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Abstract
Weak memory models implemented on modern multicore processors are known to affect the
correctness of concurrent code. They can also affect whether or not the concurrent code is
secure. This is particularly the case in programs where the security levels of variables are
value-dependent, i.e., depend on the values of other variables. In this paper, we illustrate how
instruction reordering allowed by ARM and POWER multicore processors leads to vulnera-
bilities in such programs, and present a compositional, flow-sensitive information-flow logic
which can be used to detect such vulnerabilities. The logic allows step-local reasoning (one
instruction at a time) about a thread’s security by tracking information about dependencies
between instructions which guarantee their order of occurrence. Program security can then
be established from individual thread security using rely/guarantee reasoning. The logic has
been proved sound with respect to existing operational semantics using Isabelle/HOL, and
implemented in an automatic symbolic execution tool.

Keywords Information-flow security · Weak memory models · Non-blocking algorithms

1 Introduction

It is well known that compiler optimisations may violate security guarantees apparent at
the level of source code [11], even when these optimisations have been proven to preserve
functional correctness. For example, compilersmay reorder instructions, or even remove them
as seen in dead code elimination. While these modifications may not change the functional
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outcomes of a program, they may modify the durations within which secret information
is held in memory. Consequently, this data may be leaked due to correctness issues in the
application or malicious code linked to the compiled binary.

Moreover, some security properties, such as an absence of timing side-channels, cannot
be established directly via preservation of traditional program-language semantics. Since
traditional semantics ignore timing, and semantics preservation ignores internal branching,
the compiler is able to introduce arbitrary control flow and calculations with data-dependent
timings potentially leaking secret information.

One approach to combating such a problem would be to establish a sufficiently detailed
semantics and ensure preservation of security properties via a verified compiler [20,38].
See Barthe et al. [3] and Sison and Murray [36] for recent work in this direction. However,
this approach represents a tremendous amount of effort since current verified compilation
projects focus on traditional semantics. Alternatively, security properties can be shown on the
late stages of the compilation process under the assumption they are preserved by the final
compilation stages, or on the assembly instructions directly [5]. Under the latter approach,
only a semantics of the hardware assembly instructions is required.

Optimisations implemented by the processor architecture need to be taken into account
when verifying security properties at the assembly level. For example, when considering
concurrency, the architecture’s memory model can lead to additional security violations
when compared to an analysis that assumes a sequentially consistent memory model. This
has been shown for the TSO architecture by Vaughan and Milstein [39] and for TSO, PSO
and IBM-370 by Mantel et al. [22]. While TSO [35] is widely used (by chip manufacturers
Intel, AMD and SPARC), PSO and IBM-370 are not supported on recent processors. More
relevant architectures are ARM [14,31] and IBMPOWER [33]; the former being widely used
in mobile devices [13]. These architectures are significantly weaker than those studied by the
papers above, yet have received little attention from the security foundations community.

In recent work [37], we provide an information-flow logic for reasoning about security
on the latest (revised) version of ARMv8 [31].1 This logic is restricted to a core subset of
(abstracted) ARM instructions, ignoring the different types of memory barriers available,
and mechanisms inherent in low-level assembly code such as address shifting. Furthermore,
the ARMv8 architecture is simpler than previous ARM architectures, and also simpler than
IBM POWER, due to being multi-copy atomic, i.e., an update to a variable by a given thread
is seen by all other threads at the same time.

In this paper, we extend the work of [37] to provide a more complete logic and reasoning
approach, not just for ARMv8, but also for earlier versions of ARM and for POWER. We
also describe how reasoning in the logic can be automated via symbolic execution.

We begin in Sect. 2 by providing an overview of information-flow logics for concurrent
programs. In Sect. 3 we introduce instruction reordering as a common weak memory model
optimisation, and explain how it can lead to security vulnerabilities in a concurrent setting.
We also introduce instruction dependencies as a key concept in determining information-
flow under typical hardware optimisations. In Sect. 4, we show how this concept can be
used in defining information-flow rules for various ARM instructions and optimisations. This
includes a number of instructions not covered in our earlier work such as store fences, control
fences, compare-and-swap, load-acquire and store-release instructions and address shifting.
It also includes optimisations not covered by our earlier work such as write elimination and
load speculation.

1 We will refer to this revised version as simply ARMv8 in the remainder of this paper.
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Our logic has been encoded in Isabelle/HOL [30] and proved sound with respect to
an encoding of operational semantics of ARM and POWER [8]. We provide a high-level
overview of the soundness argument in Sect. 5. Our logic enforces a so-called constant-
time [2] security guarantee that forbids programs from branching on secrets and from
performing secret-dependent memory accesses. This kind of property is commonly used
to guard against timing channel leakage via caches. However, we make the novel observation
that constant-time security appears to be a necessary ingredient for ensuring the absence of
leakage via the resolution of nondeterminism in theweakmemorymodel itself (see Sect. 5.3).

Wehave also encoded the logic forARMv8 in a prototype symbolic execution tool building
on that for C code of Ernst and Murray [12]. This tool is described in Sect. 7.

In Sect. 8, we consider using the logic for IBM POWER and define rules for additional
memory barrier instructions available onPOWER.BothPOWERand earlier versions ofARM
are non-multi-copy atomic. In Sect. 9, we reflect on security vulnerabilities that non-multi-
copy atomicity can introduce, and argue that these do not affect the soundness of our logic.
In Sect. 10 we apply our logic and symbolic execution tool to a case study, a cross-domain
work stealing deque, before concluding in Sect. 11.

2 Information flow control for concurrent programs

Information-flow logics [32] comprise a set of rules, typically one for each kind of program
instruction, which are used to determine whether an instruction can leak information. To
do this, the logic needs to assign a security classification to each variable, denoted L(x) for
variable x . This denotes the maximum security level of data the variable may hold. Generally,
the security levels are defined by a lattice, the simplest being a two-point lattice with values
High and Low such that Low � High and High �� Low. This simple lattice indicates
that High data (representing sensitive information) should not flow to variables with Low
classification (assumed to be visible to an attacker trying to learn sensitive information), but
the other direction of flow is allowed (capturing confidentiality).

Each rule in an information-flow logic refers to the context in which the instruction occurs.
This context keeps track of required information such as the security level of the data held
by program variables. In flow-sensitive logics, the context is updated by the rule to provide
the context for the following instruction in the program. For example, a typical rule for
assignment is

Γ � e : t t � L(x)
Assign

Γ {x :=e} Γ [x �→ t]

where the premisses state that from the security levels in the context Γ , we can deduce the
security level t of expression e, and that t is lower than the security classification of variable
x . The rule updates Γ so that x maps to t .

An important issue when reasoning about concurrent systems is compositionality. For
scalability, wewant to reason about individual threads in isolation and combine this reasoning
to deduce properties of the entire program. One way to do this is to utilise rely/guarantee
reasoning [6,16]. An assumption (or rely condition) expresses what a thread can rely on its
environment (the other threads) doing. For example, a thread may rely on the fact that no
other thread writes to a variable x . A guarantee expresses what a thread guarantees to its
environment. For example, a thread may guarantee that it does not write to a variable x .
Reasoning done on an individual thread will be valid in the wider context of its execution
if all of its assumptions are matched by a guarantee from all other threads. For example, if
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the thread assumes that no other thread writes to a variable x then all other threads must
guarantee that they do not.

Mantel et al. [23] adopt this approach in their seminal concurrent information-flow logic
by associating variables referenced by a thread with one or more of the following modes.

– ass-noread - the variable is not read by another thread
– ass-nowri te - the variable is not written to by another thread
– guar -noread - this thread does not read the variable
– guar -nowri te - this thread does not write to the variable

Their context Γ is restricted to low variables with mode ass-noread and high variables
with mode ass-nowri te, i.e., dom Γ = {x |(L(x) = Low ∧ x ∈ ass-noread) ∨ (L(x) =
High ∧ x ∈ ass-nowri te)}.

There are then two assignment rules. The first is for variables not in Γ . If the variable
is low, the third premise ensures that it is not assigned a high value. Γ is not updated since
another thread may overwrite the value in x before this thread’s next instruction.

x /∈ dom Γ Γ � e : t t � L(x)
Assign1

Γ {x := e} Γ

The second rule is for variables in Γ . In this case, it is not necessary to restrict the value
assigned to x ; if it is a low variable, the thread is relying on it not being read, so there is no
chance of information leaking via the variable. Also, since the thread relies on high variables
inΓ not beingwritten to, and low variables only being overwritten with lower, and not higher,
values, the security level of the value written can be used when the rule for the following
instruction is applied (and hence is maintained in the context Γ ).

x ∈ dom Γ Γ � e : t
Assign2

Γ {x := e} Γ [x �→ t]
Murray et al. [29] extend this approach to allow value-dependent security classifications,
i.e., where the security classification of a variable depends on the values held by one or more
other variables [21,27,40]. In that work,L(x) denotes a predicate on the program’s variables.2

This predicate is true if, and only if, x’s classification is low. Variables which appear in such
predicates, and hence control the security classification of other variables, are called control
variables. Control variables are always low and are not included in Γ .
The modes of Mantel et al. are replaced by

– AssNoRW - the variable is not read or written to by another thread
– AssNoW - the variable is not written to by another thread (but may be read by it)
– GuarNoRW - this thread does not read or write to the variable
– GuarNoW - this thread does not write to the variable (but may read it)

The variables in Γ are the non-control variables that are stable, i.e., that are associated
with either mode AssNoW or AssNoRW and hence are assumed not to be writable by other
threads. As well as Γ , an instruction’s context includes the sets of stable variables, captured
by the ordered pair S = (AssNoW , AssNoRW ), and a predicate P reflecting the current
program state.3 C denotes the set of control variables of a program.

2 L(x) is denoted Ltype x in [29]. It actually denotes a set of predicates; here we simplify our presentation
by referring to the conjunction of that set’s elements.
3 Again P in [29] is a set of predicates and we simplify our presentation by referring to the conjunction of
that set’s elements.
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Fig. 1 Example illustrating the
need for timing-sensitive security

Thread 1:

low := 0;
if (high=0)
then while (high < 1000) high++;
else skip;
low := 1;

Thread 2:

output := low;

For non-control variables, there are again two rules for assignment. The first is for non-
stable variables. It requires that t , the security level of the value assigned to x , is less than
x’s classification under P , i.e., unless P 
⇒ ¬L(x), t must be low. This is denoted by
t �P L(x).

x /∈ dom Γ ∪ C Γ � e : t t �P L(x)
Assign1

Γ , S, P {x := e} Γ , S, P

The second rule is for stable variables. It is only necessary to restrict the value assigned to x
if x /∈ snd S, i.e., x can be read by other threads.4 The rule updates Γ with the new security
level for x , and updates P to the strongest postcondition reachable from P when executing
x := e (denoted here as P[x := e]), restricting the resulting predicate to stable variables.
The restriction is necessary since unstable variables may be modified by another thread and
hence should not appear in P when checking the next instruction in the program.

x ∈ dom Γ Γ � e : t x /∈ snd S 
⇒ t �P L(x)
Assign2

Γ , S, P {x := e} Γ [x �→ t], S, P[x := e] � S

Although both Mantel et al.’s andMurray et al.’s approaches allow assumptions and guaran-
tees to change during the execution of a program, neither provide a means of ensuring modes
are consistent between threads, i.e., that the assumptions of one thread are guaranteed by all
others. This is due to not enforcing synchronisation between threads when an assumption
is updated. Such synchronisation is required for other threads to update their guarantees to
match the new assumption. This issue is addressed in Covern [28], an extension to the
approach of Murray et al. in which locks protect access to shared variables, allowing the
owner of a lock to assume no other thread can write to the variables that the lock protects, or
read those variable, as appropriate. For this paper, we focus on non-blocking (i.e. lock-free)
code, and avoid the issue by assuming that assumptions and guarantees do not change during
the execution of a program. A more flexible approach is the subject of ongoing work as
discussed in Sect. 11.

2.1 Timing sensitivity

The approachofMurray et al. does not allowbranchingbasedon ahighvalue. The justification
for this restriction is based on the fact that a compositional information-flow logic must be
timing-sensitive, i.e., information should not be leaked to an attacker who is able to time the
execution of a program. As argued in [28], this is not possible in the presence of paths entered
depending on the value of a high value.

For example, consider the program in Fig. 1 in which high is a high variable and low
and output are low variables. Both threads are timing-insensitive secure since low is never
dependent on the value of high. However, when they are composed the value written to
output is more likely to be 0 than 1 when high is 0. Hence, although the threads are timing-
insensitive secure, their composition is not. This does not require a probabilistic argument:

4 We use snd S to denote the second element of pair S. Similarly, we will use fst S to denote the first element.
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under a round-robin scheduler with time slices less than the time it takes to execute the loop,
the result output = 1 would indicate that high �= 0.

The first thread is obviously not timing-sensitive secure (as its execution time depends
directly on high) and hence under timing-sensitive security the issue with compositionality
does not arise. Eliminating branchingonhighvalues fromcode canbe achievedusing program
transformations as described, for example, in [2,25].

3 Weakmemorymodels

Hardware weak memory models, as exemplified by TSO [35], ARM [14,31] and IBM
POWER [33], aim at optimising assembly code by restricting accesses to global shared
memory: a well known cause of inefficiency in multicore systems. This can be achieved, for
example, by buffering writes to memory and letting the hardware control when those writes
actually occur, or by allowing speculative execution of code occurring in a branch of the
program before evaluating whether that branch should be taken (which may require access to
shared memory). It can also be achieved by propagating writes to other cores rather than the
shared memory (referred to as non-multi-copy atomicity since different cores may receive a
particular write at different times).

The effects of such optimisations can lead to the instructions of one thread appearing to
occur out-of-order from the perspective of threads running on other cores. For example, if a
thread t buffers the writes to variables x and y while executing the code x := 1; y := 2 and
then the hardware flushes the value assigned to y first, it appears to threads running on other
cores as if t executed the code y := 2; x := 1.

Colvin and Smith [8,9] define four constraints related to this perceived reordering of
assignments on weak memory models. These constraints, which are common to all contem-
porary weak memory models, ensure that the sequential semantics of the thread on which the
reordering occurs is unchanged. An assignment x := e can be reordered with an assignment
y := f if, and only if,

(i) x and y are distinct variables;
(ii) x is not referred to in f ;
(iii) y is not referred to in e; and
(iv) e and f do not reference any common global variables.

Constraint (i) is obviously required as x := 1; x := 2 has a different final value of
x (and hence different behaviour) than x := 2; x := 1. Constraint (ii) is required since
x := 1; y := x will result in a different value for y than y := x; x := 1 when the initial
value of x is not 1. Similarly, constraint (iii) is required since x := y; y := 1 can result in
a different value for x than y := 1; x := y. Finally, constraint (iv) is required so that the
order of updates and accesses of each global variable, considered individually, is maintained:
x := z; y := z will not behave the same as y := z; x := z in an environment which modifies
z since the former will never result in y having an earlier value of z than x .

In contemporary processors, constraint (ii) is weakened by forwarding which allows a
program such as x := e; y := x to be reordered to y := e; x := e when e does not refer to
global variables, i.e., the effect of the first assignment is taken into account when determining
whether the second can be reordered with it.

