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Abstract
This article provides an innovative approach for verification by model checking of pro-
grams that undergo continuous changes. To tackle the problem of repeating the entire 
model checking for each new version of the program, our approach verifies programs 
incrementally. It reuses computational history of the previous program version, namely 
function summaries. In particular, the summaries are over-approximations of the bounded 
program behaviors. Whenever reusing of summaries is not possible straight away, our algo-
rithm repairs the summaries to maximize the chance of reusability of them for subsequent 
runs. We base our approach on satisfiability modulo theories (SMT) to take full advantage 
of lightweight modeling approach and at the same time the ability to provide concise func-
tion summarization. Our approach leverages pre-computed function summaries in SMT 
to localize the checks of changed functions. Furthermore, to exploit the trade-off between 
precision and performance, our approach relies on the use of an SMT solver, not only for 
underlying reasoning, but also for program modeling and the adjustment of its precision. 
On the benchmark suite of primarily Linux device drivers versions, we demonstrate that 
our algorithm achieves an order of magnitude speedup compared to prior approaches.

Keywords  Symbolic model checking · Incremental verification · SMT solving · Craig 
interpolation · Program changes

1  Introduction

Modern software is developed by multitudes of developers from all over the world. 
As a result, the software undergoes frequent minor changes, e.g., bug fixes, introduc-
tion of new features, optimizations, refactoring, and so on. The problem of updating 
software is that this might break existing features—bugs might get introduced. The 
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confidence of correctness can be increased by rigorous verification before a new revi-
sion of a piece of software is checked in. Model checking techniques  [1, 2] verify 
program fully automatically and exhaustively. However, most software verification 
approaches are not designed to support sequences of program versions, and they force 
each changed program to be verified from scratch which often makes re-verification 
computationally impractical.

This work addresses the problem of efficient analysis of a program after it undergoes 
changes. As a viable solution to this problem, incremental verification is a promising 
approach that aims to reuse the invested efforts between verification runs. We base our 
approach on symbolic verification techniques, and in particular bounded model check-
ing (BMC) [3]. The previous work [4] has shown that the idea of extracting and reusing 
function summaries across program changes is useful in BMC when using the so called 
bit-blasting approach, with the direct use of a SAT solver. However, due to the known 
complexity of bit-precise encoding it suffers from scalability issues. Using SAT-based 
function summaries also creates summaries that can be significantly larger than the orig-
inal formulas, and that are not human-readable, impeding their reuse and maintainability.

We present an incremental BMC approach that is based on Satisfiability Modulo 
Theories (SMT) [5]. Since SMT formulas provide a more natural and lightweight rep-
resentation than purely propositional logic  [6], it allows for a more succinct summary 
representation in first-order logic. We tackle scalability issues that arise due to verifica-
tion of industrial-size program versions by (i) modeling the program with fragments 
of quantifier-free first-order logic, in particular in Linear Real Arithmetic ( LRA ) and 
Equality with Uninterpreted Functions ( EUF ) which allows to leverage success of now-
adays SMT solvers, and (ii) reusing and maintaining SMT-based function summaries 
across the closely-related programs.

Function summaries are obtained from Craig Interpolants [7] which play the role of con-
served function specifications. For a code that recurs in several versions, function summa-
ries have been proven successful as a means to capture the properties relevant for BMC in a 
form that avoids duplicate verification [4, 8–13]. Function summaries constructed in SMT 
are more succinct and thus their easier reuse. In this article, we exploit an SMT-based fam-
ily of summaries that condenses the relevant information from a previous verification run to 
localize and speed up the checks of new program versions. In this approach, the problem of 
determining whether a newly changed program still meets a safety property reduces to the 
problem of validating the family of summaries for the new program. As a result, in practice 
the verification stays often very local, resulting in significant run time improvements.

Our proposed incremental BMC solution aims to maintain and repair over-approximating 
summaries of all the program functions. Overall, our solution proceeds as follows. First, a 
program together with safety properties is modeled in SMT, and if properties hold, func-
tion summaries are computed. Then once a change arrives, it first determines whether the 
old summaries for functions are still valid after the change. This validation phase is local to 
the change and tends to be computationally inexpensive since it considers only the changed 
function bodies, their old summaries, and possibly the summaries of the predecessors of 
the changed functions. If this local validation phase succeeds, the new program version is 
also safe. If local validation fails, the approach attempts to widen the scope of the search 
while still maintaining some locality, by propagating the validation check to the callers of 
the modified functions. After each successful validation, any invalidated summaries become 
a candidate to be repaired and are made available for checking the next program version.

The key idea behind the summary repair approach is to circumvent the deletion 
of invalidated function summaries and instead attempt to adapt them to the changed 
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functions. Our solution repairs an over-approximating summary of the program func-
tion which is coarse enough to enable rapid check but strong enough to cover more 
changes in an incremental checking scenario. The repair is done via two strategies: the 
first weakens the invalid summary formulas by removing the broken parts, and the sec-
ond strengthens the weakened summary by recomputing the corresponding interpolant 
and adding missing parts. We keep the conjunction of newly repaired summaries for 
subsequent uses. The refinement procedure accompanies our incremental summary vali-
dation algorithm for dealing with spurious behaviors that might be introduced due to 
imprecise over-approximative summaries.

We implemented our SMT-based incremental verification algorithm with the new con-
cept of summary repair in the UpProver tool. We advocate the necessity to offer various 
encoding options to the user. Therefore, in addition to the provided SMT-level light-weight 
modeling and the corresponding SMT-level summarizations supported by our incremen-
tal verifier, the tool allows adjusting the precision and efficiency with different levels of 
encodings. For this purpose UpProver enables the LRA and EUF theories (and in the 
future, more). This was not possible in the previous-generation tools based on bit blasting 
(e.g., in its predecessor eVolCheck [4, 12]), and this distinguishes UpProver from them. 
Furthermore, our approach not only allows the reuse of summaries obtained from SMT-
based interpolation, but also provides an innovative capability of repairing them automati-
cally and using them in the subsequent verification runs.

Improvement over previous own work.  The present work is an extension of [14] published 
in a conference. We build upon and extend [14] in a number of ways: (i) we provide a uni-
fied and richer description of the SMT-based verification framework for program revisions; 
(ii) we propose a new algorithm to repair previously computed summaries on-the-fly and to 
use them in the subsequent verification runs; (iii) we give an algorithm for constructing for-
mulas in the presence of various substitution scenarios and refining the over-approximation 
that are not accurate enough; (iv) we provide a proof of correctness of the algorithm and then 
discusses how it can be instantiated to a concrete theory of SMT with different interpolation 
procedures; (v) a thorough evaluation of the proposed algorithm is carried out on industrial 
verification problems created from Linux kernel device drivers with several revisions.

Structure of the paper.  Sect. 2 provides the necessary background used in the theoreti-
cal development of the work. Section 3 uses a concrete example of a two-version model 
checking problem to demonstrate how the approach can incrementally verify the second 
program by reusing pre-computed summaries of the first program. Section 4 first presents 
the core algorithm for incremental verification of program revisions, then introduces the 
algorithm for summary repair, and lastly describes an improvement for efficiently build-
ing formulas and refining them on-the-fly. Section 5 first discusses the correctness of our 
proposed algorithm and then instantiates the algorithm with respect to a concrete theory. 
Section 6 gives an overview of the architecture and implementation of our tool, UpProver. 
Section 7 describes the experimental results and evaluation of our tool. We discuss related 
work in Sect. 8 and finally conclude in Sect. 9.

