
Vol.:(0123456789)

Formal Methods in System Design (2022) 60:117–146
https://doi.org/10.1007/s10703-022-00406-7

1 3

Interpolation with guided refinement: revisiting
incrementality in SAT‑based unbounded model checking

G. Cabodi1 · P. E. Camurati1 · M. Palena1  · P. Pasini1

Received: 30 July 2019 / Accepted: 2 November 2022 / Published online: 8 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper addresses model checking based on SAT solvers and Craig interpolants. We
tackle major scalability problems of state-of-the-art interpolation-based approaches, and
we achieve two main results: (1) A novel model checking algorithm; (2) A new and flex-
ible way to handle an incremental representation of (over-approximated) forward reachable
states. The new model checking algorithm IGR, Interpolation with Guided Refinement,
partially takes inspiration from IC3 and interpolation sequences. It bases its robustness
and scalability on incremental refinement of state sets, and guided unwinding/simplifica-
tion of transition relation unrollings. State sets, the central data structure of our algorithm,
are incrementally refined, and they represent a valuable information to be shared among
related problems, either in concurrent or sequential (multiple-engine or multiple-property)
execution schemes. We provide experimental data, showing that IGR extends the capability
of a state-of-the-art model checker, with a specific focus on hard-to-prove properties.

Keywords  Formal verification · Hardware model checking · Interpolation · SAT solving

A preliminary version [1] of this paper was presented at FMCAD2014 http://​www.​cs.​utexas.​edu/​users/​
hunt/​FMCAD/​FMCAD​14/​index.​shtml/.

This work was supported in part by SRC contract 2012-TJ-2328.

 *	 M. Palena
	 marco.palena@polito.it

	 G. Cabodi
	 gianpiero.cabodi@polito.it

	 P. E. Camurati
	 paolo.camurati@polito.it

	 P. Pasini
	 paolo.pasini@polito.it

1	 Dipartimento di Automatica ed Informatica, Politecnico di Torino, Turin, Italy

http://orcid.org/0000-0003-0605-9014
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-022-00406-7&domain=pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/index.shtml/
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/index.shtml/

118	 Formal Methods in System Design (2022) 60:117–146

1 3

1  Introduction

Craig interpolants (ITPs for short) [2, 3], introduced by McMillan [4] in the Unbounded
Model Checking (UMC) field, have shown to be effective on difficult verification
instances. Though recently challenged by new techniques (IC3, Incremental Construc-
tion of Inductive Clauses for Indubitable Correctness [5]), our experience within the
field of HWMCC competitions [6] and industrial co-operations shows that interpola-
tion-based approaches still play an important role within a portfolio-based tool.

From a high-level Model-Checking perspective, Craig interpolation is an operator
able to compute over-approximated images. The approach can be viewed as an iterative
refinement of proof-based abstractions, to narrow down a proof to relevant facts. Over-
approximations of the reachable states are computed from refutation proofs of unsatis-
fied BMC-like runs, in terms of AND/OR circuits, generated in linear time and space,
w.r.t. the proof.

Their most interesting features are completeness and the automated abstraction mecha-
nism. Whereas one of their major challenges is the inherent redundancy of interpolant cir-
cuits, as well as the need for fast and scalable techniques to compact them. Improvements
over the base method [4] were proposed in [7–12] and [13], in order to push forward appli-
cability and scalability of the technique.

Interpolant compaction is a potential approach that we have specifically addressed
in [14–16]. We follow here a second track of research: alternative ITP-based traversal
schemes for model checking algorithms, under the underlying purpose of incrementally
computing state sets and reducing the complexity of their computation. We also follow
the idea of incrementality in order to support optimal data structures for the verification of
multiple properties [17], and for a tighter integration with counterexample- and/or proof-
based abstraction/refinement approaches [18, 19].

Our purpose is to improve the standard interpolation algorithm in order to support incre-
mental computation of reachable states sets and dynamic tuning of the backward unrolling
from the target. We target incremental data structures in order to enable the reuse of previ-
ously computed overapproximations and make interpolant-based algorithms better suited
for the verification of multiple properties or for integration with abstraction/refinement
approaches. Furthermore, maintaining overapproximated reachable states information in an
incremental data structure allows us to dynamically adjust the bound of the BMC formulas
checked during each traversal step, in order to better control the precision of the computed
image overapproximations.

1.1 � Contributions

The main contributions of this work are:

–	 The integration of a trace data structure in the standard interpolation algorithm, along
with a flexible way to compute and refine state set representations;

–	 An optimization that aims at simplifying the representation of image approximations
and/or bad cones (i.e., the set of bad states that are backward reachable in at most k
steps from the target.) with ad-hoc redundancy removal;

–	 Techniques to refine the precision of the computed overapproximations by guiding the
bound of the set of backward reachable states from the target used in BMC checks;

119Formal Methods in System Design (2022) 60:117–146	

1 3

–	 A novel interpolation-based model checking algorithm that makes use of all the above
techniques.

1.1.1 � Additional remarks

A preliminary version [1] of this paper was originally presented at FMCAD2014. The key
differences w.r.t. the original paper are:

–	 The introduction (Section I) has been revisited in order to better characterize the con-
text;

–	 Background and notations (Section II) have been extended and improved in order to
make the paper as self-contained as possible;

–	 The description of the proposed algorithm (Sections III through V) have been com-
pletely revisited, rewritten and expanded to better illustrate the underlying details of
the procedure. Theorems have been introduced to support the theoretical foundation on
which the proposed approach is built upon;

–	 An additional section (Section VI), describing the applicability of IGR alongside lazy
abstraction and in a multiple-properties context, has been introduced;

–	 Experimental results (Section VII) have been revamped to better characterize the pro-
posed algorithm. More in details, we provide a better characterization of the proposed
techniques/schemes composing the IGR algorithm itself. We also introduced new
benchmarks derived from the latest Hardware Model Checking competitions.

1.2 � Outline

Section 2 introduces background notions and notation about BMC and UMC, SAT-based
Craig interpolant Model Checking, and IC3. The next three Sections introduce our contri-
butions: Sect. 3 discusses the use of incremental state sets in interpolation, Sect. 4 intro-
duces base concepts on guiding cones through state sets and Sect. 5 presents the over-
all IGR algorithm. Furthermore, in Sect. 6, we discuss the integration of IGR within lazy
abstraction and multiple properties verification loops. The proposed algorithm is experi-
mentally evaluated in Sect. 7. Finally, Sects. 8 and 9 conclude the paper with some sum-
marizing remarks.

2 � Background

2.1 � Model and notation

We address systems modelled by labelled state transition structures and represented implic-
itly by Boolean formulas.

Definition 1  A transition system S is a triple ⟨X, I,T⟩ , where X is a set of Boolean vari-
ables representing the states of the system, I is a Boolean formula over X representing the
set of initial states of the system and T is a Boolean formula over X × X� that represents the
transition relation of the system.

120	 Formal Methods in System Design (2022) 60:117–146

1 3

Variables of X are called state variables of S . A state of S is thus represented by a
complete truth assignment s to its state variables. Boolean formulas over X represent sets
of system states. We denote as Space(S) the state space of S . Given a Boolean formula F
over X and a complete truth assignment s such that s ⊧ F , then s is a state contained in the
set represented by F and is thus called an F-state. Primed state variables X′ are used to
represent future states of S , i.e., states reached after a transition. Accordingly, Boolean for-
mulas over X′ represent sets of future states. We denote as s, s′ a complete truth assignment
to X × X� obtained by combining a complete truth assignment s to X and a complete truth
assignment s′ to X′.

We use transition systems to model the behaviour of hardware sequential circuits, where
each state variable xi ∈ X corresponds to a latch, the set of initial states I is defined by reset
values of latches and the transition relation T is the conjunction

⋀
i(x

�
i
↔ ∃PI.𝛿i(X,PI) = ⊤)

being formulas representing the next-state function of each latch. Note that primary inputs
PI of the circuit are abstracted away in the resulting transition system.

Definition 2  A literal is a Boolean variable or the negation of a Boolean variable. A clause
is a disjunction of literals whereas a cube is a conjunction of literals. A Boolean formula is
said to be in Conjunctive Normal Form (CNF) iff it is a conjunction of clauses.

Definition 3  A truth assignment for a Boolean formula F over X is a function
𝜏 ∶ Y ⊆ X → {⊤,⊥} that maps variables in Y to truth values. A truth assignment � for F is
complete iff Y ≡ X , otherwise � is partial.

Definition 4  A truth assignment � satisfies a literal x, written 𝜏 ⊧ x , iff 𝜏(x) = ⊤ . Con-
versely, a truth assignment � satisfies a literal ¬x iff 𝜏(x) = ⊥ . A truth assignment � satisfies
a clause C, written 𝜏 ⊧ C , iff at least a literal in C is satisfied by � . A truth assignment �
satisfies a CNF formula F, written 𝜏 ⊧ F , iff each clause in F is satisfied by �.

Definition 5  A Boolean formula F is satisfiable iff there exists a truth assignment � for F
so that 𝜏 ⊧ F . Otherwise F is unsatisfiable. Two Boolean formulas F and G are equi-satisfi-
able iff either both F and G are satisfiable or both are unsatisfiable.

With abuse of notation we sometimes represent a truth assignment as a set of literals
of different variables. A truth assignment represented this way assigns each variable to
the truth value satisfying the corresponding literal in the set. We also represent a clause
(cube) as a set of literals, leaving the disjunction (conjunction) implicit when clear from
the context.

Most modern SAT solvers [20, 21] adopt clauses as their main representation and
manipulation formalism for Boolean functions. Given a Boolean formula F, whenever we
need to explicitly indicate its before/after version, w.r.t. an evaluation (e.g., a refinement
step), we use a −1 superscript for the before version: F−1 . We will use letters in boldface for
arrays of functions: e.g., F = ( F0 , F1 , ...).

Definition 6  Given a transition system S = ⟨X, I, T⟩ , and a complete truth assignment s, s′
to X × X� , if s, s′ ⊧ T then s is said to be a predecessor of s′ and s′ is said to be a successor
of s. A sequence of states �0,n = (s0,… , sn) is said to be a path in S iff si, s�i+1 ⊧ T for every
couple of adjacent states in the sequence (si, si+1) , 0 ≤ i < n.