Specific memory models may add additional constraints, e.g., TSO does not allow a write
to a global variable to be reordered with a subsequent write to a global variable. Fences are a
means by which the programmer can enforce ordering where necessary in their program. For
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write:

x := data

secret write:

z := z+1;
x := secret;
...
x := 0;
z := z+1

read:

do
do

r1:= z;
while (r1 % 2 = 0)
r2 := x;

while (z = r1)
y := r2

secret read:

y := x

Fig. 2 An IO-driver object with operations for accepting input from a keyboard at unclassified (write) and
classified (secret_write) levels, and for reading input data at unclassified (read) and classified (secret_read)
levels

example, letting f ence denote a full fence (e.g., the instruction DMB on ARM), the program
x := 1; f ence; y := 2 ensures the write to x is seen by other threads before the write to y.

A full set of reordering constraints for TSO, ARM and POWER which have been vali-
dated against existing test suites on hardware is provided in [8,9]. These include reordering
constraints related to other types of instructions such as branch instructions and fences. For
ARM and POWER, we have the following constraints for branch instructions.

(v) An assignment x := e following a branch instruction with branching condition b can be
reordered with the branch instruction if, and only if, x is a local variable and does not
appear free in b, and b and e do not reference common global variables.

(vi) An assignment x := e preceding a branch with branching condition b can be reordered
with the branch if, and only if, x does not appear free in b, and b and e do not reference
common global variables.

(vii) Two branch instructions can be reordered if, and only if, their branching conditions do
not reference common global variables.

In rule (v) the assignment is speculatively executed (before the branch condition is evalu-
ated). It is therefore restricted to assignments to local variables since if it is later determined
that the branch should not be executed, it is necessary to discard the results of such assign-
ments. This cannot be done with assignments to global variables.

As with assignment, constraint (vi) is weakened by forwarding. A program such as x :=
e; i f (x = f ) ... can be reordered to i f (e = f ) x := e; ... when e does not refer to global
variables.

3.1 Instruction reordering and value-dependent security

To illustrate how instruction reorderingmay affect security in the presence of value-dependent
security classifications [29], we introduce the example of Fig. 2. In this example, the four
operations are of an IO-driver object which receives input data from an IO device, such
as a keyboard, and stores it in the variable x . This variable is intended to be an abstract
representation of an input buffer.

As well as a simple wri te operation, the object has a secret_wri te operation. This is
used when the user indicates (via the keyboard or another input device) that the information
to be input is classified. The operation sets a variable z, which is initially 0, to an odd number
by incrementing it before allowing the input data to be assigned to x . After allowing the data
to be read (how this is done is elided in the abstract representation of Fig. 2), the operation
enters some unclassified data in x (the value 0) before setting z back to an even number by
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incrementing it again. Since x is guaranteed to be lowwhenever z is even, the value-dependent
security classification for x is L(x) = (z%2 = 0).

Consider the operations which read from the buffer. We have a secret_read operation
which can only be called by applications that are allowed access to classified information, as
well as a general read operation which all applications can call. To avoid leaks of classified
data, the latter should not read the variable x when z is odd; this is the only time when x can
contain classified data. A naive approach would be to use an if statement in read to disallow
reading x when z is odd: i f (z%2 = 0) then y := x else skip where y is a variable which
the application calling the operation can access. Obviously, this will not work in a concurrent
setting since the check of z’s value could bemade immediately before z is incremented for the
first time by secret_wri te and subsequently the assignment to y made immediately after x is
assigned the classified data; a classic Time-of-check to time-of-use (TOCTOU) vulnerability.

To avoid this undesirable behaviour, we could ensure mutual exclusion between the oper-
ations secret_wri te and read using a lock; each of these operations would acquire the lock
as it first step and release it as its last. This, however, would be highly inefficient. Firstly, there
may be many applications running and wishing to access the keyboard data, and requiring
each to acquire the lock before reading would create an obvious bottleneck. Secondly, the
secret_wri te operation should preferably not be made to acquire a lock as it needs to react
without delay in order to accept (real-time) keyboard input.

A better solution is to use a non-blocking algorithm [24]. Such algorithms allow threads
to run concurrently on the same object with no, or minimal, use of locking. For example,
consider the implementation of read in Fig. 2 where r1 and r2 are local variables. This
operation waits in a loop until z is even (and hence x does not contain classified information)
and then reads x into r2. It then checks that z has not changed (and hence has been even the
entire time since it was checked) before copying the value of r2 to y. Since z can only stay at
its current value or increase, if its value is the same as at some earlier time t , we can deduce
that z has not changed since time t .

This algorithm allows the secret_wri te operation to operate without locking or delay, and
allowsmultiple threads to call the read operation simultaneously. It is based on a Linux read-
write mechanism called seqlock [4], and is a typical example of a non-blocking algorithm.

The implementation in Fig. 2 is secure on a sequentially consistent memory model, i.e.,
one that does not allow instruction reordering. It is also secure on a memory model such as
TSO where writes are seen by other threads in the order in which they occur. For weaker
memory models such as ARM and POWER, this is not the case. These memory models allow
writes by a thread to be seen out-of-order by other threads since no additional constraints are
added to the four common reordering constraints for assignments presented in Sect. 3.

For example, consider the operation secret_wri te. If from the perspective of threads
running read , the assignment of the classified data to x occurred before the first assignment
to z then that classified data could be read into the variable y. To avoid this situation, a fence
is required between these two assignments. Similarly, if the second assignment to z occurred
before the assignment of 0 to x then again the classified data in x could be read into y.
The solution again is to maintain the order by placing a fence between these assignments. A
secure version of secret_wri te is given in Fig. 3.

Similar issues arise with the read operation. Firstly, since r2 is a local variable, the assign-
ment to r2 could be reordered with the first branch instruction (rule (v)) and further reordered
with the assignment to r1. This results in reading a value of x into r2 before checking that
z is even. If this value is classified and subsequently z is made even by secret_wri te, the
check will pass and the classified information in r2 will be able to be passed into y. A fence
before the assignment to r2 will prevent this reordering.
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Fig. 3 Versions of the operations
(secret_write) and (read) which
are secure when run on ARM and
POWER processors

secret write:
z := z+1;
fence;
x := secret;
...
x := 0;
fence;
z := z+1

read:
do

do
r1:= z;

while (r1 % 2 = 0)
fence;
r2 := x;
fence;

while (z = r1)
y := r2

Secondly, if the assignment to r2 is reordered with the second branch condition (rule (vi))
then it is possible that a secret_wri te operation begins after the checkof that branch condition
and r2 is loaded with classified data. Again, a fence can prevent the reordering. A secure
version of read is included in Fig. 3.

3.2 Instruction dependencies

The value-dependent information-flow logic of Murray et al. [29] described in Sect. 2 is not
capable of detecting the security leaks present in the code of Fig. 2 when run on ARM or
POWER processors. Γ and P ignore the effects of reordering possible under the processors’
memory models. This is not a problem for Γ as it is only consulted for the reads of an
instruction. If an instruction containing an expression e is reordered before a prior write to a
variable x then, according to the constraints in Sect. 3, either (i) x is not in e, or (ii) x is in e
and the reordering involves forwarding. In case (i), the assignment does not affect the value of
Γ for any of the variables in e and hence does not affect the sensitivity of the data contained
in e. In case (ii), since forwarding involves taking into account the prior assignment’s effect,
using the updated value for x in Γ is appropriate.

P , on the other hand, cannot be used directly to determine the security level of a variable
or expression. For example, the code z := z + 1; x := secret of Fig. 2 does not ensure z is
incremented before the assignment to x . To extend information-flow analysis to account for
such weak memory model effects, we need to restrict P to include only the effects of those
instructions which have definitely occurred prior to the instruction being considered.

To do this, we introduce a function W mapping instructions to sets of variables. W (α)

denotes the set of variables which are known to be up-to-date when instruction α is reached,
i.e., all writes to them before α in the program have occurred.We then restrict P at instruction
α to those variables inW (α). For example, consider the code z := z+1; x := secret starting
from a state where z = 0. After the first assignment W (x := secret) would include x (since
rule (i) prevents any earlier writes to x being reordered with x := secret), but would not
include z. Hence, the predicate P at this point would not refer to the purported fact that z = 1.

Importantly, the value of W (α) changes as we step through a program. Hence, W (α) is
not necessarily the same for different occurrences of the same instruction α. For example,
given the code z := x; y := x; z := 0; y := x , after the first assignment W (y := x)
contains z since the first assignment must occur before the second due to constraint (iv) of
Sect. 3. However, after the third assignment W (y := x) does not contain z since the fourth
assignment can be reordered before the third.

LetW [α] be the update ofW when instruction α occurs. After the first assignment above,
W (y := x) is extended to include z plus any variables whose prior writes in the program
cannot be reordered after z := x . This can be captured by W [z := x](y := x) = W (y :=
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x) ∪ W (z := x); note that W (z := x) contains z since no writes to z can be reordered with
z := x (rule (i) of Sect. 3). After the third assignment, z is removed from W (y := x). This
can be captured by W [z := 0](y := x) = W (y := x) − wr(z := 0) where wr(α) is the set
of variables written to by α.

As the above illustrates, the update of W at each instruction depends on whether it can
be reordered with preceding instructions. Colvin and Smith [8,9] define a reordering relation

α
R⇐ β〈α〉 on instructions α and β, where β〈α〉 encodes the instruction β with the effects of

forwarding the earlier assignment α.
Recall that forwarding enables reordering of instructions such as those in x := e; y := x

by replacing the occurrence of x in the second assignment with the value e (forwarded from
the first assignment). That is, we replace x := e; y := x by x := e; y := e which is then
reorderable under the rules (i)−(iv) to y := e; x := e. Forwarding the value of an assignment
x := e can therefore be formalised as replacing each occurrence of x in an expression or
branch condition with e, and leaving other instructions, such as fences, unchanged. Given
[b] denotes a branch condition, we define forwarding as follows.

y := f〈x :=e〉 = y := f [e/x] if e does not refer to global variables
[b]〈x :=e〉 = [b][e/x] if e does not refer to global variables

β〈α〉 = β for other instructions

We restate the relevant parts of relation
R⇐ of [8,9] corresponding to constraints (i) to (vii)

of Sect. 3 below.

x := e
R⇐ y := f if constraints (i), (ii), (iii) and (iv) hold

[b] R⇐ x := e if constraint (v) holds

x := e
R⇐ [b] if constraint (vi) holds

[b1] R⇐ [b2] if constraint (vii) holds

The update of W when an instruction α occurs is then defined as follows.

W [α](β) =
{
W (β〈α〉) − wr(α) if α

R⇐ β〈α〉
W (β) ∪ W (α) otherwise

When updating W for an instruction α, a subsequent instruction β could execute out-of-

order given α
R⇐ β〈α〉 holds. As a result, we remove the writes of α from β’s W mapping.

Returning to the example z := z+1; x := secret , irrespective of the value ofW (x := secret)
before execution, after the first assignment {z}will not be inW (x := secret). This is because

x := secret〈z:=z+1〉 is x := secret and since z := z + 1
R⇐ x := secret the first case above

applies. This case sets W (x := secret) to its current value with wr(z := z + 1) = {z}
removed.

It is necessary to useW (β〈α〉) rather thanW (β) in this case of the definition, as forwarding
may weaken constraints from other instructions earlier than α, allowing for writes to other
variables to execute out-of-order. To illustrate this weakening case, consider x := y; y :=
5; z := y in which forwarding enables reordering of y := 5 and z := y. Assume before

the first assignment that W (z := 5) = {z}. Since x := y
R⇐ z := 5〈x :=y〉, after the first

assignment W (z := 5) = {z} − {x} = {z}. Similarly, after the second assignment W (z :=
5) = {z}−{y} = {z}. Also, after the second assignmentW (z := y) = W (z := 5)−{x} = {z}.
Hence,when the third assignment is evaluated, neither x nor y are considered to be up-to-date.
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This function can be used in any rules where we need to refer to the prior writes in a
program that have definitely occurred. In some rules, we also need to refer to the prior reads
in a program that have definitely occurred. Let R be a function mapping instructions to sets
of variables such that R(α) denotes the set of variables whose prior reads in the program have
occurred. Updates to R can be calculated in an analogous fashion to those of W as follows
(where rd(α) is the set of variables read by α).

R[α](β) =
{
R(β〈α〉) − rd(α) if α

R⇐ β〈α〉
R(β) ∪ R(α) otherwise

Considering the example z := z + 1; x := secret once more, we have that after the first
assignment R(x := secret) does not include variables in rd(z := z+ 1) = {z}. This reflects
that the read of z in z := z + 1 need not occur before the assignment x := secret .

4 Information flow on ARMv8

In this section, we present our information-flow logic for ARMv8 (we consider earlier
versions of ARM in Sect. 9). We let Var be the set of all program variables. Variables
are partitioned into global (i.e., shared) variables Global, and local variables Local, i.e.,
Var = Global ∪ Local and Local ∩Global = ∅. We let var(e) denote the set of variables
which occur free in an expression e.

Our logic is defined over a high-level programming language which can model ARM
and POWER instructions (as in [9]). Let b and e represent boolean and value expressions
respectively, with the constraint that they are deterministic and their execution time is data-
independent. Additionally, we let x represent any program variable, r represent a Local
variable, g represent a Global variable, and l a value expression over Local variables. Our
language is then defined in terms of commands c as follows.

a ::= x := e|r := CAS(g, l, l)|acq(r , g)|rel(g, l)
f ::= fence|fence.st|cfence|eieio|loadgate|storegate
c ::= skip|c;c|if (b) then c else c|while (b) do c|a| f

where r := CAS(g, l, l) is a compare-and-swap instruction (detailed in Sect. 4.13), acq(r , g)
and rel(g, l) denote load-acquire and store-release instructions respectively (detailed in
Sect. 4.14), and f denotes a range of fences (detailed in Sects. 4.11 and 8).

The reordering semantics [8,9], upon which this logic is based, is defined in terms of
Kleene algebra. Therefore, we define our language constructs accordingly. A statement
if (b) then c1 else c2 represents the sequence of instructions ([b]; c1) � ([¬b]; c2) where
� is non-deterministic choice, and [b] and [¬b] acts as guards, resolving the statement to
one branch or the other in any state. Similarly, while (b) do c denotes ([b]; c)∗;[¬b]. The
do c while (b) construct used in the code of Figs. 2 and 3 is simply a shorthand for c ;
while (b) do c.

We restrict classifications to operate over a two-point security lattice, containing High
and Low, structured such that Low � High and High �� Low. Moreover, we allow for
the specification of a value-dependent security policy L, mapping variables to their value-
dependent security classifications as detailed in Sect. 4.2.

The logic supports variablemodes AssNoW , AssNoRW ,GuarNoRW andGuarNoW ,
similar to prior work [28,29]. We represent these modes as a mapping M from modes to sets
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of variables, e.g., x ∈ M(AssNoRW ) indicates that x is assumed to not be read or written by
another thread. These modes only apply to Global variables as Local variables can only be
read or written by their thread.We introduce stable M =̂ M(AssNoRW )∪M(AssNoW )∪
Local to denote the set of variables that no other component will modify.

4.1 State

Our information-flow logic is applied as a forward pass over the command c of an individual
thread, under mode state M , using judgements of the form Γ , P, D {c}M Γ ′, P ′, D′. These
individual judgements are then composed to establish information-flow properties over a
concurrent system.

The logic’s state is an extension of the program state with the information required to
evaluate information flow under a weak memory model. It consists of the triple Γ , P, D,
where Γ encodes the type context, mapping variables to the security level of their values
(which are either High or Low); P encodes a predicate over the programstate; and D captures
instruction dependencies as a tuple (W , R), where W and R are the functions introduced
in Sect. 3.2. For brevity, we introduce the shorthands DW =̂ fst D and DR =̂ snd D.
Additionally, we introduce an update function D[α] =̂ (DW [α], DR[α]).

