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Abstract
Markov automata combine probabilistic branching, exponentially distributed delays and non-
determinism. This compositional variant of continuous-time Markov decision processes is
used in reliability engineering, performance evaluation and stochastic scheduling. Their
verification so far focused on single objectives such as (timed) reachability, and expected
costs. In practice, often the objectives are mutually dependent and the aim is to reveal
trade-offs. We present algorithms to analyze several objectives simultaneously and approx-
imate Pareto curves. This includes, e.g., several (timed) reachability objectives, or various
expected cost objectives. We also consider combinations thereof, such as on-time-within-
budget objectives—which policies guarantee reaching a goal state within a deadline with at
least probability p while keeping the allowed average costs below a threshold? We adopt
existing approaches for classical Markov decision processes. The main challenge is to treat
policies exploiting state residence times, even for untimed objectives. Experimental results
show the feasibility and scalability of our approach.

Keywords Markov automata · Decision support · Continuous-time Markov decision
processes · Multi-objective · Probabilistic model checking

1 Introduction

Markov automata [24,26] extend labeled transition systems with probabilistic branching and
exponentially distributed delays. They are a compositional variant of continuous-timeMarkov
decision processes (CTMDPs), in a similar vein as Segala’s probabilistic automata extend
classical MDPs. Transitions of a Markov automaton (MA) lead from states to probability
distributions over states, and are either labeled with actions (allowing for interaction) or
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real numbers (rates of exponential distributions). MAs are used in reliability engineering [8,
51], hardware design [19], data-flow computation [38], dependability [9] and performance
evaluation [25], as MAs are a natural semantic framework for modeling formalisms such
as AADL, dynamic fault trees, stochastic Petri nets, stochastic activity networks, SADF
etc. The verification of MAs so far focused on single objectives such as reachability, timed
reachability, expected costs, and long-run averages [2,14,16,30,31,34,35]. These analyses
cannot treat objectives that are mutually influencing each other. The aim of this paper is to
analyze multiple objectives on MAs at once, facilitating trade-off analysis by approximating
Pareto curves.

Consider the stochastic job scheduling problem of [12]: perform n jobs with exponential
service times on k identical processors allowing pre-emptive scheduling. Once a job finishes,
all k processors can be assigned any of the m remaining jobs. When n−m jobs are finished,
this yields

(m
k

)
non-deterministic choices. The largest-expected-service-time-first-policy is

optimal to minimize the expected time to complete all jobs [12]. It is unclear how to schedule
when imposing extra constraints, e.g., requiring a high probability to finish a batch of c
jobs within a tight deadline (to accelerate their post-processing), or having a low average
waiting time. Thesemultiple objectives involve non-trivial trade-offs. Our algorithms analyze
such trade-offs. Figure 1, e.g., shows the obtained result for 12 jobs and 3 processors. It
approximates the set of points (p1, p2) for schedules achieving that (1) the expected time to
complete all jobs is at most p1 and (2) the probability to finish half of the jobs within an hour
is at least p2.

This paper extends an earlier paper [44] and presents techniques to verify MAs with
multiple objectives. The contribution is threefold. First and foremost, we generalize the
analysis of (classical, discrete-time) MDPs with multiple objectives to MA. Moreover, we
remove some restrictions present in the classical analysis of MDPs with multiple objectives.
Third, we provide an efficient implementation. We detail the contributions below.

Regarding the analysis of MA, we consider multiple (un)timed reachability and expected
reward objectives as well as their combinations. Put shortly, we reduce all these problems
to instances of multi-objective verification problems on classical MDPs. For multi-objective
queries involving (combinations of) untimed reachability and expected reward objectives,
corresponding algorithms on the underlying MDP can be used. In this case, the MDP is
simply obtained by ignoring the timing information, see Fig. 2b. The crux is in relating
MA schedulers—that can exploit state sojourn times to optimize their decisions—to MDP
schedulers. For multiple timed reachability objectives, digitization [30,35] is employed to
obtain an MDP, see Fig. 2c. The key is to mimic sojourn times by self-loops with appropriate
probabilities. This provides a sound arbitrary close approximation of the timed behavior and
also allows to combine timed reachability objectives with other types of objectives. The main

Fig. 1 Approx. Pareto curve for
stochastic job scheduling
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contribution is to show that digitization is sound for all possibleMA schedulers. This requires
a new proof strategy as the existing ones are tailored to single objectives.

We extend approaches for classical multi-objective MDP to support the multi-objective
analysis of digitization MDPs. The extension embeds single-objective MA techniques
from [35] into the multi-objective framework of [28]. Furthermore, we allow the simultane-
ous analysis of minimizing and maximizing expected reward objectives, lifting a restriction
imposed in [28] by applying additional preprocessing steps that eliminate problematic end
components.

Experiments on instances of four MA benchmarks show encouraging results. Multiple
untimed reachability and expected reward objectives can be efficiently treated formodelswith
millions of states. As for single objectives [30], timed reachability is more expensive. Our
implementation is competitive toPRISM formulti-objectiveMDPs [28,39] and toIMCA [30],
which implements [35], for single-objective MAs.

Comparedwith the version in [44], we (1) provide all technical ideas regarding the analysis
of Markov automata, and provide formal proofs that previously were omitted. Furthermore,
(2) the description of the existing multi-objectiveMDPmodel checkingmakes the paper self-
contained, and allows us to give (3) the necessary extensions that allow, e.g., mixing upper and
lower bounds on the different objectives. While such extensions may be considered minor,
they are practically relevant and often intricate.

Related work Multi-objective decision making for MDPs with discounting and long-run
objectives has beenwell investigated; for a recent survey, see [47]. Etessami et al. [27] consider
verifying finite MDPs with multiple ω-regular objectives. Other multiple objectives include
expected rewards under worst-case reachability [13,29], reward-bounded reachability [33],
quantiles and conditional probabilities [5,33], mean pay-offs and stability [11], long-run
objectives [7,10], total average discounted rewards under PCTL [49], and stochastic shortest
path objectives [46]. This has been extended to MDPs with unknown cost function [37],
MDPs under a restricted class of policies [23], infinite-state MDPs [20] arising from two-
player timed games in a stochastic environment, and stochastic two-player games [18]. To the
best of our knowledge, this is the first work on multi-objective MDPs extended with random
timing.
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Fig. 2 MA M with underlying MDP MD and digitization Mδ
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2 Preliminaries

Notations The set of real numbers is denoted by R, and we write R>0 = {x ∈ R | x > 0}
and R≥0 = R>0 ∪ {0}. For a finite set S, Dist(S) denotes the set of probability distributions
over S. μ ∈ Dist(S) is Dirac if μ(s) = 1 for some s ∈ S.

2.1 Models

Markov automata generalize both Markov decision processes (MDPs) and continuous time
Markov chains (CTMCs). They are extended with rewards (or, equivalently, costs) to allow
modelling, e.g., energy consumption.

Definition 1 (Markov automaton) A Markov automaton (MA) is a tuple M = (S,Act,→
, s0, (ρ1,. . ., ρ�)) where S is a finite set of states with initial state s0 ∈ S, Act is a finite set of
actions with ⊥ ∈ Act and Act ∩ R≥0 = ∅,
– → ⊆ S × (Act ∪·R>0) × Dist(S) is a set of transitions such that for all s ∈ S there are

no two transitions (s, λ, μ), (s, λ′, μ′) ∈ → with λ, λ′ ∈ R>0, and
– ρ1, . . . , ρ� with � ≥ 0 are reward functions ρi : S ∪· (S × Act) → R≥0.

In the remainder of the article, let M = (S,Act,→, s0, (ρ1,. . ., ρ�)) denote an MA. Below,
we introduce some notation and introduce some standard assumptions on MA. A transition

(s, γ, μ) ∈ →, denoted by s
γ−→ μ, is called probabilistic if γ ∈ Act and Markovian

if γ ∈ R>0. In the latter case, γ is the rate of an exponential distribution, modeling a
time-delayed transition. Probabilistic transitions fire instantaneously. The successor state is
determined byμ, i.e., wemove to s′ with probabilityμ(s′). A reward function ρi defines state
rewards and action rewards. When sojourning in a state s for t time units , the state reward

ρi (s) · t is obtained. Upon taking a transition s
γ−→ μ, we collect action reward ρi (s, γ ) (if

γ ∈ Act) or ρ(s,⊥) (if γ ∈ R>0).

Example 1 Figure 2a shows an MA M with seven states and no rewards. We draw direct
edges for Dirac distributions, andMarkovian transitions are illustrated by dashed arrows. For
example: State s0 has an outgoing Markovian transition with rate 1 to a distribution μ, where
μ(s3) = 1. From state s4 there are two probabilistic transitions labelled with two different

actions γ and η. For s4
η−→ μ, μ is given by μ(s5) = 0.7 and μ(s2) = 0.3.

Probabilistic (Markovian) states PS (MS) have an outgoing probabilistic (Markovian) tran-
sition, respectively:

PS = {s ∈ S | s α−→ μ, α ∈ Act},
MS = {s ∈ S | s λ−→ μ, λ ∈ R>0}.

We exclude terminal states s /∈ PS ∪ MS by adding a (Markovian) self-loop to all these
states. As standard for MAs [24,26], we impose the maximal progress assumption, i.e.,
probabilistic transitions take precedence over Markovian ones as the probability to fire a
Markovian transition instantly is zero. Thus, we assume that states are either probabilistic or
Markovian: S = PS ∪·MS. For Markovian states, we define the exit rate E(s) of s ∈ MS by

s
E(s)−−→ μ.
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Example 2 ReconsiderM in Fig. 2a. The states s0, s1, s2, s5 and s6 are Markovian. All other
states are probabilistic. The exit rate of s0 is 1, the exit rate of s5 is 5.

We assume action-deterministic MAs: |{μ ∈ Dist(S) | s α−→ μ}| ≤ 1 holds for all s ∈ S and
α ∈ Act. For probabilistic states, this can be achieved by renaming. For Markovian states,
this follows from the definition of Markov automata1. The transition probabilities ofM are
given by the function P : S × Act × S → [0, 1] satisfying

P(s, α, s′) =
{

μ(s′) if either s
α−→ μ or

(
α = ⊥ and s

E(s)−−→ μ
)

0 otherwise.

The value P(s, α, s′) corresponds to the probability to move from s with action α to s′.
The enabled actions at state s are given by Act(s) = {α ∈ Act | ∃s′ ∈ S : P(s, α, s′) > 0}.
Example 3 ReconsiderM in Fig. 2a. The enabled actions in s4 are γ and η. The probability
P(s4, η, s2) = 0.3, while P(s5,⊥, s4) = 0.4.