121Formal Methods in System Design (2022) 60:117–146	

1 3

Definition 7  A state s ∈ Space(S) is said to be reachable exactly in k steps in S iff there
exists a finite initial path � = (s0,… , sk) of length k such that sk = s.

Definition 8  A state s ∈ Space(S) is said to be reachable within k steps (or reachable
bounded by k) in S iff there exists i ≤ k such that s is reachable exactly in i steps in S.

Definition 9  A state s ∈ Space(S) is said to be reachable in S if it is reachable within an
arbitrary (finite) number of steps in S.

Definition 10  We denote with RE
i
(S) , the set of states reachable in exactly i steps in S.

Definition 11  We denote with Ri(S) , the set of states reachable within i steps in S , i.e.,

Definition 12  We define the reachability diameter of S to be the minimal number d ∈ ℕ of
steps required for reaching all reachable states in S:

Definition 13  We denote with R(S) , the set of states reachable in S , i.e.,

Whenever more time frames are involved in a formula, we use a superscript nota-
tion: e.g., in circuit unrollings, we use Xi for the X variables instantiated at the i-th time
frame. Support variables will be omitted for simplicity when they can be easily guessed
from the context.

Definition 14  A path formula of length k = j − i from timeframe i to timeframe j is the
propositional formula �(i, j) over Xi ∪⋯ ∪ Xj:

Definition 15  An initial path formula of length k is a propositional formula:

A path formula �(i, j) represents all paths of length k = j − i starting at timeframe i
in S , whereas an initial path formula �0(k) describes all paths of length k starting from
the initial states in S . An initial path formula �0(k) , therefore, can be used to represent
the set of states reachable in exactly k steps from the initial states in S.

Definition 16  Given a transition system S = ⟨X, I, T⟩ we define an invariant property P as
a Boolean formula that must hold true in every reachable state s of S , i.e.,

Ri(S)
def
=

⋃

0≤j≤i

R
E
j
(S)

d
def
= argmin

i∈ℕ

{i | Ri(S) = Ri+1(S)}

R(S)
def
=

⋃

0≤j<d

Rj(S)

�(i, j)
def
=

j−1⋀

h=i

T(Xh,Xh+1)

�0(k)
def
= I(X0) ∧�(0, k)

122	 Formal Methods in System Design (2022) 60:117–146

1 3

We call target the set of states represented by ¬P . States or sets of states are called bad if
they are part of the target or can reach the target.

Definition 17  Given a transition system S = ⟨X, I, T⟩ and an invariant property P over X a
propositional formula F over X is said to be safe w.r.t. P iff F is stronger than P, i.e., F → P

.

Definition 18  A bad cone of length k = j − i from timeframe i to timeframe j is the propo-
sitional formula Cone(i, j) over Xi ∪⋯ ∪ Xj:

A bad cone Cone(i, j) represents all paths starting at timeframe i that reach the target
in at most k = j − i steps, i.e., represents the set of bad states that are backward reach-
able in at most k steps from the target.

Definition 19  Given a transition system S = ⟨X, I, T⟩ , a trace of length k with respect to
S is a sequence �

�
= (F0,… ,Fk) where each Fi is a propositional formula over X , called

frame, such that the following conditions hold:

A trace �
�
 may also satisfy one or both of the following additional conditions, being P an

invariant property over X:

A trace �
�
 is said to be monotonic if it satisfies the monotonicity condition. A trace

�
�
 is said to be safe (with respect to P ) if it satisfies the safety condition. Note that

for a trace �
�
 to be safe with respect to P according to the previous definition it is not

required for frame Fk to be safe. Figure 1 provides a graphical representation of different
kinds of traces.

Definition 20  Given a transition system S = ⟨X, I, T⟩ , let F be a propositional formula
over X , F is said to be an inductive invariant of S if it satisfies the following conditions:

Note that an inductive invariant F of S is an over-approximation of the set of reachable
states R(S).

Definition 21  Given a transition system S = ⟨X, I,T⟩ and an invariant property P over X ,
an inductive invariant F of S is said to be an inductive strengthening of P iff it is safe w.r.t.
P.

∀s ∈ R(S) ∶ s ⊧ P

Cone(i, j)
def
= �(i, j) ∧

j⋁

h=i

¬P(Xh)

F0 = I (Base)

Fi ∧ T → F�
i+1

for 0 ≤ i < k (Image Approximation)

Fi → Fi+1 for 0 ≤ i < k (Monotonicity)

Fi → P for 0 ≤ i < k (Safety)

I → F (Initiation)

F ∧ T → F� (Consecution)

123Formal Methods in System Design (2022) 60:117–146	

1 3

2.2 � Bounded and unbounded model checking

Given a transition system S
def
= ⟨X, I,T⟩ and an invariant property P , Bounded Model

Checking (BMC) [22] is an iterative process to check whether there exists a counter-
example to P of length at most k in S or to prove its absence. In order to do this, BMC
simply performs a SAT check on a formula defined as follows.

Definition 22  A BMC formula of length k for P in S is the propositional formula bmc(k)
over X0 ∪⋯ ∪ Xk:

Intuitively, a BMC formula of length k represents all initial paths in S of length at
most k that reach a bad state in ¬P . If the formula is Sat, there exists a counterexample
to P of length at most k in S . Otherwise, no such a counterexample exists.

BMC tools iteratively solve BMC formulas of increasing bound, until either a coun-
terexample is found or some maximum bound is reached. Though BMC is effective at
finding counterexamples, it is not able to detect whether P holds in S . Therefore, spe-
cific techniques are required in order to support Unbounded Model Checking. The abil-
ity to check reachability fix-points and/or to find inductive invariants is thus the main
difference, and additional complication, between BMC and UMC.

2.3 � Interpolation‑based model checking

Craig’s interpolation theorem is a seminal result in mathematical logic about the
relationship between model theory and proof theory. The original formulation of the

bmc(k)
def
= �0(k) ∧

k⋁

i=0

¬P(Xi) = I ∧ Cone(0, k)

Fig. 1   Different types of traces with respect to a given S = ⟨X, I,T⟩

124	 Formal Methods in System Design (2022) 60:117–146

1 3

theorem, due to Craig [2], was given in the context of first-order logic. Variants of the
theorem hold for other logical systems as well, including propositional logic. We pro-
vide here the formulation of the theorem in propositional logic, which is the one typi-
cally encountered in the context of model checking.

Theorem 1  Given two propositional formulas A and B, if A ∧ B is unsatisfiable then there
is a propositional formula I , called interpolant between A and B, such that (1) A → I is
valid, (2) I ∧ B is unsatisfiable and Vars(I) ⊆ Vars(A) ∩ Vars(B).

Intuitively, I is an abstraction of A from the viewpoint of B that summarizes and trans-
lates in the shared language between A and B, the reasons why A is inconsistent with B. We
denote with I = ITP (A,B) the procedure that derives a Craig’s interpolant from a pair of
inconsistent formulas A and B.

Interpolants can be derived from refutation proofs of unsatisfiable SAT solving runs. Given
an unsatisfiable formula A ∧ B , most SAT solvers are capable to generate a proof of refuta-
tion either in resolution-based or clausal form. In the case of resolution proofs, an interpolant
I = ITP (A,B) can be derived as an AND/OR combinational circuit in polynomial time and
space with respect to the size of the proof. In the context of model checking, if A represents a
set of reachable states and B represents a set of bad states, then the interpolant I = ITP (A,B)
is a safe overapproximation of A with respect to B. As a result, such overapproximations can be
used to detect a reachability fix-point. The first complete algorithm for symbolic model check-
ing based on Craig’s interpolation is due to McMillan [4]. Such an algorithm, called ITP or
standard interpolation, computes Craig’s interpolants to overapproximate reachable states of
the system. Such interpolants are computed from refutation proofs of unsatisfiable BMC runs.

The algorithm is composed of two nested loops. The outer loop is implemented in proce-
dure ItpModelChecking (Algorithm 1) whereas the inner loop is implemented in procedure
ApproxFwdTrav (Algorithm 2). At each iteration of the outer loop, the procedure ApproxFwdTrav
is invoked to perform an overapproximated forward traversal of the reachable states while keeping
safety with respect to a backward unrolling from the target (bad cone). ApproxFwdTrav can be
thought of as computing a safe monotonic trace. The trace is not explicitly maintained, instead
only its final frame is kept at each iteration and used as a base for computing the next one.

The procedure ApproxFwdTrav operates a forward traversal in which interpolation
is used as an overapproximated image operator. At each iteration the procedure checks a
BMC formula of fixed length k, composed of two parts:

where R is a set of overapproximated forward reachable states. It is easy to see that A repre-
sents the image of the set of states at the current traversal step, whereas B represents the set
of bad states that are backward reachable in at most k − 1 transitions from the target. If at a
given iteration the results of the BMC check is Sat then a possibly spurious counterexam-
ple has been found (the forward traversal has hit the cone).

Being an overapproximation of the image of R, the interpolant is treated as a candi-
date inductive invariant. The algorithm checks whether consecution I → R is valid (i.e.,
¬R ∧ I is unsatisfiable). If that is the case, R is an inductive invariant for S and, since R
is safe w.r.t. P , it is also an inductive strengthening for P . Otherwise, a new set of overap-
proximated forward reachable states is computed as R ∨ I and the algorithm iterates. The

A
def
= R(X0) ∧ T(X0,X1)

B
def
= Cone(1, k) = �(1, k) ∧

⋁k

i=1
¬P(Xi)

125Formal Methods in System Design (2022) 60:117–146	

1 3

sequence of R composed at each iteration of the nested procedure can be thought of as a
safe monotonic trace. The monotonicity is due to the fact that the first R is initialized with
I (line 2) and each consecutive R is a disjunction of the previous one and of an overap-
proximation of the states reachable from the previous (line 14). Safety (with respect to P )
follows from the fact that I was proved to be safe (Algorithm 1, lines 2–4) and each inter-
polant I used to construct R does not intersect Cone(1, k) . The sequence of interpolants,
instead, can be seen as a non-monotonic safe trace.