We introduce a concept of well-formedness for the logic’s state, to ensure modifications
from concurrent threads cannot invalidate properties and, therefore, judgements. The first
component of this ensures that the free variables in P are all in stableM , avoiding invalidation
due to an assignment in a concurrent thread. Similarly, it is necessary to restrict the domain
of Γ to stable M , as threads may modify other variables and, consequently, the security level
of their values.

w f M Γ P =̂ var(P) ⊆ stable M ∧ dom Γ = stable M

Initial conditions for the logic’s P and Γ components may be any pair satisfying the w f
property given an initial mode setting M . We default to the weakest possible values, such
that P is True and Γ maps variables in stable M to High. The initial D is structured such
that all instructions map to all variables; formally ∀α · DW (α) = DR(α) = Var .

4.2 Classifications

As in the work of Murray et al. [28,29], the logic supports a security policy L, mapping
variables to their value-dependent classifications. These value-dependent classifications are
encoded as predicates over control variables, such that L(x) is true precisely when x has a
security level Low. To illustrate, consider the example of Sect. 2, in which L(x) = (z%2 =
0). This policy states that the classification of x depends on the value of control variable z,
such that x must hold Low information when z is even. The security policy L is provided by
the user and remains unmodified throughout execution.

We let C be the set of control variables of a program, such as z in the running example.
These variables are restricted to having Low classifications. Such a restriction avoids possible
side-channels due to changes in classifications. For example, if an attacker is permitted to
access variables with value-dependent classifications when they are Low but not when they
are High, the difference in access permissions may introduce a side-channel.

Weprevent Local variables frombeing used as control variables, formally Local ∩ C = ∅,
as it is not possible for threads to coordinate based onvariables they cannot read.Moreover,we
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assume that Local variables are classified as High, allowing them to hold any information.
This is enforced via a constraint on the security policy: ∀r : Local · L(r) = False.

The logic determines the classification of a variable x based on L, given the current state
predicate P . To enable this, we introduce lowP (x) =̂ P � L(x) and highP (x) =̂ P �
¬L(x) to determine if x is provably Low or High respectively. Note that, given insufficient
information in P , it may not be possible to demonstrate either of these conditions in which
case the classification of x is considered unknown. It is necessary to handle this unknown
case as though either classification is valid. To achieve this, it is necessary to distinguish
whether a read or write is taking place.

First, consider writing to a variable x . If it is possible to show x is classified as High,
then it can hold any value. However, if it is Low, then the value written to it must be Low.
Therefore, it is necessary to assume a Low classification when writing to a variable with
unknown classification as it is the constraining case. We capture this defaulting behaviour
with WP .

WP (x) =̂
{
High if highP (x)
Low otherwise

Second, consider reading from a variable x . If it is possible to show x is classified as
Low, then it can be included in an expression without changing the expression’s security
level. However, if it is High, the expression is consequently considered High. Therefore,
it is necessary to assume a High classification when reading from a variable with unknown
classification. We introduce RP to capture this behaviour.

RP (x) =̂
{
Low if lowP (x)
High otherwise

When considering variable reads in expressions, it is also necessary to consider the local
type context Γ . Γ may provide more accurate security levels for values held in variables in
stableM , such as capturing situations where a stable variable is classified High but currently
holds Low data. To simplify the use of Γ , we introduce a total mapping, defaulting to RP

where necessary.

ΓP (x) =̂
{

Γ (x) if x ∈ dom Γ

RP (x) otherwise

We also define the following shorthand for determining the security level t of an expression
e, as the highest level of any free variable in e.

Γ , P � e : t =̂ t = �x∈var(e) ΓP (x)

4.3 Skip

Based on the preceding sections, we now introduce the rules of our logic. The rule for the
skip instruction leaves the program state unchanged.

Skip
Γ , P, D {skip}M Γ , P, D
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4.4 Sequential composition

The rule for sequential composition introduces an intermediate state between the composed
commands.

Γ , P, D {c1}M Γ ′, P ′, D′ Γ ′, P ′, D′ {c2}M Γ ′′, P ′′, D′′
Seq

Γ , P, D {c1; c2}M Γ ′′, P ′′, D′′

4.5 Consequence

TheConseq rule is based on the consequence rules ofHoare logic [15]. It is typically required
when applying rules for if and while instructions to ensure both branches result in the same
state and to establish loop invariants, respectively. The rule allows for the state before a
command to be strengthened, and the state after the command to be weakened. To express
this, we introduce an ordering on the logic’s state such that a stronger state captures all valid
information flow exhibited under a weaker state.

Γ , P, D ≥M Γ ′, P ′, D′ =̂ (∀α · DW (α) ⊇ D′
W (α) ∧ DR(α) ⊇ D′

R(α)) ∧
P 
⇒ P ′ ∧
(∀x ∈ dom Γ · Γ (x) � Γ ′(x))∧ :
w f M Γ P 
⇒ w f M Γ ′ P ′

For the D component, this ordering ensures all instructions in the stronger state havegreater
or equal write and read sets compared to the weaker. Therefore, the stronger state is aware of
all instruction dependencies known in the weaker. For the predicate P , we use implication
as traditionally done in the consequence rules of Hoare logic. For Γ , the stronger state must
have classifications equal to or lower than those in the weaker. Hence, all valid information-
flow reliant on Low classifications in the weaker state must be valid in the stronger. Finally,
we constrain the preservation of well-formedness across the states, consequently preserving
well-formedness across the Conseq rule.

Γ1, P1, D1 {c}M Γ ′
1, P

′
1, D

′
1

Γ2, P2, D2 ≥M Γ1, P1, D1

Γ ′
1, P

′
1, D

′
1 ≥M Γ ′

2, P
′
2, D

′
2

Conseq
Γ2, P2, D2 {c}M Γ ′

2, P
′
2, D

′
2

For example, if a required premise of a rule was Γ , P, D {skip}M Γ , P ∧ Q, D, we could
apply the Conseq rule to weaken the post-state’s program state to P , i.e., to transform the
premise to Γ , P, D {skip}M Γ , P, D which is readily discharged using the Skip rule.

While the use of theConseq rule requires user interaction, its application can be automated
based on the context, e.g., through the introduction of a specialised rule for if instructions as
in Murray et al. [28,29]. We introduce such specialised rules for if and while instructions in
Sect. 7.

4.6 If

The rule for if statements restricts the branching condition to be Low to provide a timing-
sensitive analysis as discussed in Sect. 2.1. The rule requires that both branches result in the
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same context, which can be established using the Conseq rule.

Γ , Pb � b : Low
Γ , P ∧ [b]M , D[b] {c1}M Γ ′, P ′, D′
Γ , P ∧ [¬b]M , D[b] {c2}M Γ ′, P ′, D′

If
Γ , P, D {if (b) then c1 else c2}M Γ ′, P ′, D′

When demonstrating a Low classification for the boolean expression b, it is necessary to
ensure a Low classification under all possible reorderings. This can be achieved by restricting
P to those variables for which all writes are known to have occurred, DW (b), eliminating
others through existential quantification of their free references in P . To facilitate this, we
introduce an operation to restrict a predicate P to a set of variables V .

P|V =̂ ∃y1, ...yn · P where {y1, .., yn} = Var \ V

Therefore, given b can be shown to have a Low classification under P|DW (b), then this
outcome should hold for all possible reorderings. We employ the shorthand Pα =̂ P|DW (α)

to represent this restriction in the rule.
Moreover, it is necessary to preserve well-formedness properties when manipulating the

logic state. As we assume the pre-state (Γ , P) is well-formed, it is only necessary to enforce
well-formedness on the modifications to the state, specifically, the conjunctions of b and ¬b.
We introduce the notation [b]M =̂ b|stable M to ensure only stable variables are referenced
as required for well-formedness.

4.7 While

The rule for while statements, like that for if statements, restricts the loop condition to be
Low to provide a timing-sensitive analysis. Moreover, the rule requires the pre-state to be
a loop invariant that is maintained throughout all loop iterations. This restriction on the
context can be established using the Conseq rule to set the context before the loop to be the
loop’s invariant. Outcomes of the boolean expression b are introduced into appropriate states
restricted to maintain well-formedness.

Γ , Pb � b : Low Γ , P ∧ [b]M , D[b] {c}M Γ , P, D
While

Γ , P, D {while (b) do c}M Γ , P ∧ [¬b]M , D[b]

4.8 Non-blocking loops

The logic is restricted to constant mode annotations M throughout a thread. Evidently, this
is insufficient in the event that a thread gains stability or exclusive access to a variable under
certain conditions. To illustrate, consider the example in Fig. 2, in which the read operation
temporarily gains stability on z to demonstrate an information-flow property: the algorithm
speculates on z’s stability, rolling back changes in the event that a secret_wri te operation
interleaves. This temporary reliance on stability is common in non-blocking algorithms.

To enable support for such algorithms in the logic, we introduce a rule specialised for non-
blocking loops, such as the outer loop in the read operation. Such loops are annotated by the
programmerwith a set of variablesvwhichweexpect to be stable ({z} in the running example).
The annotation allows thread-local reasoning to assume that the nominatedvariables are stable
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using the following rule (where c can be a while or do loop).

dom Γn = dom Γ ′
n = v

∀x ∈ dom Γn · Γn(x) = RPx=0(x)
Γ ∪ Γn, P, D {c}Mv Γ ′ ∪ Γ ′

n, P
′, D′

NonBlocking
Γ , P, D {cv}M Γ ′, P ′, D′

To evaluate the loop, Γ is updated with a value for each variable x in the set v based on
what is known to have occurred if x were read; the (branch) condition x = 0 is used for
this read. For read in Fig. 2, Γ would be extended with a mapping from z to RPz=0(z).
Since P before the loop is the initial value True,RPz=0(z) = RTrue(z)which is Low since
lowTrue(z) holds, i.e., True � L(z) holds since L(z) = True.

Also, M is replaced by Mv which extends M to include variables in v in the set of
variables with mode AssNoW and variables in Global in the set of variables with mode
GuarNoW . For read , wewould have z ∈ AssNoW and {z, x} ∈ GuarNoW . The extension
of GuarNoW in Mv ensures that, while in the loop, no writes can be made by the thread to
any global variables. This is required in such non-blocking algorithms so that the execution
can be discarded and restarted when one or more variables in v is discovered not to be stable.

For the rule to be sound, we require that the loop cannot be exited unless the variables
in v are stable from the time that it is entered. This check requires reasoning about the
functionality of the code and is outside of the scope of the logic (similar to the obligation
that assumptions are matched by guarantees on other threads). In the case of read , the proof
follows from the fact that the value of z is never decreased.

4.9 Non-control variable assignment

We introduce two assignment rules, distinguished based on writes to control and non-control
variables. For an assignment x := e, where x is not a control variable, it is necessary to
demonstrate a valid flow of information from the expression e to x . That is, the classification
of x must be greater than the security level of the value being written. Similar to the If rule,
we restrict P to those variables that are up-to-date from the perspective of x := e, denoted
as Px :=e. Therefore, the proof obligations are preserved under any reordering with write
operations. This check is not required if modes prevent any other threads in the system from
reading x .

x /∈ C
Γ , Px :=e � e : t x /∈ M(AssNoRW ) 
⇒ t � WPx :=e (x)

Assign
Γ , P, D {x := e}M Γ [x �→ t]M , P[x := e]M , D[x := e]

The logic state is updated according to the assignment, and well-formedness enforced on the
changes. Γ is updated to map x to its new type t derived from the expression e. To achieve
this, we introduce the notation Γ [x �→ y]M to denote Γ updated so that x maps to y if x
is a stable variable based on M . This operation ensures the domain of Γ remains equal to
stable M .

We introduce P[x := e] as a shorthand for the strongest postcondition of x := e given a
precondition P .

P[x := e] =̂ ∃v. P[v/x] ∧ x = e[v/x]
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We extend this shorthand to P[x := e]M to represent the strongest postcondition restricted
to stable variables based on M . This ensures the state only refers to variables in stable M
ensuring well-formedness.

4.10 Control variable assignment

For an assignment x := e where x is a control variable, it is necessary to consider both
information flow and potential classification changes. As stated in Sect. 4.1, we constrain
the security policy L such that control variables are always considered Low. Therefore, the
instruction x := e is only secure from an information-flow perspective if the expression e
can demonstrate a Low classification.

We decompose the effects a control variable assignment may have on variable classifica-
tions into falling and rising cases. The falling case captures situations in which a variable’s
classification is potentially considered High in the pre-state and Low in the post-state. This
case may introduce an information-flow leak if High information is not cleared from a
falling variable prior to its classification change. Therefore, a control variable assignment
must ensure all variables with potentially falling classifications hold Low information. To
capture this, we first define the concept of a falling classification based on the definitions
introduced in Sect. 4.2.

f allingP,P ′(x) = {y : Var |x ∈ var(L(y)) ∧ ¬lowP (y) ∧ ¬highP ′(y)}
where P is the pre-state predicate, P ′ is the post-state predicate, and x the modified variable.
Note that it is necessary to consider variables that are¬lowP and¬highP ′ , rather than highP

and lowP ′ respectively. This captures those variables for which we cannot determine their
classification due to the potential unknown outcomes of lowP and highP ′ . For example, if
L(x) were z = 0 and P were z < 10 then x might be High. In this case, highP would be
False (as it is not possible to deduce ¬L(x)). However, ¬lowP (x) would be True (as it is
also not possible to deduce L(x)).

We need to ensure that all falling variables hold low information. Consider a variable y,
such that the assignment x := e results in its classification falling. This is secure if y holds a
Low value prior to the classification change. Hence we require Γ (y) = Low at the point of
the classification change. However, this is not enough. Instruction reordering may result in
the corresponding write of Low information to y and the assignment x := e being reordered.
Consequently, y’s classification may fall without its High information being cleared. To
account for this, it is also necessary to consult DW (x := e) to ensure all writes to y have
definitely occurred.

Alternatively, if the falling variable y is in the M(AssNoRW ) set, then changes to its
classification are inconsequential as no other thread can read its value. The required condition
for falling variables is captured below.

f allingP,P ′(x) ⊆ M(AssNoRW ) ∪ ({y : Var |Γ (y) = Low} ∩ DW (x := e)})
Next we consider the rising case. This case describes the inverse of the falling in which a

variable is potentially Low in the pre-state and High in the post-state. Such a situation may
introduce a leak if the classification change can reorderwith earlier reads of the rising variable,
potentially resulting in these reads returning High information where Low is anticipated.
To illustrate, consider the example out := y; x := e, where out is visible to an attacker,
therefore constraining the first assignment to writing a Low value. Assuming a pre-state
capable of demonstrating a Low classification for y, the example appears to implement the
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desired property. However, these instructions may reorder and execute as x := e; out := y
enabling a write of High information to out if y’s classification rises after x := e is executed
(e.g. if some other thread places classified data into y in between the assignment to x and the
assignment of out).

To handle this situation, we introduce a definition to capture variables with rising classi-
fications, which parallels that of the falling set.

risingP,P ′(x) = {y : Var |x ∈ var(L(y)) ∧ ¬highP (y) ∧ ¬lowP ′(y)}
Given a variable y in the rising set, it is necessary to show that there are no reorderable

reads of the variable. This can be achieved using the dependency analysis on reads, ensuring
y is in DR(x := e).

risingP,P ′(x) ⊆ DR(x := e)

We merge these falling and rising proof obligations into a single property.

secure_updateΓ ,P,U ,V ,M (x := e) =̂
f allingP1,P2(x) ⊆ M(AssNoRW ) ∪ ({y : Var |Γ (y) = Low} ∩U }) ∧
risingP1,P2(x) ⊆ V

where P1 is the pre-state predicate P|U and P2 is the post-state predicate P[x := e]|V . We
define this property in terms of variable sets U and V , representing the sets of up-to-date
writes and reads respectively, rather than consulting D based on x := e to enable the reuse
of the definition of secure_update in the CAS rule of Sect. 4.13.