Remark 1 In Sect. 4.3 we make one additional (but standard) assumption regarding the pres-
ence of Zeno-loops. We defer the discussion to that section.

Markov automata extendMarkovdecisionprocesses by adding random timing. For concise
notation, we define MDPs separately below.

Definition 2 (Markov decision process [43]) A Markov decision process (MDP) is a tuple
D = (S,Act,P, s0, (ρ1, . . . , ρ�)), with S, s0,Act, � as inDef. 1,ρ1, . . . , ρ� are action reward
functions ρi : S× Act → R≥0, and P : S× Act× S → [0, 1] are the transition probabilities
satisfying

∑
s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

MDPs are MAs without Markovian states, i.e., MS = ∅. Thus, MDPs exhibit probabilistic
branching and non-determinism, but no random timing.

The reward ρ(s, α) is collected when taking action α at state s. We do not consider state
rewards for MDPs. The underlying MDP of an MA abstracts away from its timing:

Definition 3 (Underlying MDP) For MA M = (S,Act,→, s0, (ρ1,. . ., ρ�)) with transition
probabilitiesP the underlyingMDPof M is theMDPMD = (S,Act,P, s0, (ρD

1 , . . . , ρD
� )),

where for each i ∈ {1, . . . , �}:

ρD
i (s, α) =

⎧
⎪⎨

⎪⎩

ρi (s, α) if s ∈ PS,

ρi (s,⊥) + 1
E(s) · ρi (s) if s ∈ MS and α = ⊥,

0 otherwise.

The reward functions ρD
1 , . . . , ρD

� incorporate the action and state rewards of M where the
state rewards are multiplied with the expected sojourn times 1

E(s) of states s ∈ MS.

Example 4 Figure 2 shows an MA M with its underlying MDP MD .

1 Multiple outgoing Markovian transition could be reduced to a single Markovian transition by taking a
weighted sum.
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Paths and schedulers Paths represent runs of M starting in the initial state. Let t(κ) = 0
and α(κ) = κ, if κ ∈ Act, and t(κ) = κ and α(κ) = ⊥, if κ ∈ R≥0.

Definition 4 (Infinite path) An infinite path of MA M with transition probabilities P is an

infinite sequenceπ = s0
κ0−→ s1

κ1−→ . . . of states s0, s1, · · · ∈ S and stamps κ0, κ1, · · · ∈ Act∪·
R≥0 such that (1)

∑∞
i=0 t(κi ) = ∞, and for any i ≥ 0 it holds that (2) P(si , α(κi ), si+1) > 0,

(3) si ∈ PS implies κi ∈ Act, and (4) si ∈ MS implies κi ∈ R≥0.

An infix si
κi−→ si+1 of a path π represents that we stay at si for t(κi ) time units and then

perform action α(κi ) andmove to state si+1. Condition (1) excludes Zeno paths, condition (2)
ensures positive transition probabilities, and conditions (3) and (4) assert that stamps κi match
the transition type at si .

A finite path is a finite prefix π ′ = s0
κ0−→ . . .

κn−1−−→ sn of an infinite path. The length of π ′
is |π ′| = n, its last state is last(π ′) = sn , and the time duration is T(π ′) =∑0≤i<|π ′| t(κi ).
We denote the sets of finite and infinite paths ofM by FPathsM and IPathsM, respectively.
The superscript M is omitted if the model is clear from the context. For a finite or infinite

path π = s0
κ0−→ s1

κ1−→ . . . the prefix of π of length n is denoted by pref (π, n). The i th
state visited by π is given by π [i] = si . The time-abstraction ta(π) of π removes all sojourn

times and is a path of the underlying MDP MD: ta(π) = s0
α(κ0)−−−→ s1

α(κ1)−−−→ . . . . Paths of
MD are also referred to as the time-abstract paths of M.

Definition 5 (Generic scheduler) A generic scheduler for M is a measurable function
σ : FPaths × Act → [0, 1] such that σ(π, ·) ∈ Dist(Act(last(π))) for each π ∈ FPaths.

A scheduler σ forM resolves the non-determinism ofM: σ(π, α) is the probability to take
transition last(π)

α−→ μ after observing the run π . The set of such schedulers is denoted by
GMM (GM ifM is clear from the context).σ ∈ GM isdeterministic if the distributionσ(π, ·)
is Dirac for any π . Time-abstract schedulers behave independently of the time-stamps of the
given path, i.e., σ(π, α) = σ(π ′, α) for all actions α and paths π, π ′ with ta(π) = ta(π ′).
We write TAM to denote the set of time-abstract schedulers of M. GM is the most general
scheduler class for MAs, and TA is the most general for MDPs.

2.2 Objectives

An objective Oi is a representation of a quantitative property like the probability to reach
an error state, or the expected energy consumption. To express Boolean properties (e.g., the
probability to reach an error state is below pi ), Oi is combined with a threshold �i pi where
�i ∈ {<,≤,>,≥} is a threshold relation and pi ∈ R is a threshold value. Let M, σ |�
Oi �i pi denote that the MA M under scheduler σ ∈ GM satisfies the property Oi �i pi .
We consider reachability objectives and expected reward objectives. In the remainder of this
section, we formalize these standard notions.

2.2.1 Probability measure

Given a scheduler σ ∈ GM, a probability measure PrMσ onmeasurable sets of infinite paths is
defined, which generalizes both the standard probability measure on MDPs and on CTMCs.
We briefly sketch the definition of PrMσ . More information can be found in, e.g., [35,40].
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We first consider the probability measure PrStepsσ,π for transition steps. We let B(R≥0)

denote the Borel σ -algebra on R≥0 and define the σ -algebra for transition steps FSteps =
σ (B(R≥0) × 2Act × 2S) using the Cartesian product of σ -algebra [1]. For a finite path
π ∈ FPaths with s = last(π) and a measurable set of transition steps T ∈ FSteps, the
probability of T ⊆ R≥0 × Act × S is

PrStepsσ,π (T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

(0,α,s′)∈T
σ(π, α) · P(s, α, s′) if s ∈ PS

∫

{t |(t,⊥,s′)∈T }
E(s) · e−E(s)t ·

∑

(t,⊥,s′)∈T
P(s,⊥, s′) dt if s ∈ MS.

Next, we define the probability measure Prnσ for n ∈ N transition steps over the σ -algebra
Fn = σ

(
2S × (×n

i=1 F
Steps)

)
. For S′ ⊆ S we set Pr0σ (S′) = 1 if s0 ∈ S′ and Pr0σ (S′) = 0

otherwise.Moreover, given n > 0,Π ∈ Fn−1 and T ∈ FSteps we setΠ◦T = {(π, (t, α, s′)) |
π ∈ Π, (t, α, s′) ∈ T } and

Prnσ (Π ◦ T ) =
∫

π∈Π∩FPaths
PrStepsσ,π (T ) dPrn−1

σ ({π}) .

Following standard constructions (e.g., [1,40]), we obtain PrMσ by lifting Prnσ first to
measurable sets offinitepaths givenby theσ -algebraF∗ =⋃∞

n=0 F
n andfinally tomeasurable

sets of infinite paths given by the σ -algebraFω. The latter is the smallest σ -algebra containing
the cylinder set Cyl(Π) of all measurable Π ∈ F∗, where

Cyl(Π) = {π κn−→ sn+1
κn+1−−→ · · · ∈ IPathsM | π ∈ Π}.

LetΠ ∈ F∗ andπ ∈ I Paths. For simplicity,wemaywrite PrMσ (Π) insteadofPrMσ (Cyl(Π))

and PrMσ (π) instead of PrMσ ({π}). Note that PrMσ ({π}) = 0 if π contains one or more
Markovian transitions.

For some Λ ∈ Fω with PrMσ (Λ) > 0 we consider the conditional probability measure
PrMσ (· | Λ) : Fω → [0, 1], where for Π ∈ Fω:

PrMσ (Π | Λ) = PrMσ (Π ∩ Λ)

PrMσ (Λ)
.

2.2.2 Reachability objectives

I ⊆ R is a time interval if it is of the form I = [a, b] or I = [a,∞), where 0 ≤ a < b. The
set of paths reaching a set of goal states G ⊆ S in time I is defined as

♦I G ={π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths | ∃n ≥ 0 : π[n] ∈ G and

I ∩ [t, t + t(κn)] �= ∅ for t = T(pref (π, n))}.
♦I is measurable as it can be expressed via countable unions of measurable cylinder sets.
We write ♦G instead of ♦[0,∞)G.

We formulate reachability objectives as follows:

Definition 6 (Reachability objective) A reachability objective has the form P(♦IG ) for time
interval I and goal states G. The objective is timed if I �= [0,∞) and untimed otherwise.
For MA M and scheduler σ ∈ GM, let

M, σ |� P(♦IG ) �i pi iff PrMσ (♦IG ) �i pi .
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2.2.3 Expected reward objectives

Expected rewards define the expected amount of reward collected (w.r.t. some ρ j ) until a goal
state in G ⊆ S is reached, generalizing the notion on CTMCs andMDPs. More precisely, we

fix a reward function ρ of the MAM. The reward of a finite path π ′ = s0
κ0−→ . . .

κn−1−−→ sn ∈
FPaths is given by

rewM(ρ, π ′) =
|π ′|−1∑

i=0

ρ(si ) · t(κi ) + ρ(si , α(κi )).

Intuitively, rewM(ρ, π ′) is the sum over the rewards obtained in every step si
κi−→ in the path

π ′. The reward obtained in step i is composed of the state reward of si multiplied with the
sojourn time t(κi ) plus the action reward given by si and α(κi ). State rewards assigned to
probabilistic states do not affect the reward of a path as the sojourn time in such states is
zero.

For an infinite path π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths, the reward of π up to a set of goal
states G ⊆ S is given by

rewM(ρ, π,G) =
{
rewM(ρ, pref (π, n)) if n = min{i ≥ 0 | si ∈ G}
limn→∞ rewM(ρ, pref (π, n)) if si /∈ G for all i ≥ 0 .

Intuitively, we stop collecting reward as soon as π reaches a state in G. If no state in G is
reached, reward is accumulated along the infinite path, which potentially yields an infinite
reward. The function rewM(ρ, ·,G) : IPathsM → R≥0 is measurable. Its expected value
with respect to scheduler σ ∈ GM is called the expected reward ERM

σ (ρ,G ), i.e.,

ERM
σ (ρ,G ) =

∫

π∈IPathsM
rewM(ρ, π,G) dPrMσ (π).