Considering Algorithm 1, first the initial states I are checked to be safe (lines 2–3). If that
is not the case, there is a trivial counterexample consisting of a single initial state only. The
procedure then terminates returning the counterexample found. Otherwise, the bound k for the
bad cone is initialized to 1 (line 4) and the procedure starts iterating forward overapproximated
traversals of reachable states while keeping safety with respect to a bad cone of increasing
depth k from the target (lines 5–11). Increasing the bound k helps finding real counterexamples
and generating more precise overapproximations on the next iteration. This is because as the
bad cone from the target unwinds, some of the states in the overapproximated images com-
puted at previous iterations would be reached by the unrolling and therefore excluded from the
new images. Note that at each iteration of the outer loop, the nested procedure starts a forward
traversal from scratch from the initial states. As k increases, the algorithm is guaranteed to find
a bound k in which the computed interpolants are precise enough to find an inductive strength-
ening if P holds for the system, or to find a real counterexample otherwise.

The overall algorithm may end up with three possible results:

–	 reachable, if it proves ¬p reachable in k steps, hence the property has been disproved;
–	 unreachable, if the approximate traversal reaches a fix-point. In this case the property is

proved;
–	 undefined, if the target is reachable from the over-approximate state set in un to k steps.

Then, k in increased for a new iteration.
	  The algorithm is sound and complete [4].

Algorithm 1. Top-level procedure of McMillan’s interpolation algorithm. It iter-
ates forward overapproximated traversals of reachable states while keeping safety
with respect to a bad cone of increasing depth from the target.
Input: S = X, I, T a transition system; P a property over X.
Output: res, cex with res ∈ {Success,Fail}; cex a (possibly empty) initial path represent-

ing a counterexample.
1: procedure ItpModelChecking(S, P)
2: if ∃s0 |= I(X) ∧ ¬P (X) then
3: return Fail, (s0)
4: k ← 1
5: while true do
6: res, cex ApproxFwdTrav(S, P, k)
7: if res is Unreach then
8: return Success,
9: else if res is Reach then
10: return Fail, cex
11: k ← k + 1

126	 Formal Methods in System Design (2022) 60:117–146

1 3

Algorithm 2. Inner procedure of McMillan’s interpolation algorithm. It operates
a forward overapproximated traversal of the reachable state space while keeping
safety with respect to a bad cone of fixed depth from the target.
Input: S = X, I, T a transition system; P a property over X; k bound of a backward

unrolling from the target.
Output: res, cex with res ∈ {Reach,Unreach,Undef}; cex a (possibly empty) initial path

representing a counterexample.
1: procedure ApproxFwdTrav(S, P , k)
2: R ← I
3: if ∃π0,k |= R(X0) ∧ T (X0, X1) ∧Cone(1, k) then
4: return Reach,π0,k

5: while do
6: A ← R(X0) ∧ T (X0,X1)
7: B ← Cone(1, k)
8: if ∃π0,k |= A ∧ B then
9: return Undef,
10: else
11: I ← ITP(A,B)
12: if s |= I ∧ ¬R then
13: return Unreach,
14: R ← R ∨ I

2.4 � IC3

IC3 [5] is a SAT-based algorithm for symbolic invariant verification. Given a transition
system S = ⟨X, I, T⟩ and an invariant property P over X to be checked, IC3 aims at finding
an inductive strengthening of P for S.

To this end, IC3 maintains two main data structures. The first is a trace �
�
= (F0,… ,Fk)

that is both monotonic and safe w.r.t. the property P . At a given iteration of the algorithm,
being �

�
 such a trace, each frame Fi , with 0 ≤ i < k , is a safe overapproximation of the set

of states reachable in at most i steps in S . The purpose of the algorithm is to iteratively
refine such �

�
 in order to satisfy the condition Fi+1 → Fi for some 0 ≤ i < k , thus finding

an inductive strengthening of � . In order to do this, IC3 maintains a second data structure
called proof-obligation queue that is used to collect sets of states in �

�
 that can reach a vio-

lation of the property in some number of steps. IC3 processes those sets of states according
to a given priority and for each of them it either finds a backward path to the initial states
or learns a new inductive lemma that can be used to refine �

�
 to exclude such states from

the overapproximation. In the first case the algorithm has found a counterexample to P . In
the second case, the algorithm continues its search of an inductive strengthening of P over
a tighter approximation of the reachable states sets. At various points during its operation,
IC3 requires to solve SAT calls. A peculiarity of the algorithm is the fact that its SAT calls
are very frequent but involve only a single instance of the transition relation T  . Performing
many local reachability checks, IC3 achieves a better control on the precision of the com-
puted overapproximations.

Considering the trace �
�
 , each frame Fi is represented by a set of clauses, denoted by

clauses(Fi) , in order to enable efficient syntactic checks for the equality of frames. The
base condition of the trace is fulfilled by initializing the first frame with I at the start
of the algorithm. Monotonicity is maintained syntactically, by enforcing the condition
clauses(Fi+1) ⊆ clauses(Fi) . Image approximation and safety, instead, are guaranteed
explicitly by the algorithm’s operations.

127Formal Methods in System Design (2022) 60:117–146	

1 3

The introduction of IC3 suggested a different way to compute information about reach-
able states, as (unlike ITP-based approaches) IC3 requires no unrolling of the transition
relation. One of the major contributions of IC3 is an inductive reasoning, where induc-
tion is exploited under stepwise assumptions-assertions. IC3 is incremental in that it finds
inductive subclauses of the negations of states. The main limitation of IC3 is the potential
clause-based state set enumeration. Some interesting ideas of IC3, that partially influenced
our work, are:

–	 The incremental representation of state sets;
–	 The push operation, that possibly re-uses clauses from inner state sets to outer ones;
–	 Redundancy removal by subsumption.

3 � Incremental state sets in ITP

In this section we describe our model of incremental state sets. Instead of directly introduc-
ing the overall IGR algorithm (see Sect. 5), we first propose here some modifications to
the standard interpolation algorithm [4], that would allow reusing and refining previously
computed interpolants. In the proposed variant a trace of overapproximations to reachable
states is maintained and incrementally refined, in order to enable the reuse of previously
computed interpolants. Since interpolants are safe image overapproximations with respect
to the property under verification, the trace maintained by our variant of ITP is safe as well.

As already pointed out, incremental state sets are present in ITPSEQ[23, 24] and
DAR[25]. Compared to those works, our approach, as described in the sequel, is much
closer to standard interpolation. More in detail:

–	 We just focus on approximations of forward reachable states, with no attempt to mix
forward and backward state sets (as in DAR);

–	 We keep the standard interpolation scheme, extended by saving and reusing previously
computed state sets;

–	 We always refine (i.e., strengthen) state sets, which does not prevent us from possibly
simplifying their representation by using ad–hoc redundancy removal.

At each i-th iteration of the inner loop an ITP overapproximation of the states reachable
in i steps in the system is computed by extracting an interpolant from the refutation proof
of a BMC formula. The computed interpolant is discarded at the end of the iteration. Fur-
thermore, when a spurious counterexample is found, the current forward traversal is inter-
rupted, the backward cone from the target is unwound by one step and the forward traversal
of reachable states restarts from the initial states. The key idea of the proposed method is
to keep track of the overapproximations computed during each run of ApproxFwdTrav,
in order to enable their reuse in further iterations of the outer loop. In order to do this, we
extend the standard interpolation algorithm to maintain a trace of reachable states. As the
bound k of the cone increases, stronger overapproximations are computed at each traversed
time frame and used to refine the trace.

128	 Formal Methods in System Design (2022) 60:117–146

1 3

Algorithm 3. Top-level procedure of the proposed ITP variant that keeps track of
the computed interpolants using a trace.
Input: S = X, I, T a transition system; P a property over X.
Output: res, cex with res ∈ {Success,Fail}; cex a (possibly empty) initial path represent-

ing a counterexample.
1: procedure IncrItpModelChecking(S, P)
2: if ∃s0 : s0 |= I(X) ∧ ¬P (X) then
3: return Fail, (s0)
4: Fk[0] ← I
5: k ← 1
6: while true do
7: res, cex IncrApproxFwdTrav(S, P,Fk, k)
8: if res is Unreach then
9: return Success,
10: else if res is Reach then
11: return Fail, cex
12: k ← k + 1

We use a trace �
�
= (F0,… ,Fk) in order to keep track of previously computed overap-

proximations. Each timeframe of the trace is represented as an AIG circuit. Each timeframe
Fi of �

�
 , with 0 ≤ i < k , is an over-approximation of the set of states that are reachable in

exactly i steps. The trace is constructed so that it is safe with respect to P.

Algorithm 4. Inner procedure of the proposed ITP variant that keeps track of the
computed interpolants using a trace.
Input: S = X, I, T a transition system; P a property over X; Fk a trace; k bound of a

backward unrolling from the target.
Output: res, cex with res ∈ {Reach,Unreach,Undef}; cex a (possibly empty) initial path

representing a counterexample.
1: procedure IncrApproxFwdTrav(S, P , Fk, k)
2: R ← F0
3: if ∃π0,k |= F0(X0) ∧ T (X0,X1) ∧ Cone(1, k) then
4: return Reach,π0,k

5: i ← 0
6: while do
7: if i = |Fk| then
8: Fk[i+ 1]
9: A ← Fi(X0) ∧ T (X0,X1)
10: B ← Cone(1, k)
11: if ∃π0,k |= A ∧ B then
12: return Undef,
13: else
14: I ← ITP(A,B)
15: Fi+1 ← Fi+1 ∧ I
16: if s |= Fi+1 ∧ ¬R then
17: return Unreach,
18: R ← R ∨ Fi+1
19: i ← i+ 1

The proposed ITP variant, called IncrItpModelChecking, is sketched in Algorithms 3
and 4. The differences between the proposed variant and standard interpolation are the
following:

129Formal Methods in System Design (2022) 60:117–146	

1 3

–	 The trace is initialized with F0 = I prior to starting the first forward traversal (Algo-
rithm 3, line 4).1

–	 Each time the forward traversal reaches the end of the current trace, a new frame is Fi+1
instantiated equal to ⊤ and added to the trace (Algorithm 4, lines 7–8).

–	 Every time a new interpolant, overapproximating states reachable in i + 1 steps, is com-
puted, the corresponding frame Fi+1 in the trace is refined (Algorithm 4, lines 15).

Note that refinement is a strengthening step, performed by conjoining the previous set with
a new term. In the following we prove that the sequence of formulas (F0,… ,Fk) computed
by the algorithm constitutes a safe trace for the system with respect to P.