2 � Background

We first review symbolic program modeling and interpolation-based function summariza-
tion. Then we describe how to compute function summaries and how to apply them while 
encoding a program.
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2.1 � Program modeling

We work in the domain of Satisfiability Modulo Theories (SMT)  [5] where satisfi-
ability of formulas is determined with respect to some background theory T  . In this 
work, we restrict our interest to quantifier-free formulas. Since our goal is an efficient 
analysis of a program after a change, to leverage the success of nowadays SMT solv-
ers we concentrate on two light-weight theories of SMT for program encodings: (i) 
the theory of equality with uninterpreted functions ( EUF ), and (ii) the theory of linear 
real arithmetic ( LRA ). However, our approach is generic and is not bound to specific 
theories.

Bounded Model Checking (BMC) [3] is one of the widely-used bug-catching techniques 
that trades off completeness of the state-space exploration for finding as many counter-
examples as allowed by the predetermined time- and resource constraints. SMT-based 
BMC has been successfully applied in verifying standalone programs  [11, 15, 16]. Our 
SMT-based BMC technique aims at verifying different program versions and operates on a 
loop-free program created from an original by unrolling all loops and recursive calls up to 
a given number of unwinding steps.

We write loop-free programs as tuples P = (F, fmain) where F represents the finite set 
of unique function calls, i.e., function invocation with a unique combination of a program 
location, a call stack, and a target function. fmain ∈ F denotes the call of the entry point of 
the program. Interchangeably F also corresponds to the set of functions in the call tree of 
the unrolled program. We use relations child ⊆ F × F and subtree ⊆ F × F , where child 
relates each function f to all the functions invoked by f, and subtree is a reflexive transitive 
closure of child. Since each node has at most one parent, we write parent(n2) to refer to n1 
if child(n1, n2) holds.

Classical BMC of software encodes an unwound program to a BMC formula [17]. 
First, the unrolled program is encoded into the static single assignment form (SSA), 
from which a BMC formula is constructed. However the resulting formula is mono-
lithic and all the function calls are inlined, thus it does not allow modular verifica-
tion. Let �f  be the BMC encoding of the body of a function f, i.e., the logical formula 
obtained from the SSA form of the body of the function f. Note that �f  does not include 
inlining of called functions. A partitioned BMC (PBMC) formula  [8] is constructed 
recursively as

For each f ∈ F , the formula is built by conjoining the partition �f  and a separate partition 
for all nested calls. The PBMC formula �������������(fmain) conjoined with the negation 
of a safety property errorfmain is called a safety query. Typically errorfmain represents disjunc-
tion of the negations of each of the assertion in the program. A program is safe if the safety 
query is unsatisfiable.

(1)�������������(f ) ≜ �f ∧
⋀

h∈F∶child(f ,h)

�������������(h)
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2.1.1 � Interpolation‑based function summarization

Function summary is an over-approximation of the function behavior defined as a relation 
over its input and output variables. There are different ways to obtain a summary formula, 
and in this work we use the approach introduced in [8] for extracting summary formulas 
using Craig interpolation. Craig interpolation [7] is widely used as a means of abstraction 
in symbolic model checking [18, 19]. Interpolants can be computed from a proof of unsat-
isfiability of the formula A ∧ B.

Definition 1  (binary interpolation) Given an unsatisfiable formula Φ partitioned into 
two disjoint formulas A and B, we call the pair (A ∣ B) a binary interpolation instance. 
An interpolation algorithm Itp is a procedure that maps an interpolation instance to a for-
mula I = Itp(A ∣ B) such that (i) A ⇒ I , (ii) I ∧ B ⇒ ⊥ , and (iii) I is defined over symbols 
appearing both in A and B.

Binary interpolation can be generalized so that the partitions of an unsatisfiable formula 
form a tree structure. We in particular concentrate on tree interpolants, generalizations 
of binary interpolants, obtained from a single proof that guarantees the tree interpolation 
property as defined in the following:

Definition 2  (tree interpolation property.1) Let X1 ∧… ∧ Xn ∧ Y ∧ Z be an unsatisfi-
able formula in first-order logic. Let IX1

,… , IXn
 and IX1…XnY

 be interpolants for interpo-
lation instances (X1 ∣ X2 ∧… ∧ Xn ∧ Y ∧ Z) , … , (Xn ∣ X1 ∧… ∧ Xn−1 ∧ Y ∧ Z) , and 
(X1 ∧… ∧ Xn ∧ Y ∣ Z) , respectively. The tuple (IX1

,… , IXn
, Y , IX1…XnY

) has the tree interpo-
lation property iff IX1

∧… ∧ IXn
∧ Y ⇒ IX1…XnY

.

Note that an interpolation procedure that guarantees tree interpolation property 
according to Definition  2 also computes a tree interpolant for a tree interpolation 
problem as defined in [21]. The properties of tree interpolant follow from Definition 2 
when for each node in the tree interpolation problem, the following partitioning of the 
formula is considered: the subtrees of the current node’s children are the partitions 
X1,… ,Xn , the label of the current node is the partition Y, and the rest of the formula 
forms the partition Z.

In the following, we show how interpolation can be used to extract over-approxi-
mation of the function behaviors after a successful verification run. By exploiting the 
proof of unsatisfiability for the safety query we can extract function summaries [8] for 
each function call f.

1  For example in [20] this is called the weak tree-interpolation property.
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Algorithm  1 describes the method for constructing function summaries in BMC. At 
line 1 once the safety query in a certain theory T  is created, it is sent to an SMT solver. If 
the result is unsatisfiable, i.e., the program is safe, the method �������������� (line 6) 
computes an interpolant for each f ∈ F from the proof of unsatisfiability. Function sum-
maries for a function f are constructed as interpolants as follows: The PBMC formula Φ is 
divided into two parts �subtree

f
∧�rest

f
 . First, �subtree

f
 corresponds to the partitions represent-

ing the function call f and its nested function calls:

Second, �rest
f

 corresponds to the rest of the program including the negation of safety 
properties:

Then for each f, formula  (2) is considered as A-part and formula  (3) as B-part. The 
�������������� method generates an interpolant If  for the interpolation instance (A ∣ B) , 
which acts as a summary for the function f. We map functions to their summaries encoded 
in the theory T  with �T  : F → S such that �T  (f ) = If .

It is important to note that although the bootstrapping phase can take time, especially if 
the program being bootstrapped is large, it is a critical part of the approach as it can save 
significant resources in subsequent runs. If a program has only one function and no func-
tion calls, no function summary will be generated. This means that the algorithm will func-
tion similarly to a classical non-incremental BMC, and the efficiency of our algorithm may 
be limited in this scenario.

(2)�subtree
f

≜
⋀

h∈F∶subtree(f ,h)

�h

(3)�rest
f

≜ ¬errorfmain ∧
⋀

h∈F∶¬subtree(f ,h)

�h
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2.2 � Applying summaries in formula construction

Construction of the formulas by inlining as in Eq. (1) results in a monolithic formula where 
the whole function bodies are included. We describe the construction of PBMC formula in 
the presence of function summaries that can be substantially smaller compared to the inlin-
ing of the entire function bodies since functions summaries tend to be more compact.

Consider function f as a root of a subtree of a program. Suppose in the subtree of f there 
is a function h and its summary was already computed. Then the summary of h can be sub-
stituted for body of h while building the PBMC formula of f. This way, the PBMC formula 
�f  corresponding to the encoding of subtree of f can be considerably more succinct com-
pared to the inlining of the entire function bodies in subtree of f.

Algorithm 2 creates a PBMC formula for a subtree rooted at f, i.e., �f  . The algorithm 
initially accepts a substitution scheme for the function representations and uses it while 
constructing formula �f .

Definition 3  A substitution scheme for function calls is a function 
Sb ∶ F → {inline, sum, nondet} determines how each function call should be handled.