With this definition, we formulate expected reward objectives as follows:

Definition 7 (Expected reward objective) An expected reward objective has the form
E(# j,G ) where j is the index of reward function ρ j and G ⊆ S. For MA M and scheduler
σ ∈ GM, let

M, σ |� E(# j,G ) �i pi iff ERM
σ (ρ j ,G ) �i pi .

Expected time objectives E(T ,G ) are expected reward objectives that consider the reward
function ρT with ρT (s) = 1 if s ∈ MS and all other rewards are zero.

3 Multi-objectivemodel checking

Standard model checking considers objectives individually. This approach is not feasible
when we are interested in multiple objectives that should be fulfilled by the same scheduler,
e.g., a scheduler that maximizes the expected profit might violate certain safety constraints.
Multi-objective model checking aims to analyze multiple objectives at once and reveals
potential trade-offs.
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Fig. 3 Markov automaton and achievable points

Definition 8 (Satisfaction of multiple objectives) LetM be an MA and σ ∈ GM. For objec-
tives O = (O1, . . . , Od) with threshold relations � = (�1, . . . ,�d) ∈ {<,≤,>,≥}d and
threshold values p = (p1, . . . , pd) ∈ R

d let

M, σ |� O � p ⇐⇒ M, σ |� Oi �i pi for all 1 ≤ i ≤ d.

Furthermore, let achieveM(O � p) ⇐⇒ ∃σ ∈ GM such that M, σ |� O � p.

IfM, σ |� O � p, the point p ∈ R
d is achievable inMwith scheduler σ . The set of achiev-

able points of M w.r.t. O and � is {p ∈ R
d | achieveM(O � p)}. We straightforwardly

also apply these definitions to MDPs. This is compatible with the notions on multi-objective
MDPs as given in [27,28].

Example 5 Figure 3b depicts the set of achievable points of the MA M from Fig. 3a w.r.t.
relations � = (≥,≥) and objectives (P(♦{s2}), P(♦{s4})). Likewise, Fig. 3c depicts the
achievable points forM,�, and (P(♦{s2}), P(♦[0,2]{s4})). Using the set of achievable points,
we can answer Pareto, numerical, and achievability queries as considered in [28], e.g., the
Pareto front lies on the border of the set. We detail this computation in Sect. 5.

Schedulers For single-objective model checking on MAs, it suffices to consider deter-
ministic schedulers [41]. For untimed reachability and expected rewards even time-abstract
deterministic schedulers suffice [41]. Multi-objective model checking on MDPs requires
history-dependent, randomized schedulers [27]. The following theorem and its proof show
that schedulers on MA may also employ timing information to make optimal choices, even
if only untimed objectives are considered. However, we show in Sect. 4 that for untimed
objectives, such schedulers can always be converted to time-abstract schedulers (poten-
tially considering the history and randomization). Put differently, timing information can
be employed to achieve untimed objectives but it is not necessary to do so.

Theorem 1 For some MAM with achieveM(O � p), no deterministic time-abstract sched-
uler σ satisfies M, σ |� O � p.

Proof Consider the MA M in Fig. 3a with relations � = (≥,≥), objectives O =
(P(♦{s2}), P(♦{s4})), and point p = (0.5, 0.5). We have achieveM(O � p): A simple
graph argument yields that both properties are only satisfied if action α is taken with prob-
ability exactly a half. As the probability mass to stay in s0 for at most ln(2) is exactly 0.5,
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a timed scheduler σ with σ(s0
t−→ s1, α) = 1 if t ≤ ln(2) and 0 otherwise does satisfy both

objectives.
There are only two deterministic time abstract schedulers for M:

σα : always choose α and σβ : always choose β

and it holds that M, σα �|� P(♦{s4}) ≥ 0.5 and M, σβ �|� P(♦{s2}) ≥ 0.5. ��

The geometric shape of the achievable points Like for MDPs [27], the set of achievable
points of any combination of aforementioned objectives is convex.

Proposition 1 The set {p ∈ R
d | achieveM(O � p)} is convex.

Proof Let M be an MA and let O = (O1, . . . , Od) be objectives with relations � = (�1

, . . . ,�d) and points p1,p2 ∈ R
d such that achieveM(O � p1) and achieveM(O � p2)

holds. To show that the set of achievable points is convex, we need to show that forw ∈ [0, 1]
the point p = w ·p1+(1−w) ·p2 is achievable as well, i.e., achieveM(O � p). For i ∈ 1, 2,
let σi ∈ GM be a scheduler satisfying M, σi |� O � pi . The point p is achievable with the
scheduler σ that intuitively makes an initial one-off random choice:

– with probability w mimic σ1 and
– with probability 1− w mimic σ2.

Specifying such a scheduler as a function σw : FPaths × Act → [0, 1] as in Def. 5 is
technically involved because σw can not memorize the outcome of the initial one-off random

choice. For a path π = s0
κ0−→ . . .

κn−1−−→ sn ∈ FPaths and α ∈ Act, the value σw(π, α) needs
to depend on the previously chosen actions α(κ j ) in π and the probability that these choices
adhere to σ1 and σ2, respectively. Let w1 = w and w2 = 1− w. We set 2

σw(π, α) =
∑2

i=1

(
wi · σi (π, α) ·∏n−1

j=0 σi (pref (π, j), α(κ j ))
)

∑2
i=1

(
wi ·∏n−1

j=0 σi (pref (π, j), α(κ j ))
)

In App. Awe show that for anymeasurableΠ ⊆ IPaths we have PrMσw (Π) = w1 ·PrMσ1 (Π)+
w2 ·PrMσ2 (Π). Lifting this observation to expected rewards is straightforward. It follows that
σw achieves the point p = w1 · p1 + w2 · p2. ��
For MDPs, the set of achievable points is a convex polytope where the vertices can be
realized by deterministic schedulers that use memory bounded by 2d , where d is the num-
ber of objectives. As there are finitely many such schedulers, the polytope has a finite
V-representation [27], i.e., it can be represented by a finite number of vertices. This result
does not carry over to MAs.

Theorem 2 For some MA M and objectives O, the polytope {p ∈ R
d | achieveM(O � p)}

does not have a finite V-representation.

Proof We show that the claim holds for the MA M in Fig. 3a with objectives O =
(P(♦{s2}), P(♦[0,2]{s4})) and relations � = (≥,≥). The insight here is that for any sojourn

2 Our construction is roughly inspired by a construction in [10, Sect. 6], where schedulers for MDPs with
stochastic memory-updates are considered. Lifting the approach of [10] to Markov automata is not obvious.
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time t ≤ 2 in s0, the timing information is relevant for optimal schedulers: The shorter
the sojourn time in s0, the higher the probability to reach s4 within the time bound. For
the sake of contradiction assume that the polytope A = {p ∈ R

2 | achieveM(O � p)}
has a finite V-representation. Then, there must be two distinct vertices p1,p2 of A such
that {w · p1 + (1 − w) · p2 | w ∈ [0, 1]} is a face of A. In particular, this means that
p = 0.5 · p1 + 0.5 · p2 is achievable but pε = p+ (0, ε) is not achievable for all ε > 0. We
show that there is in fact an ε for which pε is achievable, contradicting our assumption that
A has a finite V-representation.

For i ∈ 1, 2, let σi ∈ GM be a scheduler satisfying M, σi |� O � pi . σ1 �= σ2 has
to hold as the schedulers achieve different vertices of A. The point p is achievable with
the randomized scheduler σ that mimics σ1 with probability 0.5 and mimics σ2 otherwise.
Consider t = − log(PrMσ (♦{s2})) and the deterministic scheduler σ ′ given by

σ ′(s0
t0−→ s1, α) =

{
1 if t0 > t

0 otherwise.

σ ′ satisfies PrM
σ ′ (♦{s2}) = e−t = PrMσ (♦{s2}). Moreover, we have

PrMσ ′ (♦[0,t]{s3}) = PrMσ ′ (♦{s3}) = PrMσ (♦{s3}) > PrMσ (♦[0,t]{s3}),

where the last inequality is due to σ �= σ ′. While the probability to reach s3 is equal under
both schedulers, s3 is reached earlier when σ ′ is considered. This increases the probability to
reach s4 in time, i.e., PrM

σ ′ (♦[0,2]{s4}) > PrMσ (♦[0,2]{s4}). It follows that M, σ ′ |� O � pε

for some ε > 0. ��

Since convex polytopes without a finite V-representation cannot be represented by a finite
number of vertices, any method extending the approach of [28]—which computes these
vertices—can only approximate the set of achievable points.

Problem Statement: For an MA and objectives with threshold relations, construct
arbitrarily tight over- and under-approximations of the achievable points.

4 Analysis of Markov automata withmultiple objectives

The state-of-the-art in single-objective model checking of MA is to reduce the MA to an
MDP, cf. [30,31,35], for which efficient algorithms exist. We aim to lift this approach to
multi-objective model checking. Assume MA M and objectives O with threshold relations
�. We discuss how the set of achievable points ofM relates to the set of achievable points of
anMDP.The key challenge is to dealwith timing information—even foruntimed objectives—
and to consider schedulers beyond those optimizing single objectives. We obtain:

– For untimed reachability and expected reward objectives, the achievable points of M
equal those of its underlying MDP, cf. Theorems 3 and 4.

– For timed reachability objectives, the set of achievable points of a digitized MDP Mδ

provides a sound approximation of the achievable points ofM, cf. Theorem5.Corollary 1
gives the precision of the approximation.
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4.1 Untimed reachability objectives

Although timing information is essential for deterministic schedulers, cf. Theorem 1, timing
information does not strengthen randomized schedulers:

Theorem 3 For MA M and untimed reachability objectives O it holds that achieveM(O �
p) ⇐⇒ achieveMD (O � p).

The main idea for proving Theorem 3 is to construct for scheduler σ ∈ GMM a time-
abstract scheduler ta(σ ) ∈ TAMD such that they both induce the same untimed reachability
probabilities. To this end, we discuss the connection between probabilities of paths of MA
M and paths of MDP MD .

Definition 9 (Induced paths of a time-abstract path) The set of induced paths on MA M of
a path π̂ of MD is given by

〈π̂〉 = ta−1(π̂) = {π ∈ FPathsM ∪ IPathsM | ta(π) = π̂}.
The set 〈π̂〉 contains all paths of M where replacing sojourn times by ⊥ yields π̂ .

