
Formal Methods in System Design (2022) 61:3–34
https://doi.org/10.1007/s10703-023-00428-9

ORIG INAL ART ICLE

Runtime verification of real-time event streams using the
tool HStriver

Felipe Gorostiaga1,2,3 · César Sánchez1

Received: 29 April 2022 / Accepted: 16 April 2023 / Published online: 21 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We present in this paper the tool HStriver, an extensible stream runtime verification tool
for monitoring real-time event streams. Real-time event streams are formed by events that
contain rich data and can occur at arbitrary times. The rich expressivity of HStriver allows the
specifications of quantitative semantics of logics like signal temporal logic (STL), including
different notions of robustness. Stream runtime verification is a specification family of lan-
guages based on the clean separation between temporal dependencies and data computations.
To encode the data values contained in the events (both read as inputs and produced as the
result of computation) HStriver borrows a large subset of data-types from Haskell. These
types are transparently lifted into the HStriver specification language and incorporated in
the temporal engine, so they can be used as the types of the input (observations), output
(verdicts), and intermediate streams. The temporal evaluation engine is agnostic of the types
used in the specification. The resulting extensible language is then embedded into Haskell
as an embedded Domain Specific Langauge. The availability of functional features in the
specification language enables the direct implementation of desirable features in HStriver
like parametrization (using functions that return stream definitions), etc. The resulting tool,
HStriver, is a flexible and extensible stream runtime verification engine for real-time streams.
We illustrate the use of HStriver on many sophisticated real-time specifications, including
realistic STL properties of existing designs.

Keywords Runtime verification · Stream runtime verification · Real-time streams

This work was funded in part by the Madrid Regional Government under project “S2018/TCS-4339
(BLOQUES-CM)”, by Spanish National Project “BOSCO (PGC2018-102210-B-100)”, and by FPU Grant
FPU18/04362 granted by the Spanish Ministry of Science, Innovation and Universities.

B Felipe Gorostiaga
felipe.gorostiaga@imdea.org

César Sánchez
cesar.sanchez@imdea.org

1 IMDEA Software Institute, Madrid, Spain

2 Universidad Politécnica de Madrid, Madrid, Spain

3 CIFASIS, Rosario, Argentina

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00428-9&domain=pdf
http://orcid.org/0000-0002-3478-3408

4 Formal Methods in System Design (2022) 61:3–34

1 Introduction

Runtime Verification (RV) [1–3] is a lightweight dynamic formal technique for systems reli-
ability. The main concerns of RV are how to generate monitors from formal specifications,
and algorithms that use the generated monitors to process, one at at time, traces of the sys-
tem under analysis. The first RV specification languages, proposed almost twenty years ago,
were based on temporal logics like past LTL [4] adapted to finite traces [5–7], regular expres-
sions [8], rewriting [9], fix-point logics [10], rule based languages [11]. In these languages,
verdicts (and many times observations) are Boolean, because these logics borrowed from
static verification–-where decidability is crucial.

Stream runtime verification (SRV) [12, 13] attempts to generalize these monitoring algo-
rithms to richer datatypes, including observations and verdicts. This richer setting allows the
computation of quantitative values and summaries, the computation of witnesses, models
for the collection of representative data, etc. The keystone of SRV is to cleanly separate the
temporal engine (the when) that specifies the moments at which values are collected and
processed during the computation, from the individual data operations (thewhat). Therefore,
temporalmonitoring algorithms are designed abstractly and then instantiated to concrete types
and data operations. SRV languages offer declarative specifications where offset expressions
allow accessing streams at different moments in time, including future instants. The first
SRV developments [12] were synchronous, similar to the so-called synchronous languages
like Esterel [14] or Lustre [15]. These languages force causality because their intention is to
describe systems and not observations ormonitors, while SRV removes the causality assump-
tion allowing the reference to future values. Synchronous SRV languages have been extended
in recent years to event-based systems for monitoring real-time event streams [16–20]. Most
SRV efforts to date, synchronous and event-based, have focused on efficiently implementing
the temporal engine, only offering a handful of hard-wired data-types. However, in practice,
adding a new datatype requires modifying the parser, the internal representation and the
runtime system, which becomes a cumbersome activity. More importantly, these tools are
shipped as monolithic tools with a few hard-wired datatypes which the user of the tool cannot
extend.

In this paper we describe the tool HStriver, an extensible implementation of an event-
based real-time SRV language1. The core language is based on Striver [18], and enables the
extension to arbitrary datatypes, implemented as an embedded DSL in Haskell. There are
other RV tools implemented as eDSLs [22–24] but a main novelty of HStriver is the use of
lift deep embedding, that allows borrowing Haskell types transparently and embedding the
resulting language back into Haskell [25].

Most of the HStriver datatypes were introduced after the temporal engine was completely
implemented, requiring no re-implementation of the engine. Similarly, users of HStriver can
also extend the collection of datatypes easily. The second contribution of HStriver is the
implementation of a novel efficient asynchronous engine for the temporal part, described
in Sect. 2.5. Implementing HStriver as a Haskell eDSL enables the use of higher-order
functions which in turn allows writing code that produces stream declarations from stream
declarations. In turn, this enables features like stream parametrization, which requires costly
ad-hoc implementations in previous tools. This idea is used to pack HStriver libraries that
describe complex logics like STL, both with Boolean and quantitative semantics, in just a
few lines.

1 An earlier short version of this paper appeared in [21].

123

Formal Methods in System Design (2022) 61:3–34 5

1.1 Related work

There have been runtime verification tools for themonitoring of event-based streams (see [26]
for a survey). R2U2 [27] is based on a variation of metric interval temporal logic (MITL) for
finite (real-time) traces. Since R2U2 uses logic as a specification formalism, the observations
and verdicts are based on Boolean values. BeepBeep [28, 29] is a framework to build run-
time verification tools based on connecting streaming blocks. Even though BeepBeep could
be used as a programming framework for tools like HStriver, in comparison to HStriver,
BeepBeep lacks semantics both in terms of the data-types, the assumptions on the temporal
domain and lacks a way to compute the resources needed. MonPoly [30, 31] is a monitoring
tool based on first-order MITL. Even though the tool can produce witnesses for the quanti-
fiers, in comparison with SRV, FO-MITL cannot compute values of arbitrary data-types like
the computation of statistics and quantitative semantics of logics. Copilot [32] is a Haskell
implementation that offers a collection of building blocks to transform streams, but Copilot
does not offer explicit time accesses and offsets (and in particular future accesses). Also,
Copilot is based on synchronous time. The closest tools to HStriver are RTLola [19, 33] and
TeSSLa [16] which are SRV tools extending Lola [12] with capabilities to real-time event
streams. The main difference are that RTLola and TeSSLa come with a predefined collec-
tion of data-types, while HStriver enjoys the Haskell capabilities to import and create new
types without changing HStriver. Also, HStriver incorporates an asynchronous pull engine
and borrows flexible data-types and functional features from the host language. Additionally,
HStriver allows event-generation, while RTLola is restricted to be event-driven or periodic
events. Compared with TeSSLa, HStriver is an explicit timed language while TeSSLa uses
stream transformers.

1.2 Contributions and structure

The main contributions of this paper are:

• a description of the implementation of HStriver, an SRV tool for real-time event streams
using a lift deep embedding in Haskell;

• a novel pull algorithm to implement an asynchronous temporal engine and;
• examples that illustrate many of the HStriver features.

The additional contributions of this journal version with respect to the short version [21] are:

• a more detailed description of the implementation of the core of HStriver;
• a deep discussion of the lift-deep embedding;
• a new section about static analysis;
• nested specifications, which in turn leads to a new example (RobustSTL) and
• an empirical evaluation of the engine.

The rest of the paper is structured as follows. Section 2 introduces SRV and describes the
internals of HStriver. Section 3 illustrates many features by example. Section 4 contains an
empirical evaluation using HStriver. Finally, Sect. 5 concludes.

2 The HStriver Tool

Stream Runtime Verification generalizes monitoring algorithms (which are typically defined
for Boolean observations and verdicts) to arbitrary data. Data is abstracted using multi-sorted

123

6 Formal Methods in System Design (2022) 61:3–34

Fig. 1 Timeline of safe events liquidity

debt

safe

first-order interpreted signatures. The resulting data-types are called data theories in the SRV
terminology. The signatures are interpreted in the sense that every functional symbolf used to
build terms of a given type is accompanied with an evaluation function f (the interpretation)
that allows the computation of values given values of the arguments. The main idea of a
specification is to provide, declaratively, the relation between outputs (verdicts) and input
(observations). The temporal dependencies in these declarations are used to determine how
to traverse input streams, fetch individual data and ultimately produce each individual output
event. These events consist of a value froma data theory, and a timestamp froma specification-
fixed temporal domain. The concrete operations used in the specification are used for the
details on how to compute the output data. In the context of event-streams, a specification
not only needs to declare the values of output streams (based on input and output streams)
but also the temporal instants at which there are events in the output streams.

Consider the following example in which we define a stream safe that computes if a
company has acquired debt above 30% of its liquidity.

1 input Int liquidity
2 input Int debt

3 output Bool safe:
4 ticks = ticksOf liquidity U ticksOf debt
5 val = liquidity[~t|]*0.3 > debt[~t|]

This stream is updatedwhenever the input streams liquidity or debt produce new values, and
computes if the current value of debt is greater than 0.3 times the current value of liquidity.
Figure 1 on the right shows graphically the asynchrony of the event trace, and how safe

produces values when the other streams do.
The temporal core of the tool HStriver is based on the Striver specification language,

whose theoretical foundations are described in [18]. A specification 〈I , O, E, T 〉 consists of
• a set of typed input stream variables I , which correspond to the input observations;
• a set of typed output stream variables O which represent outputs of the monitor and

intermediate observations; and
• a collection of defining equations, which associate every output y ∈ O with two stream

expressions: Ty , which describes when there is an event in y, and Ey which describes
what the value is whenever there is an event.