The level of approximation for each function f ∈ F is determined as one of the follow-
ing three cases: (i) inline when the entire f is required to be processed, (ii) sum when a pre-
computed summary substitutes f, and (iii) nondet when f is treated as a nondeterministic 
function. Since nondet abstracts away the function, it is equivalent to using a summary 
formula true.
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We define three substitution schemes: Sbinline∶ F → {inline} inlines all the function bod-
ies. SbN

eager
∶ F → {sum, inline} inlines functions with invalid summaries accumulated in set N 

and otherwise employs summaries:

Note that summary mapping �T  is total and all functions initially have summaries. Finally, 
SbN

lazy
∶ F → {sum, nondet} treats functions with invalid summaries as nondeterministic 

calls and the rest as sum, as follows:

This results in a smaller initial PBMC formula and leaves the identification of the critical 
function calls to the refinement loop.

3 � Motivating example

In this section, we demonstrate summary reuse and summary weakening in our incremental 
verification approach. Consider two programs in Fig. 1 as the base and changed program. We 
call them P1 (Fig. 1a) and P2 (Fig. 1b). Both versions consist of several functions out of which 
one function differs, namely ��� , highlighted with red. The function ������ represents a non-
deterministic choice (e.g. user input) which is assumed to be in a certain range. The two assert 
statements capture the property of the program that should always hold after an execution of 
the program. Program P1 can be encoded as a LRA formula together with the negation of 
assertions.

Our approach first performs a bootstrapping verification for P1 preferably encoding and 
solving with a light theory of SMT like LRA . After successful verification of P1 using Algo-
rithm 1, summaries of functions are created with respect to all properties, as shown in Fig. 1d. 
These function summaries represent the relation between the inputs and outputs of each func-
tion, and are expressed using a formula that includes the return value of the function, denoted 
by the variable ret in Fig. 1d. Note that tool implements Algorithm 1 for computing summa-
ries automatically. Summaries are stored for future usage. When it comes to verifying P2 , in 
order to have an efficient verification procedure, instead of performing full-verification again it 
is desirable to reuse the summaries of P1 . We process the changed functions of P2 and investi-
gate if the previous summaries are good enough to over-approximate the changes.

Summary weakening.  Let us denote �T(���) as summary of ��� and �′

���
 as LRA encod-

ing of function ��� in P2 . Here the summary check ��

���
⇒ �T(���) does not succeed. Since 

�T(���) is conjunctive, we can weaken the summary by dropping some conjuncts to increase 
the chance of being valid for the changed ��� . As shown in Fig. 1d �T(���) is in conjunctive 
form:

A possible weakened formula is �w
T
(���) ∶= (ret ≥ 2b). By dropping a conjunct, the result-

ing formula is still a summary, but it is coarser than the previous one. Since the implica-
tion ��

���
⇒ �w

T
(���) is valid, it indicates that the weakened summary is coarse enough to 

capture the changed function �′

���
 . However, the validation check has to propagate towards 

(4)SbN
eager

(g) =

{

inline, if g ∈ N

sum, otherwise

(5)SbN
lazy

(g) =

{

nondet, if g ∈ N

sum, otherwise

(6)�T(���) ∶= (ret ≥ 2b) ∧ (ret ≥ 2a).
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the caller, i.e., ��� to make sure if the coarse summary is a valid over-approximation in the 
subtree rooted at ���.

Summary reuse.  During the validation of ��� ’s summary, i.e., �T (��� ), 
if there are summaries available in its subtree they are used. Since func-
tion ��� is not changed, its summary �T(���) is reused straightforwardly as 
well as �w

T
(���) . However, the summary check for function ��� fails because 

of the change in function ��� , i.e., �T(���) ∧ �w
T
(���) ∧ ���� ⇒ �T(���) or 

(D≥a + 10) ∧ (out≥2b) ∧ (ret = out + D)⇒ (ret≥10 + a + 2b) ∧ (ret≥10 + 3a) does not 
succeed. The summary of ��� should be weakened to (ret ≥ 10 + a + 2b) , and the sum-
mary check should be performed for function ��� , where the check succeeds. Thus the 
check does not continue further to the root of the program. This means that the changed 
program is safe too.

Since there are no further changed functions unprocessed, the incremental checking 
terminates, and we simply could conclude that P2 is safe too. The weakened summaries 
( �w

T
(���) and �w

T
(���) ) are stored instead of the original summaries and will be reused 

when a new program version arrives.

Fig. 1   Two versions of a C program with call tree and function summaries
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4 � Incremental verification of program changes

This section presents our solution to the problem of efficient verification of a program 
after a change. The problem of incremental verification is stated as follows: given the first 
program P1 with the safety properties included in the code, a summary mapping (certifi-
cate of correctness) �1 of P1 , and the changed program P2 , adapt �1 to become a summary 
mapping of �2 for P2 , or show that P2 does not admit a correctness certificate (i.e., has a 
counterexample).

Note that we present the incremental verification algorithm instantiated in the context 
of BMC and SMT. However, the algorithm is more general and can be applied in other 
approaches relying on over-approximative function summaries.

4.1 � Overview of the algorithm
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In this section, we first describe the main points of Algorithm 3. Then we describe the 
important subroutines of the algorithm; (i) an improvement of the algorithm with the 
summary weakening in Sec. 4.2, and (ii) summary refinement in Sec. 4.3.

Our approach for incremental verification considers two versions of the program, P1 and 
P2 , and the function summaries of P1 . If P1 or its function summaries are not available 
(e.g., at the initial stage), a bootstrapping run (Algorithm 1) is required to verify the whole 
program P2 to generate the summaries, which are then maintained during the subsequent 
verification runs. We assume that the set of safety properties remains the same throughout 
the incremental verification.

As input, the pseudocode takes the new program ( P2 ), the set of functions that have 
been identified as changed Δ , the theory T  , and the summaries as a total mapping �T  from 
functions F to the set of all summaries S. Initially in case no summary exists for f (e.g., 
newly introduced in P2 ) its summary is initialized as false. By initializing the summary 
of f as false, we are being explicit about the fact that we do not yet have any summary. As 
output, it reports either Unsafe with a concrete counterexample CE , or Safe with a possibly 
updated total mapping representing the summaries.

The algorithm maintains a worklist WL of function calls that need to be checked 
against the pre-computed summaries. Initially, WL is populated by a set of functions 
with code changes, namely Δ (line 1). Then the algorithm repeatedly chooses f from WL 
so that no function in the subtree of f exists in WL (line 4). Then it removes a function 
f from WL and attempts to check the validity of the corresponding summary in the new 
version. Note that this bottom-up traversal of the call tree ensures that summaries in the 
subtree of f have been already checked (shown either valid or invalid). The algorithm 
also maintains the set N to store the set of functions with invalid summaries and aims at 
repairing all of the summaries that were identified as invalid.

The if-condition at line 6 checks whether the summary of f is not invalid (i.e., has a 
summary). If so, ������������� constructs the formula �f  that encodes the subtree of f. 
Note that here the substitution scenario inline is used where all function calls in the subtree 
of f are naively inlined. Later in Sect. 4.3 we introduce a more efficient way for construct-
ing the formula.

The validation check of pre-computed summaries occurs in 8. The validity of impli-
cation �f ⇒ �T(f ) is equivalent to the unsatisfiability of the negation of the formula, 
�f ∧ ¬�T(f ) . This local formula is sent to an SMT solver for deciding its satisfiability. Per-
forming the local check determines whether the summary is still a valid over-approxima-
tion of the new function’s behavior. If the result is UNSAT  , the validation is successful and 
the summary covers the changed function. Here, the algorithm obtains a proof of unsatisfi-
ability � which is used to compute new summaries to update the invalid or missing summa-
ries (line 17). This is called strengthening procedure in our approach. If result is SAT  , the 
validation of the current summary fails for the changed function (line 9). In this case, either 
the check is propagated to the function caller towards the root of the call tree (line 11) or 
a real error is identified (line 13). In the latter case, since the validation fails for the root 
fmain of the call tree, the algorithm extracts and reports a concrete counterexample from 
the result of the SMT query (line 13).