For σ ∈ GM, the probability distribution σ(π, ·) ∈ Dist(Act)might depend on the sojourn
times of the path π . The time-abstract scheduler ta(σ ) weights the distribution σ(π, ·) with
the probability masses of the paths π ∈ 〈π̂〉.
Definition 10 (Time-abstraction of a scheduler) The time-abstraction of σ ∈ GMM is
defined as ta(σ ) ∈ TAMD such that for any π̂ ∈ FPathsMD

ta(σ )(π̂, α) =
⎧
⎨

⎩

∫

π∈〈π̂〉
σ(π, α) dPrMσ (π | 〈π̂〉) if PrMσ (〈π̂〉) > 0

1 / |Act(last(π̂))| otherwise.

Intuitively, the term PrMσ (π | 〈π̂〉) represents the probability for a path in 〈π̂〉 to have
sojourn times as given by π . The value ta(σ )(π̂, α) coincides with the probability that σ

picks action α, given that the time-abstract path π̂ was observed. If PrMσ (〈π̂〉) = 0, the value
for ta(σ )(π̂, α) is arbitrary. For simplicity, we picked a uniform choice.

Example 6 Consider the MA M in Fig. 2a and the scheduler σ choosing α at state s3 iff the

sojourn time at s0 is at most one. Then ta(σ )(s0
⊥−→ s3, α) = 1− e−E(s0), the probability that

s0 is left within one time unit. For π̄ = s0
⊥−→ s3

α−→ s6 we have

PrMσ (♦{s6}) = PrMσ (〈π̄〉) = 1− e−E(s0) = PrMD
ta(σ )(π̄) = PrMD

ta(σ )(♦{s6}).
In the example, the considered scheduler and its time-abstraction induce the same untimed
reachability probabilities. We generalize this observation.

Lemma 1 For any π̂ ∈ FPathsMD we have PrMσ (〈π̂〉) = PrMD
ta(σ )(π̂).

Proof The proof is by induction over the length of the considered path |π̂ | = n. Let M =
(S,Act,→, s0, (ρ1,. . ., ρ�)) andMD = (S,Act,P, s0, (ρD

1 , . . . , ρD
� )). If n = 0, then {π̂} =

〈π̂〉 = {s0}. Hence, PrMσ (〈π̂〉) = 1 = PrMD
ta(σ )(π̂). In the induction step, we assume that the

lemma holds for a fixed path π̂ ∈ FPathsMD with length |π̂ | = n and last(π̂) = s. Consider

the path π̂
α−→ s′ ∈ FPathsMD . If PrMσ (〈π̂〉) = PrMD

ta(σ )(π̂) = 0, then PrMσ (〈π̂ α−→ s′〉) =
PrMD

ta(σ )(π̂
α−→ s′) = 0 because Cyl(〈π̂ α−→ s′〉) ⊆ Cyl(〈π̂〉) and Cyl({π̂ α−→ s′}) ⊆ Cyl({π̂}).
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Now assume PrMσ (〈π̂〉) > 0.

Cases ∈ PS : It follows that

PrMσ (〈π̂ α−→ s′〉) =
∫

π∈〈π̂〉
σ(π, α) · P(s, α, s′) dPrMσ (π)

= P(s, α, s′) ·
∫

π∈〈π̂〉
σ(π, α) dPrMσ ({π} ∩ 〈π̂〉)

= P(s, α, s′) ·
∫

π∈〈π̂〉
σ(π, α) d

[
PrMσ (π | 〈π̂〉) · PrMσ (〈π̂〉)]

= PrMσ (〈π̂〉) · P(s, α, s′) ·
∫

π∈〈π̂〉
σ(π, α) dPrMσ (π | 〈π̂〉)

= PrMσ (〈π̂〉) · P(s, α, s′) · ta(σ )(π̂, α)

IH= PrMD
ta(σ )(π̂) · P(s, α, s′) · ta(σ )(π̂, α)

= PrMD
ta(σ )(π̂

α−→ s′).

Cases ∈ MS : As s ∈ MS we have α = ⊥ and it follows

PrMσ (〈π̂ ⊥−→ s′〉) =
∫

π∈〈π̂〉

∫ ∞

0
E(s) · e−E(s)t · P(s,⊥, s′) dt dPrMσ (π)

= P(s,⊥, s′) ·
∫

π∈〈π̂〉

∫ ∞

0
E(s) · e−E(s)t dt dPrMσ (π)

= P(s,⊥, s′) · PrMσ (〈π̂〉)
IH= P(s,⊥, s′) · PrMD

ta(σ )(π̂)

= PrMD
ta(σ )(π̂

⊥−→ s′).

��
The result is lifted to untimed reachability probabilities.

Proposition 2 For any G ⊆ S it holds that PrMσ (♦G ) = PrMD
ta(σ )(♦G ).

Proof Let Π be the set of finite time-abstract paths ofMD that end at the first visit of a state
in G, i.e.,

Π = {s0 α0−→ . . .
αn−1−−→ sn ∈ FPathsMD | sn ∈ G and ∀i < n : si /∈ G}.

Every path π ∈ ♦G ⊆ IPathsM has a unique prefix π ′ with ta(π ′) ∈ Π . We have

♦G =
⋃·
π̂∈Π

Cyl(〈π̂〉).

The claim follows with Lemma 1 since

PrMσ (♦G ) =
∑

π̂∈Π

PrMσ (〈π̂〉) Lem.1=
∑

π̂∈Π

PrMD
ta(σ )(π̂) = PrMD

ta(σ )(♦G ).

��
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As the definition of ta(σ ) is independent of the considered set of goal states G ⊆ S, Propo-
sition 2 can be lifted to multiple untimed reachability objectives.

Proof (Theorem 3) LetO = (P(♦G1), . . . , P(♦Gd)) be the considered list of objectiveswith
threshold relations � = (�1, . . . ,�d). The following equivalences hold for any σ ∈ GMM
and p ∈ R

d .

M, σ |� O � p ⇐⇒ ∀i : M, σ |� P(♦Gi ) �i pi

⇐⇒ ∀i : PrMσ (♦Gi ) �i pi

Prop. 2⇐⇒ ∀i : PrMD
ta(σ )(♦Gi ) �i pi

⇐⇒ ∀i : MD, ta(σ ) |� P(♦Gi ) �i pi

⇐⇒ MD, ta(σ ) |� O � p .

Assume that achieveM(O � p) holds, i.e., there is a σ ∈ GMM such thatM, σ |� O � p.
It follows that MD, ta(σ ) |� O � p which means that achieveMD (O � p) holds as well.
For the other direction assume achieveMD (O � p), i.e., MD, σ |� O � p for some time-
abstract scheduler σ ∈ TA. We have ta(σ ) = σ . It follows that MD, ta(σ ) |� O � p.
Applying the equivalences above yields M, σ |� O � p and thus achieveM(O � p). ��

4.2 Expected reward objectives

The results for expected reward objectives are similar to untimed reachability objectives: An
analysis of the underlying MDP suffices. We show the following extension of Theorem 3 to
expected reward objectives.

Theorem 4 For MA M and untimed reachability and expected reward objectives O:
achieveM(O � p) ⇐⇒ achieveMD (O � p).

To prove this, we show that a scheduler σ ∈ GMM and its time-abstraction ta(σ ) ∈ TA
induce the same expected rewards on M and MD, respectively. Theorem 4 follows then
analogously to Theorem 3.

Proposition 3 Let ρ be some reward function of M and let ρD be its counterpart for MD .

For G ⊆ S we have ERM
σ (ρ,G ) = ERMD

ta(σ )(ρ
D,G ).

Notice that ρD encodes the expected reward of M obtained in a state s by assuming the
sojourn time to be the expected sojourn time 1

E(s) . Although the claim is similar to Proposi-
tion 2, its proof cannot be adapted straightforwardly. In particular, the analogon to Lemma 1
does not hold: The expected reward collected along a time-abstract path π̂ ∈ FPathsMD

does not coincide in general for M and MD .

Example 7 Let M be the MA with underlying MDP MD as shown in Fig. 2. Let ρ(s0) = 1

and zero otherwise. Reconsider the scheduler σ from Example 6. Let π̂α = s0
⊥−→ s3

α−→ s6.

The probability PrMσ ({s0 t−→ s3
α−→ s6 ∈ 〈π̂α〉 | t > 1}) is zero since σ chooses β on such

paths. For the remaining paths in 〈π̂α〉, action α is chosen with probability one. The expected
reward in M along π̂α is:
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∫

π∈〈π̂α〉
rewM(ρ, π) dPrMσ (π) =

∫ 1

0
ρ(s0) · t · E(s0) · e−E(s0)t dt = 1− 2e−1.

The expected reward in MD along π̂α differs as

rewMD (ρD, π̂α) · PrMD
ta(σ )(π̂α) = ρD(s0,⊥) · ta(σ )(s0

⊥−→ s3, α) = 1− e−1.

The intuition is as follows: If path s0
t−→ s3

α−→ s6 ofM under σ occurs, we have t ≤ 1 since
σ chose α. Hence, the reward collected from paths in 〈π̂α〉 is at most 1 · ρ(s0) = 1. There is
thus a dependency between the choice of the scheduler at s3 and the collected reward at s0.
This dependency is absent in MD as the reward at a state is independent of the subsequent
performed actions.

Let π̂β = s0
⊥−→ s3

β−→ s4. The expected reward along π̂β is 2e−1 forM and e−1 forMD .
As the rewards for π̂α and π̂β sum up to one in bothM andMD , the expected reward along
all paths of length two coincides for M and MD .

This observation can be generalized to arbitrary MA and paths of arbitrary length. We first
formalize the step-bounded expected reward.

Let n ≥ 0 and G ⊆ S. The set of time-abstract paths that end after n steps or at the first
visit of a state in G is denoted by

Πn
G ={s0 α0−→ . . .

αm−1−−−→ sm ∈ FPathsMD | (m = n or sm ∈ G) and

si /∈ G for all 0 ≤ i < m}.
ForM underσ ∈ GMM andMD under ta(σ ) ∈ TA,we define the expected reward collected
along the paths of Πn

G as

ERM
σ (ρ,Πn

G) =
∑

π̂∈Πn
G

∫

π∈〈π̂〉
rewM(ρ, π) dPrMσ (π) and

ERMD
ta(σ )(ρ

D,Πn
G) =

∑

π̂∈Πn
G

rewMD (ρD, π̂) · PrMD
ta(σ )(π̂),

respectively. Intuitively, ERM
σ (ρ,Πn

G) corresponds to ERM
σ (ρ,G ) assuming that no more

reward is collected after the n-th transition. It follows that the value ERM
σ (ρ,Πn

G) approaches

ERM
σ (ρ,G ) for large n. Similarly, ERMD

ta(σ )(ρ
D,Πn

G) approaches ERMD
ta(σ )(ρ

D,G ) for large
n. This observation is formalized by the following lemma.