Tick expressions Ty are built from constant time-instants (that model the existence of an event
at a specific time point), and operators for the union, shift and delays of the ticking instants
of streams. Stream Expressions Ey are built from constants values, function symbols and
offset expressions that allow referring to the previous and next-events in streams, according
to the time-stamps of events. The language is explained in depth in Sect. 2.2. The simple
online algorithm proposed in [18] is a push algorithm that processes input events in the order
of their time-stamps and produces output events also in increasing time order. The algorithm
implemented in the HStriver tool, and explained in Sect. 2.5, is a much more efficient pull
algorithm, which attempts to compute events in output streams fetching the necessary events
from other streams.

123

Formal Methods in System Design (2022) 61:3–34 7

HStriver
specification

HStriver
to

eDSL

Haskell
compiler

SRV
engine

Embedded
DSL

Binary

+

HStriver Haskell Binary⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

• complex datatypes

• libraries

• functional notation

• partial application

• high order

Fig. 2 Software architecture of HStriver

2.1 HStriver architecture

The architecture of HStriver is shown in Fig. 2.
AnHStriver specification defines event streams following the syntax explained in Sect. 2.2

below,where one distinguishing feature is that it borrowsHaskell datatypes and typemembers
for the syntax of HStriver data expressions. A specification can also borrow Haskell notation
and features such as list comprehension and let-clauses, represented by the red dashed arrow
in Fig. 2. Then, a very simple translator generates Haskell code with the implementation
explained in Sect. 2.3 from the source specification. This translator does not parse or interpret
the source code, but only performs simple rewritings introduced to make the specification
cleaner for HStriver programmers. The resulting Haskell code is then combined with the
execution engine described in Sect. 2.5, written fully in Haskell, and compiled using the
GHC to obtain the binary for the specification monitor. In this manner, the HStriver tool can
be easily extended with new data-theories, and Haskell programs can directly use HStriver
specifications as part of their code.

2.2 The tool HStriver

In this section we present informally the semantics of the language HStriver, which proceeds
inductively over the trace. A more thorough formal description of the semantics can be found
in [20]. We have chosen this inductive approach opposed to, for example, the search for
a fixpoint using small-step semantics as in [34, 35] because we believe that an inductive
semantics makes it easier to prove the correctness of the operational semantics. A stream
declaration in an HStriver specification can be either:

• An input declaration, which is bound to a name and a type using the following syntax:
input Type name <args>*

• An output declaration, which is bound to a name, a tick expression te assigned to the field
ticks and a value expression ve assigned to the field val, using the following syntax:
output TypeConstraints? Type name <args>*:

ticks = te

val = ve

where TypeConstraints is an optional set of constraints over the polymorphic types handled
by the stream expressed inHaskell notation, and <args>* is an optional list of arguments of the
form Type name. We can define x as an alias for the stream y with output TypeConstraints?

Type x = y. We can also use define instead of output to define an intermediate stream, whose
values are not reported if defined in a specification, and which are not accessible if defined
in a library, just like in HLola.

123

8 Formal Methods in System Design (2022) 61:3–34

The types of the streams have to be Haskell Typeable types, which is a very general class
of types, enough for the purpose of SRV data theories. The types of input streams have to
be parseable from JSON using the Haskell aeson library (i.e., they have to be an instance
of the FromJSON class), and the output streams have to be serializable to JSON using the
aeson library (this is, they have to implement the ToJSON class). Also, the current HStriver
frontend imposes some minor syntactic restrictions (the work reported in this paper focuses
on an efficient implementation with rich data theories, while future work includes bringing
the specification language closer to Striver).

The tick expression of an output stream x indicates when x might contain an event, and is
defined by the following recursive datatype:

• A single point in time t, which we write {t}, where t is a value of type Time. This type
represents the temporal domain of the specification. For example, the expression {5}

indicates that x may contain an event with timestamp 5.
• The instants at which a stream s contains an event, written ticksOf s.

For example, the expression ticksOf s indicates that x may contain events at the times-
tamps of the events of s.

• The instants of the events of s shifted by a constant c, written shift c s.
• The instants at which a stream s of type Time contains an event, delayed by the value

in the event which we write delay s, delay+ s, or delay- s depending on the sign of the
values of s. Note that the shift operator works with a predefined constant, while delay

can read the delay value from a stream.
• The union of two tick expressions te1 and te2, which we write te1 U te2

When writing specifications it is very convenient to be able to access the data contained
in those events that make a stream tick according to its tick expression. For this reason, we
add specific syntax to access the values carried by those events that made the stream wake
up to facilitate the computation of the value expression. The value expression of an output
stream indicates if the stream will contain an event at a ticking point, and with which value.
The value expression is built with the following syntax:

• The constructor ’o encapsulates an element o from a data-theory. This constructor rep-
resents the lift stage of the lift-deep embedding technique explained in Sect. 2.3. For
example, we can lift the element True from the Boolean theory from Haskell using
’true. We sometimes indicate the arity of the object o being lifted for clarity or to aid the
type inference. For example, if f is a function of the theory that takes two arguments, we
would write 2’f. Constant values have an arity of 0, so we can write 0’true if necessary.
To improve readability, some operators have been overridden by default by their lifted
version, such as if · then · else ·.

• Function application is juxtaposition and has the greatest precedence. Parentheses are
used to impose a different association between functions and values.

• The value cv contains the value carried by the tick expression.
For example, if the tick expression is ticksOf s, the value of cv will be the value of s at
that time. The value carried by a singleton expression {t}, is unit.

• The constructor notick is used to refrain from producing a value. If at some point the
value expression of a stream definition is notick, then the stream will not produce an
event at all. This expression is typically used within if · then · else · expressions and
is useful to filter streams. For example, the expression if cv > 10 then cv else notick

will generate events with the (numeric) carried value only when the carried value is
greater than ten.

123

Formal Methods in System Design (2022) 61:3–34 9

Fig. 3 Stream access operators and their behaviors when there is an event at t or not

Two additional HStriver constructors allow accessing timestamps and values of different
streams:

• The expression timeOf te accesses the resulting timestamp of a time expression te (also
called a tau expression), and

• The projection constructor s[te|v], which accesses the value of a stream s at a tau expres-
sion te, and returns the value unless the time calculation results in “falling off the trace”,
this is, the result being lower than the minimum temporal value or greater than the max-
imum temporal value, in which case v is returned. The syntax also offers the variant
s[te|?] which returns a supertype of s with additional values to indicate the falling off
the trace, and the variant s[te|] which is only legal if the offset of the tau expression is
guaranteed to exist (the type system guarantees this).

The value of the expression s[te|?] may be a value of the type of s or one of the special
vualues out or -out, which represent that the access has fallen off the trace (i.e., that there is
no previous/next value of s, depending on the operator). Similarly, the expression timeOf te

can return either a value from the time domain or one of the special values infty or -infty.
Finally, the datatype for tau expressions, which allows offsets in time is:

• t which represents the current time.
• The constructor s<<te, which allows referring to the last event in stream s strictly before

the value of the tau expression te.
• The constructor s<~te, which is like << but also considers te as a candidate, this is, s<~te

allows referring to the event in s exactly at time te, but it behaves like s<<te if such event
does not exist.

• The constructors >> and ~>, which are the future duals of << and <~ respectively.

We show a summary of the stream access operators in Fig. 3.
We also define versions of >> and ~> that are decorated with a time limit b for the next

event to be considered, which we write »b and ~>b respectively, and are useful to efficiently
capture logics like STL, as we show in Sect. 3.2. The syntax of HStriver contains some
syntactic sugar for stream accesses to make them more compact and improve legibility.
Thus, s[s<<te|·] becomes s[<te|·], s[s<~te|·] becomes s[~te|·], s[s>>te|·] becomes s[te>|·],
and s[s~>te|·] becomes s[te~|·]. We also define now as a synonym of timeOf t. Also, HStriver
allows the declaration of a top level constant value or function x (with definition def) using
const x = def or fun x = def .

The current version of HStriver offers the possibility to work with two temporal domains:
Double and UTC. The former option uses the Haskell type Double as the time domain, while
the latter uses the Haskell library Data.Time of the Haskell package time. We specify the time
domain for a specification with the directive time domain followed by either Double or UTC.

123

10 Formal Methods in System Design (2022) 61:3–34

HStriver libraries and theories are imported with use library/theory Name, which allows
the access to functions and streams from the imported file. The main difference between a
library and a theory file is that the former contains utilities for streams manipulation and
definitions, while a theory is agnostic of the Striver concepts and comprises functions and
constants from a specific application domain. Data theories are implemented directly in the
host language, which let us use native types and functions, aswell as third parties off-the-shelf
implementations, and even define our own custom types and functions as data theories with
the directive data. In this manner, the syntactic name of a Haskell function definition (or its
lambda expression in the case of anonymous functions) make up the functional symbols used
to build terms, while their semantics in the Haskell language are the functions interpretations.
This characteristic of the language illustrates the extensibility of HStriver in terms of data
theories. We can also import arbitrary Haskell libraries with the directive use haskell Name.

When we import a library, a theory or a Haskell library Lib, we can include the reserved
word qualified after use to avoid name clashes. This forces us to prepend the name of the
library or theory before accessing a definition member from it, as in Lib.member. We can
access functions and constants in the Haskell Prelude by prepending P to their names.

Example 1 The following specification defines a stream y that filters out the negative
values of an integer input stream x. The stream y over-approximates its tick instants
as the tick instants of x, and then delegates the filtering to its value expression.