Note that it is possible for a variable to be in both the rising and falling sets, in the
event that its classification is unknown in both the pre-state and post-state. The following
rule is sufficient to demonstrate preservation of the security policy due to a control variable
assignment.

x ∈ C
Γ , Px :=e � e : Low secure_updateS(x := e)

AssignC
Γ , P, D {x := e}M Γ [x �→ Low]M , P[x := e]M , D[x := e]

where S =̂ Γ , P, DW [x := e], DR[x := e], M

4.11 Fences

ARMv8 supports a variety of fences. Below, we list the most important of these fences and
their properties.

– A full fence (DMB or DSB in ARM) ensures all instructions before it take effect in
memory before any instruction after it.

– A store fence (DMB.ST or DSB.ST in ARM) ensures all store instructions before it take
effect in memory before any store instructions after it.

– A control fence (ISB in ARM) can be placed between a branch instruction and following
loads to prevent the loads being speculatively executed. That is, a branch before a control
fence cannot be reordered with it, and a load after a control fence cannot be reordered
with it.
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Fig. 4 Writer and reader threads
using the operation secret_write
and read of Fig. 3

writer thread:
1 z := 0;
2 x := 0;
3 while (true)
4 z := z+1;
5 fence;
6 x := secret;

...
7 x := 0;
8 fence;
9 z := z+1

reader thread:
10 while(true)
11 do
12 do
13 r1:= z;
14 while (r1 % 2 = 0)
15 fence;
16 r2 := x;
17 fence;
18 while (z = r1)
19 y := r2

Support for fences depends on suitable definitions for the
R⇐ relation. For the fences above,

this relation is as follows [8].

f ence
R
� α

α
R
� f ence

x := e
R
� f ence.st if x ∈ Global

f ence.st
R
� x := e if x ∈ Global

[b] R
� c f ence

c f ence
R
� x := e

Certain invariants for the DW and DR sets can be derived from these definitions. For exam-
ple, in the case of a f ence, updates to Dwill never removewrites and reads from DW [ f ence]
and DR[ f ence] respectively, as no operation can reorder with f ence. Consequently, given D
is initialised to map all instructions to Var , the invariant DW ( f ence) = DR( f ence) = Var
will be maintained across all instructions. Therefore, whenever applying an update due to a
f ence, D is reset to initial conditions as all instructions will map via DW and DR to Var .
A similar property can be seen for f ence.st as an action writing to a Global variable will
never reorder with it. As a result, DW ( f ence.st) ⊇ Global will be maintained across all
instructions.

As these instructions do not manipulate the predicate P or classification context Γ , their
information-flow properties are trivial. As we prevent branching based on High information,
it is not possible to introduce a side-channel based on the conditional execution of a fence
(as in [39]).

α ∈ {fence, fence.st, cfence}
Fence

Γ , P, D {α}M Γ , P, D[α]

4.12 Example revisited

We now have enough of the logic to illustrate its application to the example of Fig. 3. Two
threads which call the secret_wri te and read operations are shown in Fig. 4.

The sequential composition rule allows us to step through a program one line at a time.
The values ofΓ , P and D following a given line can be calculated from the applied rule. If we
reach a line of code that no rule can be applied to, this indicates a potential security leak. For
example, consider the wri ter_thread in Fig. 4 for which we will assume M(AssNoW ) =
{z, x}. This thread initialises the variables z and x and then repeatedly calls the secret_wri te
operation of Fig. 3. Applying rulesAssignC andAssign to lines 1 and 2, respectively, shows
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that the code up to line 2 is secure. Following line 2, we have Γ = {z �→ Low, x �→ Low},
P = (z = 0∧ x = 0), DW (z := z + 1) = {z}, DW (x := secret) = DW (x := 0) = {x} and
DR(z := z + 1) = DR(x := secret) = DR(x := 0) = {x, z}.

The Conseq rule can then be applied to weaken P to z%2 = 0 ∧ x = 0 and leave Γ

and D unchanged. These values become the starting point for evaluating lines 4 to 9. We can
show that these lines are also secure by applying rules AssignC, Fence and Assign. Note
that without the fence at line 5, z would not be a member of DW (x := secret) and hence not
in Px :=secret . Therefore, Assign would not be applicable (since, with L(x) = (z%2 = 0),
the value of z is required to be odd for this assignment to be secure). Hence, no rule would
be applicable for line 6. This demonstrates how the leak of x would be detected by the logic
if lines 4 and 6 could be reordered.

Similarly, without the fence at line 8, no rule would be applicable to line 9. In this case,
since z becomes even at line 9, the variable x must hold Low data to satisfy secure_update.
This could not be ascertained, however, since x would not be in DW (z := z + 1). This
demonstrates how the leak of x would be detected by the logic if lines 7 and 9 could be
reordered.

The reasoning for the reader_thread is similar. The most interesting aspect of it is the
use of the Non- Blocking rule. The reason that the reader_thread is secure, is that it only
reaches line 19 when z is stable from line 13 (when it is assigned to r1) until line 18 (where it
is checked to be equal to r1). The algorithm works on the principle that there is a high chance
of z being stable while these lines are executed, and hence the reader_thread will reach
line 19 without too many iterations of the outer do-loop. Hence, we annotate the outer-do
loop with the set {z} so that the Non- Blocking rule can be applied.

4.13 Compare-and-swap

A compare-and-swap CAS instruction is an atomic operation for updating a variable based on
its current value. r := CAS(g, l1, l2) updates the Global variable g to the value of expression
l2 if g = l1, and otherwise leaves g unchanged. The local variable r records whether or not
the write occurred. Due to the atomic nature of the instruction, we restrict expressions l1 and
l2 to only refer to Local variables.

The rule is structured as a composition of the If and Assign rules. We assume the action
of conditionally modifying g may introduce a timing side-channel, and therefore restrict the
boolean expression g = l1 to be Low.

Moreover, it is necessary to demonstrate that g can hold the value of l2, given g = l1. To
account for this, we introduce an intermediate predicate P ′ =̂ P ∧ g = l1, capturing the
state where a write occurs, and use that state to determine the classification of g. Note that
we do not need to ensure P ′ is well-formed due to the atomic nature of the CAS.

Finally, it is necessary to consider the implications of classification changes if g is a control
variable. We reuse the definition of secure_update to enforce these constraints. Note that r
is a Local variable and, therefore, cannot be a control variable.

The rule for CAS instructions is as follows where op =̂ r := CAS(g, l1, l2).

Γ , Pop � g = l1 : Low
Γ , P ′

op � l2 : t
g /∈ M(AssNoRW ) 
⇒ t � WP ′

op
(g)

secure_updateS(g := l2)
CAS

Γ , P, D {op}M Γ [g �→ t, r �→ Low]M , P ′′, D[op]
where P ′ is the intermediate predicate described above, P ′′ is a post-state predicate described
below, and S =̂ Γ , P ′, DW [op], DR[op], M .
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Γ , P and D are updated according to the semantics of the operation. The Γ update
captures assignments to both g and r . For r , this is trivial, as it encodes the outcome of the
comparison g = l1, which must be Low. The value of g varies depending on the outcome
of g = l1. Therefore, it is necessary to determine both possible security levels of the value
held in g and take the highest classification, as done in the MergeIf rule. When g = l1 is
false, the value of g remains unmodified. As g = l1 is restricted to being Low, in this case
Γ (g) = Low. Otherwise, when g = l1 is true, the value of g corresponds to t , the type of
l2. The final type of g is the highest of the two, which is trivially t .

To compute the post-state predicate P ′′, we introduce a ternary operator b ? e1 : e2, eval-
uating to e1 when b holds, and e2 otherwise. Moreover, we introduce the following pairwise
assignment operator given the two written variables are distinct.

P[(x, y) := (e1, e2)] =̂
∃v1, v2. P[v1/x][v2/y] ∧ x = e1[v1/x][v2/y] ∧ y = e2[v1/x][v2/y]

In the context of the CAS instruction, we can show g �= r as g is Global, while r is Local.
P ′′ is hence defined as follows where we restrict the free variables of the resulting predicate
to those that are in stable M to preserve well-formedness.

P ′′ =̂ P[(g, r) := (g = l1 ? l2 : g, g = l1)]M

To facilitate updates to D, it is necessary to define the reordering rules for a CAS instruction.
To ensure a sound analysis, we introduce the weakest reordering constraints for a CAS based
on its sub-instructions. That is, we allow the most possible reorderings and hence the greatest
scope for information leaks.

For forwarding, we always apply the conditional store g := l2 as it will always remove
reordering constraints. Inversely, we do not forward the store to r as this introduces references
to g preventing additional reorderings.

x := e〈r :=CAS(g,l1,l2)〉 = x := e[l2/g]

For the reordering relation, the CAS is only guaranteed to load g and evaluate l1 storing
the result in r . Therefore, we define the reordering relation to be consistent with that for these
instructions.

α
R
� r := CAS(g, l1, l2) if α

R
� r := (g = l1)

r := CAS(g, l1, l2)
R
� α if r := (g = l1)

R
� α

4.14 Load-acquire/store-release

ARMv8 supports load and store instructions with acquire/release memory orderings. The
load-acquire acq(r , g) operation loads a Global variable g into the Local variable r and
ensures no memory operations later in program order may reorder before it. The store-
release rel(g, l) operation stores the local expression l to the Global variable g and ensures
all memory operations earlier in program order have been completed. These operations may
be forwarded, using the corresponding forwarding definitions for their traditional assignment
forms, g := l and r := g for rel(g, l) and acq(r , g) respectively. We introduce appropriate
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R⇐ definitions for these instructions below.

acq(r , g)
R
� α

α
R
� acq(r , g) if α

R
� r := g

α
R
� rel(g, l)

rel(g, l)
R
� α if g := l

R
� α

We support these instructions as variants of the traditional assignment rules, but with
modified reordering relations. This results in different restrictions on P andmodified updates
to D for the instructions. First, we introduce a rule for rel(g, l) where g /∈ C.

g /∈ C
Γ , Prel(g,l) � l : t g /∈ M(AssNoRW ) 
⇒ t � WPrel(g,l) (g)

Release
Γ , P, D {rel(g, l)}M Γ [g �→ t]M , P[g := l]M , D[rel(g, l)]

A similar definition is possible in the event g ∈ C.
g ∈ C

Γ , Prel(g,l) � l : Low secure_updateS(g := l)
ReleaseC

Γ , P, D {rel(g, l)}M Γ [g �→ t]M , P[g := l]M , D[rel(g, l)]
where S =̂ Γ , P, DW [rel(g, l)], DR[rel(g, l)], M .
Load-acquire instructions load a Global variable into a Local. Since Local variables

are always classified High and cannot be control variables, such an assignment can never
result in an information-flow violation or a change in classification. Therefore, the rule is a
simplified variant of the Assign rule.

Γ , Pacq(r ,g) � g : t
Acquire

Γ , P, D {acq(r , g)}M Γ [r �→ t]M , P[r := g]M , D[acq(r , g)]

4.15 Arrays

We introduce limited support for modelling arrays to the logic. This allows us to model
address shifting; something which is common in assembly-level programs. We constrain
arrays to have a known, static length. Moreover, it is assumed that the arrays all refer to
distinct memory regions and remain allocated throughout execution.

To enable reuse of existing logic properties and rules, arrays are modelled as a collection
of variables. We introduce the notation An to refer to the nth element of array A, where n
is restricted to a valid index in A’s domain and must be an integer constant. As traditional
Global variables, they may appear anywhere in the logic state or program that a Global
would be expected. For example, they may appear as control variables and have tracked
classifications in Γ .

We let the expression A[l] refer to an access to A based on the result of l. To support logic
rules over such array accesses, we must resolve the result of A[l] into the form An . As the
outcome of l may be unknown, this may result in multiple possible resolved variants of the
instruction. If this is the case, all variants must be proved secure.

To enable such a judgement, we first introduce a function to resolve array accesses in an
expression, resolveP . The function returns the set of possible instructions coupled with a
predicate P constraining the index expression. The function is defined by a recursive traversal
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over expressionswith global references.We include representative definitions of this function
below, where ⊕ is an arbitrary binary operator.

resolveP (A[l]) := {(P ∧ l = n, An)|n ∈ dom A ∧ ¬(P � l �= n)}
resolveP (x) := {(P, x)}
...

resolveP (e1 ⊕ e2) :=
{(P2, e′

1 ⊕ e′
2)|(P1, e′

1) ∈ resolveP (e1) ∧ (P2, e
′
2) ∈ resolveP1(e2)}

...

resolveP (x := e) :=
{(P2, x ′ := e′)|(P1, x ′) ∈ resolveP (x) ∧ (P2, e

′) ∈ resolveP1(e)}
resolveP (r := CAS(g, l1, l2)) :=
{(P ′, r := CAS(g′, l1, l2))|(P ′, g′) ∈ resolveP (g)}

Note that the resolveP function will reject impossible indices based on P via the ¬(P �
l �= n) test.

Moreover, it is necessary to demonstrate all array accesses are based on Low information.
If this is not the case, cache and reordering effectsmaybe influenced by High data, potentially
introducing side-channels. Thus our logic enforces a constant-time security guarantee [2]
(whichwe return to later in Sect. 5.3). To establish this, we collect all array access expressions
for an instruction using a function indices.

indices(A[l]) := {l}
indices(x) := ∅
...

indices(e1 ⊕ e2) := indices(e1) ∪ indices(e2)

Given these definitions, we introduce a generic rule for supporting any instruction in set
a (defined at the beginning of Sect. 4) in which an unresolved array access may be found.

α ∈ a
∀i ∈ indices(α) · P, Γ � i : Low

∀(P ′, β) ∈ resolveP (α) · Γ , P ′, D {β}M Γ ′, P ′′, D′
Array

Γ , P, D {α}M Γ ′, P ′′, D′

This general rule can be specialised to improve automation. For example, if the resolve
function returns only one possible instruction, e.g., if it were given A[0] := 1, then only
a single judgement must be shown. Moreover, the post-state of the Array rule would be
equivalent to the post-state of the singular possible access. Otherwise, it is necessary to
demonstrate valid judgements for all possible instructions and merge their post-states. A
specialised rule may employ a similar strategy to the IfMerge rule (introduced later in
Sect. 7) in which the highest Γ mapping for all variables is maintained; the disjunction of
all possible predicates is taken; and D consists of the intersection of all possible Ds.

This technique has been employed in the symbolic execution tool (see Sect. 7). Evidently,
it does not scale well with large arrays due to the significant increase in necessary judgements.
However, security properties are typically independent of array length. Therefore, properties
shown over small arrays will in many cases hold over those of any size.
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4.16 Weaker memorymodel concepts

ARM and POWER processors employ a number of additional techniques to reorder memory
operations and improve performance. These techniques can be seen as a weakening of the

constraints (i) to (iv), under particular situations. To account for these, we weaken the
R⇐

relation accordingly, resulting in fewer up-to-date writes and reads in D.
The first optimisation is referred to as squashing and is capable ofweakening constraint (i).