Note that if a function f is introduced in P2 , the caller of f is marked as changed by our dif-
ference-checker. In such a scenario, since summary of f is trivially false, the validation check 
immediately fails, f gets added to N , and the algorithm continues to check the caller. A suc-
cessful validation of some ancestor of f with inlined f generates a summary for f (line 17).

Whenever a summary is identified as invalid (line 9), the sub-routine ������������� 
(line 14) is called to make the summary coarser which is explained in the next section.
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4.2 � Summary weakening

The previous algorithms of incremental verification in [4, 14] check summaries one-by-one 
and whenever the validation fails, the invalidated summaries are removed straight away, thus 
the chance to reuse summaries becomes low. In this section instead of removing the invali-
dated summaries right away, our proposed algorithm attempts to compute coarser over-approx-
imation (i.e. weaker summaries) by dropping some conjuncts, thus maximizing their usability. 
The key insight behind the algorithm is identifying which parts of the summary break the 
validity of implication, removing them from the set, and repeating the validation check.

The number of top-level conjuncts in a summary formula is a measure of generalizability of 
the interpolant. In some applications (see, e.g., [22, 23]) it is useful to further abstract an over-
approximation. The idea was inspired by Houdini algorithm [24]. Weakening a summary for-
mula is performed by dropping the conjuncts that break the validity of the summary. Note that 
Houdini is only meaningful for the summaries with top-level structure in conjunctive form.

In Algorithm  3 once the summary turned out to be invalid (line  9) the sub-routine 
������������� (i.e., Algorithm 4) is called to weaken the summaries. Algorithm 4 shows 
a simple implementation of an iterative check-and-refute cycle that iterates until the valida-
tion check of the subset of summary conjuncts succeeds. Initially, summary conjuncts are 
stored in the set Cands and as the algorithm proceeds, the conjuncts are removed if proven 
to be invalid.

In line 2 the PBMC formula �f  for the function f is constructed. In this phase SbN
eager

 
is used as the substitution scheme, i.e., whenever a function summary is available in the 
subtree of f, the summary is used as a substitute for the function body. Then in line 4 the 
containment of the resulting formula �f  in the summary candidate is checked by the SMT 
solver. Once the solver generates a counterexample � , it is used to prune the summary con-
juncts that break the containment check. This iterates until the solver returns UNSAT  . In 
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the end, the remaining subset of summary candidates would form a new valid summary for 
f. In case no conjuncts are left, the function summary is assigned to the weakest possible 
summary, namely true (line 10) and it is added to the set N that contains functions whose 
summaries were not valid anymore in P2.

Once the weakened summary is obtained from Algorithm 4, in Algorithm 3 the check 
always propagates to the caller (as the parent is already marked there) to make sure the new 
weakened summary is suitable in the subtree rooted at the caller. It can be the case that the 
weakened summary does not capture the whole relevant functionality of the changed func-
tion and needs more conjuncts (strengthening) that can be obtained during the validation 
check of the caller and interpolation in line 17 of Algorithm 3. Note that in this case even 
though the check propagates to the caller, it would be still beneficial in the sense that the 
actual encoding of the function body is substituted with the weakened summary, thus the 
overall check will be less expensive and still maintains some locality.

4.3 � Summary refinement
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In Algorithm 3 line 7 creates the PBMC formula �f  in a way that all the nested functions in 
the subtree rooted at f are inlined. In other words, the initial substitution scheme was set to 
SbN

inline
 . To further speed up the incremental check while constructing the formula �f  , pre-

computed summaries can be used to abstract away the function calls in its subtree.
In this section we present an algorithm for creating PBMC formulas in a more efficient 

way, then we present our solution for refining the abstract summaries on demand. The 
pseudocode in this section can substitute lines 7 and 8 in Algorithm 3.

Algorithm 5 consists of two key points: (i) while constructing the PBMC formula �f  , 
whenever summaries are available in the subtree of f, they substitute the actual body of the 
function calls in the subtree, (ii) while checking the validity of summaries, the infeasible 
behaviors that are detected during analysis of abstract summaries are refined by an iterative 
refinement procedure.

The initial over-approximation in Algorithm 5 is set to SbN
lazy

 where it sets the precision 
for function calls in the lazy style. Then the PBMC formula �f  is created based on Algo-
rithm 2 with SbN

lazy
 . The resulting �f  is expected to be substantially smaller compared to the 

encoding whose substitution scheme was initially set to Sbinline.
Then the resulting �f  is checked for the validity whether its pre-computed summary 

contains the formula, i.e., �f ⇒ �T(f ) (line 3). If the resulting formula is satisfiable, it can 
be either a real or a spurious violation since over-approximative function summaries were 
used to substitute some of the nested function calls. This can be discovered by analyzing 
the presence of summaries along an error trace, determined by a satisfying assignment � 
returned by a solver and by dependency analysis.

Based on the satisfying assignment the algorithm identifies the set of the summaries 
used along the counter-example and stores them in RefCandid  (line  6). The algorithm 
applies dependency analysis that restricts RefCandid set to those possibly affecting the 
validity. Then every over-approximations (summary or nondet) in the RefCandid set is 
marked as inline in the next iteration (line 11). If the set is empty, the check fails and the 
summary is shown invalid. This refinement loop repeats until the validity of the summary 
is determined.

5 � Correctness of the algorithm

This section discusses the correctness of the SMT-based incremental verification algo-
rithm, i.e., given k unrolling steps, the algorithm always terminates with the correct answer 
with respect to k. Notice that in this article, program safety is considered with respect to the 
pre-determined unwinding bound k. In the remainder of this section, we assume the same k 
for both old and new programs. In case the user increases the bound for a specific loop, the 
corresponding function needs to be validated as if changed.

5.1 � Correctness of the algorithm

The correctness of Algorithm 3 is stated in the following theorem:

Theorem 1  Assume the interpolation algorithm for T  guarantees tree interpolation prop-
erty. When the Algorithm  3 returns safe, then the entire program is safe, i.e., 
errorfmain ∧𝛷subtree

fmain
⇒ ⊥.
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Proof  Let fmain be the entry function, �T(f ) be the summaries, f range over the function 
calls satisfying subtree(fmain, f ) , and c1,… , cn be the function calls in the (possibly empty) 
set of functions called by f. We first show that the properties

are strong enough to prove that the entire program is safe, and then show that they hold in 
the algorithm both after successful bootstrapping and after a successful incremental verifi-
cation run on a set of changes Δ.

Safety from properties   (7)   and   (8). After rewriting property  (7) into 
𝜎T(fmain) ⇒ (errorfmain ⇒ ⊥) , logical transitivity and iterative application of property (8) to 
substitute all interpolants on the right hand side of property (8) yields the inlined formula 
in the claim errorfmain ∧𝛷subtree

fmain
⇒ ⊥.

Bootstrapping phase. We show that property (7) holds over the program call tree anno-
tated by computed interpolants whenever bootstrapping verification in Algorithm 1 termi-
nates. Recall that the summaries are generated only when the program is safe with respect 
to the property, i.e., errorfmain ∧𝛷subtree

fmain
⇒ ⊥ . Therefore, by definition of interpolation in 

Definition 1 (property (ii)), errorfmain ∧ Ifmain is unsatisfiable, i.e., property (7) holds. Prop-
erty (8) follows from our assumption that the interpolation algorithm guarantees the tree 
interpolation property. This can be seen by choosing the following partitions in Defini-
tion 2: Xi ≡ �subtree

ci
 for i ∈ 1… n , Y ≡ �f  , and Z ≡ �rest

f
.

