Lang Syst 38(4):14–11494

34. Tov JA, Pucella R (2011) Practical affine types. In: Ball T, Sagiv M (eds) Proceedings of the 38th ACM
SIGPLAN-SIGACT symposium on principles of programming languages, POPL 2011, Austin, TX,USA,
January 26–28, 2011. ACM, New York, pp 447–458. https://doi.org/10.1145/1926385.1926436

35. Boyland J, Noble J, RetertW (2001)Capabilities for sharing: a generalisation of uniqueness and read-only.
In: Knudsen JL (ed) ECOOP 2001—object-oriented programming, 15th European conference, Budapest,
Hungary, June 18–22, 2001, Proceedings. lecture notes in computer science Springer, Heidelberg, vol
2072, pp 2–27. https://doi.org/10.1007/3-540-45337-7_2

36. Clebsch S, Drossopoulou S, Blessing S, McNeil A (2015) Deny capabilities for safe, fast actors. In: Boix
EG, Haller P, Ricci A, Varela C (eds) Proceedings of the 5th international workshop on programming
based on actors, agents, and decentralized control, AGERE! 2015, Pittsburgh, PA, USA, October 26,
2015. ACM, New York, pp 1–12. https://doi.org/10.1145/2824815.2824816

37. Stork S, Naden K, Sunshine J, Mohr M, Fonseca A, Marques P, Aldrich J (2014) Æminium: a per-
mission based concurrent-by-default programming language approach. In: O’Boyle MFP, Pingali K (eds)
ACMSIGPLAN conference on programming language design and implementation, PLDI’14, Edinburgh,
United Kingdom—June 09–11, 2014. ACM, New York, p 26. https://doi.org/10.1145/2594291.2594344

38. Matsushita Y, Denis X, Jourdan J, Dreyer D (2022) Rusthornbelt: a semantic foundation for functional
verification of rust programs with unsafe code. In: Jhala R, Dillig I (eds) PLDI’22: 43rd ACM SIGPLAN

123

http://dl.acm.org/citation.cfm?id=360204
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3462205
https://doi.org/10.1109/ASE.2015.77
https://doi.org/10.1007/978-3-030-01090-4
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10.1145/3360573
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3547647
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
http://www.usenix.org/publications/library/proceedings/usenix02/jim.html
https://doi.org/10.1145/174675.177855
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2594291.2594344

Formal Methods in System Design

international conference on programming language design and implementation, San Diego, CA, USA,
June 13–17, 2022. ACM, San Diego, pp 841–856. https://doi.org/10.1145/3519939.3523704

39. Weiss A, Patterson D, Matsakis ND, Ahmed A (2019) Oxide: the essence of Rust arXiv: 1903.00982
40. Wang F, Song F, Zhang M, Zhu X, Zhang J (2018) KRust: a formal executable semantics of Rust arXiv:

1804.10806

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1145/3519939.3523704
http://arxiv.org/abs/1903.00982
http://arxiv.org/abs/1804.10806

	Formally understanding Rust's ownership and borrowing system at the memory level
	Abstract
	1 Introduction
	2 The ownership and borrowing system
	2.1 Ownership
	2.2 Borrowing and reborrowing
	2.3 The OBS invariants
	2.4 Unsafe constructs

	3 A high-level abstraction of OBS
	4 The memory model
	4.1 Memory configurations
	4.2 Memory values
	4.3 Lifetime-free memory operation interfaces
	4.4 Operational semantics for memory operations
	4.4.1 Operational semantics for non-atomic raw read and write
	4.4.2 The semantics of safe read and write

	4.5 Refinement relation between high-level OBS and memory model

	5 The core language and translation semantics
	6 Evaluation on correctness and applicability to verification
	6.1 The correctness of the semantics
	6.2 Runtime verification
	6.3 Formal verification for both memory and functional properties

	7 Related work
	8 Conclusion
	Appendix: A Proof of Lemma 1
	Appendix: B Proof of Theorem 1 and 2
	Appendix: C Proof of Theorem 3
	Acknowledgements
	References