1 input Int x

2 output Int y:
3 ticks = ticksOf x
4 val = if x[~t|] < 0 then notick else x[~ t|]

Example 2 In this example we show the definition of an output stream stock to calculate
the stock of a certain product based on two input event streams: sale–-that represents the
sales of such product–-, and arrival–-which represents the arrivals of the same product. The
output stream stock is defined to tick when either sale or arrival (or both) tick. The value
carried by the tick expression is of type (Maybe Int, Maybe Int) and represents the units of
the product sold and received at a given point in time. Notice that at least one of the members
will be a Just value.

1 time domain Double
2 use haskell Data.Maybe

3 input Int sale
4 input Int arrival

5 output Int stock:
6 ticks = ticksOf sale U ticksOf arrival
7 val = let
8 (msal, marr) = cv
9 sal = 1’(fromMaybe 0) msal

10 arr = 1’(fromMaybe 0) marr
11 in
12 stock[<t|0] - sal + arr

123

Formal Methods in System Design (2022) 61:3–34 11

We use the function fromMaybe from Haskell, we apply it to the Haskell integer 0, and we
lift the resulting (partially applied) function to safely get the number of sold and received
products, defaulting to 0 if the corresponding input stream is not ticking.

HStriver also allows the static parameterization of streams, which lets us reuse stream
definitions and instantiate these for different parameters in static time.

Example 3 The following specification generalizes Example 2 for multiple products. This
example uses the delay operator to set up a timer and raise an alarm in case the stock of any
product has been low for too long.

1 time domain Double
2 use library Utils
3 use haskell Data.Maybe

4 data Product= ProductA | ProductB | ProductC deriving (Show, Eq)

5 fun tolerance ProductA = 10
6 fun tolerance ProductB = 15
7 fun tolerance ProductC = 20
8 fun lowval x = x ‘leq‘ 0

9 input Int sale <Product p>
10 input Int arrival <Product p>

11 define Int stock <Product p>:
12 ticks = ticksOf (sale p) U ticksOf (arrival p)
13 val = let
14 (msal, marr) = cv
15 sal = 1’(fromMaybe 0) msal
16 arr = 1’(fromMaybe 0) marr
17 in
18 stock p [<t|0] - sal + arr

19 define Bool low_stock <Product p> = mapFun "low" lowval (stock p)

20 define Bool cp_low_stock <Product p> = changePointsOf (low_stock p)

21 define Time alarm_timer <Product p>:
22 ticks = ticksOf (cp_low_stock p)
23 val = if cv then tolerance p else (-1)

24 define () alarm <Product p>:
25 ticks = delay (alarm_timer p)
26 val = ’()

27 output () any_alarm:
28 ticks = ticksOf (alarm ProductA) U ticksOf (alarm ProductB)
29 U ticksOf (alarm ProductC)
30 val = ’()

2.3 Language implementation

The core of theHStriver language is implemented as an embeddedDomain SpecificLanguage
(eDSL) in Haskell. In this section we explain the benefits and the drawbacks of this approach
and the use of the novel technique of lift-deep embedding.

123

12 Formal Methods in System Design (2022) 61:3–34

2.3.1 The host language Haskell

Haskell [36] is a pure statically typed functional programming language that allows custom
parametric polymorphic datatypes, which eases the definition of new data theories inHStriver
and enables us to abstract away the types of the streams, effectively allowing the expression
of type-generic specifications.

As a design principle, and in order to facilitate type independent temporal engines, when a
specification is processed, we drop the information about the types of the streams so streams
of different types can be mixed and used in the same specification. One drawback of this
approach is that the Haskell type-system can no longer track the original type of a stream,
but this step is made after Haskell has type-checked the specification, guaranteeing that the
engine is forgetting the type information of a well-typed specification. The HStriver engine
keeps enough information to parse the values from input streams and to produce output values
given a stream name, avoiding type mismatches when converting from and to dynamically-
typed objects. As a result, a runtime type error can only be produced when processing an
input event whose value received as input is not of the expected type. Otherwise, types are
guaranteed to be respected during the computation.

Output streams of HStriver are defined using functions from data theories. These are
functions in the mathematical sense, meaning that they do not have side effects and the tool
does not make assumptions about when these functions will be called. Data theory functions
are expected to yield the same result when applied to the same arguments twice, which is
aligned with the Haskell purity of (total) functions.

A language that offers means to define new datatypes must not only provide the constructs
to define them, but it also must implement the encoding and decoding of user defined custom
datatypes. Extensible encoding and decoding of datatypes in the theory is not trivial and
such a feature might account for a large portion of the code-base in other implementations,
draining implementation and maintenance effort from more fundamental aspects of the tool.
Haskell allows defining custom datatypes via the data statement which once defined can be
used just like any other type in Haskell. HStriver relies on Haskell’s facilities to easily define
how to encode and decode datatypes in JSON format, most of the times automatically from
their definitions using Haskell’s deriving mechanism.

Haskell allows redefining functions that are typically native in other languages, such as
Boolean operators (||) and (&&), and the arithmetic operators (+) , (−) and (∗) , as well as
define and use custom infix operators. Haskell also offers let-bindings, list comprehensions,
anonymous functions, higher-order, and partial function application, all of which improves
specification legibility. We use higher-order functions to describe transformations that pro-
duce stream declarations from stream declarations, obtaining static parameterization for free,
which allows the programmatic definition of specifications.

Using eDSLs brings benefits beyond data theories, including leveragingHaskell’s parsing,
compiling, type-checking, andmodularity. TheHStriver engine usesHaskell’smodule system
to allow modular specifications, to build language extensions, and to import third parties
libraries. As a result, HStriver allows collecting reusable code and stream transformers in
libraries, which specifications can then import to aid the stream definitions.

One drawback of using eDSLs is that specifications have to be compiled with a Haskell
compiler, but once a specification is compiled, the resulting binary is agnostic of the fact
that an eDSL was used. Therefore, any target platform supported by Haskell can be used as
a target of HStriver. Moreover, improvements in the Haskell compiler and runtime systems

123

Formal Methods in System Design (2022) 61:3–34 13

will be enjoyed seamlessly, and new features will be ready to be used in the engines right
away.

2.3.2 Lift-deep embedding

DSLs allow implementing a language by embedding a guest language (in our case HStriver)
into a host language (in our case Haskell). A deep embedding is typically used for DSLs
since the structure of the programs of the guest language is faithfully represented as a data-
type in the host language. Typically, a DSL is designed as a complete language upfront, first
defining the types and terms of the language (this is, the underlying theory), which is then
implemented–-either as an eDSL or as a standalone DSL–-, potentially mapping the types
of the DSL into types of the programming language used in the implementation. However,
our intention is to fulfill the promise in SRV of the clean separation between data theories
and temporal engines. Therefore, we pursue a solution as a language where datatypes are not
decided upfront but can be added on demand without requiring any re-implementation.

A DSLwith user-defined data types has a general internal format for representing terms of
these types. We define a lifting operator that takes Haskell terms into the term representation
of HStriver. As a consequence, HStriver borrows (almost) arbitrary types from the host
language Haskell, resulting in a tool that is agnostic from the types handled and even allows
types to be defined and included after the implementation of the language. This technique
allows us to incorporate Haskell datatypes into HStriver, and enables the use of many features
from the host language in the SRV engine.We seek to represent many data theories of interest
for RV and to incorporate new ones transparently, so we abstract away concrete types in the
eDSL. For example, we want to use the theory of Boolean without adding the constructors
that a usual deep embedding would require. To accomplish this goal we revisit the very
essence of functional programming. Every expression in a functional language–-as well as
in mathematics–-is built from two basic constructions: values and function applications.
Therefore, to implement our SRV engine we use these two constructions plus additional
stream access primitives to capture the corresponding offset expressions in HStriver, as
explained below.

The engine defines expressions in Haskell as parametric datatypes with a polymorphic
argument domain. The generic domain is automatically instantiated in static time by theHaskell
compiler, effectively performing the desired lifting of Haskell datatypes to types of the theory
in the language. The resulting concrete Expressions constitute a typical deeply embedded
DSL. This technique allows us to lift Haskell datatypes to HStriver and then perform a single
deep embedding for all lifted datatypes, saving us from defining a constructor for all elements
in the data theory, and making the incorporation of new types transparent. The application
of this technique fulfills the promise of a clean separation of time and data and eases the
extensibility to new data theories, while keeping the amount of code at a minimum.

2.3.3 Language internals

We define the stream declarations of HStriver in Haskell as a parametric datatype Streamwith
a polymorphic argument:

• The following constructor represents the definition of an input stream from its name and
the names of its arguments:
Input :: String → [String] → Stream a

123

14 Formal Methods in System Design (2022) 61:3–34

• Similarly, the output constructor represents an output stream, and associates a stream
with its name, its tick expression and its value expression:

Output :: String → TickExpr cv → ValExpr cv a → Stream a

We explain the datatypes that represent the tick and the value expressions respectively.
First, tick expressions are modeled by a parametric datatype TickExpr whose polymorphic
argument indicates the type of the carried value:

• The literal instant {·} constructor is:
ConstTE :: Time → TickExpr ()

• The union constructor U is implemented by:
(:+) :: TickExpr cv0 → TickExpr cv1 → TickExpr (Maybe cv0, Maybe cv1)

• The shift is implemented as follows:
ShiftTE :: Time → Stream cv → TickExpr cv

A special case of this constructor (specifying a deviation of 0) represents the ticksOf

operator.
• Finally, the delay operator is implemented by the following constructor:

DelayTE :: DelayDir → Stream Time →TickExpr ()

The direction DelayDir indicates the sign of the delay stream, and can be either Positive

or Negative. The delay and delay+ operators are translated to a DelayTE expression with
Positive direction, and the delay- operator generates a DelayTE expression with Negative

direction.