Incremental phase. Assume that properties  (7) and  (8) hold before the changes in Δ 
are introduced. We show that if Algorithm 3 running on a set of changes Δ successfully 
returns Safe , both properties are maintained, from which the claim in the theorem follows. 
If Algorithm 3 successfully terminates, then each function call c obtains an updated sum-
mary �T(c) (line 17) when some of its predecessor f passed the summary validity check 
(line 15). Otherwise, the check propagates towards the root of the call tree and eventually 
may lead to an UNSAFE result. Thus, it suffices to show that the recomputed or repaired 
interpolants satisfy property (8). For this purpose, we again rely on the assumption that the 
interpolation algorithm guarantees the tree interpolation property. When constructing the 
formula of a function, Algorithm 2 uses all valid summaries in the subtree of the function. 
This is sound as we know from property (i) of Definition 1 that �T(ci) ⇒ IXi

 where IXi
 is 

an interpolant obtained from the proof of unsatisfiability corresponding to the successful 
validity check of the predecessor of ci.

In case some change in Δ is not contained in pre-computed summary �T(f ) but the algo-
rithm introduced a weakened summary �w

T
(f ) that contains the change, the algorithm still 

propagates to the caller function (line 11) to determine whether property (8) holds. In case 
�w
T
(f ) is not precise enough in the subtree of the caller, the algorithm proceeds with the 

refinement of the weak summaries. Once the refined check succeeds, the proof of unsat-
isfiability is used (through interpolation) to strengthen �w

T
(f ) (line  17). Technically, the 

weakened summary and the recomputed summary are conjoined to form a new summary 
�
itp

T
(f ) ∧ �w

T
(f ) . Again relying on the assumption that the interpolation algorithm guarantees 

the tree interpolation property, the recomputed and repaired interpolants satisfy property 
(8). 	�  ◻

(7)errorfmain ∧ 𝜎T(fmain) ⇒ ⊥, and

(8)�T(c1) ∧ … ∧ �T(cn) ∧ �f ⇒ �T(f )



365Formal Methods in System Design (2022) 60:350–380	

1 3

5.2 � Interpolation algorithms in a concrete theory

We instantiate our generic SMT-based incremental verification approach to certain theories 
of SMT. In particular, we focus on interpolation algorithms that are the low-level primi-
tives in our approach and discuss the requirements they shall fulfill. The theories of our 
interest are Linear Real Arithmetic ( LRA ) and Equality Logic and Uninterpreted Functions 
( EUF ). Having different theories and interpolation algorithms is of great practical interest 
since the choice of a good interpolation algorithm may well determine whether an applica-
tion terminates quickly or diverges.

In the theory of linear arithmetic over the reals, LRA , there are several efficient proof-
based interpolation algorithms proposed in the literature so that the resulting interpolants 
can differ in ways that have practical importance in their use in incremental verification. 
For the theory of LRA , many SMT solvers produce interpolants using application of the 
Farkas lemma  [25]. The most widely used approach computes weighted sum defined by 
Farkas coefficients of all inequalities appearing in A part of (A ∣ B)  [26]. The interpolant 
computed in this way is always a single inequality. We call this approach Farkas interpola-
tion procedure and denote it as ItpF.

Recently [27] introduced a new algorithm called decomposing Farkas interpolation pro-
cedure which is able to compute interpolants in linear arithmetic in the form of a conjunc-
tion of inequalities. The algorithm is an extension of ItpF ; it uses techniques from linear 
algebra to identify and separate independent components from the interpolant structure. 
We denote the decomposing interpolation procedure as ItpD . Intuitively, ItpDworks as fol-
lows: Instead of using the whole weighted sum of A, it tries to decompose the vector of 
weights (Farkas coefficients) into several vectors. This effectively decomposes the single 
sum into several sub-sums. If each of the sub-sum still eliminates all A-local variables, the 
resulting inequalities can be conjoined together to yield a valid interpolant.

Since ItpD is able to produce interpolants in the form of a conjunction of inequalities, 
it provides the opportunity to make more effective use of summaries in our incremental 
verification algorithm. Hence, Algorithm  4 can benefit from computing coarser over-
approximation (i.e. weaker interpolants) by dropping conjuncts. In the later sections, we 
will experimentally verify the usefulness of the decomposition scheme by comparing two 
LRA interpolation algorithms.

As for the theory of EUF , we use the EUF Interpolation algorithm in  [28] that relies on 
a congruence [26] graph data structure constructed while solving an EUF problem. EUF 
interpolation algorithm combines propositional and EUF interpolation which is useful for a 
model checking setting and some of the conjuncts in EUF interpolants are coming from the 
propositional structure.

For the propositional part, we use the well-known Pudlák’s interpolation algorithm [29], 
which is more suitable for function summaries than McMillan’s, since it constructs weaker 
interpolants and can capture more changes in incremental verification. Note that internally 
Craig interpolation in propositional logic and theory are combined.

Tree interpolants are used in our incremental algorithm for determining the satisfiability 
of a first-order logic formula that reuses summaries generated after the unsatisfiability of 
a slightly different formula is determined. Among the widely used family of interpolation 
algorithms for LRA , EUF , and PROP we rely on the ones that can guarantee the tree inter-
polation property, and thus are suitable for the application in incremental verification of 
program versions.
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The following two lemmas state which LRA interpolation algorithms can guarantee tree 
interpolation property. The proofs can be found in [20] where we discussed under which 
conditions LRA interpolation procedures guarantee tree interpolation property.

Lemma 1  LRA interpolants computed by Farkas interpolation algorithm have tree inter-
polation property.

Lemma 2  LRA interpolants computed by decomposing Farkas interpolation algorithm 
with gradual decomposition defined in [20] have tree interpolation property.

The following lemma considers the tree interpolation property of interpolants generated 
from the same resolution proof in EUF , proven in [30].

Lemma 3  EUF interpolation algorithm [28] guarantees tree interpolation property.

In a purely propositional setting, we rely on the results from  [12, 31] which proves 
the correctness of the propositional tree interpolation algorithms, stated in the following 
lemma.

Lemma 4  Propositional interpolation algorithm introduced by Pudlák [29] guarantees tree 
interpolation property.

The proposed solution relies on the above lemmas for the correctness of the incremental 
verification algorithm in the context of bounded model checking. However, the correctness 
of the algorithm is not solely restricted to the preservation of the tree interpolation property 
by construction. Instead the correctness of the algorithm can be preserved by checking for 
the tree interpolation property on-the-fly. This means that the algorithm can still produce 
a correct output even if the tree interpolation property is passed by performing real-time 
checks in verification run.

It is worth mentioning that our incremental algorithm with theory T  gives the same 
result as the verification from scratch used in the bootstrapping with the theory T  . 
Although automatically identifying a proper level of encoding is non-trivial (and not a sub-
ject of this paper), our approach at least allows various encoding options to the user. In 
case the algorithm is instantiated with less-precise theory (e.g., EUF ), if a bug is reported, 
it might be due to the abstract theory usage, and it is recommended to repeat the verifica-
tion with a more precise theory (and accordingly, more precise summaries).

6 � Tool architecture and implementation

This section describes the implementation of our algorithms in the UpProver tool which is 
a bounded model checker written in C++. UpProver concentrates on incremental verifica-
tion of program versions written in C. After each successful verification run, it maintains a 
database of function summaries to store its outputs, which become available as inputs for 
verification of each subsequent program version. For bootstrapping verification UpProver 
uses HiFrog standalone bounded model checker [11]. For satisfiability checks and interpo-
lation UpProver uses SMT solver OpenSMT. For pre-processing as a front-end, UpProver 
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uses the framework from Cprover 5.112 to symbolic encoding of C by transforming C pro-
gram to a monolithic unrolled BMC representation that we use as a basis for producing the 
final partitioned logical formula.

The architecture of UpProver tool is depicted in Fig. 2. UpProver implements proposed 
algorithms by maintaining three levels of precision—LRA , EUF , and purely propositional 
logic ( PROP)—to check the validity of pre-computed summaries. The rest of this section 
describes UpProver’s key components in more detail.