Lemma 2 For MA M = (S,Act,→, s0, (ρ1,. . ., ρ�)) with G ⊆ S, σ ∈ GM, and reward
function ρ it holds that

lim
n→∞ERM

σ (ρ,Πn
G) = ERM

σ (ρ,G ).

Furthermore, any reward function ρD for MD satisfies

lim
n→∞ERMD

ta(σ )(ρ
D,Πn

G) = ERMD
ta(σ )(ρ

D,G ).

Proof (Sketch) Essentially, for each n ≥ 0, consider the function fn : IPathsM → R≥0 given
by

fn(π) =
{
rewM(ρ, pref (π,m)) if m = min

{
i ∈ {0, . . . , n} | si ∈ G

}

rewM(ρ, pref (π, n)) if si /∈ G for all i ≤ n
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for every path π = s0
κ0−→ s1

κ1−→ · · · ∈ IPathsM. Intuitively, fn(π) is the reward collected
on π within the first n steps and only up to the first visit of G. This allows us to express the
expected reward collected along the paths of Πn

G , and note that the sequence of functions
f0, f1, . . . is non-decreasing, we may apply the monotone convergence theorem [1] and
conclude the proof. A full proof may be found in the appendix. ��
The next step is to show that the expected reward collected along the paths of Πn

G coincides
for M under σ and MD under ta(σ ).

Lemma 3 Let ρ be some reward function of M and let ρD be its counterpart for MD . Let
M = (S,Act,→, s0, (ρ1,. . ., ρ�)) be an MA with G ⊆ S and σ ∈ GM. For all G ⊆ S and
n ≥ 0 it holds that

ERM
σ (ρ,Πn

G) = ERMD
ta(σ )(ρ

D,Πn
G).

Proof The proof is by induction over the path length n. To simplify the notation, we often
omit the reward functions ρ and ρD and write, e.g., rewMD (π) instead of rewMD (ρD, π)

or ERM
σ (Πn

G) instead of ERM
σ (ρ,Πn

G).
If n = 0, then Πn

G = {s0}. The claim holds: rewM(s0) = rewMD (s0) = 0.
In the induction step, we assume that the lemma is true for some fixed n ≥ 0. We define

pref (π, n) for paths with |π | ≤ n such that pref (π, n) = π . We split the term ERM
σ (Πn+1

G )

into the reward that is obtained by paths which reachG within n steps and the reward obtained
by paths of length n+1. In a second step, we consider the sum of the reward collected within
the first n steps and the reward obtained in the (n + 1)-th step.

ERM
σ (Πn+1

G ) =
∑

π̂∈Πn+1
G|π̂ |≤n

∫

π∈〈π̂〉
rewM(π) dPrMσ (π)

+
∑

π̂∈Πn+1
G|π̂ |=n+1

∫

π=π ′ κ−→s′∈〈π̂〉
last(π ′)=s

rewM(π ′) + ρ(s) · t(κ) + ρ(s, α(κ)) dPrMσ (π)

=
∑

π̂∈Πn+1
G

∫

π∈〈π̂〉
rewM(pref (π, n)) dPrMσ (π) (1)

+
∑

π̂∈Πn+1
G|π̂ |=n+1

∫

π=π ′ κ−→s′∈〈π̂〉
last(π ′)=s

ρ(s) · t(κ) + ρ(s, α(κ)) dPrMσ (π),

=
∑

π̂∈Πn+1
G

rewMD (pref (π̂, n)) · PrMD
ta(σ )(π̂)

+
∑

π̂=π̂ ′ α−→s′∈Πn+1
G|π̂ |=n+1

ρD(last(π̂ ′), α) · PrMD
ta(σ )(π̂)

=
∑

π̂∈Πn+1
G

rewMD (π̂) · PrMD
ta(σ )(π̂) = ERMD

ta(σ )(Π
n+1
G ). (2)

Detailed reformulations for the terms (1) and (2) are treated separately and discussed in
“Appendix B.2”. ��
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We now first show Proposition 3 and then Theorem 4.

Proof (Proposition 3) The proposition is a direct consequence of Lemma 2 and Lemma 3 as

ERM
σ (ρ,G ) = lim

n→∞ERM
σ (ρ,Πn

G)

= lim
n→∞ERMD

ta(σ )(ρ
D,Πn

G) = ERMD
ta(σ )(ρ

D,G ).

��
Proof (Theorem 4) Let O = (O1, . . . , Od) be the considered list of untimed reachability
and expected reward objectives with threshold relations � = (�1, . . . ,�d). The following
equivalences hold for any σ ∈ GMM and p ∈ R

d .

M, σ |� O � p ⇐⇒ ∀i : M, σ |� Oi �i pi
∗⇐⇒ ∀i : MD, ta(σ ) |� Oi �i pi ⇐⇒ MD, ta(σ ) |� O � p ,

where for the equivalence marked with ∗we consider two cases: If Oi is of the form P(♦G ),
Proposition 2 yields

M, σ |� Oi �i pi ⇐⇒ PrMσ (♦G ) �i pi

⇐⇒ PrMD
ta(σ )(♦G ) �i pi ⇐⇒ MD, ta(σ ) |� Oi �i pi .

Otherwise, Oi is of the form E(# j,G ) and with Proposition 3 it follows that

M, σ |� Oi �i pi ⇐⇒ ERM
σ (ρ j ,G ) �i pi

⇐⇒ ERMD
ta(σ )(ρ

D
j ,G ) �i pi ⇐⇒ MD, ta(σ ) |� Oi �i pi .

The remaining steps of the proof are completely analogous to the proof of Theorem 3 con-
ducted on page 15. ��

Thus, queries onMAwithmixtures of untimed reachability and expected reward objectives
can be analyzed on the underlying MDP MD .

4.3 Timed reachability objectives

Timed reachability objectives cannot be analyzed on MD as it abstracts away from sojourn
times. We lift the digitization approach for single-objective timed reachability [30,35] to
multiple objectives. Instead of abstracting timing information, it is digitized. In this section,
we make an additional but standard assumption on MAs (e.g., [14,30,35]). MAs with Zeno
behavior, where infinitely many actions can be taken within finite time with non-zero prob-
ability, are unrealistic and considered a modeling error. MAs that exhibit Zeno behavior can
be easily detected using the notion of end-components (that we discuss in the next section).

4.3.1 Digitized reachability

The digitization Mδ of M w.r.t. some digitization constant δ ∈ R>0 is an MDP which
digitizes the time [30,35]. The main difference between MD and Mδ is that the latter also
introduces self-loops which describe the probability to stay in a Markovian state for δ time
units. More precisely, the outgoing transitions of states s ∈ MS in Mδ represent that either
(1) a Markovian transition in M was taken within δ time units, or (2) no transition is taken

123



50 Formal Methods in System Design (2022) 60:33–86

within δ time units—which is captured by taking the self-loop in Mδ . Counting the taken
self-loops at s ∈ MS allows to approximate the sojourn time in s.

Definition 11 (Digitization of an MA) For MA M = (S,Act,→, s0, {ρ1, . . . , ρ�}) with
transition probabilities P and digitization constant δ ∈ R>0, the digitization of M w.r.t. δ is
the MDP Mδ = (S,Act,Pδ, s0, (ρδ

1, . . . , ρ
δ
� )), where

Pδ(s, α, s′) =

⎧
⎪⎨

⎪⎩

P(s,⊥, s′) · (1− e−E(s)δ) if s ∈ MS, α = ⊥, s �= s′

P(s,⊥, s′) · (1− e−E(s)δ) + e−E(s)δ if s ∈ MS, α = ⊥, s = s′

P(s, α, s′) otherwise.

and for each i ∈ {1, . . . , �}:

ρδ
i (s, α) =

⎧
⎪⎨

⎪⎩

ρi (s, α) if s ∈ PS
(
ρi (s,⊥) + 1

E(s) · ρi (s)
) · (1− e−E(s)δ

)
if s ∈ MS and α = ⊥

0 otherwise.

Example 8 Figure 2 on page 4 shows an MAM with its underlying MDPMD and a digiti-
zation Mδ for unspecified δ ∈ R>0.

A time interval I ⊆ R≥0 of the form [a,∞) or [a, b]with dia := a
δ
∈ N and dib:= b

δ
∈ N is

calledwell-formed. For the remainder, we only consider well-formed intervals. If the interval
boundaries a and b are rationals with a = a1

a2
, b = b1

b2
for integers a1, a2, b1, b2 ∈ Z,

well-formedness can always be ensured by setting the digitization constant δ to 1
k for some

common multiple k of a2 and b2.
An interval for time-bounds I is transformed to digitization step bounds di(I ) ⊆ N. Let

a = min I , we set di(I ) = {m ∈ N | m · δ ∈ I }.
We first relate paths in M to paths in its digitization.

Definition 12 (Digitization of a path) The digitization di(π) of path π = s0
κ0−→ s1

κ1−→ . . .

in M is the path in Mδ given by

di(π) = (s0 α(κ0)−−−→)m0s0
α(κ0)−−−→ (

s1
α(κ1)−−−→)m1s1

α(κ1)−−−→ . . .

where mi = max{m ∈ N | m · δ ≤ t(κi )} for each i ≥ 0.

Example 9 For the path π = s0
1.1−→ s3

β−→ s4
η−→ s5

0.3−→ s4 of the MA M in Fig. 2a and

δ = 0.4, we get di(π) = s0
⊥−→ s0

⊥−→ s0
⊥−→ s3

β−→ s4
η−→ s5

⊥−→ s4.

The mi in the definition above represent a digitization of the sojourn times t(κi ) such that
miδ ≤ t(κi ) < (mi+1)δ. These digitized times are incorporated into the digitization of a
path by taking the self-loop at state si ∈ MS mi times. We also refer to the paths of Mδ as
digital paths (of M). The number |π̄ |ds of digitization steps of a digital path π̄ is the number
of transitions emerging from Markovian states, i.e., |π̄ |ds = |{i < |π̄ | | π̄[i] ∈ MS}|. One
digitization step represents the elapse of at most δ time units—either by staying at some
s ∈ MS for δ time or by leaving s within δ time. The number |di(π)|ds multiplied with δ

yields an estimate for the duration T(π). A digital path π̄ can be interpreted as representation
of the set of paths of M whose digitization is π̄ .
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Definition 13 (Induced paths of a digital path) The set of induced paths of a (finite or infinite)
digital path π̄ of Mδ is

[π̄] = di−1(π̄) = {π ∈ FPathsM ∪ IPathsM | di(π) = π̄}.
For sets of digital paths Π we define the induced paths [Π] = ⋃

π̄∈Π [π̄]. To relate timed
reachability probabilities forM under scheduler σ ∈ GMM with digitization step-bounded
reachability probabilities for Mδ , relating σ to a scheduler for Mδ is necessary.