Theorem 2  At any moment during the execution of Algorithm 4, the sequence
�
�
= (F0,… ,Fk) maintained by the algorithm is a trace.

Proof  Given a sequence �
�
= (F0,… ,Fk) computed by Algorithm 4, we need to prove

that the base and image approximation conditions of Definition 19 hold for �
�
 . Since F0

is initialized with I (Algorithm 3, line 4) and never refined, the base condition holds. We
prove that the image approximation condition holds by induction on the refinement step
(Algorithm 4, line 16). Assume �

�
 to be a trace prior to a refinement step. We denote by

F∗
i
 the i-th element of the sequence after the refinement step. Since the sequence prior to

the refinement is assumed to be a trace, Fi ∧ T → Fi+1 is valid for each 0 ≤ i < k . From the
definition of I = ITP (Fi ∧ T ,B) it follows that Fi ∧ T → I is valid. By conjoining the two
together, the following is valid:

Therefore, considering the image approximation condition after a refinement step, we have:

which is valid according to Formula 1. Refinement preserves the image approximation
condition of Definition 19, therefore �

�
= (F0,… ,Fk) is a trace. 	� ◻

Theorem 3  At each moment during the execution of Algorithm 4, the trace �
�
= (F0,… ,Fk)

maintained by the algorithm is safe.

Proof  The safety of the trace follows trivially by induction. Timeframe F0 is initialized
with I  , which the algorithm checks to be safe (Algorithm 3, lines 2–4). Each subsequent
timeframe is initialized with ⊤ (which is not safe) and refined by conjunction of interpo-
lants (which are safe according to the definitions of interpolants and bad cone). Therefore,
for each timeframe Fi of �

�
 , with 0 ≤ i < k , the safety condition Fi → P holds. Note that,

the outermost timeframe Fk is the only one to be potentially unsafe (equal to ⊤ ), but its
safety is not required according to Definition 19.

(1)Fi ∧ T → Fi+1 ∧ I

F∗
i
∧ T → F∗

i+1

= Fi ∧ T → Fi+1 ∧ I

1  We use the notation �
�
 instead of F

i
 to refer to a frame of �

�
 that does not exists yet and that is being ini-

tialized for the first time.

130	 Formal Methods in System Design (2022) 60:117–146

1 3

3.1 � Frames and cone simplification

In this subsection we describe an optimization that aims at simplifying the representation
of frames and/or bad cones with ad-hoc redundancy removal. The purpose of the proposed
optimization is to keep overapproximations of reachable states and cones small. Such a
simplification step is based on the general notion of redundancy removal under observabil-
ity don’t cares. We denote simplification under a care set as the function Simplify(F,C) ,
where F is a formula over X to be simplified and C is another formula over X to be used
as a care set for the simplification of F . The care set is defined with respect to a reference
formula G over X ∪W in which F appears as a subformula, as follows.

Definition 23  Given a propositional formula F over X and another formula G over X ∪W
such that F is a subformula of G, we define the care set CG

F
 of F with respect to G as the set

of assignments over X under which the value of F affects the value of G. A care set for F
with respect to G can be represented by the formula:

The complement of a care set CG
F

 is called don’t care set of F with respect to G and it rep-
resents the set of assignments over X under which the value of F does not affect the value
of G.

The knowledge of the care set of a formula F with respect to a reference formula G can
be used to simplify F . Simplification of a formula F under a care set CG

F
 with respect to a

reference formula G can involve the application of any number of equivalence-preserving
or strengthening transformations over F , as long as the following constraint is preserved:

Computation of care sets and don’t care sets can be costly [26]. Considering a conjunc-
tion F = A ∧ B as a reference formula, the following Lemma describes two straightforward
ways to obtain care sets for either of the conjoined formulas. We focus on B being the case
for A dual.

Lemma 1  Given F = A ∧ B , with both A and B propositional formulas over X , then A is a
care set for B with respect to F. Given C a propositional formula over X such that A → C ,
then C is a care set for B with respect to F.

Figures 2a and b illustrate, in terms of sets of assignments, the simplification of a
formula B with respect to a reference formula F = A ∧ B under care sets as defined by
Lemma 1. For instance, given two propositional formulas A = a and B = (a ∨ b) , the
knowledge that any assignment satisfying their conjunction F = A ∧ B must be a satis-
fying assignment of either formula, can be used to simplify the other. Using A as a care
set for B, since F = a ∧ (a ∨ b) is satisfied only by assignments satisfying A (i.e., assign-
ments � such that 𝜇(a) = ⊤ ) we can simplify B through the injection of a constant
⊤ prior to conjoining it to A, obtaining ⊤ ∨ b ≡ b . The resulting formula after simplifi-
cation A ∧ SIMPLIFY(B,A) = a ∧ b is syntactically more compact than the equivalent
A ∧ B = a ∧ (a ∨ b).

CG
F
= G⊕ G[F ← ¬F]

G ≡ G[F ← SIMPLIFY(F,CG
F
)]

131Formal Methods in System Design (2022) 60:117–146	

1 3

Though many redundancy removal techniques can be used to perform simplification
under a care set, such as latch correspondence, signal correspondence and equivalence to
constants, our experience shows that most of them are too expensive to perform at each
forward traversal iteration of an ITP scheme. As we need a fast operator, we limit Simplify
to the removal of equivalences between state variables, also known as latch correspond-
ences. Given a formula B to simplify and a care set A, the Simplify operator identifies pairs
of state variables (x1, x2) such that A → (x1 ↔ x2) . Then, B is simplified as B[x1 ← x2].

Simplification under a care set can be used to simplify the representation of frames dur-
ing the refinement step (Algorithm 4, line 17), or to simplify the bad cone Cone(1, k) prior
to checking its intersection with the image of Fi (Algorithm 4, line 13). During forward
overapproximated traversal, when the image of the current set of reachable states Fi ∧ T
is checked for intersection with the bad cone Cone(1, k) , we can simplify Cone(1, k) using
any overapproximation of the states reachable in the next k transitions that is already in
the trace. In particular, each frame Fj in �

�
 , with i < j < i + k , can be used as a care set to

simplify Cone(1, k) . We denote with TraceSimplify(Cone(1, k) , �
�
 , i, k) the function apply-

ing SIMPLIFY(Cone(1, k),Fj) for each i < j < i + k , i.e., the function applying latch cor-
respondences substitution at each intermediate transition relation boundaries in Cone(1, k) .
This way, we exploit reachability information computed during previous iterations of the
algorithm to simplify the formula to be fed to the SAT solver.

4 � Guided cone

In standard interpolation, when a spurious counterexample is found the current forward tra-
versal is restarted from the initial states after the bad cone has been expanded by one step.
We explore the idea to dynamically unwind or rewind the cone during forward traversal
in order to guarantee the refinement of some previously computed overapproximation of
reachable states. The depth of the cone is therefore guided by the frames in the trace so that
it can lead to a strengthening refinement for some of them.

Compared to the proposed approach, ITPSEQ and DAR refine frames based on BMC-
like runs of growing depth. IC3, instead, drives the refinements based on a prioritized
selection of backward reachable cubes.

Supposing that at a given point during the execution of IncrItpModelChecking the
algorithm has computed a trace �

�
 , we follow two directions sharing the goal of potentially

expanding and refining �
�
 :

Fig. 2   Examples of simplification under a care set

132	 Formal Methods in System Design (2022) 60:117–146

1 3

Cone Unwinding	� When the forward traversal hits the cone, we start a new traversal at an
intermediate step in order to guarantee the refinement of the trace.

Cone Rewinding	� When the forward traversal hits the cone, we continue the traversal
with iteratively smaller cones in order to refine and expand the trace.

Overall, guided cone unwinding/rewinding allows us to dynamically tune the unrolling
from the target and therefore to have a better control over the precision of the computed
overapproximations (interpolants). In this respect, standard interpolation is too rigid, as
overapproximations are always strengthened expanding the cone by one and restarting the
traversal from scratch. If the diameter of the system is very large, ITP takes a large number
of iterations to converge. ITPSEQ, computes overapproximations to the reachable states
incrementally, but with a fixed and rigid scheme. Much more flexibility is present in DAR,
where local and global strengthening techniques are used to refine just when and where
needed. Although backward refinement in DAR has similarities to our approach, it is based
on the idea of using overapproximated backward reachable states when refining forward
reachable ones. Our approach, instead, is based on backward cones in order to represent the
exact backward behaviour.

4.1 � Cone unwinding

At a given iteration i of the forward traversal, given the bound k of the cone, if the follow-
ing formula is Sat, then a possibly spurious counterexample is found.

Standard interpolation, in that case, unwinds the bad cone by one step and starts a new
traversal from the initial states. By doing so, when/if step i is reached again in the traversal,
the overapproximation Fi might have been strengthened enough to exclude the spurious
counterexample previously found. If that is not the case, standard interpolation restarts the
traversal again, incrementing k until either all spurious counterexamples are excluded from
the overapproximation or (at least) one counterexample is confirmed to be real. We propose
an alternative approach to handle spurious counterexamples, the purpose being to reuse
the computed overapproximations as much as possible. In our approach, we unwind the
cone of the minimum depth necessary to strengthen a frame Fj , with 0 < j ≤ i , in order to
directly refute the spurious counterexample.

Whenever Formula 2 is Sat, there is a path from a state � ∈ Fi to a target state and so
there could exist a counterexample of length (at most) i + k . The counterexample is fea-
sible if � is reachable from the initial states, otherwise we say that the counterexample
is spurious.

Theorem 4  A counterexample is spurious if the following formula is Unsat for a given j,
with 0 < j ≤ i:

Proof  We can demonstrate such a claim by reduction to absurdity. Suppose that Formula 3
is Unsat for a given j, with 0 < j ≤ i . Suppose also that bmc(i + k) is Sat, therefore a coun-
terexample of length (at most) i + k exists. Then, being Fl an overapproximation of the

(2)Fi(X
0) ∧ T(X0,X1) ∧ Cone(1, k)

(3)Fi−j(X
0) ∧ T(X0,X1) ∧ Cone(1, k + j)

133Formal Methods in System Design (2022) 60:117–146	

1 3

states reachable in l steps, for all l such that 0 ≤ l < i + k the following formula must be
Sat:

By substituting j = i − l in Formula 3 we obtain Formula 4. The contradiction follows
from the fact that such a formula should be Unsat by assumption. 	� ◻

Theorem 4 can be used in multiple ways in order to set up a refinement process of Fi .
We call “cone unwinding” the process of iteratively finding a minimal value of j, such
that Formula 3 is Unsat. Once j is found, we can restart the interpolation process at Fi−j
with the cone “unwound” by j time frames, Cone(1, k + j).