Value expressions are implemented as a parametric datatype ValExpr cv a whose polymor-
phic arguments indicate the type of the carried value (cv) and the type of the expression itself
(a):

• The lift ’ expression is implemented by the following constructor:
Leaf :: a → ValExpr cv a

This operator constructs a value expression with the type of its argument, regardless
of the type of the carried value.

• The carried value expression cv is implemented by the following constructor:
CV :: ValExpr cv cv

The CV operator constructs a value expression with the type of the carried value.
• The reserved value notick is implemented as:

Notick :: ValExpr cv a

The Notick operator constructs a value expression of any type.
• The special function if · then · else · is implemented by the constructor:

ITE :: ValExpr cv Bool → ValExpr cv a → ValExpr cv a → ValExpr cv a

• The following constructor allows obtaining the timeOf a tau expression:
Tau :: TauExpr x → ValExpr cv ETime

The type ETime includes the possibility that the expression returns an infinite value (infty
or -infty).

• Similarly, the following constructor allows obtaining the event in a tau expression:
Proj :: TauExpr x → ValExpr cv (MaybeOutside x)

123

Formal Methods in System Design (2022) 61:3–34 15

The type MaybeOutside includes the possibility that the expression returns an outside
value (out or -out).

Finally, tau expressions are represented as a parametric datatype TauExprwhose polymorphic
argument indicates the type of the stream being accessed:

• The constructor TauT :: TauExpr a represents the reserved symbol t.
• The constructor (:<<) :: Stream a → TauExpr b → TauExpr a represents the tau expression

<<.
• The constructor (:<~) :: Stream a → TauExpr b → TauExpr a represents the tau expression

<~.
• The constructor (:>>) :: Stream a → TauExpr b → TauExpr a represents the tau expression

>>.
• Finally, the constructor (:>~) :: Stream a → TauExpr b → TauExpr a represents the tau

expression ~>.

For example, the specification of Example 1, in which the stream y filters out the negative
values of an input stream x is translated in the eDSL of HStriver as follows:

x :: Stream Int
x = Input "x" []

y :: Stream Int
y = let

ticks = ShiftTE 0 x
val = ITE (App (Leaf (<0)) CV)

Notick CV
in Output "y" ticks val

The tick expression of y is the times at which x ticks, shifted by 0. Then, the value expression
is Notick if the application of the (data theory) unary function (<0) to the current value of x
returns True, and the current value of x otherwise. This illustrates how tick expressions are
maintained simple, delegating the actual generation of the event to the value expression.

2.4 Static analysis

Even though the Haskell compiler takes care of most of the static checks that guarantee
that the input specification is legal–-like syntactic errors and type mismatches–-lightening
the burden of implementing these checks in HStriver, some remaining syntactic checks are
specific to the language, and require us to run additional analyses over the specification to
confirm its validity.

The work that introduced Striver [20] contains a detailed discussion on the syntactic
conditions that ensure the semantic well-definedness of a Striver specification. The condition
essentially corresponds to the lack of (certain kind of) cycles in the dependency graph of
the specification, which indicates if a stream can depend on past, present or future values
of another stream (including itself). Then, HStriver first computes the dependency graph of
the specification by traversing the stream definitions recursively. After that, it assesses that
the closed paths in every maximal strongly connected component are either all past, or all
future paths, deciding the well-formedness condition of the input specification. Additionally,
HStriver also checks that notick is used only in a branch of an if · then · else · expression,
possibly nested, but not as an argument of a function or as a function itself. Note that we
could have used the type system of Haskell to enforce the correct usage of notick expressions

123

16 Formal Methods in System Design (2022) 61:3–34

by requesting that the Value Expressions return a Maybe value, and interpreting the absence
of value (Nothing) as a notick, but we believe that this alternative would have polluted the
syntax and added an overhead that is irrelevant for most specifications.

The following is the dependency graph of the filter specification from Example 1.

y

Present

x

Past

We can see here that y depends on the present value of x, due to the use of ticksOf and
<~ and it also depends on past values of x due to the presence of <~.

2.5 The engine

The online monitoring algorithm proposed in [18] is limited to past offsets only, and it
processes input events in strictly increasing time, producing outputs also in increasing time.
We call this a push algorithm, because input events are pushed into the monitor. Instead, the
implementation of HStriver follows a novel pull approach: the engine computes events for
the output streams, which requires pulling events from other streams, and eventually pulling
events from inputs. The performance of both execution approaches is similar for the common
fragment of the language (i.e., for the past-only fragment of Striver). Using a pull procedure,
we gain expressivity in exchange for a slightlymore complex execution design. In this section
we focus on how the engine works and we explain the pull algorithm in detail. See [37, 38]
for the proof of correctness of the engine algorithm, whose showcasing is the main goal of
this tool paper.

Input events are read from named pipes in JSON format. The main algorithm maintains
the following state that is updated at each step in the computation:

• one Leader for each stream declared, and
• one Pointer from one stream to another for every timeOf or projection used.

The task of the Leader is to fetch the next event in a stream when required. The leader
for an input stream will pull the next input event, while the leader for an output stream will
use its definition to calculate the next event, pulling from the pointers in the value and tick
expressions if necessary. Leaders can also discover the lack of events, which is useful data
for referring streams, and is necessary to prevent the system from hanging trying to calculate
a real event.

A Pointer represents a relevant position in the sequence of events of a stream. Pointers
advance from past to future traversing or generating the events of a stream. The events in
the past of a pointer have already been used, while the events in the future will be used
later in the computation. When a pointer needs an event that has not yet been computed,
it will use the corresponding leader to fetch it. When all the pointers pointing to a stream
pass beyond an event, this event can be forgotten, keeping the number of events in memory
at the minimum. For example, the leader for the stream any_alarm in Example 3 maintains
one pointer to each of the three alarm streams to determine when to generate the unit value.

123

Formal Methods in System Design (2022) 61:3–34 17

In particular, any_alarm will pull from every alarm stream at the beginning and then keep
sale

arrival

stock

First step
sale

arrival

stock

Second step
sale

arrival

stock

Third step
pulling from the pointer at theminimumposition. Each of the alarm streams alsomaintains

a pointer to its corresponding alarm_timer, to calculate if the corresponding stock is low for
too long, so it produces a unit value. In particular, the leader will pull from alarm_timer one
event to check the next timestamp and value; and one more to determine whether the timer
is reset or not. The engine maintains an extra pointer for every output stream, which it uses
to pull events and print them. The diagram on the right shows how the pointers are updated
every time the output stream stock is pulled. The big box of each stream represents its leader.
Everything at the right of the leader has not yet been discovered, hence the dashed line. The
leader of the stream stock maintains one pointer to the last event of each other stream, plus
an extra pointer to its own last event (not considering the event that is being computed). The
events shown in grey are events that can be forgotten by the engine because all the pointers
that point to their corresponding streams have passed beyond those events.

2.5.1 Nested specifications

We describe now a feature of HStriver that simplifies specifications in many occasions by
allowing the creation of new data theories as the result of the computation of a monitor, in
order to use the results in higher monitoring activities. We call this feature nested monitoring
or nested specifications.

The main function that implements the monitoring algorithm is runSpec, which takes an
HStriver specification and an input trace for every input stream and returns the successive
events of the output streams. As a by-product of developing HStriver as an eDSL in Haskell,
the datatypes that constitute an HStriver specification and the function runSpec are defined
in Haskell and as such can be lifted to be a theory of the language HStriver itself. This has
enabled the use of HStriver specifications as a theory from within the language [37]. This
feature does not extend the expressive power of HStriver, but it enables us to consider the
language itself as a theory that can be used to define specifications, in the same way as static
parameterization lets us reuse definitions without extending HStriver itself.

Nested specifications allow spawning and executing monitors dynamically, collecting the
result in each invocation and using it as a value in the caller monitor. Defining an inner
specification involves giving it a name and adding an extra clause: return x when y where x

is a stream of any type and y is a Boolean stream. The type of the stream x determines the
type of the value returned when the specification is invoked dynamically. Optionally, we can

123

18 Formal Methods in System Design (2022) 61:3–34

provide parameters when defining the nested specification, which are considered constants
within the monitor. Once we have defined an inner specification spec, we can execute it with
the function runSpec, providing the necessary parameters and lists of values for the input
streams, in the order in which they are defined in spec. When an inner specification with a
return clause return x when y is executed, the computation will return the value of the stream
x at the first time y becomes true, or the last value of x if y never holds in the execution. If x

did not produce a value when y becomes true the value of the execution is the special value
-out.

An inner specification is compiled by the frontend preprocessor to a special folder in the
HStriver Haskell codebase so it is available for a caller monitor to import it as a module with
the directive use innerspec spec.

Using the rich expressive power of HStriver we can define a stream wins that contains
the events of a stream s in a window of length w as shown in the following program:

1 output [(Time, A)] win_s =
2 ticks = ticksOf s U shift (-w) s
3 val = let
4 (mold, mnew) = cv
5 prevList = win_s [<t| ’[]]
6 nextList = if 1’isNothing mold then prevList else 1’tail prevList
7 in
8 if 1’isNothing mnew then nextList
9 else nextList ++ [(now+w, 1’fromJust mnew)]

The output stream wins updates the list of events when an event of s is leaving the sliding
window of events (i.e., when s is producing a value). This definition also uses the shift

operator to retrieve the future values of the stream s and incorporate them to the sliding
window.