Difference analyzer: UpProver performs source code differencing at the level of SSA 
forms for both the old and the new program to identify a set of functions with code 
changes. It annotates the lines of code changed between P1 and P2 . This defines the scope 
of summary validations. The user may choose an inexpensive syntax-level difference or a 
more expensive and precise semantic-level difference that compares programs after some 
normalization and translation to an intermediate representation [4]. The functions that have 
been identified as changed are stored in set Δ in Algorithm 3.

Call tree traversal: The call tree traversal guides the check of pre-computed summa-
ries for the modified functions in bottom-up order. It exploits the SMT solver to perform 
summary validation. When necessary it performs an upwards refinement to identify parent 
functions to be rechecked using SMT solver or performs summary refinement to refine the 
imprecise summaries in the subtree.

Summary repair: Summaries of P1 (of the selected level of precision) are taken as input 
and used in the incremental summary validation when necessary. The tool iteratively 
checks if the summaries are valid for P2 and repairs them on demand, possibly by iterative 
weakening and then strengthening using interpolation over the refined summaries.

SMT solving and interpolation engine: For checking BMC queries and computing inter-
polants, UpProver interacts with the SMT solver OpenSMT [32]. The solver produces a 
quantifier-free first-order interpolant as a combination of interpolants from resolution refu-
tations [33], proofs obtained from a run of a congruence closure algorithm in EUF [28], 
Farkas coefficients obtained from the Simplex algorithm in LRA [27], and Decomposed 
Farkas interpolation in LRA [27].

Summary storage: UpProver takes summaries �1 of P1 as input and outputs summaries 
�2 of P2 . The user defines the precision of �1 , and it uniquely determines the precision of 
�2 . In the best-case scenario, the tool validates �1 and copies it to �2 . When some of the 
summaries require repair, the tool produces new interpolants from the successful validity 
checks of the parent functions and stores them as the corresponding summaries in �2 (while 
all other summaries are again copied from �1 ). No summaries are generated when the tool 
returns Unsafe.

7 � Experimental evaluation

To evaluate our algorithm, we aim to answer the following research questions: 

RQ 1	� Is the use of SMT instead of SAT in incremental verification efficient for real-
world programs?

RQ 2	� Is reusing function summaries beneficial in incremental verification?

2  http://​www.​cprov​er.​org/

http://www.cprover.org/
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RQ 3	� How does our approach compare with other incremental verifiers?

Benchmarks and setup:3 We chose 2670 revision pairs of Linux kernel device driv-
ers from  [34]. The benchmarks were chosen so that they are parsable by Cprover 5.11, 
and contain at least one safety property (code assertion). The crafted benchmarks mainly 
stress-test our algorithm and have changes such as function addition/deletion, signa-
ture change, semantic/syntactic change in function-bodies, etc. In addition, we included 
240 tricky hand-crafted smaller programs. The crafted benchmarks mainly stress-test our 
implementation and include function additions/deletions, signature changes, semantic/syn-
tactic changes in function-bodies, etc. On average, the benchmarks have 16’000 LOC, the 
longest ones reaching almost 71’000 LOC. For each run, we set a memory limit of 10 GB 
and a CPU time limit of 900 s. The experiments were run on a CentOS 7.5 x86_64 system 
with two Intel Xeon E5-2650 CPUs, clocked at 2.30 GHz, and 20 (2 x 10) cores. UpProver 
is available as open-source software. Technical information about the setup of the tool can 
be found at http://​verify.​inf.​usi.​ch/​uppro​ver.

7.1 � Demonstrating usefulness of different theories

To answer RQ 1, we compare the run time of incremental verification using different 
encodings. Each point in Fig. 3 corresponds to an incremental verification run of a single 
benchmark (changed program P2 ). Figure 3a and b compare the EUF/LRA-based encod-
ings in UpProver against the PROP-based encoding in UpProver 4. Almost universally, 
whenever run time exceeds one second, it is an order of magnitude faster to verify with 
LRA and EUF than with PROP . In addition, a large number of benchmarks on the top 
horizontal lines suggests that it is possible to solve many more instances with LRA/EUF
-based encoding than with PROP-based encoding. However, the loss of precision is seen on 

Fig. 2   Overview of the UpProver architecture.   UpProver operates at one particular level of precision at 
each run

3  The experimentation data including benchmarks, evaluation results, and the source code repositories are 
available online at http://​verify.​inf.​usi.​ch/​uppro​ver
4  The PROP-based summary reuse in UpProver depicted in Fig. 4c uses the same algorithm from its pre-
decessor eVolCheck but has been significantly optimized compared to its earlier version. Thus PROP-based 
UpProver can be seen as representative of eVolCheck.

http://verify.inf.usi.ch/upprover
http://verify.inf.usi.ch/upprover
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the benchmarks on the vertical line labeled potentially spurious (PS), indicating if the veri-
fication result using LRA/EUF is unsafe, the result might be spurious because of abstrac-
tion. Since UpProver only operates at one particular level of precision at each run, once 
the tool reports Unsafe in EUF/LRA it is recommended to confirm it by a stronger theory 
encoding.5

The results for benchmarks show the trade-off between the precision and run time of 
incremental verification. In fact the theories are complementary. This can be contrasted 
to the plot in Fig. 3c where we extracted benchmarks that have successful bootstrapping 
phase in both LRA and EUF and ended up with 2516 versions out of which 50% are strictly 
faster in EUF and 30% are strictly faster in LRA . The time overhead observed in LRA com-
pared to EUF is due to the more expensive decision procedure.

7.2 � Demonstrating the effect of summary reuse

To answer RQ 2 we demonstrate how summary reuse and summary repair benefit incre-
mental verification. To this end we first compare the performance of the tool with and 
without summary reuse, and then we show how summary repair results in more summaries 
while the overhead of producing more summaries is negligible.

7.2.1 � Incremental BMC vs monolithic BMC

The purpose of this section is to compare verification time of reusing the summary against 
not reusing it. As opposed to summary-based incremental checking in UpProver that main-
tains and reuses over-approximating summaries of the functions across program versions, 
a standalone BMC tool, e.g., HiFrog [11] and cbmc [16], creates a monolithic BMC for-
mula and solves it as a standalone run without reusing information from previous runs of 
other versions. In this section, we compare UpProver with HiFrog as a representative sam-
ple of non-incremental BMC tool. This choice is made because both tools use the same 
infrastructure from Cprover v5.11 to transform C program to obtain a basic unrolled BMC 
representation that UpProver uses as a basis for producing the final logical formula. Since 
UpProver and HiFrog share the same parser and the same SMT solver OpenSMT the com-
parison is not affected by unrelated implementation differences.

The plots in Fig.  4 compare UpProver against HiFrog (non-incremental) with three 
encodings EUF , LRA , and PROP . Each point in each plot corresponds to verification run 
of a changed program, with the running time of UpProver when reusing the summary of 
the first version on x-axis, and the running time of HiFrog without reuse on y-axis. The 
plots demonstrate the performance gains of incremental verification with reusing function 
summaries against not reusing it. A large amount of points on the upper triangle lets us 
conclude that UpProver is an order of magnitude faster than the corresponding non-incre-
mental verification for most benchmarks.

Table 1 provides more details on each encoding that would clarify the scatter plots 
further. We use acronyms P1 and P2 for two versions of a program. The row Safe indi-
cates the number of programs reported safe by each encoding. In total out of 2910 

5  The work in  [9] demonstrated the relation among some theories of SMT from the perspective of over-
approximation.
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benchmarks, UpProver with LRA verified safe the largest amount of P2 , i.e., 92% and 
with EUF and PROP verified 85% and 40% respectively. The row Unsafe indicates the 
number of programs reported unsafe by each encoding. The unsafe results might be spu-
rious when theory encodings were used (indicated by an asterisk). The row TO shows 
that while UpProver with PROP times out in 53% of the benchmarks, for LRA and EUF 
this happens for less than 1%. The row MO shows that with PROP encoding, UpProver 
exceeds the memory limit in 105 benchmarks of P1 and P2 , for LRA and EUF this does 
not occur.