With respect to standard interpolation we skip intermediate cones, whenever j > 1 ,
and we skip the initial traversal iterations, from F1 to Fi−j , which are reused instead of
being recomputed.

In order to check if a counterexample is feasible, we start an iterative process checking
BMC-like problems in which every time we unwind the cone by one step and we consider
the previous frame. Starting from frame Fi and cone Cone(1, k) , at the j-th iteration we
consider the BMC-like problem described in Formula 3. At each iteration we trade an over-
approximated set of forward reachable states Fi−j for an exact image backward reachable
from the target, Cone(1, k + j) . If the BMC-like problem is Sat at a given j, then Fi−j is not
strong enough to refute the counterexample and the process iterates. Eventually, either we
find Unsat, refuting the spurious counterexample, or we reach the initial states, confirming
the counterexample as a concrete one. In fact, for j = i we have exactly bmc(i + k).

Supposing that we have found a j, with 0 < j < i , such that Formula 3 is Unsat, then we
can restart the forward traversal from Fi−j with Cone(1, k + j) , which is guaranteed to gen-
erate an interpolant and refine the current trace, as proved in the following theorem.

Theorem 5  Code unwinding is guaranteed to refine the current trace.

Proof  Given an iteration i of the forward traversal procedure and a bound k of the cone for
which Formula 2 is Sat, cone unwinding can be applied. Suppose that, for a given iteration
j, Formula 3 is Unsat for j but Sat for j − 1 , then the interpolant I computed for Formula 3
at iteration j has the property that all paths of length k + j − 1 starting from I are safe. Since
Formula 3 is Sat for j − 1 there exists a state in Fi−j+1 that reach a bad state in at most
k + j − 1 steps. Both I and Fi−j+1 are overapproximations of the states reachable in i + j − 1
steps from I  . By conjoining I and Fi−j+1 all the paths that reach a bad state in at most
k + j − 1 steps are removed, thus refining the current trace. 	� ◻

From a practical point of view, we are unwinding Cone(1, k) in a guided way through the
frames Fi−j , with 0 < j ≤ i , in order to find the minimum value of j able to refute a spurious
counterexample.

An additional consideration is that, upon detecting j such that Formula 3 is Unsat, we
can continue the iterative process for a given number of bounds checking whether or not
Formula 3 still holds for higher values of j. Note that, this is not guaranteed since the trace
is non monotonic. Note also that, even if we find Formula 3 to be Unsat for higher values
of j, the corresponding interpolant is not guaranteed to refine the trace. This nevertheless
can be empirically useful in order to restart traversal at a lower bound, i.e., closer to I  , in

(4)Fl(X
0) ∧ T(X0,X1) ∧ Cone(1, k + i − l)

134	 Formal Methods in System Design (2022) 60:117–146

1 3

order to avoid to restart too close to frames that may lead to counterexamples in one or just
a few steps.

The unwinding strategy is heuristically more suitable to handle problems characterized
by deeper bounds, which typically need multiple iterations of standard interpolation to
converge.

4.2 � Cone rewinding

We call “cone rewinding” a strategy that, given a frame Fi safe with respect to Cone(1, k) ,
seeks to refine the next frames Fi+j (with 0 < j < k ) with cones of decreasing bound, that
guarantee interpolant computation (Unsat problems). This strategy is inspired by the vari-
ant of interpolation sequences proposed in [24]. We start at Fi , with Cone(1, k) , under the
condition that Formula 2 is Unsat. This guarantees that a refinement of Fi+1 is possible,
using the interpolant derived from the corresponding SAT check. As a consequence, it fol-
lows from the nature of interpolants that Fi+1(X

1) ∧ Cone(1, k) is Unsat. By performing
variable relabelling and making the first instance of transition relation in the cone explicit,
we obtain the following formula

which is Unsat. Formula 5 is the base of the rewinding process, as we have moved one step
forward in image computation, from Fi to Fi+1 , and the cone has been reduced by one time-
frame, from Cone(1, k) to Cone(1, k − 1).

Rewinding iterations can stop at any intermediate step, or even go ahead until we have
a cone of bound 1. This is a purely heuristic choice. We activate the rewinding process in
two cases (controlled by engine setup options):

–	 After cone unwinding, from k to k + j , which means that, instead of starting an interpo-
lant iteration with a cone of bound k + j , we decrease the cone at each iteration. We call
this strategy IGR (A).

–	 We keep a given cone Cone(1, k) until it is hit (so Formula 2 is Sat), then we start
the rewinding process from the previous step, as Fi(X

0) ∧ T(X0,X1) ∧ Cone(1, k − 1) is
guaranteed to be Unsat. We call this strategy IGR (B).

4.3 � Overall strategy

To sum up, IGR (A) and IGR (B) are two ways of exploiting the same ability to refine
frames (overapproximations of reachable states). In IGR (A) we know that a given frame
Fi is safe respect to Cone(1, k) , and we refine, or generate, the frames (Fi+1,… ,Fi+k) of the
trace. In IGR (B), we initially performs as many image steps as possible with Cone(1, k) .
Once the cone is hit at step i of the forward traversal, we move back at step i − 1 , and we
compute a sequence of k interpolants, that can be used to refine, or generate, the frames
(Fi,… ,Fi+k−1) of the trace. The purpose of such refinement sequences is to let future tra-
versals operate over more precise overapproximations of the reachable states.

(5)Fi+1(X
0) ∧ T(X0,X1) ∧ Cone(1, k − 1)

135Formal Methods in System Design (2022) 60:117–146	

1 3

5 � IGR: interpolation with guided refinement

In this section we describe a novel complete invariant verification procedure based on the
ideas presented before. The proposed algorithm, called Interpolation with Guided Refine-
ment (IGR), can be seen as a variant of ITP that incorporates explicit trace computation
and refinement, images and cones simplification under observability don’t care and guided
cone unwinding/rewinding.

Algorithm 5. Top-level procedure of IGR.
Input: S = X, I, T a transition system; P a property over X.
Output: res, cex with res ∈ {Success,Fail}; cex a (possibly empty) initial path represent-

ing a counterexample.
1: procedure IgrModelChecking(S, P)
2: if ∃s0 : s0 |= I(X) ∧ ¬P (X) then
3: return Fail, (s0)
4: Fk[0] ← I
5: ihit ← 0
6: khit ← 1
7: while true do
8: res, cex, i, k Unwind(S, P,Fk, ihit, khit)
9: if res is Reach then
10: return Fail, cex
11: res, ihit, khit IgrApproxFwdTrav(S, P,Fk, i, k)
12: if res is Unreach then
13: return Success,

The top-level procedure of IGR is reported in Algorithm 5. The procedure starts by
checking safety of the initial states (lines 2–3) and initializing the trace �

�
 (line 4). The

indexes ihit and khit are also initialized (lines 5–6). Such indexes are used to keep track of
the traversal step and cone depth at which a cone was hit during the previous traversal.
Then, the outer loop starts iterating overapproximated forward traversals (lines 7–13). First
the procedure Unwind is invoked to seek the best frame at which to start the next traversal
(line 8). Such a procedure performs cone unwinding (as described in Sect. 4.1) starting
from the step ihit and cone depth khit , until either a concrete counterexample or a frame
that could be refined by computing a new interpolant is found. In the first case, the proce-
dure Unwind returns a Reach result and a counterexample. The algorithm, thus, terminates
with Fail producing the counterexample as an output (lines 9–10). In the second case, the
procedure Unwind returns an Undef result, a step i and a cone depth k to be used for the
next traversal. Note that, at the first iteration, ihit is 0 and khit is 1, therefore Unwind simply
checks whether the initial states can reach the target in one transition. If no real counterex-
ample was found, the algorithm starts a new forward overapproximated traversal invoking
the procedure IgrApproxFwdTrav (line 11). Upon termination of such a procedure, if the
result is Unreach, then an inductive invariant has been found during traversal. In that case,
the algorithm terminates with Success (lines 12–13). Otherwise, the cone was hit and the
traversal procedure returns an Undef result together with the step ihit and cone depth khit at
which that occurred. In that case, a possibly spurious counterexample was found during
traversal and the algorithm iterates to perform a new traversal.

The overall task of IgrModelChecking can thus be summarized as:

136	 Formal Methods in System Design (2022) 60:117–146

1 3

–	 Iteratively choose a starting frame Fi and a cone Cone(1, k) , unwound in a guided man-
ner throughout the (overapproximated) trace �

�
.

–	 Start a new forward traversal from Fi with Cone(1, k) that is expected to refine �
�
 and

filter out the last spurious counterexample found within Fi.

The first sub-task is handled by Unwind, whereas the second is performed by
IgrApproxFwdTrav.