Constraint (i) prevents repeated writes to the same variable from reordering, such as x :=
2; x := 5. However, the processor can squash the first write, skipping it entirely. This is not
an immediate issue for the information-flow logic as such a behaviour is a subset of possible
thread interleavings where no other thread interleaves to read the first instance, although it
can weaken instruction dependencies.

To illustrate, consider r := x; c := r; c := 1; l := r , where x is controlled by c and only
Low information must be written to l. If squashing were not possible, the assignments to c
would be restricted to execute after the read of x due to the dependency via r . Therefore, it
would not be necessary to consider potential rises in x’s classification due to these operations.
However in the presence of squashing, the first write to c may be skipped, eliminating the
dependency via r . This enables the execution c := 1; r := x; l := r , in which c := 1 may
result in x’s classification becoming High and subsequently resulting in a flow of High

information to l. To account for this case, we weaken
R⇐ between assignments by removing

constraint (i).
Processors may also weaken constraint (iii), which prevents reordering of x := e and

y := f given y is referenced in e. This remains true if y is a Global variable, as the
processor must read its value before modifying it. However if y is a Local variable, this
represents a false dependency between the two operations as their outcomes are only linked
due to register reuse. The processor may decide to rename the use of y in y := f and future
operations to another Local variable, thus breaking the false dependency between the two
operations. To account for this, constraint (iii) only applies to cases where y is a Global
variable.

Finally, processors may weaken constraint (iv), which prevents reordering of x := e and
y := f given e and f refer to the same Global variables, via load speculation. Given two
memory load operations, where determining the first memory address requires a costly com-
putation relative to the second, the processor may speculate that the two addresses are distinct
and perform the second earlier. If this speculation does not hold, the processor must ensure
the two loads behave as if constraint (iv) held, potentially rolling back operations. Conse-
quently, any instructions executed due to the speculation cannot have effects observable to
other threads, and therefore cannot involve Global writes. As the proposed logic is oblivious
to the order ofGlobal reads, reorderings introduced due to load speculation cannot introduce
an information-flow violation. Therefore, constraint (iv) can be preserved.

We restate the weakened
R⇐ relation between assignments below.

x := e
R
� y := f (ii) if f refers to x

x := e
R
� y := f (iii) if e refers to y and y is a Global variable

x := e
R
� y := f (iv) if e and f refer to the same Global variables

x := e
R⇐ y := f otherwise
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5 Soundness

Our logic has been encoded in Isabelle/HOL [30] and proven sound with respect to a defini-
tion of value-dependent non-interference suitable for compositional reasoning [29]. We use
formalisation techniques derived from a series of prior logic encodings [23,28,29], in which
a successful application of the logic’s rules, along with suitable initial conditions, are shown
to establish a strong bisimulation over a pair of executions of a thread. This bisimulation
preserves the desired security property between its constituent pairs, expressed as a form of
low-equivalence. Low-equivalence is a property that constrains all variables classified as
Low to be equal in both executions. As a result, it is not possible to distinguish two low-
equivalent executions via inspection of only Low variables. The bisimulation is also closed
under global modifications, such that interference from parallel threads may not invalidate
local reasoning. Finally, given compatible thread specifications, these local bisimulations can
be composed to establish a security property across a concurrent system.

The formalisation builds directly on the encoding of Covern [28], preserving its defi-
nitions of security and compositionality, whilst replacing its language and logic rules with
those detailed in Sect. 4. Encoding decisions are made to minimise modifications to these
existing theories.

The theories files are available at https://bitbucket.org/wmmif/wmm-if, alongwith a series
of applications of the logic to small examples. These snippets illustrate the difficulty of
applying the logic rules in Isabelle/HOL, motivating the external automation described in
Sect. 7.

5.1 Compositional Security

To successfully reuse the existing compositional security theory, it is necessary to prove
that the logic’s rules establish a thread-local bisimulation with a series of properties. We
briefly summarise these properties to motivate verification effort, with a full description of
the underlying theory available in foundational work [28].

First, the bisimulation must be preserved across thread-local operations, as is standard
for a bisimulation definition. Moreover, the bisimulation must be symmetric, to prevent any
distinction between the two executions. These two properties together constitute a strong
bisimulation.

Definition 1 (Strong Bisimulation)

sbisim B ≡ (∀s, s′ · s B s′ 
⇒ s′ B s) ∧
∀c1,mem1, c2,mem2 · 〈c1,mem1〉 B 〈c2,mem2〉 
⇒

∀c′
1,mem′

1 · 〈c1,mem1〉 → 〈c′
1,mem′

1〉 
⇒
∃c′

2,mem′
2 · 〈c2,mem2〉 → 〈c′

2,mem′
2〉 ∧ 〈c′

1,mem′
1〉 B 〈c′

2,mem′
2〉

where 〈c,mem〉 represents a pair of program and memory state, s B s′ represents a bisimu-
lation B that relates the states s and s′, and s → s′ represents a transition from state s to s′
via a thread-local operation.

The bisimulation must enforce low-equivalence on bisimilar memory states. We define
this relation in terms of the security policyL, ensuring equivalence between the twomemories
for any variables considered to be Low. Recall that a variable is considered Low whenever
its security policy evaluates to true. The low-equivalence definition may evaluate these

123

https://bitbucket.org/wmmif/wmm-if


276 Formal Methods in System Design (2021) 58:251–293

policies over either of the two bisimilar memories, as the Low classification constraint
on control variables ensures equivalent value-dependent classifications. Moreover, the low-
equivalence definition explicitly allows for unreadable variables to hold arbitrary data, as they
cannot influence other threads. This excludes control variables to preserve the aforementioned
symmetry.

Definition 2 (Low Equivalence)

mem1 ≈M mem2 ≡
∀x /∈ M(AssNoRW ) − C · mem1 ∈ L x 
⇒ mem1 x = mem2 x

where M refers to the variable modes for the current thread, andm ∈ P represents evaluation
of the predicate P to true for a memory m.

Finally, to enable compositional reasoning, the bisimulation must be closed under global
modifications that satisfy the variable modes and preserve low-equivalence. This is for-
malised by quantifying over all possible low-equivalent memories, mem′

1 and mem′
2,

constrained such that they do not modify any variables assumed to be stable. To be closed
under global operations, these new memories must be considered bisimilar.

Definition 3 (Closed under Global Modifications)

closedM B ≡ ∀c1,mem1, c2,mem2 · 〈c1,mem1〉 B 〈c2,mem2〉 
⇒
∀mem′

1,mem′
2 · mem′

1 ≈M mem′
2 
⇒

(∀x ∈ stable M · mem1 x = mem′
1 x ∧ mem2 x = mem′

2 x) 
⇒
〈c1,mem′

1〉 B 〈c2,mem′
2〉

5.2 Compositionality theorem

Given 〈c1,mem1〉 B 〈c2,mem2〉 
⇒ mem1 ≈M mem2, sbisim B and closedM B, a formal
compositionality theorem states how to establish a global bisimulation across a series of
threads with compatible modes. That global bisimulation guarantees security for the parallel
composition of the threads. This global bisimulation enforces low-equivalence and satisfies a
variant of sbisimwith thread-local state transitions replaced by interleaved thread operations
(parallel composition). Theorder of the interleaving is definedby afixedbut arbitrary schedule
shared by both executions, as in prior work [28,29], therebymaking scheduling deterministic.
Consequently, we adopt the familiar assumption [28,29] that scheduling decisions are not
influenced by High information.

At a high level, the proof of the compositionality theorem is structured as an induction
over the scheduler trace, using the sbisim and low-equivalence properties for the executing
thread to preserve both its local bisimulation and the global notion of low-equivalence, whilst
the closedM properties for all other threads are used to preserve their own bisimulations.

Note that this proof relies on all threads conforming to their guaranteed variable modes
as well as compatibility of these modes between threads. While this would be trivial for the
proposed logic, as modes do not change throughout the execution of a thread, demonstrations
of sound mode use and compatibility have been excluded from the verification, as done in
prior formalisations [23,29].
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5.3 Semantics

Colvin and Smith [8] provide an operational semantics of ARMv8 which has been validated
against approximately 10,000 litmus tests developed by Alglave et al. [1]. Specifically, the
semantics has been compared with running these tests on actual hardware. Its definition is
similar to that of a standard small-step semantics for a Kleene algebra, with the introduc-
tion of instruction reordering based on the behaviours introduced in Sect. 3. Additionally,
weak memory behaviours are modelled at a thread-local scope, enabling a traditional thread
interleaving interpretation of parallel composition. Consequently, verification against such
a semantics enables reuse of existing compositionality theorems and language structures,
in contrast to alternative weak memory semantics that rely on axiomatic approaches [1] or
significantly modify the state encoding [17].

Notably, this encoding introduces non-determinism into the language to capture the var-
ious reordering and speculation choices that can be made during execution. However, the
underlying bisimulation theory requires a deterministic language to ensure bisimilar pro-
grams observe the same instruction traces. Consequently, our language encoding includes a
reordering schedule, det , that determines when instruction reordering and speculation takes
place, re-establishing deterministic behaviour.

The schedule is encoded as a list of L and R values, as the semantics only features two
possible choices for each language structure. For instance, α; c may chose to execute α,
encoded as L in the schedule, or reorder an instruction later in c before α, encoded as R.
Note that the semantics also features non-deterministic choice to support if with speculation,
which makes similar use of det to establish deterministic behaviour.

As a result, our bisimulation only establishes low-equivalence between two program
executions inwhich the same reordering behaviours occur. This could result in an information
leak if the underlying hardware performs reordering decisions based on potentially classified
information and such decisions are observed by an attacker. For example, this can occur when
reordering array operations, as their indexing calculations may prevent or allow reordering
depending on whether they evaluate to equivalent indices. We eliminate this side-channel
by constraining such indexing operations to be based on public information, as detailed in
Sect. 4.15, thus enforcing a constant-time security guarantee [2]. In general, we observe that
constant-time security appears to be necessary to ensure the absence of leakage via reordering
effects—an observation that, despite much prior work on noninterference for weak memory
models, we believe is novel.

We assume that, under the enforcement of constant-time security, the hardware will not
reorder based on secret information and, hence, it is safe to reason under all possible deter-
ministic reorderings, as captured by det .

Additionally, the semantics models reordering in the presence of branching language
structures, such as if and while, via refinement to a trace of instructions with appropriate
guards, as detailed in Sect. 4. We refer to a program that has been fully refined to a trace of
instructions as flat. For example, the program if (b) then α else γ could be silently rewritten
to [b];α, modelling speculation of b at the hardware level. Consequently, if α can reorder
with [b] then it may execute prior to the evaluation of the if’s condition. If the later evaluation
of the if’s condition fails, e.g., [b] does not evaluate to true, then the speculation failed,
triggering a rollback that reverts the effects of α at the hardware level.

The semantics does not model this rollback behaviour and considers a trace with failed
speculationmagic. Consequently, these traces are ignored and it is assumed that only success-
ful speculation cases are observed. This is formalised by ensuring a trace exists that satisfies
all speculated guards at each execution step.Aswe do notmodel rollback behaviours,wemust
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assume the hardware implements a valid rollback implementation that completely reverts the
speculated actions. As demonstrated in other work [18], such an assumption may not hold on
modern hardware, as speculated operations may be observed across a rollback via the cache.
We leave such issues to future work.

We introduce the operation refine c det to resolve all non-deterministic program structures
in c up to the next instruction chosen for execution, based on det . Moreover, we capture the
possibility of an action α reordering prior to a program c via a new definition α′ < c < α,
where α can reorder with all instructions in c and their cumulative forwarding effects produce
the instruction α′.

Lemma 1 (Program Split)Given a transition of the form (c, det) →α (c′, det ′), the program
c must refine to a program ca;α′; cb based on det, such that ca is flat and α < ca < α′.
Additionally, c′ must be equivalent to the remaining program ca; cb.

(c, det) →α (c′, det ′) 
⇒ ∃ca, cb, α′ ·
refine c det = ca;α′; cb ∧ flat ca ∧ α < ca < α′ ∧ c′ = ca; cb

We prove Lemma 1 via structural induction over the program semantics. All cases resolve
trivially, as the property definitions in the consequent closely resemble the structure of the
semantics. This lemma is crucial for the soundness proof, as it allows for the decomposition
and recomposition of logic judgements over the subprograms.

5.4 Logic

We encode all rules seen in this paper, with the exception of the CAS, acq and rel instructions
which are not covered by the semantics, and the NonBlocking rule whose soundness relies
on properties of non-blocking algorithms which fall outside the logic. For the three instruc-
tions not covered by the semantics, our rules are based on other rules (namely, those for if
statements and assignments) which have been proven sound.

A deeply embedded predicate language is used to encode the memory state, P , and proof
obligations. This deep embedding facilitates the variable-based queries and operations seen
in the rules, such as determining free variables in a security policy and performing existential
quantification for a set of variables. Γ is encoded as a partial map from variables to their
classifications, either Low or High. To more closely reflect an executable implementation of
the logic, the formalisation encodes an over-approximation of theW and R update operations
seen in Sect. 3.2. This implementation reduces the domain of thesemappings fromall possible
instructions to reads and writes of individual variables and approximates the former based
on the later. Details of this implementation are included in Sect. 7.

The formalisation encodes a set of core logic rules, from which all others are derived.
This core set covers all supported instruction types, such as assignments, fences and guard
operations. Additionally, it includes the Seq and Conseq rules detailed in Sect. 4, allowing
for composition and rewriting of logic judgements. Finally, the core set includes rules for
Kleene algebra operations representing non-deterministic choice and iteration, as illustrated
in Fig. 5.

Note that the core set does not include rules for language structures such as if and while.
As the semantics handles guards and control flow as separate concepts, it is simpler to
develop rules for each and then consider their composition to verify these language structures.
For example, recall the rule for if (b) then c1 else c2, detailed in Sect. 4.6, which can be
rewritten as ([b]; c1) � ([¬b]; c2). This rule requires Γ , Pb � b : Low, which implies
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Γ,P ,D {c1}M Γ ,P ,D
Γ,P ,D {c2}M Γ ,P ,D

Γ,P ,D {c1 c2}M Γ ,P ,D

Γ,P ,D {c}M Γ,P ,D

Γ,P ,D {c∗}M Γ,P ,D

Fig. 5 Rules for Choice and Iteration

Γ , Pb � ¬b : Low. These properties are sufficient to establish Γ , P, D {b} Γ , P ∧ b, D[b]
and Γ , P, D {¬b} Γ , P ∧ ¬b, D[b], covering both variants of the guard. These can be
composed with the other proof obligations of the if rule using Seq, to establish judgements
for each outcome of the if. These are then composed via the rule for choice, verifying the
rewritten if.

Additionally, we show judgements are preserved across a variety of program transforms,
the most notable being refine. This holds as the refine operation effectively unfolds choice
and iteration operators into an execution trace of instructions. Therefore, we can establish
Γ , P, D {c} Γ ′, P ′, D′ 
⇒ Γ , P, D {refine c det} Γ ′, P ′, D′ for any det .

We now consider the implications of instruction reordering on logic judgements. First,
we introduce D[β] f , a forced update to D, such that the reordering relation is strengthened
to ensure all operations are considered ordered after β and may therefore observe its effects.
We also introduce the definition guards c det to compute the weakest precondition capable
of ensuring all speculated guards in c due to the decisions in det are eventually satisfiable.
Notably, we are able to capture the effects of a single speculated instruction asguards (α) [R],
where [R] is det with a single element R and encodes the speculation of the single instruction
program α.