The following parametric auxiliary stream slice is offered by HStriver with the following
signature output (A, [(Time, A)]) slice <Int a> <Int b> <Stream A x> =

The stream returns the timestamped values of the stream xwithin the interval (a, b] alongwith
the last value of x before a.Wewill usually use slices as input streams for inner specifications.
The incorporation of nested specifications and slices as libraries in the language greatly
simplifies some stream definitions when we let x[a:b] be syntactic sugar to refer to slices.

2.6 How to run HStriver

To compile anHStriver specification or librarywe execute the hstriverc program–-which
is shipped with the tool–-indicating a set of filenames, of which at most one can be a runnable
specification, while the rest have to be library definitions or inner specifications. The result
of successfully running hstrivercwill be an executable monitor, with the name specified
using the flag -o filename, or a.out if no output filename was specified.

To run our monitor over input data, the program generated has to be executed
with a parameter indicating the directory where the input data is located: monitor dir.
For every non-parameterized input stream s, the monitor will read its events from
the file dir/s.json. For a parameterized input stream s with parameters arg0 . . . argn,
the monitor will read the events for the instantiated input streams from the files
dir/arg0/. . ./argn.json. The input events have to be of the form {"Time": ts,
"Value": val}, where val is the value of the stream at the instant ts, and there has to

123

Formal Methods in System Design (2022) 61:3–34 19

be one event per line, with a monotonically increasing timestamp. The monitor will then pro-
duce a list of events with the form {"Id": id, "Time": ts, "Value": val}, where
val is the value of the stream id at the instant ts.

Note that the input files can be namedpipes,whichwill be consumedwhen it is necessary to
compute the next output event, following the pull algorithm explained in Sect. 2.5, effectively
allowing the monitor to be run over data generated in real time. It is easy to write a wrapper
that acts as a sink for different input events and dispatches every event to its corresponding
named pipe, if necessary.

Consider the specification inExample1,whosedefinition is in thefilestock.hstriver,
and suppose we want to execute with the input streams in the directory ins in the working
directory. Then, we need to run:

$ hstriverc -o monitor stock.hstriver
$./ monitor ins

There needs to be two input stream files in the directory ins: ins/sale.json and
ins/arrival.json. The monitor will print the events of stock to the standard output
progressively when the information is available in the input stream files.

To run the specification in Example 2, where paramstock.hstriver contains the
definitions and the input streams are in the sub-directory paramins of the current directory,
we need to run

$ hstriverc -o monitor paramstock.hstriver
$./ monitor paramins

and there need to be two directories in the directory ins: ins/sale and
ins/arrival, with three input files inside each of them, namely
ins/sale/ProductA.json, ins/arrival/ProductA.json
ins/sale/ProductB.json, ins/arrival/ProductB.json
ins/sale/ProductC.json, and ins/arrival/ProductC.json

Themonitor will print an event whenever there is a shortage of any product. The tool webpage
https://software.imdea.org/hstriver contains several example specifications along with input
and output data.

3 Example specifications

In this section we show a selection of HStriver specifications, each of which illustrates a
particular interesting feature of the language.

3.1 Example #1: clock

The following specification demonstrates the use of the delay operator to define a speci-
fication with no input streams and one output stream clock, which contains a unit value
at each instant multiple of 5. ticks at instants where no input streams have an event.

1 output Time clock:
2 ticks = {0} U delay clock
3 val = 5

123

https://software.imdea.org/hstriver

20 Formal Methods in System Design (2022) 61:3–34

In this specific case, we could have used the shift operator instead with identical results. This
example illustrates that HStriver is not only event-driven, and can generate ticks at instants
where no input stream has an event. TeSSla [16] can also implement this feature but most
other systems, like RTLola [33], can only tick at periodic instants or at points at which inputs
have events.

3.2 Libraries

We can use HStriver to collect reusable code and stream transformers in libraries (that
do not have output streams). Libraries are declared using the directive library Name.
Specifications can then import the definitions in the library. Some libraries are time
domain agnostic and do not require the definition of a time domain. We leverage the
module system of the host language to implement this feature. Many libraries contain
definitions of stream declarations from stream declarations, which shows the high-order
nature of HStriver. Here we show the implementation of the library Utils, which
contains useful stream operators that are used extensively in the rest of the examples.

1 library Utils

2 output b mapFun <String funame> <(a->b) f> <Stream a s>:
3 ticks = ticksOf s
4 val = 1’f cv

5 output Eq a => a changePointsOf <Stream a s>:
6 ticks = ticksOf s
7 val = let
8 prevMVal = s[<t|?]
9 noprev = prevMVal === ’-out

10 prevVal = s[<t|]
11 update = prevVal /== cv
12 in if noprev || update then cv else notick

13 output a shift <Time n> <Stream a x>:
14 ticks = shift n x
15 val = cv

The parametric stream mapFun applies a given function to every event in another stream.
We use the stream changePointsOf to only replicate the events that represent a change of the
current value of a signal. Finally, shift is a utility to apply an offset to the timestamps of all
the events in a stream.

We also show part of the implementation of the library STL which implements the
operators of the signal temporal logic [39], a temporal logic widely used to describe sys-
tem properties of continuous signals, which are represented as timestamped event streams.

123

Formal Methods in System Design (2022) 61:3–34 21

1 library STL
2 use qualified library Utils
3 use haskell Data.Maybe

4 output Bool mu <String funame> <Stream a x> <(a->Double) f>:
5 ticks = ticksOf x
6 val = 1’f cv > 0

7 define Bool keepTrues <Stream Bool s>:
8 ticks = ticksOf s
9 val = if cv then cv else notick

10 define Bool keepFalses <Stream Bool s>:
11 ticks = ticksOf s
12 val = if not cv then cv else notick

13 output Bool until <(Time,Time) (a,b)> <Stream Bool x> <Stream Bool y>:
14 ticks = shift (-a) y U shift (-b) y U shift (-b) x U ticksOf x
15 val = let
16 tnow = 1’T now
17 yT = keepTrues y
18 min_yT = if (Utils.shift (-a) y) [~t|False]
19 then tnow else timeOf (Utils.shift (-a) yT >>_(b-a) t)
20 xF = keepFalses x
21 min_xF = if not x[~t|False] then tnow else timeOf (xF >>_b t)
22 plus x tim = 2’timeAdd x ’tim
23 in
24 min_yT ‘plus‘ a <= tnow ‘plus‘ b && min_yT ‘plus‘ a <= min_xF

The parameterized stream mu represents the application of a function to the values of an input
stream. We define the auxiliary streams keepTrues and keepFalses to filter only the True or
False events of a stream, respectively.

The until operator is defined as follows. Given Boolean streams x and y, and given the
window offsets a and b, the property (xU[a,b]y) is True if there is a point t ′ in the window
[t + a, t + b] where y holds, and x holds continuously from t to t ′. In particular, if y holds
somewhere in the range [t + a, t], the property is True. The definition of until finds the first
time point at which y is True in the range [t + a,∞) (which we call min_yT) and compare it
with the first time point at which x is False in the range [t,∞) (which we call min_xF). For
the property to be true, two things must happen:

• that min_yT ≤ t + b (i.e., that y be True somewhere in the window [t + a, t + b]), and
• that min_yT < min_xF (i.e., that y be True before the first time x is False after t)

The expression min_yT contains the earliest time at which y becomes True after t+a (con-
sidering the possibility of (t+a) itself if y is already True at that point). Similarly, min_xF
contains the earliest time at which x becomes False (considering the possibility of t itself
if x is already False). With these auxiliary definitions, the value expression of until simply
checks that y becomes True within [a, b] and that x is True from t up-to that point.

The tick expression of the stream indicates the times at which its value can change, namely
when a y event enters or leaves the sliding window defined by [t + a, t + b], or when a x

event enters or leaves the sliding window defined by [t, t + b].

123

22 Formal Methods in System Design (2022) 61:3–34

3.3 Example #2: STL

The next example illustrates a simple STL specification: “if the input speed becomes toofast,
then speed will decelerate continuously until reaching an admissible speed (speedok) within
10 time units (represented by the stream slow_down).”

We say that the vehicle is moving too fast if its speed is greater than 3, and we define a
safe speed as a speed under 1. We can write this property in STL as follows:

ϕ : (speed > 3) → (
decel U[0,10] speed < 1

)

We translate this property into HStriver using the following specification. As opposed to the
original STL property, our specification does not assume the existence of a Boolean input
signal decel that indicates whether the vehicle is decelerating. Instead, it uses the unique
input signal speed to calculate if the vehicle is decelerating, comparing its value every time
the signal changes with its next reported value.

1 time domain Double

2 use library STL

3 input Double speed

4 define Bool toofast:
5 ticks = ticksOf speed
6 val = cv > 3

7 define Bool speedok:
8 ticks = ticksOf speed
9 val = cv < 1

10 define Bool decel:
11 ticks = ticksOf speed
12 val = cv > speed[t>|0]

13 define Bool slow_down = until (0,10) decel speedok

14 output Bool ok:
15 ticks = ticksOf toofast U ticksOf slow_down
16 val = toofast [~t|False] ‘implies‘ slow_down [~t|True]

This example shows a straightforward use of the STL library to define temporal properties
as streams.

3.4 RobustSTL

In [40] the authors propose a quantitative semantics of the Signal Temporal Logic, which they
call Robust STL. The robustness of a formula ϕ relative to a trace w and a time t , denoted
by ρ(ϕ,w, t), is defined as follows:

ρ(μ,w, t)
def= f (x1[t], . . . , xn[t]) where μ ≡ f (x1[t], . . . , xn[t]) ≥ 0

ρ(¬ϕ,w, t)
def= −ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t)
def= min(ρ(ϕ1, w, t), ρ(ϕ2, w, t)))

ρ(ϕ1 UI ϕ2, w, t)
def= max

t ′∈t+I
(min(ρ(ϕ2, w, t), min

t ′′∈[t,t ′)
ρ(ϕ1, w, t)))

123

Formal Methods in System Design (2022) 61:3–34 23

We use the extensions in HStriver to define these quantitative semantics of STL. The trans-
lation of the operators μ, ¬ and ∧ are straightforward – they consist of the application of a
function to one or two streams. We show here the definition of ϕ U[a,b] ψ .