Definition 14 (Digitization of a scheduler) The digitization of σ ∈ GMM is given by
di(σ ) ∈ TAMδ such that for any π̄ ∈ FPathsMδ with last(π̄) ∈ PS

di(σ )(π̄, α) =
⎧
⎨

⎩

∫

π∈[π̄]
σ(π, α) dPrMσ (π | [π̄]) if PrMσ ([π̄ ]) > 0

1 / |Act(last(π̄))| otherwise.

The digitization di(σ ) is similar to the time-abstraction ta(σ ) as both schedulers get a path
with restricted timing information as input and mimic the choice of σ . However, while
ta(σ ) receives no information regarding sojourn times, di(σ ) receives the digital estimate.
Intuitively, di(σ )(π̄, α) considers σ(π, α) for each π ∈ [π̄], weighted with the probability
that the sojourn times of a path in [π̄ ] are as given by π . The restriction last(π̄) ∈ PS asserts
that π̄ does not end with a self-loop on a Markovian state, implying [π̄ ] �= ∅.
Example 10 Let MA M in Fig. 2a and δ = 0.4. Again, σ ∈ GMM chooses α at state s3 iff

the sojourn time at s0 is at most one. Consider the digital paths π̄m = (s0
⊥−→)ms0

⊥−→ s3. For

π ∈ [π̄1] = {s0 t−→ s3 | 0.4 ≤ t < 0.8} we have σ(π, α) = 1. It follows di(σ )(π1, α) = 1.

For π ∈ [π̄2] = {s0 t−→ s3 | 0.8 ≤ t < 1.2} it is unclear whether σ chooses α or β. Hence,
di(σ ) randomly guesses:

di(σ )(π̄2, α) =
∫

π∈[π̄2]
σ(π, α) dPrMσ (π | [π̄2]) =

∫ 1.0
0.8 E(s0)e−E(s0)t dt
∫ 1.2
0.8 E(s0)e−E(s0)t dt

≈ 0.55 .

On Mδ we consider ds-bounded reachability instead of timed reachability.

Definition 15 (ds-bounded reachability) The set of infinite digital paths that reach G ⊆ S
within the interval J ⊆ N of consecutive natural numbers is

♦J
dsG = {π̄ ∈ IPathsMδ | ∃n ≥ 0 : π̄ [n] ∈ G and |pref (π̄, n)|ds ∈ J }.

The timed reachability probabilities forM are estimated by ds-bounded reachability proba-
bilities forMδ . The induced ds-bounded reachability probability forM (under σ ) coincides
with ds-bounded reachability probability on Mδ (under di(σ )).

Proposition 4 Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ . Further, let
J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ )(♦
J
dsG).

Beforewe prove this proposition, we need to aggregate paths which differ a bit in their timing.
Let M = (S,Act,→, s0, (ρ1,. . ., ρ�)) be an MA and let Mδ be the digitization of M with
respect to some δ ∈ R>0. We consider the infinite paths ofM that are represented by a finite
digital path.
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Definition 16 (Induced cylinder of a digital path) Given a digital path π̄ ∈ FPathsMδ of MA
M, the induced cylinder of π̄ is given by

[π̄ ]cyl = {π ∈ IPathsM | π̄ is a prefix of di(π)}.

Recall the definition of the cylinder of a set of finite paths (cf. Sect. 2.2.1). If π̄ ∈ FPathsMδ

does not end with a self-loop at a Markovian state, then [π̄]cyl = Cyl([π̄ ]) holds.

Example 11 Let M and Mδ be as in Fig. 2. We consider the path π̄1 = s0
⊥−→ s0

⊥−→ s0
⊥−→

s3
β−→ s4 and digitization constant δ = 0.4. The set [π̄1]cyl contains each infinite path whose

digitization has the prefix π̄1, i.e.,

[π̄1]cyl = {s0 t−→ s3
β−→ s4

κ−→ · · · ∈ IPathsM | 0.8 ≤ t < 1.2}.
We observe that these are exactly the paths that have a prefix in [π̄1]. Put differently, we have
[π̄1]cyl = Cyl([π̄1]).

Next, consider the digital path π̄2 = s0
⊥−→ s0

⊥−→ s0. Note that there is no path π ∈
FPathsM with di(π) = π̄2, implying [π̄2] = ∅. Intuitively, π̄2 depicts a sojourn time at
last(π̄2) but finite paths of MAs do not depict sojourn times at their last state. On the other
hand, the induced cylinder of π̄2 contains all paths that sojourn at least 2δ time units at s0,
i.e.,

[π̄2]cyl = {s0 t−→ s1
κ−→ · · · ∈ IPathsM | t ≥ 0.8}.

The schedulers σ and di(σ ) induce the same probabilities for a given digital path. This is
formalized by the following lemma. Note that a similar statement for ta(σ ) and time-abstract
paths was shown in Lemma 1.

Lemma 4 Let M be an MA with scheduler σ ∈ GM, digitization Mδ , and digital path
π̄ ∈ FPathsMδ . It holds that

PrMσ ([π̄ ]cyl) = PrMδ

di(σ )(π̄).

The proof is included in App. C.1. To show Proposition 4, we now apply Lemma 4. The
idea of the proof is similar to the proof of Proposition 2 conducted on page 14. We include
a formal proof in App. C.2.

4.3.2 Timed reachability via digitization

Thus, induced ds-bounded reachability on MAs can be computed on their digitization. Next,
we relate ds-bounded and timed reachability on MAs, i.e., we quantify the maximum differ-
ence between time-bounded and ds-bounded reachability probabilities.

The notation |π̄ |ds for paths π̄ ofMδ is also applied to paths ofM, where |π |ds = |di(π)|ds
for any π ∈ FPathsM. Intuitively, one digitization step represents the elapse of at most δ

time units. Consequently, the duration of a path with k ∈ N digitization steps is at most kδ.

Lemma 5 For a path π ∈ FPathsM and digitization constant δ it holds that

T(π) ≤ |π |ds · δ .
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(b) Sample paths of M.

Fig. 4 MA M and illustration of paths of M (cf. Example 12)

Proof Let π = s0
κ0−→ . . .

κn−1−−→ sn and let mi = max{m ∈ N | mδ ≤ t(κi )} for each
i ∈ {0, . . . , n−1} (as in Definition 12). The number |π |ds is given by∑0≤i<n, si∈MS(mi +1).
With t(κi ) ≤ (mi + 1)δ it follows that

T(π) =
∑

0≤i<n
si∈MS

t(κi ) ≤
∑

0≤i<n
si∈MS

(mi + 1)δ = |π |ds · δ .

��
For a path π and t ∈ R≥0, the prefix of π up to time point t is given by prefT (π, t) =

pref (π,max{n | T(pref (π, n)) ≤ t}). Observe that the digitization approach yields an
inaccurate estimate of the actual time. This inaccuracy is the probability that more than
k ∈ N digitization steps have been performed within kδ time units.

Definition 17 (Digitization step bounded paths) Assume an MA M and a digitization con-
stant δ ∈ R>0. For some t ∈ R≥0, k ∈ N, and � ∈ {<,≤,>,≥} the set of paths whose
prefix up to time point t has � k digitization steps is defined as

#[t]�k = {π ∈ IPathsM | |prefT (π, t)|ds � k}.

Example 12 LetM be theMA given in Fig. 4a. We consider the set #[5δ]≤5. The digitization
constant δ remains unspecified in this example. Fig. 4b illustrates paths π1, π2, and π3 of
M. We depict sojourn times by arrow length. For instance, the path π1 corresponds to

s0
2.5δ−−→ s0

1.8δ−−→ s1
1.7δ−−→ · · · ∈ IPathsM. Digitization steps that are “earned” by sojourning

at some state for a multiple of δ time units are indicated by black dots. Transitions of πi

(where i ∈ {1, 2, 3}) that do not belong to prefT (πi , 5δ) are depicted in gray. We obtain

|prefT (π1, 5δ)|ds = 5 �⇒ π1 ∈ #[5δ]≤5

|prefT (π2, 5δ)|ds = 4 �⇒ π2 ∈ #[5δ]≤5

|prefT (π3, 5δ)|ds = 7 �⇒ π3 /∈ #[5δ]≤5 .

Note that only the digitization steps of the prefix up to time point 5δ are considered. For
example, the step of π2 at time point 4.5δ is not considered since the corresponding transition
is not part of prefT (π2, 5δ). However, we have |prefT (π2, 5.5δ)|ds = 6, implying π2 /∈
#[5.5δ]≤5.

All considered paths reach G = {s1}within 5δ time units but π3 ∈ #[5δ]>5 requires more
than 5 digitization steps. This yields

π1, π2 ∈ ♦I G ∩ [♦di(I )
ds G] and π3 ∈ ♦I G\[♦di(I )

ds G].
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♦IG \ [♦di(I)
ds G] [♦di(I)

ds G] \ ♦IG♦IG ∩ [♦di(I)
ds G]

[♦di(I)
ds G]♦IG

Fig. 5 Illustration of the sets ♦I G and [♦di(I )
ds G]

The sets ♦I G and [♦di(I )
ds G] are illustrated in Fig. 5. We have

Prσ (♦I G) = Prσ ([♦di(I )
ds G]) + Prσ (♦I G\[♦di(I )

ds G]) − Prσ ([♦di(I )
ds G]\♦I G).

One then shows

PrMσ (♦I G\[♦di(I )
ds G]) ≤ ε↑(I ) and PrMσ ([♦di(I )

ds G]\♦I G) ≤ ε↓(I ).

for adequate error bounds ε↑(I ), ε↓(I ). In particular, the following lemma gives an upper
bound for the probability PrMσ (#[kδ]>k), i.e., the probability thatmore than k ∈ Ndigitization
steps have been performed within kδ time units. Then, this probability can be related to the
probability of paths in ♦I G\[♦di(I )

ds G] and [♦di(I )
ds G]\♦I G, respectively.