Algorithm 6. Inner procedure of the proposed ITP variant that keeps track of the
computed interpolants using a trace.
Input: S = X, I, T a transition system; P a property over X; Fk a trace; i start step of the

traversal; k bound of a backward unrolling from the target.
Output: res, ihit, khit with res ∈ {Unreach,Undef}; ihit the step (if any) at which the

cone is hit during traversal; khit the depth of the cone hit.
1: procedure IgrApproxFwdTrav(S, P , Fk, k)
2: R ← i

j=0 Fj

3: rewind ← ⊥
4: ihit ← i
5: khit ← k
6: while do
7: if i = |Fk| then
8: Fk[i+ 1]
9: if rewind∧ k > 0 then
10: k ← k − 1
11: A ← Fi(X0) ∧ T (X0,X1)
12: B ← TraceSimplify(Cone(1, k),Fk, i+ 1, k)
13: if ∃π0,k |= A ∧ B then
14: rewind
15: ihit ← i
16: khit ← k
17: else
18: I ← ITP(A,B)
19: Fi+1 ← Simplify(Fi+1, I) ∧ I
20: if s |= Fi+1 ∧ ¬R then
21: return Unreach,−,

22: R ← R ∨ Fi+1
23: i ← i+ 1
24: if ¬rewind ∧ i > D then
25: rewind
26: ihit ← i
27: khit ← k
28: else if rewind∧ k = 0 then
29: return Undef, ihit, khit

Procedure IgrApproxFwdTrav, described in Algorithm 6, performs a forward overap-
proximated traversal of reachable states starting from a given frame in the trace, while
keeping safety with respect to a cone of given depth. The procedure first computes the
current overapproximated set of states reachable at step i by disjoining the first i frames
(line 2). Then, at each iteration of the traversal loop (lines 6–29), the algorithm proceeds
in two different ways based on whether or not a cone rewinding (see Sect. 4.2) has been
triggered, as controlled by the variable rewind. If cone rewinding has not been triggered,
the algorithm performs a traversal step using a cone of bound k. Otherwise the algorithm
decreases the bound of the cone at each iteration to perform rewinding (lines 9–10). During
each traversal step, the procedure first performs cone simplification (line 12) as described

137Formal Methods in System Design (2022) 60:117–146	

1 3

in Sect. 3.1 and then checks whether the current set of overapproximated reachable states
R hits the cone (line 13). If that is the case, the algorithm saves the current step and cone
bound in ihit and khit , respectively, and triggers a refinement sequence (lines 14–16). Oth-
erwise, a new overapproximated image is computed through interpolation (lines 18) and
the current frame Fi is refined and simplified (line 19) as described in Sect. 3.1. Then, the
algorithm checks if the computed overapproximation is an inductive invariant, returning
Unreach if that is the case (lines 20–21). If no inductive invariant has been found, the new
set of overapproximated forward reachable states is computed as R ∨ Fi+1 , to be used for
the next iteration (line 22). Each time the forward traversal reaches the end of the current
trace, a new frame is Fi+1 instantiated equal to ⊤ and added to the trace (lines 7–8). At the
end of each iteration, if a given (user-controllable) traversal depth threshold D has been
reached, the algorithm forces rewinding (lines 24–27). When rewinding has been triggered,
either because a spurious counterexample was found or because it was forced, the algo-
rithm continues the traversal decreasing the cone bound at each iteration. When the cone
has been completely rewound, the algorithm terminates returning Undef together with the
step and cone bound at which either a spurious counterexample was found (lines 15–16) or
rewinding has been forced (lines 26–27).

The threshold D heuristically controls activation of cone rewinding. Whenever D = 0 ,
rewinding is always active, so the approach obtains a minimal refinement, and mimics the
effect of interpolation sequences. High values of D keep the k value constant until a hit, a
scheme much closer to standard interpolation. We empirically observed that small values
are better at small sequential depths, as they can produce more refinement steps of limited
cost.

Algorithm 7. Unwinding procedure of IGR.
Input: S = X, I, T a transition system; P a property over X; ihit the step at which the

cone was hit during traversal; khit the depth of the cone hit.
Output: res, cex, i, k with res ∈ {Undef,Reach}; cex a (possibly empty) initial path rep-

resenting a counterexample; i the step at which resume forward traversal; k the depth of
the cone to use in the resumed traversal.

1: procedure Unwind(S, P , ihit, khit)
2: i ← ihit
3: k ← khit
4: while i ≥ 0 ∧ ∃π0,k |= Fi(X0) ∧ T (X0,X1) ∧ Cone(1, k) do
5: i ← i− 1
6: k ← k + 1
7: if i < 0 then
8: return Reach,π0,k ,−,

9: return Undef,−, i, k

At each iteration, the Unwind procedure, described in Algorithm 7, properly computes i
and k, starting from ihit and khit (related to the previous spurious counterexample). Follow-
ing the strategy described in Sect. 4.1, the cone bound k is extended, and i is decremented
(lines 5–6), until an Unsat BMC check is obtained or the initial states are reached (line
4). In the first case, Unwind has found a frame at which starting traversal is expected to
refine �

�
 and filters out the last spurious counterexample found. The procedure then returns

an Undef result together with the values i and k computed (line 9). Otherwise, the proce-
dure has detected a real counterexample as a side effect. In that case, the procedure returns
Reach along the counterexample found (line 8).

138	 Formal Methods in System Design (2022) 60:117–146

1 3

5.1 � IGR setup comparison: a case study on intel015

Figures 3 and 4 report experimental data on a case study, namely circuit intel015 from
[6], that we selected among the ones where standard interpolation could be compared with
IGR. Figure 3 plots i + k , the sum of state set indexes (i) and cone bounds (k). This is usu-
ally logged as an equivalent BMC bound. Iterations (on the x axis) indicate algorithm iter-
ations (with image computation). The standard interpolation line clearly shows that BMC
bounds grow linearly within ApproxFwdTrav, and they restart from the newly adjusted
cone bound2 at new ApproxFwdTrav calls. The IGR (A) line plots a run of IGR, with
cone rewinding always enabled: this means that the iterative decrease of k compensates the
increase of i, keeping the BMC bound constant within IgrApproxFwdTrav (except when
we reach k = 0 ). The IGR (B) line plots a run of IGR, with cone rewinding disabled until a
BMC hit. In this case we observe an initial increase of BMC bounds, followed by a phase
with constant BMC bound. Overall, IGR exploits its ability to avoid restarting from low
bounds and seeking for optimal restarts, which can provide convergence at lower iteration
indexes.

A comparison between IGR (A) and (B) shows that the latter can converge in fewer
iterations, due to its ability to increase BMC bounds. However Fig. 4, that plots cumulative
CPU times, shows that IGR (A) can be faster.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

BM
C

 b
ou

nd
 (i

+k
)

Iterations

ITP
IGR (A)
IGR (B)

Fig. 3   BMC bound comparison for intel015, between standard interpolation (ITP) and IGR in two ver-
sions: A (rewind always enabled) and B (rewind disabled until hit)

2  Following [8], we heuristically increment cone bounds by more than 1, based on the depth of the previous
ApproxFwdTrav run.

139Formal Methods in System Design (2022) 60:117–146	

1 3

Intuitively, guided and simplified cones in IGR can generate cheaper BMC problems, as
compared to standard interpolation. IGR (A) benefits from triggering more, but possibly
simpler, refinement steps and hence, SAT calls. Although this is a good way to avoid highly
expensive BMC problems, IGR (B) often performs better in case of models with higher
diameters (e.g., in the range of hundredths).

6 � Lazy abstraction and multiple properties

Due to the fully incremental representation chosen for reachable states, IGR can be tightly
embedded in lazy abstraction, as well as multiple property verification loops.

Typically, abstraction-refinement approaches, such as [27] and [28], iterate incremental
model refinements, solving a model checking problem after each refinement step. More
recently [29] explores a tighter integration between a model checking algorithm (IC3)
and a lazy abstraction framework. As IGR is based on a similar trace data structure, it can
be easily integrated within a lazy abstraction framework. Frames can be inherited by all
refined models. Refinements on frames can be considered as model strengthening steps.
Let Sj and Sj+1 be two abstract models (after refinement steps j and j + 1 ). Let RE

i
(Sj) and

R
E
i
(Sj+1) be the states reachable by them in i steps. As refinement of frames strengthens

a model, RE
i
(Sj+1) ⊆ R

E
i
(Sj) , so state set overapproximations for Sj also overapproximate

states in Sj+1.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

C
PU

 ti
m

e
[s

]

Iterations

ITP
IGR (A)
IGR (B)

Fig. 4   CPU time comparison for intel015, between standard interpolation (ITP) and IGR in two ver-
sions: A (rewind always enabled) and B (rewind disabled until hit)

140	 Formal Methods in System Design (2022) 60:117–146

1 3

A similar framework can be adopted in multiple property verification, where frames can
be inherited and reused by all properties under check on the same model. Reusability of
state sets is guaranteed here by sharing the same model over different property checks.

7 � Experimental results

We implemented a prototype version of our methodology on top of the PdTRAV tool [30],
a state-of-the-art model checking academic tool.

The experimental data in this section provide an evaluation of the techniques proposed,
as well as a comparison with standard interpolation.

We aim at showing that IGR can improve over standard interpolation, and be an effec-
tive part of a model checking portfolio, by covering problems not completed by other
engines or by simply improving performance over them. We thus do not provide an exten-
sive set of results, with all available options, over a complete set of benchmarks. Instead,
we focused most of our efforts on a set of experiments that we deemed “challenging”, so
adequate to our purpose.

We performed an extensive experimentation on a selected sub-set of publicly available
benchmarks from past Hardware Model Checking Competitions (HWMCCs) [6] suites.
Most of the benchmarks are from the last bit-level competition (HWMCC2017) with
some addition of challenging benchmarks from previous editions, that were excluded from
HWMCC2017, due to a benchmark selection strategy that obviously avoided full inclusion
of past edition benchmarks.

It is worth noticing that most of the selected benchmarks are from industrial origin
(IBM, Intel).

Benchmarks were selected by focusing on two groups:

–	 Benchmarks completed by at least one tool at HWMCC competitions that we were
able to solve with IGR (in more than 60 seconds). This set of benchmarks was used
to provide a comparison between IGR and other tools. As we didn’t replicate the
experiments with other tools, such a comparison is based on available data from
HWMCC competitions.

–	 Benchmarks left unsolved at HWMCC competitions that we were able to solve with
IGR. This set of benchmarks was used to compare IGR to standard interpolation
over challenging problems. Though HWMCC experiments were run under a 1 hour
time limit, we used a much higher time limit in our experiments. Note that we are
not claiming that no other tool could cover these benchmarks, but simply that they
can be deemed as challenging (some of them are indeed very challenging) and thus
worth further investigation. Our results show that IGR improves over standard inter-
polation on such benchmarks.

Our experiments were run on a quad-core workstation, with 2.5 GHz CPU frequency
and 32 GB of main memory. We ran the proposed set of experiments taking into account
different setups, as detailed below.

Table 1 reports details about the selected benchmarks in terms of model name, num-
ber of primary inputs, latches and AIG nodes. Table 2 compares the best results we
could obtain using IGR to the best ones obtained using standard interpolation and to the
best ones achieved by any contestant of past HWMCCs.