1 library RobustSTL
2 use theory Striver
3 use haskell Data.Maybe
4 use innerspec robustuntilspec

5 output Int until <(Time,Time) (a,b)> <Stream Int phi> <Stream Int psi>:
6 ticks = ticksOf phis U ticksOf psis
7 val = 1’(fromMaybe 0.runSpec) (2’robustuntilspec phils psils)
8 where
9 phis = phi[0:b]

10 psis = psi[a:b]
11 phils = 2’stampFst now phis[~t|(Nothing, [])]
12 psils = 2’stampFst (2’tDiffAdd now ’a) psis[~t|(Nothing, [])]
13 stampFst _ (Nothing, r) = r
14 stampFst ts (Just v, r) = (ts,v):r

For the implementation of ϕ U[a,b] ψ we define two slices: the slice of the events of phi in
[t, t+ b] in line 9 and the slice of the events of psi in [t+ a, t+ b], in line 10. Whenever an
event enters or leaves any of the slices, we need to recompute the value of the stream, which
is why we use the aforementioned slices phis and psis as the ticking points of until. Since
we interpret the events of a stream as its change points, we use the value of the last event in
the past of the slices, which is provided as the first element in the tuple of a slice, to access the
value of the signal at the beginning of the sliding window. We override the time of the first
event of phis with the current time (now) in line 11 and the first event of psis with now+ a in
line 12. The helper function stampFst is defined in the last two lines, namely 13 and 14, and
simply stamps the previous value of the slice (if it exists) and prepends it to the list of events
in the sliding window. Finally, we execute the nested specification robustuntilspec with the
resulting slices.

The nested specification robustuntilspec is defined as follows:

1 innerspec Int robustuntilspec

2 input Int phis
3 input Int psis

4 define Bool never:
5 ticks = {0}
6 val = ’False
7 define Int phismins:
8 ticks = ticksOf phis
9 val = 2’min phismins[<t|maxBound] cv

10 define Int theMins:
11 ticks = ticksOf phismins U ticksOf psis
12 val = 2’min psis[~t|maxBound] phismins[~t|maxBound]
13 output Int theMaxMin:
14 ticks = ticksOf theMins
15 val = 2’max theMaxMin[<t|minBound] cv

16 return theMaxMin when never

123

24 Formal Methods in System Design (2022) 61:3–34

The input streams phis and psis contain the successive changepoints of the original phi
and psi within a sliding window. We first define in lines 4 to 6 a Boolean stream called never

that is always False, which we will use to return the value of the last event of theMaxMin via
the return statement in line 16. Note that the return clause would be equivalent if we define
the value expression of never as notick instead of False.

The intermediate stream phismins defined in lines 7 to 9maintains the successive historical
minimums of phi within the slice, and the intermediate stream theMins defined in lines 10
to 12 computes the minimum between the current value of psi and the current historical
minimum of phi.

Finally, theMaxMin in lines 13 to 15 keeps the maximum value that was ever taken by
theMins. The last value of theMaxMin is returned as the result of the computation.

3.5 Example #3 : cost computation

The following example calculates the accumulated energy cost incurred by a monitor, based
on a cost model for

(a) waking up the monitor,
(b) processing an event,
(c) going to sleep,
(d) being idle,
(e) being awake,

which are encoded in the return values of the functions runningCost of type RunMode →
Int and transiCost, of type RunMode → RunMode → Int. The cost calculation also depends
on how long does the monitor wait for a new event before going to sleep, represented by
the constant patience. This specification contains the definition of an output stream cost

which is the quantitative result of a progressive computation, as opposed to typical Boolean
output streams. In this example the event production is unpredictable and not governed by
a predefined ratio. This example uses custom datatype definitions, and event generation at
instants where there is no input event.

123

Formal Methods in System Design (2022) 61:3–34 25

1 time domain Double
2 use haskell Data.Maybe

3 data RunMode= Alert | Sleeping deriving (Show,Generic,ToJSON,Eq)

4 const processEventCost = 20
5 const wakeUpCost = 100
6 const gotoSleepCost = 100
7 fun runningCost Alert = 100
8 fun runningCost Sleeping = 1

9 fun transiCost Alert Alert = processEventCost
10 fun transiCost Sleeping Alert = wakeUpCost + processEventCost
11 fun transiCost Alert Sleeping = gotoSleepCost
12 fun transiCost Sleeping Sleeping = error "going to sleep sleeping"

13 const patience = 10

14 input () newEvent

15 define Time sleep_delayer:
16 ticks = ticksOf newEvent
17 val = ’patience

18 define () sleep:
19 ticks = delay sleep_delayer
20 val = ’()

21 define RunMode runMode:
22 ticks = ticksOf newEvent U ticksOf sleep
23 val = if 1’isJust (fst cv) then ’Alert else ’Sleeping

24 output Int cost:
25 ticks = ticksOf runMode
26 val = let
27 previousRunMode = runMode[<t|Alert]
28 currentRunMode = cv
29 costOfTransitioning = 2’transiCost previousRunMode currentRunMode
30 getTimeT (T x) _ = x
31 getTimeT _ y = y
32 prevt = 2’getTimeT (timeOf (runMode << t)) now
33 timediff = 1’(round.realToFrac) (2’timeDiff now prevt)
34 accum = cost [<t|0] + timediff * (’runningCost previousRunMode)
35 in
36 accum + costOfTransitioning

The stream sleep_delayer produces the value patience every time there is a new event,
and it is used to delay the value of sleep by exactly patience time units. Since patience is a
constant in our specification, we could have used the stream shift from Utils to achieve the
same result.

The stream runMode indicates if the system is Alert or Sleeping. When a new event is
received, the system is Alert, and if the patience after the last event is consumed, then the
system goes to sleep.

Finally, cost produces an event every time the runMode (potentially) changes, with the
cost of transitioning from the previous state to the current one, plus the accumulated cost of
having been in the previous state until now.

123

26 Formal Methods in System Design (2022) 61:3–34

3.6 Example #4: powerTrain

Our fourth example makes a heavy use of the STL library to implement STL properties for
the verification of a powertrain control verification from [41], where input signals change
asynchronously.

1 time domain Double
2 use library STL
3 use library Utils

4 input Double verification
5 input Double mode
6 input Double pedal

7 const simTime = 50
8 const eta = 1
9 const taus = 10 + eta

10 const zeta_min = 5

11 define Bool low = mapFun "low" (geq 0.5) pedal
12 define Bool high = mapFun "high" (leq 0.5) pedal
13 define Bool utl <Double x> = mapFun "utl" (leq (-x)) verification
14 define Bool utr <Double x> = mapFun "utr" (geq x) verification
15 define Bool pwr = mapFun "pwr" (leq 0.5) mode
16 define Bool norm = mapFun "norm" (geq 0.5) mode

17 -- phi = []_(taus, simTime) (
18 -- ((low /\ <>_(0,h) high) \/ (high /\ <>_(0, h) low))
19 -- -> []_[eta, zeta_min] (utr /\ utl))
20 const ut2 = 0.02
21 output Bool opt2 = always (taus, simTime)
22 (((low ‘conj‘ eventually (0,h) high)
23 ‘disj‘ (high ‘conj‘ eventually (0,h) low))
24 ‘implies‘
25 always (eta, zeta_min) (utr ut2 ‘conj‘ utl ut2))

26 -- phi = <>_[simTime, simTime] utr
27 const ut3 = 0.05
28 output Bool opt3 = eventually (simTime, simTime) (utr ut3)

29 -- phi = []_(taus, simTime) utr
30 const ut4 = 0.1
31 output Bool opt4 = always (taus, simTime) (utr ut4)

As in [41] we use input data computed from a MatLab simulation of the powertrain. This
example shows how to import and use the STL operators to describe properties. We have
refrained from using let and where clauses to maintain the syntax of the original properties,
which are commented in MatLab above each definition.

3.7 Example #5: smart home

This example models a smart home specification that uses the Orange4Home data-set [42].
The following monitor calculates how much time residents spend watching TV per day,
assessing that every day the people living the house should not watch more than three hours
of TV (exceeded3hPerDay).

123

Formal Methods in System Design (2022) 61:3–34 27

1 time domain UTC

2 use library Utils
3 use haskell Data.Time

4 input Bool livingroom_tv_on
5 input Bool office_tv_on

6 define Bool any_tv_on:
7 ticks = ticksOf office_tv_on U ticksOf livingroom_tv_on
8 val = office_tv_on [~t|False] || livingroom_tv_on [~t|False]

9 define Int instantN:
10 ticks = ticksOf any_tv_on
11 val = instantN [<t|0] + 1

12 define Bool isNewDay:
13 ticks = ticksOf any_tv_on
14 val = let
15 today = 1’utctDay now
16 prev = 1’(utctDay.unT) (timeOf (any_tv_on << t))
17 in
18 if instantN [~t|] === 1 then ’True else today /== prev

19 define Int howMuchTvToday:
20 ticks = ticksOf any_tv_on
21 val = let
22 prevVal = if isNewDay [~t|] then 0 else howMuchTvToday [<t|0]
23 sumVal = if any_tv_on [~t|] then 1 else 0
24 in
25 prevVal + sumVal

26 output Bool exceeded3hPerDay:
27 ticks = ticksOf any_tv_on
28 val = howMuchTvToday[~t|] > 3*60

29 define Int countDays:
30 ticks = ticksOf any_tv_on
31 val = countDays [<t|0] + if isNewDay[~t|] then 1 else 0

32 define Int totalTVTime:
33 ticks = ticksOf any_tv_on
34 val = totalTVTime [<t|0] + if any_tv_on[~t|] then 1 else 0

35 define Int avgTvPast:
36 ticks = ticksOf any_tv_on
37 val = if isNewDay[~t|]
38 then 2’div (totalTVTime[~t|]) (countDays[~t|])
39 else avgTvPast [<t|0]

40 output Bool exceededAvgPlus30m:
41 ticks = ticksOf any_tv_on
42 val = howMuchTvToday[~t|] > avgTvPast[~t|] + 30

More interesting is exceededAvgPlus30m, which states that residents should not watch thirty
minutes more than the total average of TV watched historically. This threshold is dynamic,
and requires declaring intermediate quantitative streams that compute the average and current
day TV time.