Lemma 6 Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) | s ∈ MS}.
Further, let δ ∈ R>0 and k ∈ N. It holds that

PrMσ (#[kδ]>k) ≤ 1− (1+ λδ)k · e−λδk

For the proof of Lemma 6 we employ the following auxiliary lemma.

Lemma 7 Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) | s ∈ MS}. For
each δ ∈ R>0, k ∈ N, and t ∈ R≥0 it holds that

PrMσ (#[kδ + t]≤k) ≥ PrMσ (#[kδ]≤k) · e−λt .

Proofs for both lemmas are given in App. C.3.
We have now obtained all necessary insights to bound PrMσ (♦IG ) from above and below,

using the digitized steps and the following error bounds. Let λ = max{E(s) | s ∈ MS} be
the maximum exit rate of M. For a �= 0 define

ε↓([a, b]) = ε↓([a,∞)) = 1− (1+ λδ)dia · e−λa , ε↓([0, b)) = ε↓([0,∞]) = 0,

ε↑([a, b]) = 1− (1+ λδ)dib · e−λb
︸ ︷︷ ︸

=ε↑([0,b])
+ 1− e−λδ

︸ ︷︷ ︸
=ε↑([a,∞))

, and ε↑([0,∞)) = 0.

ε↓(I ) and ε↑(I ) approach 0 for small digitization constants δ ∈ R>0.

Proposition 5 For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization constant
δ ∈ R>0 and time interval I

PrMσ (♦IG ) ∈ PrMσ ([♦I
dsG]) +

[
−ε↓(I ), ε↑(I )

]
.

Proof We already discussed that
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Prσ (♦I G) = Prσ ([♦di(I )
ds G]) + Prσ (♦I G\[♦di(I )

ds G]) − Prσ ([♦di(I )
ds G]\♦I G).

The main part of the proof is to show that

PrMσ ([♦di(I )
ds G]\♦I G) ≤ ε↓(I ) and PrMσ (♦I G\[♦di(I )

ds G]) ≤ ε↑(I ). (3)

Then, the proposition follows directly. We show Equation 3 for the different forms of the
time interval I . Here, we consider intervals of the form I = [0, b]. Recall that by assumption
b = dib · δ. For the other forms, we refer to App. C.4.

We have di(I ) = {0, 1, . . . , dib}.
– We show that [♦di(I )

ds G] ⊆ ♦I G which implies

PrMσ ([♦di(I )
ds G]\♦I G) = PrMσ (∅) = 0 = ε↓(I ).

Let π ∈ [♦di(I )
ds G] and let π ′ be the smallest prefix of π with last(π ′) ∈ G. It follows that

di(π ′) is also the smallest prefix of di(π) with last(di(π ′)) ∈ G. Since di(π) ∈ ♦di(I )
ds G,

it follows that |π ′|ds = |di(π ′)|ds ≤ dib. From Lemma 5 we obtain

T(π ′) ≤ |π ′|ds · δ = |di(π ′)|ds · δ ≤ dibδ = b .

Hence, the prefix π ′ reaches G within b time units, implying π ∈ ♦I G.
– Next, we show ♦I G\[♦di(I )

ds G] ⊆ #[b]>dib . With Lemma 6 we obtain

PrMσ (♦I G\[♦di(I )
ds G]) ≤ PrMσ (#[b]>dib ) ≤ 1− (1+ λδ)dib · e−λb = ε↑(I )

Consider a path π ∈ ♦I G\[♦di(I )
ds G]. Note that π reaches G within b time units but

with more than dib digitization steps. Hence, the prefix of π up to time point b certainly
has more than dib digitization steps, i.e., π satisfies |prefT (π, b)|ds > dib which means
π ∈ #[b]>dib .

��
From Prop. 4 and Prop. 5, we immediately have Cor. 1, which ensures that the value

PrMσ (♦IG ) can be approximated with arbitrary precision by computing PrMδ

di(σ )(♦
di(I )
ds G) for

a sufficiently small δ.

Corollary 1 ForMAM, schedulerσ ∈ GM,goal statesG ⊆ S, digitization constant δ ∈ R>0

and time interval I

PrMσ (♦IG ) ∈ PrMδ

di(σ )(♦
di(I )
ds G) +

[
−ε↓(I ), ε↑(I )

]
.

Corollary 1 generalizes existing results from single-objective timed reachability analysis:
For MA M, goal states G, time bound b ∈ R>0, and digitization constant δ ∈ R>0 with
b
δ
= dib ∈ N, [30, Theorem 5.3] states that

sup
σ∈GMM

PrMσ (♦[0,b]G ) ∈ sup
σ∈TAMδ

PrMδ
σ (♦{0,...,dib}

ds G) +
[
−ε↓([0, b]), ε↑([0, b])

]
.

Corollary 1 generalizes this result by explicitly referring to the schedulers σ ∈ GMM and
di(σ ) ∈ TAMδ under which the claim holds. This extension is necessary as a multi-objective
analysis can not be restricted to schedulers that only optimize a single objective. More details
are given in App. D.

Next, we lift Cor. 1 to multiple objectives O = (O1, . . . , Od). We define the satisfaction
of a timed reachability objective P(♦IG ) for the digitization Mδ as Mδ, σ |� P(♦IG ) �i
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(c) Refined approximation.

Fig. 6 Approximation of achievable points

pi iff PrMδ
σ (♦di(I )

ds G) �i pi . This allows us to consider notations like achieveMδ (O � p),
where O contains one or more timed reachability objectives. For a point p = (p1, . . . , pd) ∈
R
d we consider the hyperrectangle

ε(O,p) =
d×

i=1

[
pi − ε

↓
i , pi + ε

↑
i

] ⊆ R
d , where ε

↑
i =

{
ε↑(I ) if Oi = P(♦IG )

0 if Oi = E(# j,G ).

and ε
↓
i is defined similarly. The next example shows how the set of achievable points of M

can be approximated using achievable points of Mδ .

Example 13 Let O = (P(♦I1G1), P(♦I2G2)) be two timed reachability objectives for an
MA M with digitization Mδ such that ε

↓
1 = 0.13, ε↑1 = 0.22, ε↓2 = 0.07, and ε

↑
2 = 0.15.

The blue rectangle in Fig. 6a illustrates the set ε(O,p) for the point p = (0.4, 0.3). Assume
achieveMδ (O � p) holds for threshold relations � = {≥,≥}, i.e., p is achievable for the
digitization Mδ . From Cor. 1, we infer that ε(O,p) contains at least one point p′ that is
achievable for M. Hence, the bottom left corner point of the rectangle is achievable for M.
This holds for any rectangle ε(O,q) with q ∈ A, where A is the set of achievable points
of Mδ denoted by the gray area3 in Fig. 6b. It follows that any point in A− (depicted by
the green area) is achievable for M. On the other hand, an achievable point of M has to be
contained in a set ε(O,q) for at least one q ∈ A. The red area depicts the points R

d\A+ for
which this is not the case, i.e., points that are not achievable forM. The digitization constant
δ controls the accuracy of the resulting approximation. Figure 6c depicts a possible result
when a smaller digitization constant δ̃ < δ is considered.

The observations from the example above are formalized in the following theorem. The
theorem also covers unbounded reachability objectives by considering the time interval
I = [0,∞). For expected reward objectives of the form E(# j,G ) it can be shown that
ERM

σ (ρ j ,G ) = ERMδ

di(σ )(ρ
δ
j ,G ). This claim is similar to Proposition 3 and can be shown

analogously. This enables multi-objective model checking of MAs with timed reachability
objectives.

Theorem 5 Let M be an MA with digitization Mδ . Furthermore, let O be (un)timed reach-
ability or expected reward objectives with threshold relations � and |O| = d. It holds that
A− ⊆ {p ∈ R

d | achieveM(O � p)} ⊆ A+ with:

A− = {p′ ∈ R
d | ∀p ∈ R

d : p′ ∈ ε(O, p) implies achieveMδ (O � p)} and
A+ = {p′ ∈ R

d | ∃p ∈ R
d : p′ ∈ ε(O, p) and achieveMδ (O � p)}.

3 In the figure, A− partly overlaps A, i.e., the green area also belongs to A.
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Fig. 7 Illustration of the Pareto curve approximation algorithm (cf. Example 14)

Proof For simplicity, we assume that only the threshold relation≥ is considered, i.e.,� = (≥
, . . . ,≥). Furthermore,we restrict ourself to (un)timed reachability objectives. The remaining
cases are treated analogously.

First assume a point p′ = (p′1, . . . , p′d) ∈ A−. Consider the point p = (p1, . . . , pd)

satisfying p′i = pi − ε
↓
i for each index i . It follows that p′ ∈ ε(O,p) and thus Mδ, σ̄ |�

O � p for some scheduler σ̄ ∈ TAMδ . Consider the scheduler σ ∈ GMM given by
σ(π, α) = σ̄ (di(π), α) for each path π ∈ FPathsM and action α ∈ Act. Notice that
σ̄ = di(σ ). For an index i let Oi be the objective P(♦IG ). It follows that

Mδ, σ̄ |� Oi ≥ pi ⇐⇒ Mδ, di(σ ) |� Oi ≥ pi ⇐⇒ PrMδ

di(σ )(♦
di(I )
ds G) ≥ pi ,

With Corollary 1 it follows that

p′i = pi − ε
↓
i ≤ PrMδ

di(σ )(♦
di(I )
ds G) − ε

↓
i

Cor .1≤ PrMσ (♦IG ).

As this observation holds for all objectives in O, it follows that M, σ |� O � p′, implying
achieveM(O � p′).

The proof of the second inclusion is similar. Assume that M, σ |� O � p′ holds for
a point p′ = (p′1, . . . , p′d) ∈ R

d and a scheduler σ ∈ GMM. For some index i , consider
Oi = P(♦IG ). It follows that PrMσ (♦IG ) ≥ p′i . With Corollary 1 we obtain

p′i − ε
↑
i ≤ PrMσ (♦IG ) − ε

↑
i

Cor .1≤ PrMδ

di(σ )(♦
di(I )
ds G).

Applying this for all objectives in O yields Mδ, di(σ ) |� O � p, where the point p =
(p1, . . . , pd) ∈ R

d satisfies pi = p′i − ε
↑
i or, equivalently, p′i = pi + ε

↑
i for each index i .