Lemma 2 (Instruction Judgement Reordering) Given two instructions, α and β, such that

α
R⇐ β〈α〉, and a logic judgement over α;β, a logic judgement must exist for β〈α〉 over

the original precondition strengthened to capture speculation, and a logic judgement must
exist for α over a new intermediate state where the effects of β〈α〉 are visible. Moreover, α’s
postcondition must match that of the original judgement.

α
R⇐ β〈α〉 ∧ Γ , P, D {α;β}M Γ ′, P ′, D′ 
⇒

∃Γi , Pi , Di ·
Γ , P ∧ guards (α) [R], D {β〈α〉}M Γi , Pi , Di ∧
Γi , Pi , D[β〈α〉] f {α}M Γ ′, P ′, D′

Proof First consider the new early judgement over β〈α〉. This is relatively trivial to establish,
as the proof obligations associated with β are shown to hold regardless of α’s effects on the
state. We demonstrate this via the constraints imposed by D[α]W [β] on β’s original proof
obligations, which must be agnostic to any variables written by α due to their removal from
D and subsequent quantification.

Note that the logic does not ignore all effects α may have on β, specifically in the event
that α is a guard. In this case, the logic allows any proof obligations associated with β to
assume the guard condition for α holds, even if they may execute out-of-order. This is based
on the assumption that only valid speculation is considered, therefore, even if β executes
before α, α’s guard condition must eventually be true, constraining the state β executes
under. This is captured by the conjunction with the guards condition, which computes the
weakest precondition to ensure successful speculation.

Additionally, it is necessary to consider the implications of forwarding, as β and β〈α〉
may not be equivalent. This is trivial, as the forwarding operation does not introduce new
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behaviour, rather the β〈α〉 represents one of the possible executions of β under the original
ordering.

As a result, it is possible to establish an early judgement over β〈α〉. We then consider the
late judgement over α, from a new intermediate state between the two reordered instructions.
Note that we consider D[β〈α〉] f rather than Di for the precondition in this judgement, as β〈α〉
is considered to have been executed once it has reordered. Therefore, its effects should be
visible to α.

Demonstrating this judgement relies on the use of secure_update for β, as the proof
obligation ensures the early execution of β, or its forwarded variant β〈α〉, cannot adversely
increase or decrease variable classifications. Consequently, any reasoning used to ensure
valid information flow for α before β must still hold after. Additionally, it is necessary to
ensure secure_update holds for α, in the event it is a control variable assignment. This relies
on the notion that the f alling and rising sets must decrease given the early execution of β,
as this constrains reorderings and maintains α’s prior classification reasoning.

Finally, it is necessary to show that the same postcondition can be established, regardless of
the execution order. This holds for P and Γ , as the reordering relation preserves thread-local
reasoning and interference from other threads remains consistent regardless of reordering.
For D, we show that D[β〈α〉] f [α] is stronger than D′ and use the Conseq rule to establish
the desired postcondition. ��

We then extend this notion to consider the reordering of β prior to a trace of earlier
instructions, via induction over the trace and repeated application of Lemma 2.

Lemma 3 (Program Judgement Reordering) Given an instruction β and a flat program c,
such that β ′ < c < β, and a logic judgement over c;β, a logic judgement must exist for β ′
over the original precondition strengthened to capture speculation, and a logic judgement
must exist for c over a new intermediate state where the effects of β ′ are visible. Moreover,
c’s postcondition must match that of the original judgement.

β ′ < c < β ∧ flat c ∧ Γ , P, D {c;β}M Γ ′, P ′, D′ 
⇒
∃Γi , Pi , Di ·

Γ , P ∧ guards c det, D {β ′}M Γi , Pi , Di

Γi , Pi , D[β ′] f {c}M Γ ′, P ′, D′

5.5 Local bisimulation

Having established the logic’s compatibility with reordering, we now turn to the proof that
the logic guarantees security for each thread. Recall that this is captured by the existence of a
strong bisimulation for each: the soundness proof for the logic constructs such a bisimulation,
which we now describe.

We define the thread-local relation BM , parameterised by the thread’s variables modes,
and prove that it satisfies the necessary properties for compositional security. The relation
is defined to require equivalent programs between its states, as well as a successful logic
judgement over this program. The precondition P and the classification context Γ of the
judgementmust only refer to stablevariables, to prevent interference fromconcurrent threads.
Additionally, the two related memories must satisfy the precondition P and conform to the
classification context Γ , mapping Low variables to the same value. Finally, the relation must
also enforce low-equivalence.
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Definition 4 (Thread-Local Relation BM )

〈c1,mem1〉 BM 〈c2,mem2〉 ≡
∃Γ , P, D, Γ ′, P ′, D′ ·
c1 = c2 ∧ Γ , P, D {c1}M Γ ′, P ′, D′ ∧
vars P ∪ dom Γ ⊆ stable M ∧
mem1 ∈ P ∧ mem2 ∈ P ∧
∀x ∈ dom Γ · Γ x = Low 
⇒ mem1 x = mem2 x ∧
mem1 ≈M mem2

To establish a strong bisimulation, we must show that BM is symmetric. This can be
achieved by demonstrating symmetry for each of its sub-properties, which is only non-
trivial for low-equivalence. Asmentioned earlier, the Low classification constraint on control
variables guarantees consistent value-dependent classifications between the two memories,
resulting in a symmetric low-equivalence relation. Consequently, BM is symmetric.

Next, we demonstrate closed BM , ensuring the relation is closed under global operations.
This is achieved by re-establishing the relation on a new pair of low-equivalent related
memories that agree on the values of all stable variables. Evidently, this is trivial for all
properties that do not specify the related memories. Moreover, the newmemories are already
known to be low-equivalent. Therefore, it is only necessary to establish that they satisfy
the precondition P and conform to the classification context Γ . As these properties only
constrain the unmodified stable variables, they can be re-established on the new related
memories, re-establishing the relation.

As 〈c1,mem1〉 BM 〈c2,mem2〉 
⇒ mem1 ≈M mem2 holds by definition, it only
remains to show that BM is a bisimulation. We phrase this property in terms of the deter-
ministic weak memory semantics and only consider execution traces for which speculation
is known to succeed. To capture this, we define spec c det mem, which holds true when any
speculation required to execute the next instruction in c, as determined by det , can eventually
be satisfied from a memory mem, and eval α to represent the deterministic evaluation of an
instruction α.

Lemma 4 (Thread-Local Bisimulation)

∀det, c1,mem1, c2,mem2 ·
〈c1,mem1〉 BM 〈c2,mem2〉 ∧
(c1, det) →α (c′

1, det
′) ∧ spec c1 det mem1 ∧ (mem1,mem′

1) ∈ eval α 
⇒
∃c′

2,mem′
2 ·

〈c′
1,mem′

1〉 BM 〈c′
2,mem′

2〉 ∧
(c2, det) →α (c′

2, det
′) ∧ spec c2 det mem2 ∧ (mem2,mem′

2) ∈ eval α

Proof We demonstrate this property via structural induction over the deterministic weak
memory semantics, with most cases resolving trivially. The base case considers the execution
of an instruction without reordering, (α; c, L#det) →α (c, det) (where x#xs denotes the list
whose head is x and whose tail is xs). We first establish the transition and speculation proper-
ties over c2 andmem2, which are trivial due to c2 = α; c and the lack of speculation. Then we
split the judgement over α; c into Γ , P, D {α}M Γi , Pi , Di and Γi , Pi , Di {c}M Γ ′, P ′, D′
for some new context.
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Given the logic judgement over α, we show a successful evaluation of α on mem1

implies its evaluation must be defined for the low-equivalent memory mem2, due to var-
ious constraints enforced by the logic. Moreover, these constraints allow us to demonstrate
the preservation of low-equivalence across the evaluation ofα. Finally, we prove the strongest
postcondition corresponds to the instruction’s effects on the state and demonstrate the result-
ing state only references stable variables. Combinedwith the judgment over c this is sufficient
to solve the base case.

Next, we consider the case of instruction reordering, given as a transition of the
form (α; c, R#det) →β〈α〉 (α; c′, det ′). Using Lemma 1, we can obtain subprograms ca
and cb, such that refine (α; c) (R#det) = α; ca;β ′; cb and α; c′ = α; ca; cb. Given
Γ , P, D {α; c}M Γ ′, P ′, D′, we use the preservation of logic judgements across refine to
show Γ , P, D {α; ca;β ′; cb}M Γ ′, P ′, D′. It is then possible to split and reorder this judge-
ment using Lemma 3, establishing Γ , P ∧ guards (α; ca) (R#det), D {β〈α〉}M Γi , Pi , Di

in addition to Γi , Pi , D[β〈α〉] f {α; c′}M Γ ′, P ′, D′ for some new intermediate context. Evi-
dently, these judgements parallel that of the base case, where properties of the executing
instruction are known and a successful application of the logic is known for the remaining
program.

Mirroring the structure of the base case, we establish the transition and speculation prop-
erties over c2 andmem2. The transition is again trivial, as c2 = α; c, however, as speculation
may take place, it is necessary to demonstrate a successful speculation trace exist for mem2,
given one exists for mem1. Such a property must hold as guards are restricted to be based on
Low information, as seen in rules for if and while. Consequently, any successful guard eval-
uation on mem1 must also hold on the low-equivalent mem2. This property is demonstrated
via an induction over the flat program α; ca , proving the equivalence between these guard
evaluations based on successful application of the logic’s rules.

Given there exists a trace with successful speculation for both mem1 and mem2, we can
then establish that guards (α; ca) (R#det) holds for both, as guards encodes a weakest
precondition calculation equivalent to spec. As a result, mem1 and mem2 satisfy the pre-
condition for the reordered logic judgement over β〈α〉, allowing it to be used to define and
relate mem′

1 and mem′
2 via BM following the same reasoning illustrated in the base case,

consequently solving the reordering case.
The remaining cases solve trivially. As an illustration, consider the execution of the left

program, c1, in a non-deterministic choice, c1 � c2. Such a case requires decomposition
of the four properties on the left hand side of the implication, defined over c1 � c2 and
L#det , such that they can be shown to hold over c1 and det . For instance, we demonstrate
〈c1,mem1〉 BM 〈c1,mem2〉 given 〈c1 �c2,mem1〉 BM 〈c1 �c2,mem2〉 due to Γ , P, D {c1 �
c2}M Γ ′, P ′, D′ 
⇒ Γ , P, D {c1}M Γ ′, P ′, D′. Using these properties over c1, it is then
possible to define and relate mem′

1 and mem′
2 via the inductive hypothesis. ��

With all necessary properties demonstrated for the local bisimulation, the compositionality
theorem (Sect. 5.2) can be used to establish the global bisimulation and, consequently, the
preservation of low-equivalence as defined by the security policy L throughout execution,
i.e. that the concurrent program is secure.

6 Completeness

The logic compromises the completeness of its reasoning to simplify its application in the
presence of weak memory models. This is evident in the use of W and R, as they are only
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capable of expressing the absence of a possible reordering rather than enabling a detailed
analysis of the potential executions. For example, the logic is not able to verify programs
with control variable writes that do not alter classifications but can reorder with controlled
operations. Consider the snippet c := 3; fence; c := 2; x := High with a security policy
L(x) = (c ≤ 1). It is evident that x := High will execute in a state where c > 1, validating
the information flow. However, the logic is not able to verify this case, as the possible
reordering of c := 2 and x := High results in existential quantification of any references to
c in the precondition associated with x := High.

A similar issue can be observed with the secure_update proof obligations for control
variable writes, in which the classifications of reorderable reads and writes must not rise
and fall respectively. False positives may arise as these checks occur even if such changes in
classification would not alter the original information flow outcomes. For instance, consider
the snippet c := 2; fence; High := x; c := 0 with a security policy L(x) = (c > 1). The
classification of x does not influence the outcome of High := x , as it is always secure.
However, the secure_update proof obligation for c := 0 will fail, as the classification of x
rises in the presence of a reorderable read of x .

These cases in general describe situations where a control variable write and an operation
exhibiting related information flow can reorder, however, their reordering does not change
the information flow outcomes. Consequently, they result in false positives, as the logic
does not track sufficient information to handle such benign cases. We believe such cases are
sufficiently rare that they do not motivate the additional complexity required. Moreover, it
is possible to transform these program by reordering operations and introducing fences to
enable verification. For instance, the prior two snippets can be verified by reordering the last
two instructions.

The logic may also produce false positives in the event of a classification test after a
variable read. For example, consider the following snippet, where L(x) = (c > 1) and c is
stable.

r := x; if (c > 1) then Low := r

The example is secure as Low := r will only execute if r := x wrote Low data to r .
However, the logic is not able to establish the classification of x when considering r := x ,
due to insufficient information concerning c. Consequently, Γ (r) is updated to High and
the if statement cannot be verified.

Other value-dependent logics [28] handle such cases by preserving value-dependent clas-
sifications in Γ . For example, in this case Γ (r) would be updated to c > 1 for the operation
r := x . However, under weak memory models, enabling state dependencies within Γ signif-
icantly increases complexity, as it is not clear how these value-dependent classifications and
the evolving state P relate, given operations may have reordered. Consequently, the logic
only supports programs that test control variables before accessing controlled variables. We
believe that this captures a significant set of programs, with program transformations poten-
tially supporting more.

Notably, our logic only supports static variablesmodes, due to the difficulty of coordinating
thesemode changes between threads, even under traditional memorymodels. Prior work [23]
suggests the use of inline annotations to specify changes to variable modes, with additional
analysis stages to verify their compatibility. However, in complex situations, extracting the
implied synchronisation behaviours that demonstrate such compatibility may not be straight-
forward. Other work [28] has coupled the variable modes with synchronisation operations,
such as locks.However,we are interested in the verification of non-blocking algorithmswhere
locks are avoided, such as the algorithm described in Fig. 3. We anticipate an approach based
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on more general rely/guarantee reasoning to express such synchronisation behaviours [10].
Consequently, to limit the complexity of the logic, we only support static variable modes and
rely on additional rules such as NonBlocking, with underlying rely/guarantee reasoning,
to handle intricate cases.

Other constraints, such as not supporting High guards and the Low classification con-
straint for control variables, can be seen in similar work without the complexity of weak
memory models [28]. We focus our efforts on supporting a similar set of features under the
new semantics.

7 Automation

We have implemented a prototype symbolic execution tool to automate the application of
our logic for programs running on the ARMv8 memory model. The tool was based on that
described in [12] utilising Scala, to take advantage of Scala’s powerful pattern matching and
compatibility with Java through the JVM, and the SMT solver Z3 [26], through the Z3 Java
API, in order to reason about predicates in the program state and determine if the security
properties described in rules of the logic hold. The prototype tool is available at https://github.
com/l-kent/wemelt.

Using theConseq rulewith the If rule requires user intervention and is hence not amenable
to automation. To enable our logic to be implemented in our symbolic execution tool, we
developed the following specialisation of the If rule, which is capable of automatically
deriving a post-state. This rule is essentially a combination of the If rule with an application
of the Conseq rule.

Γ , Pb � b : Low
Γ , P ∧ [b]M , D[b] {c1}M Γ1, P1, D1

Γ , P ∧ [¬b]M , D[b] {c2}M Γ2, P2, D2
IfMerge

Γ , P, D {if (b) then c1 else c2}M Γ ′, P1 ∨ P2, D′

where dom Γ ′ = dom Γ1 = dom Γ2 and ∀x : dom Γ ′ ·Γ ′(x) = Γ1(x)�Γ2(x) and D′ =
(λα · D1W (α) ∩ D2W (α), λα · D1R(α) ∩ D2R(α)).