123

28 Formal Methods in System Design (2022) 61:3–34

Fig. 4 Empirical evaluation of hypotheses (H1), (H2), and (H3)

4 Empirical evaluation

In this section, we report on an empirical evaluation of HStriver. This empirical evaluation
is not aimed at comparing the performance of HStriver with similar tools, but it intends
to demonstrate that the memory efficiency of HStriver is consistent with the theoretical
analysis/prediction; and its memory footprint makes it good enough to be used in real life
scenarios.We believe that the best choice of a tool is not exclusively based on its performance,
but that expressivity and usability are more decisive, considering similar memory usages. All
the experiments were executed on a MacBook Pro with MacOS Catalina Version 10.15.4,
with an Intel Core i5 at 2.5 GHz and 8 GB of RAM.

We evaluate empirically the following hypotheses:

• (H1) The memory consumed is constant throughout an execution if we restrict the spec-
ification to use only past references, that is, where the memory required is trace length
independent.

• (H2) The resources necessary to monitor a specification grows with respect to its number
of streams.

• (H3) The resources necessary to monitor a specification grows with respect to the events
it needs to keep in memory.

• (H4) The memory consumed is constant throughout the execution of an STL property
with the efficient version of the U operator.

• (H5) The resources necessary to monitor an STL specification grows similarly with
respect to variations in the interval size and with respect to variations in the event density.

• (H6) The version of the U operator that uses bounded future accesses, is more efficient
and memory-wise stable than the version of the operator that uses unbounded future
accesses.

We run experiments to measure the memory usage and assess hypotheses (H1), (H2), and
(H3) for two collections of specifications:

• Stocks. The first collection generalizes Example 2 computing the stocks of p independent
products, similar to Example 3, but without the alarms. These specifications contain a
number of streams proportional to p, where each defining equation is of the same size.

123

Formal Methods in System Design (2022) 61:3–34 29

1 time domain Double
2 use haskell Data.Maybe

3 type Product= Int

4 input Int sale <Product p>
5 input Int arrival <Product p>

6 define Int stock <Product p>:
7 ticks = ticksOf (sale p) U ticksOf (arrival p)
8 val = let
9 (msal, marr) = cv

10 sal = 1’(fromMaybe 0) msal
11 arr = 1’(fromMaybe 0) marr
12 in
13 stock p [<t|0] - sal + arr

• Average.The second collection computes the average of the last p sales of a fixed product,
via streams that tick at the selling instants and compute the sum of the last p sales. The
resulting specifications have depth proportional to p.

1 input Int sale

2 define Int denom <Int p>:
3 ticks = ticksOf sale
4 val = 1’(min p) ((denom p)[<t|0] + 1)

5 define Double sumlastp <Int p>:
6 ticks = ticksOf sale
7 val = (sumlastp p)[<t|0] + cv - sale[<sale<<sale<<. . .<<t|0]

8 output Double avgp <Int p>:
9 ticks = ticksOf sale

10 val = (sumlastp p)[~t|] / 1’fromIntegral (denom p)[~t|]

We instantiate p for values between 10 and 500 and run each resulting specification with
a set of automatically generated random input traces.

For this experiment we ran the synthesized monitors over long traces, and we measured
the memory consumption. The results shown in Fig. 4a illustrate that the memory needed
to monitor each specification is independent of the length of the trace, since the curves
are roughly constant throughout the entire executions, validating (H1). The bars in Fig. 4b
indicate that the memory needed to monitor both specifications increases with the parameter
p, with stock increasing more rapidly than average, valdating (H2) and (H3). The reason for
this is that the number of streams in the stock specification gets higher when p gets larger and
also has to keep in memory more events (the last event of every stream); while the average
specification also has to remember a higher number of events when p gets larger, but the
number of streams in the specification remains constant (even though the stream definition
of sumlastp gets larger, this introduces negligible overhead compared to the overhead of the
number of streams that affects the stock specification).

We have designed a set of experiments to assess the validity of the hypotheses (H4), (H5),
and (H6), for which we consider the following STL specification from Section 3.3:

ϕ : (speed > 3) → (
decel U[0,10] speed < 1

)

123

30 Formal Methods in System Design (2022) 61:3–34

Fig. 5 Empirical evaluation of hypotheses (H4), (H5), and (H6)

In the first set of experiments, we vary the size of the interval for the U operator adding
a parameter isize to the stream slow_down to analyse how it affects the performance of the
engine:

define Bool slow_down <Time isize> = until (0,isize) decel speedok

We also vary the amount of events per second in the input stream, which we call the density
of the signal, to assess its impact on performance. The input data for the experiments are
generated programatically.

Figure 5a shows the memory consumption of the monitor of the specification with diverse
interval sizes and event density, which in all cases remains constant throughout the execution,
albeit with different constants, validating (H4).

Figure 5b shows the maximum memory consumed by the monitor of the specification
with increasing event density and constant interval size (represented by the blue bars) and
increasing interval sizes and constant event density (represented by the red bars), illustrating
that the amount of memory necessary to monitor this specification increases with the number
of events that fit in an interval, either because the interval is larger, or because there are more
events per second, which validates (H5).

123

Formal Methods in System Design (2022) 61:3–34 31

Figure 5c shows the input signal speed at the top, and underneath, the regions where ϕ

holds (in green) or not (in red).
The definition of the parametric until stream in the library STL uses the »b operator, which

ensures that the memory consumption is bounded by the interval size and the event density.
If we use the implementation of until with unbounded future operators, then the memory
requirement depends on the behavior of the input signal and is no longer solely determined
by the interval size and input event density.

We have run the specification over the input data shown at the bottom of Fig. 5(d) using
the efficient (bounded) and inefficient (unbounded) version of until, and we have measured
their memory usage, which can be seen in the plot at the top of Fig. 5(d). The black curve
represents the memory consumption of the efficient implementation of the U operator, and
the red curve represents the memory consumption of the inefficient implementation of the
operator. In the specification with unbounded future accesses, the U expression needs to
retrieve the next instant at which the vehicle decelerates and also the next instant at which its
speed is safe. If one of these instants is far in the future, the monitor needs to consume and
store all the input up to that point. This causes a rapid increase in the memory consumption,
which is now visible in the shape of the input signal and unknown beforehand. Once the
relevant instants are found, the input signal is consumed up to that point, which causes a
rapid decrease in memory consumption. As a result of this, we observe that memory usage
presents peaks during the execution, in concordance with the behavior of the input signal. By
the end of the execution, the input signal speed accelerates continuously, making the engine
consume and store the input indefinitely, until it reaches the maximum memory allowed,
which was set at 1 GB, without computing a value for the output stream ok, even though
that much memory is not necessary for the computation, as demonstrated by the memory
consumption of the efficient implementation of U , in black. This experiment validates (H6).

5 Conclusion

We have a presented HStriver, a stream runtime verification tool for real-time event-streams,
implemented as an eDSL with Haskell as the host language, based on a technique called
lift-deep embedding. One drawback of our approach is that the Haskell runtime system uses
garbage collection, which is usually forbidden for critical applications. However, HStriver
has been used in (non-critical) UAVmissions, andwe are exploring the generation ofMisra-C
code from (a restricted set of) HStriver specifications.

Another undesired byproduct of having developed HStriver as an eDSL is that we do not
have full control over the syntax and we have to adapt it to that of Haskell. This also means
that errors are reported by the Haskell compiler and are usually cryptic and hard to follow.
Future work includes the development of a frontend that allows adapting the input syntax
to particular use cases, offering a friendly syntax and the necessary types and features from
HStriver, while also giving us complete control over error reports.

An alternative way of defining the semantics of the underlying language HStriver is by
searching for a fixpoint using small-step semantics. Future work includes defining the seman-
tics of HStriver following this alternative approach and analyse how this definition impacts
on the design, development and assessment of the tool HStriver.