The row uniquely verified programs indicates how many P2 can be incrementally veri-
fied safe in each encoding exclusively. The count of the uniquely verified using LRA is 
comparable to other encodings where 41 instances are not solved by any other encoding. 
Even though, LRA solves the most safe program versions, there are several benchmarks 
that can be uniquely verified by EUF (11 instances) and by PROP (4 instances). These dis-
tinctly verified programs in each encoding can be included in a portfolio.

The row no − sum represents the cases where there are no possibility to perform incre-
mental verification because no function summaries were produced in the bootstrapping 
phase. This can happen when the bootstrapping verification of P1 results in Unsafe , TO, or 
MO. The PROP encoding results in the highest rate of no − sum , i.e., 57% (1661) which is 

Fig. 3   Demonstrating the impact of theory encoding by comparing timings of LRA/EUF encodings in 
UpProver vs. PROP encoding. The inner lines TO and MO refer to the time and memory limit. The outer 
lines PS refer to the results that are potentially spurious due to the use of abstract theory
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the summation of Time Out, Memory Out, and Unsafe results of bootstrapping of P1 . This 
asserts that using the rigid approach of bit-blasting for majority of our real-world bench-
marks obstructs the incremental verification. On the contrary, LRA and EUF encodings 
have a relatively small rate of no − sum.

It is worth noting that we compared the results of UpProver with the expected results 
of SVCOMP, since most benchmark names indicate the expected result. Out of 2910 pairs 
of benchmarks, 2794 pairs had both versions classified as safe. However, for the remain-
ing 116 benchmarks, no expected result was provided and they were marked as unknown, 
thus we are unable to obtain precise numbers for Unsafe benchmarks. For Safe benchmarks, 
we never encountered any disagreement with the expected results. This indicates a high 
degree of accuracy for UpProver in verifying safe benchmarks with theories. However, for 
EUF/LRA , Unsafe results might be either real error or false alarms. Due to these unknown 
benchmarks, we are unable to report the exact number of false alarms for Unsafe bench-
marks in theory and we mark them with asterisk.

The overall findings from our experiments show evidence for the following key points: 
precision and performance-gain present a trade-off. UpProver with EUF and LRA have a 
better performance compared to the bit precise PROP encoding and are crucial for scalabil-
ity. At the same time, there is a small number of benchmarks that require PROP . Despite 

Fig. 4   Incremental verification time of UpProver versus non-incremental verification time of HiFrog on (a) 
EUF, (b) LRA, and (c) PROP encoding
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the fact that bit-blasted models are more expensive to check than the EUF and LRA mod-
els, we find it surprising that the light-weight encodings succeed so often. In practice, the 
encodings complement each other, and the results imply an approach where the user gradu-
ally tries different precisions until one is found that suits the programs at hand.

7.2.2 �  Number of repaired summaries

In this section, we measure the number of repaired summaries that are generated by two 
out of the box LRA interpolation algorithms. Recall the two phases of the repair in our 
algorithm: once an existing summary is marked invalid for a changed function f, Algo-
rithm 4 first weakens the summary by removing broken conjuncts of the summary. In case 
the weakened summary is not strong enough, Algorithm 3 (line 17) strengthens the weak-
ened summary by recomputing interpolants for f and conjoining with the weakened sum-
maries. We shortlisted 43 pairs of C programs whose summaries was repaired at least once 
during incremental verification.

Figure 5 depicts the count of two types of repair in LRA . We use acronyms W for weak-
ening, ItpD for decomposing Farkas interpolation algorithm, and ItpF for Farkas interpola-
tion algorithm. We ran Algorithm 1 with LRA encoding over the shortlisted programs and 
generated 3837 LRA summaries in total, out of which 1043 summaries were strengthened 
by ItpD interpolation and 49 summaries were weakened by W . The remaining summaries 
were either used without any repair, or unused at all due to their corresponding functions 
did not have change, thus no summary validation performed. Similarly, 1007 and 29 of 
summaries were repaired by ItpF and by W respectively.

We can also view the result of this experiment from a different perspective. It can be 
seen as a way to test how good the interpolants are and how beneficial is the summary 
weakening. In the summary validation phase in UpProver, the more general interpolants 
are, the more likely they contain changes of the functions in the new version. Experi-
menting with ItpD and ItpF algorithms for producing LRA interpolants, shows that almost 
always they were as good as they could obtain more summaries with W technique. Observ-
ing that 49 summaries out of 3837 could be weakened further, implies that pre-computed 
interpolants are already as weak as possible but strong enough to be safe.

Now that we have an estimate of the number of function summaries repaired by W , the 
question becomes how much overhead time this approach adds up to the overall process of 
UpProver.

Table 1   Number of benchmarks 
solved by each encoding in 
UpProver

EUF LRA PROP

 Results P
1

P
2

P
1

P
2

P
1

P
2

Safe 2529 2514 2686 2663 1249 1186
Unsafe 268

∗
11

∗
95

∗
20

∗ 31 15
Time out (TO) 113 4 129 3 1536 37
Memory out (MO) 0 0 0 0 94 11
Uniquely verified – 11 – 41 – 4
No summary ( no − sum) – 381 – 224 – 1661
Total program versions 2910
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7.2.3 � Overhead of summary repair

In the following, we study the overhead of weakening ( W ) process in the verification time. 
Figure  6 compares the runtime of UpProver when reusing summaries generated by ItpD
with and without W6. In 60% of the benchmarks ItpD with W outperform or equal to ItpD . 
In 32% strictly ItpD with W faster than ItpD , whereas in 41% ItpD is strictly faster than ItpD 
with W . This reveals that in most of the cases not only weakening of summaries did not 
introduce considerable overhead, but also sometimes outperform the cases without W . For 
instance, the cases that are above 200 s, 29 benchmarks with ItpD and W strictly outper-
form ItpD , suggesting that the ItpD is not undesirable.

Overall, the results imply that summaries repaired by W and strengthened by ItpD are 
beneficial in a sense that leads to more summaries in the end, and even shows speed-up in 
some benchmarks compared to disabling W , thus did not affect the overall performance.

In Fig. 7 we compared the runtime of UpProver in theory of EUF with and without W . 
Concretely, at the area of around 350 to 800  s we observe 6 points above diagonal line 
confirms out performance of W , whereas 3 points below diagonal shows that pure EUF 
without W performs better.

Table 2 gives further details on 14 representative pairs of benchmarks whose change 
type are substantially different and whose summaries had a chance of being repaired at 
least once. The table consists of four configurations in LRA . Each row refers to a pair 
(P1,P2) of programs. The columns highlighted in gray color refers to enabling summary 
weakening feature in the algorithm. The columns highlighted in blue color refers to disa-
bling summary weakening feature in which the summaries are repaired only by re-com-
putation through interpolation. The column interpolationtime shows the time for gener-
ating all summaries after successful bootstrapping of P1 and initialsummary the number 
of function summaries in P1 which are non-trivial, i.e., are not simply true formula. The 
column preserved refers to the number of functions that stayed the same in P2 and Δ to 

Fig. 5   Number of repaired sum-
maries in LRA

6  The results with ItpF is similar.
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the number of changed functions in P2 . The column difftime shows the time taken by differ-
ence-checker to identify changes between P1 and P2 . The column validation check refers to 
iterative validation checks of summaries for checking the containment of summaries. The 
columns repaired by itp and repaired byW indicate the number of newly established sum-
maries by re-computation through interpolation and weakening respectively.