The rule ensures that the judgement on the if statement is correct no matter which branch
is taken as the final state is weaker than both branch outcomes. Specifically, Γ ′ maps each
variable to its highest value following one of the branches; P ′ is the disjunction of the
predicates resulting from each branch; and D′ maps each action to the intersection of the
respective dependency analysis (W or R) for each branch.

For our symbolic execution tool, we also include an additional rule which combines the
While rule with an application of the Conseq rule.

Γ ′, P ′
b � b : Low

Γ , P, D ≥M Γ ′, P ′, D′
Γ ′, P ′ ∧ [b]M , D′[b] {c}M Γ ′, P ′, D′

WhileHoare
Γ , P, D {while (b) do c}M Γ ′, P ′ ∧ [¬b]M , D′[b]

This rule is based on the standard Hoare-logic rule for loops [15]

pre 
⇒ inv inv ∧ b {c} inv
While(Hoare- logic)

pre {while (b) do c} inv ∧ ¬b

with the precondition, pre, represented by Γ , P, D and the loop invariant, inv, represented
by Γ ′, P ′, D′. The rule ensures that the judgement on the first iteration of the loop is correct
by requiring that the pre state is stronger than the inv state. This also ensures the judgement
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is correct for the case where there is no iteration of the loop. The symbolic execution is then
only required to consider one iteration of the loop corresponding to the proof obligation to
show the loop invariant is preserved at the end of the loop body c.

The rule requires the user to provide, in advance of running the tool, suitable values for
Γ ′ and P ′ in the same way the user must provide the loop invariant in Hoare logic. The tool
is able to compute D′ based on a data flow analysis. If the user provides values for Γ ′ and
P ′ which are too weak, the tool may produce false positives but is still sound. The rule is not
applicable with values for Γ ′ and P ′ which are too strong.

In general, the logic has been structured to enable automation via symbolic execution. This
is evident in its restrictions on the logic state. For example, P only tracks stable variables
and, therefore, does not dramatically increase in complexity as symbolic execution proceeds
over the program. Moreover, Γ maps variables to classifications, rather than predicates as
seen in prior work [28,29], thereby reducing its complexity significantly.

The only part of the logic that cannot be readily automated is D. Therefore our tool tracks
a safe abstraction of it instead. It is infeasible to track a set of variables for all possible
instructions as is required for W and R. Instead, D is implemented as a mapping from
memory operations (i.e., reads or writes to global variables) to variable sets. For example,
W is implemented as WR (which maps a variable x to all those variables whose writes must
occur before a read of x) and WW (which maps a variable x to all those variables whose
writes must occur before a write of x).W (α) can be derived from these functions, e.g., given
x and y are global variables, W (x := 0) = WW (x) and W (x := y) = WW (x) ∪ WR(y).
The details of this implementation are derived from our prior work [37], and the equivalence
between the two implementations has been verified in the Isabelle/HOL encoding.

8 Information flow on POWER

POWER processors allow the same reorderings as ARM, as well as the additional opti-
misations discussed in Sect. 4.16. This has been validated by Colvin and Smith [8] using
approximately 8,000 litmus tests developed for POWER by Alglave et al. [1]. Hence, the
logic developed so far can also be used for POWER.

In addition to the fences supported by ARMv8, POWER has the following fences.

– An eieio fence prevents one memory or I/O operation from starting until the previous
memory or I/O operation completed. Based on the discussion in [1] we treat this as a
barrier on stores only.

– A lightweight fence maintains order between loads, loads then stores, and stores, but
not stores and subsequent loads (i.e., load;load , load;store, store;store, but not
store;load).
Following Colvin and Smith [8], we model a lightweight fence in terms of two invented

fences: a loadgate and a storegate.

lw f ence; c =̂ storegate; loadgate; c
The storegate allows stores to “move backwards” (away form the start of the program)

and the loadgate allows loads to “move forwards” (towards the start of the program). For
instance, assume the following sequence of instructions, where li are loads and si are stores.

l1; s1; storegate; loadgate; l2; s2
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Thread 1:

z := 1;

Thread 2:

while(z=1){}
x := secret

Thread 3:

if (z=0) then
cfence;
r := x;
fence;

if (z=0) then
y := r

Fig. 6 Non-multi-copy atomicity example

Assuming all loads and stores are to different variables and hence there are no pairwise
constraints on reordering, the following reordering is possible.

l1; storegate; l2; s1; loadgate; s2
Note that the order between loads, between stores, and between loads then stores has been

maintained, but load l2 may be reordered before the store s1.

For these fences, the
R⇐ relation is as follows [8].

eieio
R
� α if α is a store

α
R
� eieio if α is a store

α
R⇐ storegate if α is a store

α
R
� storegate otherwise

loadgate
R⇐ α if α is a load

loadgate
R
� α otherwise

Based on these definitions, it is then possible to determine suitable appropriate updates to
D for these fences, as seen in Sect. 4.11. Moreover, the rule for these fences is identical to
those of ARMv8.

α ∈ {eieio, loadgate, storegate}
FenceP

Γ , P, D {α}M Γ , P, D[α]

9 Non-multi-copy atomicity

ARMv8 [31] is multi-copy atomic, meaning updates made by a thread are seen by all other
threads at the same time. This is not the case for POWER [33] and older versions ofARM[14].
Under these architectures, writes may be propagated to some threads earlier than others, via
mechanisms such as shared buffers and inter-thread communication. Consequently, these
architectures expose new behaviours when two or more threads attempt to synchronise their
executions based on writes from another.

For example, consider the code in Fig. 6 in which there are 3 threads: the first sets z to 1,
the second waits for z to become 1 then assigns classified information to x , and the third uses
a non-blocking read operation to read a non-classified value of x , i.e., a value before z is set
to 1. The fences in the third thread ensure that the value of x is read into r after the first branch
condition and before the second branch condition is checked; and hence while z = 0. Despite
this careful placement of fences, under non-multi-copy atomicity the following scenario is
possible:
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1. The first thread sets z to 1. This new value becomes available to the second thread, but
not yet to the third.

2. The second thread updates x to the classified value secret . This new value becomes
available to the third thread.

3. The third thread, based on the original value of z, updates the value of y to the new
(classified) value of x .

This vulnerability illustrates the case where two threads attempt to synchronise their
executions based on another’s write to z, with the second thread’s accesses to x intended
to occur after z := 1 and the third thread’s prior. Therefore, non-multi-copy atomicity can
introduce a security leak by breaking this synchronisation and allowing the third thread to
observe the effects of the second.

Fortunately, our logic prevents such leaks as it is not possible to establish non-trivial
information flow between two or more threads based on the write of another. This can be
attributed to the use of static variable modes, which prevent the analysis state, P and Γ ,
from retaining information regarding a variable that may be written by another thread at any
stage of the execution. Consequently, it is not possible to discharge an instruction’s proof
obligations if they are dependent on this synchronisation behaviour.

To illustrate, consider the verification of the second thread of Fig. 6. It would not be
possible for this thread to contain z in its stable set, due to the first thread’s write to z. As
a result, the condition for the loop exit, z = 1, would not be retained in P . Therefore, the
write to x would only be considered secure if the written expression was classified as Low,
preventing any insecure behaviour when considering interactions with the third thread. As
this is not the case, no logic judgement can be established for the second thread.

Notably, the NonBlocking rule allows for variables to be added to the stable set for a
thread, potentially allowing for the effects of writes from concurrent threads to be observed
and used for thread-local reasoning. For instance, such a rule would allow for the verification
of a variation of the third thread in Fig. 6. However, the rule disallows Global writes during
the period of gained stability to ensure unsuccessful executions aren’t observed. Therefore,
it would not be possible to influence the execution of another thread based on this gained
information.

As a result, the execution behaviour introduced by non-multi-copy atomicity invalidates
only synchronisation reasoning our logic currently does not support.Hence, the logic’s sound-
ness argument is preserved on non-multi-copy atomic architectures.

10 Case study: Cross-domain work-stealing deque

To illustrate our logic on a larger example, we apply it to a version of the Chase-Lev work-
stealing deque [7]. Work-stealing deques (double-ended queues) are often used for load
balancing in multicore systems. Each worker process has a deque, which it uses to record
tasks to be performed. Thus, a worker executes put and take operations that, respectively,
add tasks to and remove tasks from its deque. Load balancing is achieved by allowing other,
so-called “thief” processes, whose own deques are empty to execute steal operations that
remove elements from the deque. To avoid contention between theworker and thief processes,
put and take operate at the opposite end of the deque from steal operations—a worker adds
and removes tasks at the tail, whereas thieves steal tasks from the head. Contention between
the worker and thieves, therefore, only occurs when the deque has one element.
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put(v, u)
int t;
t := tail;
levels[t mod L] := u;
tasks[t mod L] := v;
fence;
tail := t+1;
return;

take
int h, t, task;
t := tail-1;
tail := t;
fence;
h := head;
if (h <= t)

task := tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task := empty;

tail := tail+1;
else

task := empty;
tail := tail+1;

return task;

steal
int h, t, task, level, r;
h := head;
fence;
t := tail;
if (h < t)

cfence;
level := levels[h mod L];
if (level=Low)

task := tasks[h mod L];
else

task := fail;
if (!CAS(head, h, h+1))

task := fail;
else

task := empty;
return task;

Fig. 7 Insecure version of cross-domain work-stealing deque. The code extends that of [9]. Additional lines
are marked with �

The Chase-Lev deque is implemented as a circular array of size L with a head and tail
pointer. The pointers are non-wrapping, i.e., if a pointer has the value i , it points to the array
element at position i mod L .

The put operation straightforwardly adds an element to the end of the deque, incrementing
the tail pointer. The interesting behaviour is in the way that the take and steal operations
interact when called concurrently. To take the task at position t = tail−1, the worker process
decrements tail to equal t , thereby publishing its intent to take that task. This publication
means subsequent thief processes will not try to steal the task at position t . It then reads head
into a local variable h and if h < t knows that there is more than one task in the deque and
it is safe to take the task at position t , i.e., no thief process can concurrently steal it.

If t < h the worker knows the deque is empty and sets tail back to its original value. The
final possibility is that h = t . In this case, there is one task on the deque and conflict with a
thief may arise. To deal with this conflict, both the take and steal operations employ a CAS
instruction. If h = t , rather than decrementing tail to take the task, the worker uses the CAS
to increment head . Therefore, if the worker finds h = t , it also restores tail to its original
value. The steal operation works similarly. The operation reads the deque’s head and tail
into local variables h and t , and if the deque is not empty tries to increment head from h to
h + 1 using a CAS. If it succeeds, the value of head has not been changed since read into
the local variable h and hence the thief has stolen the task.

A version of the Chase-Lev deque developed specifically for ARMwas presented in [19].
It includes, for example, a full fence in the put operation so that the increment of the tail
pointer does not take effect before the element is placed in the array, and in the take operation
to ensure publication of its intent to take the task. Errors in the placement of control fences
in the steal operation of this version of the deque were corrected by Colvin and Smith in [9].
We extend their version of the deque to operate in a cross-domain environment where tasks
are given a security level, and processes are only allowed to access tasks for which they have
the appropriate permissions. Specifically, we examine the scenario where we have a single
worker thread which is allowed to access high and low tasks, and several thief threads which
are allowed only to access low tasks.

A first attempt at the cross-domain deque is shown in Fig. 7. As well as a circular array of
tasks, the deque has a circular array of security levels. This array is also of size L and records
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put(v, u)
int t;
t := tail;
z := z+1;
fence.st;
levels[t mod L] := u;
tasks[t mod L] := v;
fence;
z := z+1;
tail := t+1;
return;

take
int h, t, task;
t := tail-1;
tail := t;
fence;
h := head;
if (h <= t)

task := tasks[t mod L];
if (h=t)

if !CAS(head, h, h + 1) then
task := empty;

tail := tail+1;
else

task := empty;
tail := tail+1;

return task;

steal
int h, t, task, level, r;
h := head;
fence;
t := tail;
if (h < t)

do
do

r := z;
while (r % 2 = 0)
cfence;
level := levels[h mod L];
if (level=Low)

task := tasks[h mod L];
else

task := fail;
fence;

while (z = r)
if (!CAS(head, h, h+1))

task := fail;
else

task := empty;
return task;

Fig. 8 Secure version of cross-domain work-stealing deque. The code extends that of Fig. 7. Additional lines
are marked with �

in position i the security level of the task in position i of the task array. The put operation
has two inputs, a task v and security level u, and updates both arrays. The steal operation
reads the security level of the task it is trying to acquire and returns f ail when that task is
high.

We applied our ARMv8 logic to this code using our symbolic execution tool. The tool
reported an error due to the Assign rule failing for the assignment task := task[h mod L]
in steal. This correctly identified an information leak which arises due to tasks being a finite
circular array. Successive put operations can cause tail to wrap-around to the start of the
array and then catch up to head . In this situation, it is possible that steal reads Low from the
levels array, and then, before it reads from the tasks array, the put operation occurs putting
a high task in tasks.

To avoid this problem, we could prevent put from overwriting values that have not been
read yet. However, in many applications such overwriting is desirable (to lose old tasks,
which may no longer be relevant, rather than new tasks). Instead, we ensure that the steal
operation cannot read tasks which have been concurrently overwritten. To accomplish this,
we use an approach inspired by seqlock again (as we did in the secure version of the IO-
driver in Fig. 3). The resulting code is shown in Fig. 8. If z changes at any time while steal
is reading a level and associated task, the read is restarted. We also applied our ARMv8 logic
to this code using our symbolic execution tool and, in this case, no information leaks were
identified.

Each of the operations in Figs. 7 and 8 were checked by the tool in isolation (as if they
were each being called by a different thread). The code was annotated with the following
specifications:

– For each variable, a value-dependent security classification, i.e., a predicate,was supplied.
For most variables (all local variables and all global variables apart from tasks and the
input v to put), this predicate was simply true (Low) or f alse (High).
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– For each global variable, a mode was supplied.
– Each operation also required an initial P and Γ constraining what states the operation

could be called from.

These specifications were largely the same for all operations (differing only on local variables
and inputs and outputs). For the shortest operation put of Fig. 7with an array of length 2, there
were 17 lines of specification for 7 lines of code. However, 6 of these lines of specification
were simply stating that the security classification of a variable was True (something that
could be automatically generated as a default), and another 6 were modes (which could also
be automatically generated by syntactically checking which variables are read and written by
each thread). This would reduce the specification to 5 lines for 7 lines of code. For the longest
operation steal of Fig. 8, there were 22 lines of specification for 18 lines of code. Defaulting
to True security classifications, and automatically generating modes would reduce this to
5 lines of specification for 18 lines of code. Further reductions in the number of lines of
specification per line of code could be made by sharing the annotations for global variables
between threads. No such optimisations were employed in our prototype tool.

In addition to the specifications, the steal operation of Fig. 8 required invariants for each
of its loops (and an annotation of z for the outer loop to enable the use of the NonBlocking
rule). The invariants on the program state, P , simply ensured the array size L remained
constant, and that on the security levels, Γ , that each of the local variables was low. Our
experience with similar non-blocking algorithms, indicates that such simple invariants are
common (in many cases, the invariant True suffices for program state). Finding ways to
generate base invariants which the user could build on is an interesting area for future work.