123

32 Formal Methods in System Design (2022) 61:3–34

References

1. Havelund K, Goldberg A (2005) Verify your runs. In: Proceedings of verified software: theories, tools,
and experiments (VSTTE’05), LNCS, vol 4171. Springer, Heidelberg, pp 374–383

2. LeuckerM, Schallhart C (2009) A brief account of runtime verification. J LogAlgebr Program 78(5):293–
303

3. Bartocci E, Falcone Y (eds) (2018) Lectures on runtime verification—introductory and advanced topics.
LNCS, vol 10457. Springer, Cham

4. Manna Z, Pnueli A (1995) Temporal verification of reactive systems. Springer, New York
5. Bauer A, Leucker M, Schallhart C (2011) Runtime verification for LTL and TLTL. ACM Trans Softw

Eng Methodol 20(4):14
6. Eisner C, Fisman D, Havlicek J, Lustig Y, McIsaac A, Campenhout DV (2003) Reasoning with tem-

poral logic on truncated paths. In: Proceedings of the 15th international conference on computer aided
verification (CAV’03). LNCS, vol 2725. Springer, Heidelberg, pp 27–39

7. Havelund K, Roşu G (2002) Synthesizing monitors for safety properties. In: Proceedings of the 8th
international conference on tools and algorithms for the construction and analysis of systems (TACAS’02).
LNCS, vol 2280. Springer, Heidelberg, pp 342–356

8. Sen K, Roşu G (2003) Generating optimal monitors for extended regular expressions. In: Electronic notes
in theoretical computer science, vol 89. Elsevier, Amsterdam

9. Roşu G, Havelund K (2005) Rewriting-based techniques for runtime verification. Automat Softw Eng
12(2):151–197

10. Barringer H, Goldberg A, Havelund K, Sen K (2004) Rule-based runtime verification. In: Proceedings of
the 5th international conference on verification, model checking and abstract interpretation (VMCAI’04).
LNCS, vol 2937. Springer, Heidelberg, pp 44–57

11. Barringer H, Rydeheard D, Havelund K (2007) Rule systems for run-time monitoring: from Eagle to
RuleR. In: Proceedings of the 7th international workshop on runtime verification (RV’07). LNCS, vol
4839. Springer, Heidelberg, pp 111–125

12. D’Angelo B, Sankaranarayanan S, Sánchez C, RobinsonW, Finkbeiner B, SipmaHB,Mehrotra S,Manna
Z (2005) LOLA: runtime monitoring of synchronous systems. In: Proceedings of the 12th international
symposium of temporal representation and reasoning (TIME’05). IEEE CS Press, Washington DC, pp
166–174

13. Sánchez C (2018) Online and offline stream runtime verification of synchronous systems. In: Proceedings
of the 18th international conference on runtime verification (RV’18). LNCS, vol 11237. Springer, Cham,
pp 138–163

14. Berry G (2000) The foundations of Esterel. Proof, language, and interaction: essays in honour of Robin
Milner. MIT Press, Cambridge, MA, pp 425–454

15. Halbwachs N, Caspi P, Pilaud D, Plaice JA (1987) Lustre: a declarative language for programming syn-
chronous systems. In: Proceedings of the 14th ACM symposium on principles of programming languages
(POPL’87). ACM Press, New York, NY, pp 178–188

16. Convent L, Hungerecker S, Leucker M, Scheffel T, Schmitz M, Thoma D (2018) TeSSLa: temporal
stream-based specification language. In: Proceedings of the 21st. Brazilian symposium on formalmethods
(SBMF’18). LNCS, vol 11254. Springer, Cham

17. Leucker M, Sánchez C, Scheffel T, Schmitz M, Schramm A (2018) TeSSLa: runtime verification of non-
synchronized real-time streams. In: Proceedings of the 33rd symposium on applied computing (SAC’18).
ACM Press, New York, NY

18. Gorostiaga F, Sánchez C (2018) Striver: stream runtime verification for real-time event-streams. In:
Proceedings of the 18th international conference on runtime verification (RV’18). LNCS, vol 11237.
Springer, Cham, pp 282–298

19. Faymonville P, Finkbeiner B, Schledjewski M, Schwenger M, Stenger M, Tentrup L, Hazem T (2019)
StreamLAB: stream-based monitoring of cyber-physical systems. In: Proceeings of the 31st international
conference on computer-aided verification (CAV’19). LNCS, vol 11561. Springer, Cham, pp 421–431

20. Gorostiaga F, Sánchez C (2021) Stream runtime verification of real-time event-streams with the Striver
language. Int J Softw Tools Technol Transf 23:157–183

21. Gorostiaga F, Sánchez C (2021) HStriver: a very functional extensible tool for the runtime verification of
real-time event streams. In: Proceedings of the 24th international symposium on formalmethods (FM’21).
LNCS, vol 13047. Springer, Cham, pp. 563–580. https://doi.org/10.1007/978-3-030-90870-6_30

22. HavelundK (2015) Rule-based runtime verification revisited. Int J SoftwTools Technol Transf 17(2):143–
170

123

https://doi.org/10.1007/978-3-030-90870-6_30

Formal Methods in System Design (2022) 61:3–34 33

23. Barringer H, Havelund K (2011) TraceContract: a scala DSL for trace analysis. In: Proceedings of the
17th international symposium on formal methods (FM’11). LNCS, vol 6664. Springer, Heidelberg, pp.
57–72

24. Stolz V, Huch F (2005) Runtime verification of concurrent Haskell programs. Electronic notes on theo-
retical computer science, vol 113. Elsevier, Amsterdam, pp 201–216

25. Ceresa M, Gorostiaga F, Sánchez C (2020) Declarative stream runtime verification (hLola). In: Proc. of
the 18th Asian Symposium on Programming Languages and Systems (APLAS’20). LNCS, vol 12470.
Springer, Cham, pp 25–43

26. Falcone Y, Krstic S, Reger G, Traytel D (2018) A taxonomy for classifying runtime verification tools.
In: Proceedings of the 18th international conference on runtime verification (RV’18). LNCS, vol 11237.
Springer, Cham, pp 241–262

27. Reinbacher T, Rozier KY, Schumann J (2014) Temporal-logic based runtime observer pairs for system
health management of real-time systems. In: Proceedings 20th International Confer on Tools and Algo-
rithms for the Construction andAnalysis of Systems (TACAS’14). LNCS, vol 8413. Springer, Heidelberg,
pp 357–372

28. Hallé S (2016) When RV meets CEP. In: Proceedings of the 16th international conference on runtime
verification (RV’16). LNCS, vol 10012. Springer, Cham, pp 68–91

29. Hallé S, Khoury R (2017) Event stream processing with BeepBeep 3. In: Proceedings of the international
workshop on competitions, usability, benchmarks, evaluation, and standardisation for runtime verification
tools (RV-CUBES). Kalpa Publications in Computing. EasyChair, pp 81–88

30. BasinD,HarvaM,Klaedtke F, ZalinescuE (2011)MONPOLY:monitoring usage-control policies. In: Pro-
ceedings of the 2nd international conference on runtime verification (RV’11). LNCS, vol 7186. Springer,
Heidelberg, pp 360–364

31. Basin DA, Klaedtke F, Zalinescu E (2017) The MonPoly monitoring tool. In: Proceedings of the inter-
national workshop on competitions, usability, benchmarks, evaluation, and standardisation for runtime
verification tools (RV-CUBES). Kalpa Publications in Computing. EasyChair, pp 19–28

32. Pike L, Goodloe A,Morisset R, Niller S (2010) Copilot: a hard real-time runtimemonitor. In: Proceedings
of the 1st international conference on runtime verification (RV’10). LNCS, vol 6418. Springer,Heidelberg,
pp 345–359

33. Faymonville P, Finkbeiner B, Schwenger M, Torfah H(2017) Real-time stream-based monitoring. CoRR
arXiv:1711.03829

34. Aguado J, Mendler M, Pouzet M, Roop P, von Hanxleden R (2018) Deterministic concurrency: a clock-
synchronised sharedmemory approach. In: AhmedA (ed) Programming languages and systems. Springer,
Cham, pp 86–113

35. Talpin J-P, Brandt J, Gemünde M, Schneider K, Shukla S (2013) Constructive polychronous systems. In:
Artemov S, Nerode A (eds) Logical foundations of computer science. Springer, Berlin, Heidelberg, pp
335–349

36. Marlow S (2010) Haskell language report
37. Gorostiaga F, Sánchez C (2021) Nested monitors: monitors as expressions to build monitors. In: Proceed-

ings of the 21st international conference on runtime verification (RV’21). LNCS, vol 12974. Springer,
Heidelberg, pp 164–183

38. Gorostiaga F (2022) Theory and practice of stream runtime verification for sequences and real-time event
based systems. https://oa.upm.es/70504/

39. Maler O, Nickovic D (2004)Monitoring temporal properties of continuous signals. In: Proceedings of the
joint international conference on formal techniques, modelling and analysis of timed and fault-tolerant
systems, and formal modelling and analysis of timed systems (FORMATS/FTRTFT 2004). LNCS, vol
3253. Springer, Heidelberg, pp 152–166

40. Donzé A, Ferrère T, Maler O (2013) Efficient robust monitoring for STL. In: Proceedings of the 25th
international conference on computer aided verification (CAV’13). LNCS, vol 8044. Springer, Heidelberg,
pp 264–279

41. Jin X, Deshmukh JV, Kapinski J, Ueda K, Butts K (2014) Powertrain control verification benchmark. In:
Proceedings of the 17th international conference on hybrid systems: computation and control (HSCC’14).
ACM, New York, pp 253–262

42. Cumin J, Lefebvre G, Ramparany F, Crowley J (2017) A dataset of routine daily activities in an instru-
mented home. In: Proceedings of the 11th international conference on ubiquitous computing and ambient
intelligence (UCAmI’17). LNCS, vol 10586. Springer, Cham, pp 413–425

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1711.03829
https://oa.upm.es/70504/

34 Formal Methods in System Design (2022) 61:3–34

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Runtime verification of real-time event streams using the tool HStriver
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions and structure

	2 The HStriver Tool
	2.1 HStriver architecture
	2.2 The tool HStriver
	2.3 Language implementation
	2.3.1 The host language Haskell
	2.3.2 Lift-deep embedding
	2.3.3 Language internals

	2.4 Static analysis
	2.5 The engine
	2.5.1 Nested specifications

	2.6 How to run HStriver

	3 Example specifications
	3.1 Example #1: clock
	3.2 Libraries
	3.3 Example #2: STL
	3.4 RobustSTL
	3.5 Example #3 : cost computation
	3.6 Example #4: powerTrain
	3.7 Example #5: smart home

	4 Empirical evaluation
	5 Conclusion
	References