141Formal Methods in System Design (2022) 60:117–146	

1 3

Tables are split into three parts. Benchmarks solved by other tools in HWMCC competi-
tions are listed in the first two parts, differentiating between IBM and Intel benchmarks. The
last section shows problems unsolved at HWMCC competitions, this is thus the most inter-
esting contribution of IGR: the section shows 6 IBM benchmarks and 2 benchmarks derived
from an OpenCores.org implementation of the 8051 Intel micro-controller [31]. Though we
were able to verify other unsolved 8051 benchmarks, we limited them to two instances.

In Table 2, for IGR we report the maximum BMC bound depth reached (Column MaxB),
the bound at which a fixed point has been found during forward traversal (Column Fwd),
the last restart forward iteration, i.e., the bound at the which the forward traversal has been
restarted last as a result of cone unwinding, (Column Last) and the verification time (Col-
umn Time). In addition we report whether or not lazy abstraction (Column LA) or phase
abstraction [32] (Column PA) were used to verify the benchmark. For ITP we just report the
maximum bound depth reached (Column MaxB), the fixed point forward iteration (Column
Fwd) and the verification time (Column Time). Finally, we provide the best results obtained
during past HWMCCs in terms of number of solvers that were able to verify the benchmark
(Column Solvers) and verification time (Column Time). To this respect, it is worth noticing
that time statistics from competitions were measured on a different machine, by portfolio
based (concurrent) model checkers. The comparison with other engines is not as easy. To
this respect it is worth noticing that the best model checkers at HWMCCs highly rely on
aggressive transformational techniques, that seek to pre-simplify problems under various
equivalence-preserving notions, before getting to Model Checking engines.

Table 1   Circuit details of the
selected HWMCC benchmarks

Model

Name #PI #FF #AIG

6s8 86 396 3016
6s38 343 1931 10847
6s102 72 1108 7700
6s144 480 3337 45470
6s189 479 2436 39830
6s194 532 2131 13617
6s428rb093 410 3790 29084
intel010 1111 280 10156
intel011 1024 273 9362
intel015 1024 273 9362
6s35 77 1571 11504
6s148 480 3337 45470
6s160 149 559 8716
6s195 87 1257 8046
6s171 94 1263 8073
6s366r 86 1998 20560
oc8051gm06iram 364 934 12067
oc8051gm3bacc 364 934 12055
oc8051gm49acc 364 934 11990
oc8051gm88iram 364 934 12761
intel028 7426 7436 99835

142	 Formal Methods in System Design (2022) 60:117–146

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f r
es

ul
ts

 o
f I

G
R

 v
s.

IT
P

on
 se

le
ct

ed
 H

W
M

C
C

 b
en

ch
m

ar
ks

IG
R

IT
P

H
W

M
C

C

M
od

el
M

ax
B

Fw
d

La
st

Ti
m

e
LA

PA
M

ax
B

Fw
d

Ti
m

e
So

lv
er

s
Ti

m
e

6s
8

48
21

2
83

5.
4

N
o

N
o

45
21

83
5.

4
4

14
7.

82
6s

38
27

18
1

26
4.

23
Y

es
N

o
25

17
31

0.
71

2
60

6.
89

6s
10

2
23

7
1

48
8.

47
Y

es
N

o
31

20
72

6.
62

8
10

.5
8

6s
14

4
36

22
1

29
1.

48
N

o
Y

es
40

22
16

0.
62

6
15

5.
98

6s
18

9
30

16
1

96
.4

6
N

o
Y

es
37

26
28

2.
66

3
11

0.
48

6s
19

4
30

16
1

15
4.

45
N

o
N

o
40

29
85

2.
17

7
54

.3
8

6s
42

8r
b0

93
7

6
2

74
6.

75
N

o
N

o
–

–
–

2
27

3.
34

in
te

l0
10

56
36

14
20

0.
91

N
o

Y
es

65
44

26
5.

7
3

96
.3

7
in

te
l0

11
56

36
20

19
0.

73
N

o
Y

es
64

42
89

9.
89

4
44

0.
09

in
te

l0
15

40
22

12
13

0.
3

N
o

Y
es

–
–

–
3

27
2.

22
6s

35
83

71
70

42
8.

88
N

o
N

o
81

71
27

04
.6

1
0

–
6s

14
8

29
16

1
25

4.
13

N
o

Y
es

39
27

28
8.

94
0

–
6s

16
0-

f4
56

37
1

61
57

3.
25

N
o

N
o

–
–

M
EM

O
U

T
0

–
6s

19
5-

f8
13

9
70

1
11

44
7.

65
N

o
N

o
39

70
6.

02
14

0
71

0
–

6s
17

1
57

0
26

1
27

9
30

21
29

.0
5

Y
es

N
o

–
–

M
EM

O
U

T
0

–
6s

36
6r

79
69

66
22

6.
73

N
o

N
o

 8
3

72
18

11
.4

3
0

–
oc

80
51

gm
06

ira
m

38
26

15
61

25
.4

5
N

o
N

o
49

36
17

08
4.

02
0

–
oc

80
51

gm
3b

ac
c

33
22

14
81

6.
28

N
o

N
o

33
22

11
28

.2
9

0
–

oc
80

51
gm

49
ac

c
33

20
14

86
7.

18
N

o
N

o
44

23
13

18
.4

1
0

–
oc

80
51

gm
88

ira
m

44
33

16
14

40
9.

62
N

o
N

o
42

31
14

79
6.

59
0

–
in

te
l0

28
16

6
74

16
98

55
.8

1
N

o
Y

es
–

–
M

EM
O

U
T

0
–

143Formal Methods in System Design (2022) 60:117–146	

1 3

Data clearly show that, in some cases, interpolation based approaches are more
expensive than HWMCC best results: depending on individual instances, this could be
due to other engines in portfolios (e.g. IC3) and/or netlist preprocessing/simplification
steps. Overall, the performance of IGR and ITP are not far from the HWMCC best. A
comparison between IGR and ITP generally confirms the higher ability of IGR to con-
verge at lower BMC bounds, as seen in columns labelled MaxB and Fwd.

A different outcome can be derived by experiments in the last section, that shows the
power of IGR in terms of scalability. The cases solved by both IGR and ITP confirm
the previous comments; differences in execution times can generally be attributed to
the ability of IGR to skip intermediate bounds and/or restarts from the initial state. The
benchmarks only solved by IGR, or solved with relevant gains (6s160, 6s195, 6s171,
intel028) are more related to the ability to reuse previous interpolants, which can be
used for simplification purposes and or as additional constraints in solver runs. It is
worth noticing that 6s160 and 6s195 were preprocessed by framing (which means com-
posing a given number of transition relation frames into one).

It is also worth noticing that lazy abstraction helped improving performance in 2
of the listed cases. Lazy abstraction was not implemented with standard interpolation,
where we just rely on CEGAR-based abstraction, as reuse of information from precious
abstraction would be limited, whereas IGR fully reuses previous interpolants.

An updated version of the results presented in the last section of Table 2 (most chal-
lenging benchmarks), as well as a copy of the pdtrav binary used to perform the experi-
ments is available at [33].

In order to gather more data, we did a second experimental evaluation of IGR,
extended to the single property benchmarks set of the latest HWMCC, purged of the
instances solved by any engine in less than a minute. We repeated a “competition run”
with our multi-engine portfolio in three different setups:

–	 Enabling all the available engines within PdTRAV, thus including standard interpo-
lation techniques, IC3, IGR, BMC and reachability-based techniques;

–	 Excluding IC3;
–	 Excluding both IC3 and IGR.

The results are plotted in Fig. 5, which clearly confirms IC3 as the most powerful engine.
But it also shows a good impact of IGR, as a relevant contribution to the portfolio. The
run with the full set of engines solved 116 problems, of which 47 were covered by IC3,
and 10 by IGR. When disabling IC3, the overall result decreased to 81, with IGR solving
18 problems. Data also show that IGR is still not oriented to fast runs (within minutes).
As seen in Table 2, a 2 hours timeout better shows the gain of IGR over ITP.

8 � Related works

Our work is related to many recent papers on SAT-based Model Checking. Among the oth-
ers, let us mention ITPSEQ [23], DAR [25] and AVY [34]. Our approach shares with them
the purpose to push forward scalability and performance of interpolation-based model
checking and the idea of incremental refinement of the computed overapproximations.

144	 Formal Methods in System Design (2022) 60:117–146

1 3

Our approach takes ideas from all above works, it is based on interpolation, it com-
putes just forward approximations of state sets, which allows us to potentially reuse
them for multiple properties, or sub-properties, of the same model.

The use of a trace data structure is partially inspired by IC3 [5], DAR and ITPSEQ.
Compared to IC3, the proposed approach relies on transition relation unrollings, instead
of local reachability checks, in order to increase the precision of the computed over-
approximations. In addition, contrary to IC3, IGR stores overapproximations as AIG
circuits instead of sets of clauses and does not enforce monotonicity of the sequence
of reachable states sets it derives. Compared to other interpolation-based approaches,
the proposed method keeps the standard interpolation scheme of ITP, without consider-
ing backward reachable overapproximations like DAR. Contrary to standard interpola-
tion, in which the trace data structure can be thought as implicitly computed but not
explicitly maintained, in the proposed approach the trace is explicitly represented and
iteratively refined. Compared to interpolation sequences we never compute an interpola-
tion sequence from a single SAT run and proof, but we activate sequences of standard
interpolation and/or approximate image calls.

Cone rewinding is similar to computing an interpolation sequence [24]. Some user-
controllable parameters in the proposed algorithm can be configured to make the proce-
dure mimic either the ITPSEQ or the standard ITP algorithm.

Simplification under observability don’t cares is an extensively studied subject
in the field of logic synthesis [35]. The proposed algorithm makes use of some very

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100 120

C
um

ul
at

iv
e

tim
e

(s
)

Benchmark Instances

All Engines
No IC3

No IC3 - No IGR

Fig. 5   Wall clock cumulative time comparison on HWMCC instances solved by PdTRAV (concurrent
multi-engine version), with all engines active, without IC3, and without IC3 and IGR. Time limit 900 s per
instance

145Formal Methods in System Design (2022) 60:117–146	

1 3

light-weight simplification techniques in order to remove redundancies from the com-
puted approximations and transition relation unrollings from the target.