No optimisations were made for the performance of the prototype tool. Each of the oper-
ations of Figs. 7 and 8 could be checked instantaneously (within milliseconds) for an array
of length 2. However, the execution time increased exponentially as the size of the array
increased. This was due to the running time of the Z3 solver which had to deal with the
tool’s representation of predicates increasing exponentially. While this lack of optimisation
is acceptable for this prototype tool, implemented as a proof-of-concept, further optimisations
would be required to allow the logic to be applied to larger examples.

11 Conclusion

In this paper, we have presented a comprehensive information-flow logic for ARM and
POWER multicore processors. Our logic supports dynamic, value-dependent security clas-
sifications, and is compositional, flow-sensitive, and enforces a constant-time guarantee. It
has been proven sound with respect to existing, validated operational semantics of ARM and
POWER, and implemented in a symbolic execution tool. The latter was enabled by designing
the logic for automation; it is both thread-local (allowing reasoning about one thread at a
time), and step-local (allowing reasoning about one line of code at at time).

Our immediate future work will focus on two tasks. First, we will extend the logic with
general rely/guarantee conditions allowing assumptions to be used in thread-local reasoning
that include arbitrary constraints between program variables (see [10] for progress in this
direction). This will widen the logic’s applicability by allowing assumptions which hold only
under certain conditions, and hence can vary as the program executes. Second, we will adapt
our logic to a suitable intermediate representation into which we can lift actual ARM and
POWER assembly code. Such an intermediate representation will need to be accurate enough
to maintain all ordering and dependencies on assembly instructions.
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Longer term we will focus on improving the efficiency and scalability of tool support for
our logic, and its adaptation to other processors such as the open-source RISC-V architecture.

Finally, we note that we expect our logic could also be extended to reason about programs
that intentionally reveal secret information, i.e. secure declassification. Specifically, recent
work [34] has shown how declassification policies can be reasoned about from functional cor-
rectness annotations on concurrent programs. These annotations take the formof predicates P
that annotate each program statement. Our program logic already provides a mechanism for
computing such annotations in the form of the predicates P in its state Γ , P, D, at each point
of the program text. We leave investigation of this intriguing possibility for future work.

Acknowledgements Thisworkwas supportedbyAustralianResearchCouncilDiscoveryGrantDP160102457,
and a combination of Next Generation Technologies Fund (NGTF) and Strategic Research Initiative (SRI)
funding from the Defence Science and Technology Group, Australia. Thanks to Liam Kent for implementing
the symbolic execution tool.

References

1. Alglave J,Maranget L, TautschnigM (2014)Herding cats:Modelling, simulation, testing, and datamining
for weak memory. ACM Trans Program Lang Syst 36(2):7:1-7:74. https://doi.org/10.1145/2627752

2. Almeida JB, Barbosa M, Barthe G, Dupressoir F, Emmi M (2016) Verifying constant-time implemen-
tations. In: Holz T, Savage S (eds) 25th USENIX Security Symposium, USENIX Security 16, pp
53–70. USENIX Association. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/almeida

3. Barthe G, Blazy S, Grégoire B, Hutin R, Laporte V, Pichardie D, Trieu A (2020) Formal verification of
a constant-time preserving C compiler. Proc ACM Program Lang (PACMPL) 4(POPL):7:1-7:30. https://
doi.org/10.1145/3371075

4. Boehm H (2012) Can seqlocks get along with programming language memory models? In: Zhang L,
Mutlu O (eds.) Proceedings of the 2012ACMSIGPLANworkshop onMemory Systems Performance and
Correctness: held in conjunction with PLDI ’12, pp 12–20. ACM. doi: https://doi.org/10.1145/2247684.
2247688

5. CasinghinoC, Paasch JT,RouxC,Altidor J,DixonM, JamnerD (2019)Using binary analysis frameworks:
The case for BAP and angr. In: Badger JM, Rozier KY (eds) NASA Formal Methods—11th International
Symposium, NFM 2019, Lecture Notes in Computer Science, vol. 11460, pp 123–129. Springer, Berlin.
https://doi.org/10.1007/978-3-030-20652-9_8

6. ChandyKM,Misra J (1981)Asynchronous distributed simulation via a sequence of parallel computations.
Commun ACM 24(4):198–206. https://doi.org/10.1145/358598.358613

7. Chase D, Lev Y (2005) Dynamic circular work-stealing deque. In: ACM symposium on parallelism
in algorithms and architectures (SPAA’05), pp 21–28. ACM Press, New York. https://doi.org/10.1145/
1073970.1073974

8. Colvin RJ, Smith G (2018) A high-level operational semantics for hardware weakmemorymodels. CoRR
abs/1812.00996

9. Colvin RJ, Smith G (2018) A wide-spectrum language for verification of programs on weak memory
models. In: Havelund K, Peleska J, Roscoe B, de Vink EP (eds.) Formal Methods—22nd International
Symposium, FM 2018, Lecture Notes in Computer Science, vol. 10951, pp 240–257. Springer. https://
doi.org/10.1007/978-3-319-95582-7_14

10. Coughlin N, Smith G (2020) Rely/guarantee reasoning for noninterference in non-blocking algorithms.
In: 33rd IEEE Computer Security Foundations Symposium, CSF 2020, pp 380–394. IEEE. doi: https://
doi.org/10.1109/CSF49147.2020.00034

11. D’Silva V, Payer M, Song DX, (2015) The correctness-security gap in compiler optimization. In (2015)
IEEE Symposium on Security and Privacy Workshops, SPW 2015, pp 73–87. IEEE Computer Society.
https://doi.org/10.1109/SPW.2015.33

12. Ernst G, Murray T (2019) SecCSL: Security concurrent separation logic. In: Dillig I, Tasiran S (eds)
Computer Aided Verification—31st International Conference, CAV 2019, Proceedings, Part II, Lecture
Notes in Computer Science, vol. 11562, pp 208–230. Springer, Berlin. https://doi.org/10.1007/978-3-
030-25543-5_13

123

https://doi.org/10.1145/2627752
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1145/3371075
https://doi.org/10.1145/3371075
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1007/978-3-030-20652-9_8
https://doi.org/10.1145/358598.358613
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1109/CSF49147.2020.00034
https://doi.org/10.1109/CSF49147.2020.00034
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-030-25543-5_13


292 Formal Methods in System Design (2021) 58:251–293

13. Fitzpatrick J (2011) An interview with Steve Furber. Commun ACM 54(5):34–39. https://doi.org/10.
1145/1941487.1941501

14. Flur S, Gray KE, Pulte C, Sarkar S, Sezgin A, Maranget L, Deacon W, Sewell P (2016) Modelling the
ARMv8 architecture, operationally: Concurrency and ISA. In: Bodík R, Majumdar R (eds) Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, pp 608–621. ACM. https://doi.org/10.1145/2837614.2837615

15. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580.
https://doi.org/10.1145/363235.363259

16. Jones CB (1983) Specification and design of (parallel) programs. In: Proceedings of IFIP’83, pp 321–332.
North-Holland

17. Kang J, Hur C, Lahav O, Vafeiadis V, Dreyer D (2017) A promising semantics for relaxed-memory
concurrency. In: Castagna G, Gordon AD (eds) Proceedings of the 44th ACM SIGPLAN symposium on
principles of programming languages, POPL 2017, pp 175–189. ACM. http://dl.acm.org/citation.cfm?
id=3009850

18. Kocher P, Genkin D, Gruss D, Haas W, Hamburg M, Lipp M, Mangard S, Prescher T, Schwarz M, Yarom
Y (2018) Spectre attacks: Exploiting speculative execution. CoRR abs/1801.01203. http://arxiv.org/abs/
1801.01203

19. Lê N, Pop A, Cohen A, Zappa Nardelli F (2013) Correct and efficient work-stealing for weak memory
models. In: Principles and Practice of Parallel Programming (PPoPP’13), pp 69–80. ACM. doi: https://
doi.org/10.1145/2442516.2442524

20. Leroy X, Blazy S, Kästner D, Schommer B, Pister M, Ferdinand C (2016) CompCert—a formally ver-
ified optimizing compiler. In: ERTS 2016: Embedded Real Time Software and Systems, 8th European
Congress. SEE. https://hal.inria.fr/hal-01238879

21. Lourenço L, Caires L (2015) Dependent information flow types. In: Rajamani SK, Walker D (eds.)
Proceedings of the 42nd annual ACM SIGPLAN-SIGACT symposium on principles of programming
languages, POPL 2015, pp 317–328. ACM. https://doi.org/10.1145/2676726.2676994

22. Mantel H, PernerM, Sauer J (2014)Noninterference underweakmemorymodels. In: IEEE 27th computer
security foundations symposium, CSF 2014, pp 80–94. IEEE Computer Society. https://doi.org/10.1109/
CSF.2014.14

23. Mantel H, Sands D, Sudbrock H (2011) Assumptions and guarantees for compositional noninterference.
In: Proceedings of the 24th IEEE computer security foundations symposium, CSF 2011, pp 218–232.
IEEE Computer Society. https://doi.org/10.1109/CSF.2011.22

24. Moir M, Shavit N (2004) Concurrent data structures. In: Mehta DP, Sahni S (eds) Handbook of data struc-
tures and applications. Chapman and Hall/CRC, Boca Raton. https://doi.org/10.1201/9781420035179.
ch47

25. Molnar D, Piotrowski M, Schultz D, Wagner DA (2005) The program counter security model: automatic
detection and removal of control-flow side channel attacks. In: Won D, Kim S (eds.) Information security
and cryptology - ICISC 2005, 8th international conference, lecture notes in computer science, vol. 3935,
pp 156–168. Springer, Berlin. https://doi.org/10.1007/11734727_14

26. de Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In: Ramakrishnan CR, Rehof J (eds.)
Tools and algorithms for the construction and analysis of systems, 14th International conference, TACAS
2008, Held as part of the joint european conferences on theory and practice of software, ETAPS 2008.
Proceedings, Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer, Berlin. https://doi.
org/10.1007/978-3-540-78800-3_24

27. Murray TC (2015) Short paper: On high-assurance information-flow-secure programming languages. In:
ClarksonM, Jia L (eds.) Proceedings of the 10th ACMworkshop on programming languages and analysis
for security, PLAS@ECOOP 2015, pp 43–48. ACM. https://doi.org/10.1145/2786558.2786561

28. Murray TC, Sison R, Engelhardt K, (2018) C overn: A logic for compositional verification of information
flow control. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, pp 16–30.
IEEE. https://doi.org/10.1109/EuroSP.2018.00010

29. Murray TC, Sison R, Pierzchalski E, Rizkallah C (2016) Compositional verification and refinement of
concurrent value-dependent noninterference. In: IEEE 29th computer security foundations symposium,
CSF, pp 417–431. IEEE Computer Society (2016). https://doi.org/10.1109/CSF.2016.36

30. Nipkow T, Paulson LC,Wenzel M (2002) Isabelle/HOL—A proof assistant for higher-order logic. lecture
notes in computer science, vol. 2283. Springer, Berlin. https://doi.org/10.1007/3-540-45949-9

31. Pulte C, Flur S, Deacon W, French J, Sarkar S, Sewell P (2018) Simplifying ARM concurrency:
multicopy-atomic axiomatic and operational models for ARMv8. Proceedings of the ACM on program-
ming languages (PACMPL) 2(POPL):19:1-19:29. https://doi.org/10.1145/3158107

32. Sabelfeld A, Myers AC (2003) Language-based information-flow security. IEEE J Sel Areas Commun
21(1):5–19. https://doi.org/10.1109/JSAC.2002.806121

123

https://doi.org/10.1145/1941487.1941501
https://doi.org/10.1145/1941487.1941501
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/363235.363259
http://dl.acm.org/citation.cfm?id=3009850
http://dl.acm.org/citation.cfm?id=3009850
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1145/2442516.2442524
https://doi.org/10.1145/2442516.2442524
https://hal.inria.fr/hal-01238879
https://doi.org/10.1145/2676726.2676994
https://doi.org/10.1109/CSF.2014.14
https://doi.org/10.1109/CSF.2014.14
https://doi.org/10.1109/CSF.2011.22
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2786558.2786561
https://doi.org/10.1109/EuroSP.2018.00010
https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3158107
https://doi.org/10.1109/JSAC.2002.806121


Formal Methods in System Design (2021) 58:251–293 293

33. Sarkar S, Sewell P, Alglave J, Maranget L, Williams D (2011) Understanding POWER multiprocessors.
In: Hall MW, Padua DA (eds.) Proceedings of the 32nd ACM SIGPLAN conference on programming
language design and implementation, PLDI 2011, pp 175–186. ACM. https://doi.org/10.1145/1993498.
1993520

34. Schoepe D, Murray T, Sabelfeld A (2020) Veronica: Expressive and precise concurrent information
flow security. In: IEEE Computer Security Foundations Symposium (CSF), pp 79–94

35. Sewell P, Sarkar S, Owens S, Nardelli FZ, Myreen MO (2010) x86-TSO: a rigorous and usable pro-
grammersmodel for x86multiprocessors. CommunACM53(7):89–97. https://doi.org/10.1145/1785414.
1785443

36. Sison R, Murray T (2019) Verifying that a compiler preserves concurrent value-dependent information-
flow security. In: Harrison J, O’Leary J, Tolmach A (eds.) International conference on interactive theorem
proving (ITP 2019), Leibniz international proceedings in informatics, vol. 141, pp 27:1–27:19. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

37. Smith G, Coughlin N, Murray T (2019) Value-dependent information-flow security on weak memory
models. In: ter Beek MH, McIver A, Oliveira JN (eds) Formal Methods—The Next 30 Years—Third
World Congress, FM 2019, Lecture Notes in Computer Science, vol 11800, pp 539–555. Springer, Berlin.
https://doi.org/10.1007/978-3-030-30942-8_32

38. Tan YK, Myreen MO, Kumar R, Fox ACJ, Owens S, Norrish M (2019) The verified CakeML compiler
backend. J. Funct. Program. 29:e2. https://doi.org/10.1017/S0956796818000229

39. Vaughan JA, Millstein TD (2012) Secure information flow for concurrent programs under Total Store
Order. In: Chong S (ed.) 25th IEEE Computer Security Foundations Symposium, CSF 2012, pp 19–29.
IEEE Computer Society. doi: https://doi.org/10.1109/CSF.2012.20

40. Zheng L, Myers AC (2007) Dynamic security labels and static information flow control. Int. J. Inf. Sec.
6(2–3):67–84. https://doi.org/10.1007/s10207-007-0019-9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1109/CSF.2012.20
https://doi.org/10.1007/s10207-007-0019-9

	Information-flow control on ARM and POWER multicore processors
	Abstract
	1 Introduction
	2 Information flow control for concurrent programs
	2.1 Timing sensitivity

	3 Weak memory models
	3.1 Instruction reordering and value-dependent security
	3.2 Instruction dependencies

	4 Information flow on ARMv8
	4.1 State
	4.2 Classifications
	4.3 Skip
	4.4 Sequential composition
	4.5 Consequence
	4.6 If
	4.7 While
	4.8 Non-blocking loops
	4.9 Non-control variable assignment
	4.10 Control variable assignment
	4.11 Fences
	4.12 Example revisited
	4.13 Compare-and-swap
	4.14 Load-acquire/store-release
	4.15 Arrays
	4.16 Weaker memory model concepts

	5 Soundness
	5.1 Compositional Security
	5.2 Compositionality theorem
	5.3 Semantics
	5.4 Logic
	5.5 Local bisimulation

	6 Completeness
	7 Automation
	8 Information flow on POWER
	9 Non-multi-copy atomicity
	10 Case study: Cross-domain work-stealing deque
	11 Conclusion
	Acknowledgements
	References