Overall, the numbers in the column validation check are higher when W is used since 
the algorithm has to iterate more to find a subset of conjuncts in the summary formula. 
Nevertheless, there are benchmarks, highlighted in bold, that show that the performance 
improves with the use of W . This happens because the weakened summaries can contain 
more changes and thus be more suitable for incremental verification. Interestingly, the 
columns repaired by itp and repaired by   Wshow that whenever W is used, more sum-
mary formulas are produced. This is desirable for incremental verification. We see from 
the experiments that the increase in the number of summary formulas results both directly 

Fig. 6   Incremental verification 
time of UpProver with LRA 
decomposed interpolants with 
and without weakening ( W)

Fig. 7   Incremental verification 
time of UpProver with EUF with 
and without weakening ( W)
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from weakening the summaries and indirectly because each successful validation check 
generates new interpolants.

7.3 � Comparison of UpProver and CPAchecker 

To answer RQ1, we compare UpProver with a widely-used tool CPAchecker which is able 
to perform incremental verification by reusing abstraction precisions. It is an orthogonal 
technique to ours, i.e., it is an unbounded verifier and aims at finding loop invariants. Thus, 
comparing running times does not make sense since running times in UpProver crucially 
depend on the chosen bound.7 Instead, we focus on comparing the speedups obtained with 
the two techniques since the change of a bound affects a speedup less.

Here we report the results only on device driver instances which both tools could han-
dle. Out of 250 device drivers categories given in https://​www.​sosy-​lab.​org/​resea​rch/​cpa-​
reuse/​predi​cate.​html, we selected 34 categories which are suitable for UpProver.8 These 
categories contain in total 903 verification tasks.

Figure  8 shows the comparison of speedup in UpProver and CPAchecker. A large 
amount of points on the lower triangle reveals that summary reuse in UpProver achieves 
superior speedup than the precision reuse in CPAchecker. The average speedup in UpProver 
with LRA summary-reuse is 7.3 with a standard deviation of 6 and in CPAchecker the 
average speedup is 2.9 with a standard deviation of 1.7. UpProver reported 4 slowdowns 
among 34 categories, whereas this was not the case for CPAchecker.

8 � Related work

The problem of incremental verification is not as studied as model checking of standalone 
programs. There are still several techniques and tools [12, 34–39] which the central incen-
tive behind these lines of work is the ability to reuse intermediate results that were costly 
computed in previous verification runs, thus achieving performance speedup in the verifi-
cation of later revisions compared to verification of programs in isolation. Works in this 
area vary based on the underlying non-incremental verification approach used, which 
defines what information to be reused and how efficiently so. Various information has been 
proposed for reuse, including state-space graphs [40], constraint solving results [41], and 
automata-based trace abstraction [38]. However, these groups of techniques are orthogonal 
to our approach as we store and reuse the interpolation-based function summaries in the 
context of BMC for verifying revisions of programs. Moreover, apart from pure reusing the 
previous computations, our technique repairs the already generated summaries to increase 
the chance of reusability.

Another approach towards efficiently verifying evolving programs, which is the one we 
compare in this article, is based on the reuse of previously abstraction precision in predi-
cate abstraction CPAchecker [34]. Apart from the inherent difference that CPAchecker is 
an unbounded verifier and UpProver is a bounded model checker, we differ from this in 
that we base our approach on proof-based computing of interpolants and repairing them on 
the fly, therefore in some sense are able to store more information from the previous runs.

7  For instance, the average running times in CPAchecker is 285.3 s and in UpProver with LRA is 13.4 sec-
onds for chosen bound 5. For other bounds UpProver would have different average running times.
8  The reported version of UpProver is restricted by its dependency on the Cprover 5.11 framework which 
impedes its frontend from processing some benchmarks.

https://www.sosy-lab.org/research/cpa-reuse/predicate.html
https://www.sosy-lab.org/research/cpa-reuse/predicate.html
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Other techniques for incremental verification of program revisions include reusing 
inductive invariants in Constrained Horn Clause across programs by guessing syntactically 
matching variable names [42, 43]. However, these techniques can be applied only for pro-
grams sharing the same loop structure. In contrast, our approach is applicable for all sorts 
of program changes in a bounded model. However, when the changes are drastic, there 
would not be much summary reuse even with the summary repair.

Other techniques for verifying program versions are based on relational verification 
(also known as regression verification or equivalence checking) which are used to prove 
equivalence of closely related program versions. To tackle the problem of formally veri-
fying all program revisions various techniques and tools have been proposed for the last 
two decades [44, 45]. Existing relational verification approaches leverage the similarities 
between two programs so that they verify the first revision, and then prove that every pair 
of successive revisions is equivalent [46–50]. Since checking exact equivalence is hard to 
fulfill and not always practical, there is a group of techniques that check for partial equiva-
lence between pairs of procedures [45, 51, 52] or check conditional equivalence under cer-
tain input constraints [46]. Despite the evident success, these techniques are sound but not 
complete.

The work in [53] investigates the effects of code changes on function summaries used in 
dynamic test generation. This approach is also known as white-box fuzzing which includes 
running a program while simultaneously symbolically executing the program to collect 
constraints on inputs. The aim of [53] is to discover summaries that were affected by the 
modifications and cannot be reused in the new program version. Since this approach relies 
on testing, it suffers from the problem of path explosion, i.e., all program paths are not 
covered. However, this work is orthogonal to our approach as we construct and repair func-
tion summaries in a symbolical way, thus our approach allows encoding of all paths of an 
unrolled program into a single formula.

A group of related work includes techniques using interpolation-based function sum-
maries (such as  [8, 54, 55]) for the standalone programs. Although these do not support 
program versions, we believe that our incremental algorithm may be instantiated in their 
context similar to how we instantiated it in the context of HiFrog [11]. The bootstrapping 
phase of our work is built on top of HiFrog [11], an approach for extracting and reusing 

Fig. 8   Speedup in UpProver with 
LRA summary reuse vs. speedup 
in CPAchecker with precision 
reuse
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interpolation-based function summaries in the context of Bounded Model Checking. In 
later work [9] we propose to use function summaries more efficiently by lifting function 
summaries into various SMT levels, thus information obtained from one level of abstrac-
tion could be reused at a different level of abstraction.

The work we find most closely related to ours is eVolCheck [4, 12], the predecessor 
of UpProver, which works only at the propositional level and uses the function summa-
ries only in a bit-precise encoding. Consequently, despite being an incremental approach, 
eVolCheck is computationally expensive in many cases in practice. Whereas, our approach 
allows flexibility in balancing between verification performance and precision through both 
program encoding and the choice of summarization algorithms. As a result of the high-
level encodings, UpProver summaries serve as human-readable certificates of correctness 
expressing function specifications.

9 � Conclusion

We addressed the problem of verifying a large number of programs, in particular, when 
they are closely related. To avoid expensive full re-verification of each program version 
and repeating a significant amount of work over and over again, our proposed algorithm 
operates incrementally by attempting to maximally reuse the results from any previous 
computations. The key contribution of this work lies in enabling this flexibility by SMT 
encoding and exploiting the SMT summarization. Having SMT encoding allows for a lot 
of flexibility when reusing and repairing the summaries leading to the optimization of the 
whole process which was not possible in the previous SAT-based approach. To achieve 
incrementality, our algorithm extracts and reuses SMT-based function summaries to over-
approximate program functions. It also provides an innovative capability of repairing 
previously computed summaries by means of iterative weakening and strengthening pro-
cedures. Moreover, it offers an efficient way of building formulas and refining them on-the-
fly. Through extensive experimentation, we demonstrate that our approach advances the 
state of the art in incremental verification of program revisions and is significantly more 
efficient than its predecessor eVolCheck and non-incremental BMC approach.

In future, we plan to extend the tool to handle summaries from different theories simul-
taneously [9], possibly with the feature of function summarization in theory combination.
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