Many other internal details, at the level of SAT and circuit-based reasoning, take
inspiration from the above, as well as other existing works. Let us mention for instance
clause propagation by pushing, redundancy removal by subsumption, that we brought
from IC3 and re-implemented on circuit-based (AIG) representations.

9 � Conclusions

We addressed the problem of optimizing interpolant-based verification techniques for
SAT-based Unbounded Model Checking. Our main contribution is to provide a new
approach, that improves over standard interpolation, by exploiting the ideas of incre-
mental refinement and guidance through state sets. We experimentally observed that the
proposed optimizations have improved both performance and scalability of our existing
UMC approaches.

References

	 1.	 Cabodi G, Palena M, Pasini P (2014) Interpolation with guided refinement: Revisiting incrementality
in sat-based unbounded model checking, In: Proceedings of the 14th conference on formal methods in
computer-aided design, ser. FMCAD ’14. Austin, TX: FMCAD Inc, pp. 12:43–12:50. [Online]. Avail-
able: http://​dl.​acm.​org/​citat​ion.​cfm?​id=​26829​23.​26829​38

	 2.	 Craig W (1957) Three uses of the Herbrand-Gentzen theorem in relating model theory and proof the-
ory. J Symbol Logic 22(3):269–285

	 3.	 Lyndon RC (1959) An interpolation theorem in the predicate calculus. Pacific J Math 9(1):155–164
	 4.	 McMillan KL (2003) Interpolation and SAT-based model checking, In: Proceedings computer aided

verification, ser. LNCS, vol. 2725. Boulder, CO, USA: Springer, pp. 1–13
	 5.	 Bradley AR (2011) Sat-based model checking without unrolling, In: VMCAI, Austin, Texas, Jan.

2011, pp. 70–87
	 6.	 Biere A, Jussila T The model checking competition web page, http://​fmv.​jku.​at/​hwmcc
	 7.	 McMillan KL, Jhala R (2005) Interpolation and SAT-based model checking, In: Proceedings computer

aided verification, ser. LNCS, vol. 3725. Edinburgh, Scotland, UK: Springer, pp. 39–51
	 8.	 Marques-Silva J (2005) Improvements to the implementation of Interpolant–based model checking,

In: Proceedings correct hardware design and verification methods, ser. LNCS, vol. 3725. Edinburgh,
Scotland, UK: Springer, pp. 367–370

	 9.	 D’Silva V, Purandare M, Kroening D (2008) Approximation refinement for interpolation-based model
checking, in verification, model checking and abstract interpretation, ser. Lecture Notes in Computer
Science, vol. 4905. Springer, pp. 68–82

	10.	 Cabodi G, Murciano M, Nocco S, Quer S (2008) Boosting interpolation with dynamic localized
abstraction and redundancy removal. ACM Trans Design Autom Electr Syst 13(1):309–340

	11.	 Cabodi G, Camurati P, Murciano M (2008) Automated abstraction by incremental refinement in inter-
polant-based model checking, In: Proceedings international conference on computer-aided design. San
Jose, California: ACM Press, Nov. pp. 129–136

	12.	 D’Silva V, Kroening D, Purandare M, Weissenbacher G (2010) Interpolant strength. In: Proceedings
of the 11th international conference on verification, model checking, and abstract interpretation, ser.
VMCAI’10. Berlin, Heidelberg: Springer-Verlag, p. 129–145. [Online]. Available: https://​doi.​org/​10.​
1007/​978-3-​642-​11319-2_​12

	13.	 Li B, Somenzi F (2006) Efficient abstraction refinement in interpolation-based unbounded model
checking, In: Tools and algorithms for the construction and analysis of systems, vol. 3920, pp. 227–241

	14.	 Cabodi G, Loiacono C, Vendraminetto D (2013) Optimization techniques for Craig interpolant com-
paction in unbounded model checking, In: Proceedings design automation & test in Europe conference
Grenoble, France: IEEE Computer Society, Mar. pp. 1417–1422

http://dl.acm.org/citation.cfm?id=2682923.2682938
http://fmv.jku.at/hwmcc
https://doi.org/10.1007/978-3-642-11319-2_12
https://doi.org/10.1007/978-3-642-11319-2_12

146	 Formal Methods in System Design (2022) 60:117–146

1 3

	15.	 Cabodi G, Loiacono C, Vendraminetto D (2015) Optimization techniques for Craig interpolant com-
paction in unbounded model checking. Form Methods Syst Des 46(2):135–162. https://​doi.​org/​10.​
1007/​s10703-​015-​0229-0

	16.	 Cabodi G, Camurati PE, Palena M, Pasini P, Vendraminetto D (2016) Reducing interpolant circuit size
by ad-hoc logic synthesis and sat-based weakening. In: Proceedings of the 16th conference on formal
methods in computer-aided design, ser. FMCAD ’16. Austin, TX: FMCAD Inc, pp. 25–32. [Online].
Available: http://​dl.​acm.​org/​citat​ion.​cfm?​id=​30776​29.​30776​40

	17.	 Goldberg E, Güdemann M, Kroening D, Mukherjee R (2018) Efficient verification of multi-property
designs (the benefit of wrong assumptions), In: 2018 Design, automation test in Europe Conference
Exhibition (DATE), pp. 43–48

	18.	 Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement,
In: CAV, pp. 154–169

	19.	 Gupta A, Ganai M, Yang Z, Ashar P (2003) Iterative abstraction using SAT-based BMC with proof
analysis, In: Proceedings international conference on computer-aided design, San Jose, California,
Nov. pp. 416–423

	20.	 Moskewicz M, Madigan C, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering an efficient SAT
solver, In: Proceedings 38th design automation Conference Las Vegas, Nevada: IEEE Computer Soci-
ety, Jun

	21.	 Eén N, Sörensson N (2009) The Minisat SAT solver, http://​minis​at.​se, Apr
	22.	 Biere A, Cimatti A, Clarke EM, Fujita M, Zhu Y (1999) Symbolic model checking using SAT proce-

dures instead of BDDs, In: Proceedings 36th design automation conference. New Orleans, Louisiana:
IEEE Computer Society, Jun. pp. 317–320

	23.	 Vizel Y, Grumberg O (2009) Interpolation-sequence based model checking. In: Proceedings formal
methods in computer-aided design, ser. LNCS, vol. 2517. Austin, Texas, USA: Springer, Nov. pp. 1–8

	24.	 Cabodi G, Nocco S, Quer S (2011) Interpolation sequences revisited. In: Proceedings design automa-
tion & test in Europe conference Grenoble, France: IEEE Computer Society, Mar. pp. 316–322

	25.	 Vizel Y, Grumberg O, Shoham S (2013) Intertwined forward-backward reachability analysis using
interpolants, In: Tools and algorithms for the construction and analysis of systems, ser. LNCS, vol.
7795. Rome, Italy: Springer, Mar. pp. 308–323

	26.	 Mishchenko A, Brayton RK (2005) SAT-Based complete Don’t-Care computation for network optimi-
zation, In: Proceedings design automation & test in Europe conferenece, pp. 412–417

	27.	 Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexample-guided abstraction refinement for
symbolic model checking. J ACM 50(5):752–794. https://​doi.​org/​10.​1145/​876638.​876643

	28.	 Gupta A, Strichman O (2005) Abstraction refinement for bounded model checking. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 112–124. [Online]. Available: https://​doi.​org/​10.​1007/​11513​988_​11

	29.	 Vizel Y, Grumberg SSO (2012) , Lazy abstraction and SAT-Based reachability in hardware model check-
ing, In: Proceedings formal methods in computer-aided design. Cambridge, UK: IEEE, Oct. pp. 173–181

	30.	 Cabodi G, Nocco S, Quer S (2011) Benchmarking a model checker for algorithmic improvements and
tuning for performance. Formal Methods Syst Design 39(2):205–227

	31.	 Subramanyan P, Vizel Y, Ray S, Malik S (2015) Template-based synthesis of instruction-level abstrac-
tions for SOC verification, In: 2015 Formal methods in computer-aided design (FMCAD), pp. 160–167

	32.	 Baumgartner J, Aziz A (2003) An abstraction algorithm for the verification of level-sensitive latch-
based netlists, Formal Methods in System Design, vol. 23, pp. 39–65, 07

	33.	 Cabodi G, Camurati P, Palena M, Pasini P” (2021) , Igr - experiments, https://​github.​com/​P3900/​
igr-​exp

	34.	 Vizel Y, Gurfinkel A (2014) Interpolating property directed reachability, In: Proceedings of the 16th
international conference on computer aided verification - Vol. 8559. New York, NY, USA: Springer-
Verlag New York, Inc., pp. 260–276. [Online]. Available: https://​doi.​org/​10.​1007/​978-3-​319-​08867-9_​
17

	35.	 Mishchenko A, Brayton R, Jiang J-HR, Jang S (2011) Scalable don’t-care-based logic optimization
and resynthesis. ACM Trans Reconfigurable Technol Syst 4(4):1–23. https://​doi.​org/​10.​1145/​20687​16.​
20687​20

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1007/s10703-015-0229-0
https://doi.org/10.1007/s10703-015-0229-0
http://dl.acm.org/citation.cfm?id=3077629.3077640
http://minisat.se
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/11513988_11
https://github.com/P3900/igr-exp
https://github.com/P3900/igr-exp
https://doi.org/10.1007/978-3-319-08867-9_17
https://doi.org/10.1007/978-3-319-08867-9_17
https://doi.org/10.1145/2068716.2068720
https://doi.org/10.1145/2068716.2068720

	Interpolation with guided refinement: revisiting incrementality in SAT-based unbounded model checking
	Abstract
	1 Introduction
	1.1 Contributions
	1.1.1 Additional remarks

	1.2 Outline

	2 Background
	2.1 Model and notation
	2.2 Bounded and unbounded model checking
	2.3 Interpolation-based model checking
	2.4 IC3

	3 Incremental state sets in ITP
	3.1 Frames and cone simplification

	4 Guided cone
	4.1 Cone unwinding
	4.2 Cone rewinding
	4.3 Overall strategy

	5 IGR: interpolation with guided refinement
	5.1 IGR setup comparison: a case study on intel015

	6 Lazy abstraction and multiple properties
	7 Experimental results
	8 Related works
	9 Conclusions
	References