Note that p′ ∈ ε(O,p) which implies p′ ∈ A+. ��

5 Computation of Pareto curves

We have seen that we can reduce the analysis of multiple objectives onMA tomulti-objective
MDPs to compute the achievable points of the underlying MDPMD or a digitizationMδ of
MAM. To analyze theMDPs, we adapt the approach of [28]. In this section, we briefly recap
that approach and report on the necessary changes. The approach repeatedly checks weighted
combinations of the objectives (by means of value iteration [43]—a standard technique in
single-objective MDP model checking) to refine an approximation of the set of achievable
points. The following example demonstrates this idea for two objectives.
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Example 14 Consider an MDP D = (S,Act,P, s0, (ρ1, . . . , ρ�)) with two objectives O =
(O1, O2) and relations� = {≥,≥}. The approach of [28] iteratively considersweight vectors
w = (w1, w2) ∈ (R≥0)

2 with w �= (0, 0) that assign a weight wi ≥ 0 to each objective Oi .
Optimizing a combination of the weighted objectives (see Def. 18) yields a point q ∈ R

2

such that

– q is achievable and
– all achievable points of D are contained in the half-space H = {p ∈ R

2 | p ·w ≤ q ·w}.
Since q is achievable, any point in the set down({q}) = {p ∈ R

2 | p ≤ q} depicted by the
green area of Fig. 7a is achievable as well. On the contrary, there is no achievable point in
R
2\H , illustrated by the red area. For the points in the white area, it is still unknown whether

they are achievable or not. The set of achievable points of D is explored by combining the
results for multiple weight-vectors as indicated in Fig. 7b.

The sketched approach theoretically converges to an exact representation of the set of achiev-
able points, but the number of required calls to value iteration can be exponential in the size
of the MDP and the number of objectives [28]. However, experiments in [28] and in Sect. 6
of this work indicate that, in practice, only a small number of weight vectors need to be
considered in order to obtain “good” approximations.

We extend [28] towards

– the simultaneous analysis of minimizing and maximizing expected reward objectives,
and

– the analysis of ds-bounded reachability objectives.

These extensions only concern the computation of optimal points. The remaining aspects
of the approach are as in [28]. We first restrict our attention to maximizing expected total
reward objectives, i.e., expected reward objectives of the form E(# j,G ) with G = ∅.

Definition 18 (Optimal Scheduler, Optimal Point) Let D be an MDP and let O =
(E(# j1,∅), . . . , E(# jd ,∅)) be expected total reward objectives with threshold relations
� = (�1, . . . ,�d) and �i ∈ {≥,>}. A scheduler σ ∈ TA is called optimal for a weight
vector w = (w1, . . . , wd) ∈ R

d≥0\{0} iff

σ ∈ arg max
σ ′∈TA

( d∑

i=0

wi · ERD
σ ′(ρ ji ,∅)

)
.

A point p = (p1, . . . , pd) ∈ R
d is optimal for w iff pi = ERD

σ (ρ ji ,∅) for all i and optimal
σ .

The computation of optimal points for a weighted sum of expected total reward objectives
with thresholds �i ∈ {≥,>} is detailed in [28]. The idea is to use value iteration [43] to
compute an optimal scheduler σopt for the maximal expected reward maxσ∈TA ERD

σ (ρw,∅)

with the weighted reward function ρw given by ρw(s, α) = ∑d
i=1 wi · ρ ji (s, α) for each

s ∈ S and α ∈ Act. Evaluating the individual objectives with respect to σopt yields the entries
of an optimal point p = (p1, . . . , pd), i.e., pi = ERD

σopt
(ρ ji ,∅) for all i . In general, we might

have pi = ∞ and thus p /∈ R
d . In this case, the sketched approach is not applicable. We

therefore impose some assumptions.
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Assumptions on reward finiteness For maximizing objectives E(# ji ,∅) with �i ∈ {≥,>}
we assume maxσ∈TA ERD

σ (ρ ji ,∅) < ∞—following the suggestions of [28,29]. Note that
if a scheduler σ∞ with ERD

σ∞(ρ ji ,∅) = ∞ exists, we can also construct schedulers σ with
ERD

σ (ρ ji ,∅) = ∞ that mimic σ∞ with an arbitrarily small (but non-zero) probability and
otherwise focus on the remaining objectives. We further assume that there is at least one
scheduler σ inducing ERD

σ (ρ ji ,∅) < ∞ for all minimizing objectives E(# ji ,∅) with �i ∈
{≤,<}. If this is not the case, there is no achievable point p ∈ R

d at all. These assumptions
can be checked algorithmically via a graph analysis.

Remark 2 (Reachability and (general) expected reward objectives) A transformation of
untimed reachability objectivesP(♦G ) to expected total reward objectives is given in [28,29].
Roughly, the state space of the MDP is unfolded, yielding two copies of each state. Transi-
tions leading to a state in G are redirected to the second copy, allowing us to store whether
a state in G has already been visited. A reward of 1 is collected whenever a goal state is
visited for the first time, i.e., when we move from the first copy to the second one. A similar
unfolding technique can be applied to transform expected reward objectives E(# j,G ) with
G �= ∅ to total reward objectives. This approach increases the number of considered states
by a factor of up to 2d , where d is the number of objectives.

5.1 Treatment of minimizing objectives

We now consider expected total reward objectives with arbitrary threshold relations. Let
D = (S,Act,P, s0, (ρ1, . . . , ρ�)) be an MDP and let O = (E(# j1,∅), . . . , E(# jd ,∅)) be
expected total reward objectives with threshold relations� = (�1, . . . ,�d). Without loss of
generality, let each objective consider a different reward function, i.e., the indices j1, . . . , jd
are pairwise distinct.We further simplify the notations by assuming ji = i for i ∈ {1, . . . , d},
i.e. the i-th objective considers reward function ρi . We proceed in three steps:

1. Convert all minimizing objectives E(# ji ,∅) with �i ∈ {≤,<} to maximizing objectives,
potentially introducing negative rewards.

2. Compute an optimal scheduler for the maximal expected reward for a weighted reward
function that considers positive- and negative rewards.

3. Lift further reward finiteness assumptions imposed in Step 2.

5.1.1 Fromminimizing to maximizing objectives

We convert minimizing objectives E(#i,∅) with �i ∈ {≤,<} to maximizing objectives by
negating the considered rewards, and thereby deviate from our definition of MDPs from
Sect. 2 by allowing negative rewards.

More precisely, we consider the reward functions ρ1, . . . , ρd : S×Act → R and relations
� = (�1, . . . ,�d), where for i ∈ {1, . . . , d}, s ∈ S, and α ∈ Act:

ρi (s, α) =
{
−ρi (s, α) if �i ∈ {≤,<}
ρi (s, α) otherwise

and �i =

⎧
⎪⎨

⎪⎩

≥ if �i = ≤
> if �i = <

�i otherwise.

Let D = (S,Act,P, s0, (ρ1, . . . , ρd)). For each scheduler σ for D (and D), i ∈ {1, . . . , d},
and pi ∈ R we have

ERD
σ (ρi ,∅) ≤ pi ⇐⇒ −ERD

σ (ρi ,∅) ≥ −pi ⇐⇒ ERD
σ (ρi ,∅) ≥ −pi .
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Lifting to multiple objectives yields for all p = (p1, . . . , pd) ∈ R
d :

achieveD(O � p) ⇐⇒ achieveD(O � p),

where p = (p1, . . . , pd) with pi = −pi if �i ∈ {≤,<} and otherwise pi = pi .
We can thus compute (or approximate) the set of achievable points for D and � instead

of D and �. More concretely, we employ the approach of [28] to approximate the set {p ∈
R
d | achieveD(O � p)} where only maximizing objectives are considered. The result for D

and � can then be obtained by a simple transformation, essentially multiplying entries of
minimizing objectives by −1.

5.1.2 Mixtures of positive and negative rewards

As mentioned above, the approach of [28] requires to repeatedly compute an optimal sched-
uler for weighted reward functions. Considering the MDPD = (S,Act,P, s0, (ρ1, . . . , ρd))

from above results in some technical complications due to the presence of positive and neg-
ative rewards.

For simplicity, we further strengthen our assumptions on reward finiteness by assuming
that all induced expected rewards are finite, i.e., ERD

σ (ρi ,∅) /∈ {−∞,∞} for all σ ∈ TA
and i ∈ {1, . . . , d}. The next section discusses how this assumption can be lifted again.

For a weight vector w = (w1, . . . , wd) ∈ R
d≥0\{0} we consider the weighted reward

function ρw given by ρw(s, α) = ∑d
i=1 wi · ρi (s, α) for s ∈ S and α ∈ Act and let Dw =

(S,Act,P, s0, (ρw)) denote the MDP which arises fromD by replacing the reward functions
(ρ1, . . . , ρd) by ρw. Our goal in this section is to compute an optimal scheduler for w (cf.
Def. 18), i.e., a scheduler σopt ∈ arg max

σ∈TA
ERDw

σ (ρw,∅) inducing the maximal expected total

reward for ρw. Since ρw considers both, positive- and negative rewards, conventional value
iteration as considered in [28] yields incorrect results.

Example 15 Consider theMDPDw with the weighted reward function ρw depicted in Fig. 8a.
Action rewards are depicted next to the action label, e.g., ρw(s0, α) = 2. The maximal
expected total reward is obtained for a scheduler σopt that always chooses action α, yielding
ERσopt

(ρw,∅) = 2− 1 = 1.
On the other hand, value iteration as suggested in [28, Alg. 2] yields a value of 2 and a

suboptimal scheduler σ with σ(s0) = β. Roughly speaking, this is because value iteration
computes the expected reward accumulated within n steps for an increasing value of n.
However, for the example MDP, this step-bounded expected reward does not converge to the
unbounded expected total reward: For a given step-bound n, an optimal scheduler can avoid
to collect the reward ρw(s1, α) = −1 by taking the β-self-loop at s0 n − 1 times and then
taking the α-transition to s1 only in the very last step.

In the example, the problem is introduced by the action β at state s0. This action allows a
scheduler to stay at s0 arbitrarily long without collecting any reward. We refer to such model
components as 0-EC.

Definition 19 (End Component, 0-EC) A non-empty set of state-action pairs E ⊆ S×Act is
an end component (EC) of Dw if

1. ∀(s, α) ∈ E: P(s, α, s′) > 0 implies s′ ∈ states(E) = {s̃ | ∃(s̃, α̃) ∈ E} and
2. the graph

(
states(E),

{
(s, s′) | ∃(s, α) ∈ E: P(s, α, s′) > 0

})
is strongly connected.
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s0 s1 s2
α | 2 1

β 1
α | −1 1

α 1

(a) MDP Dw with reward function ρw.

sE1
?

s1 sE2
?

sE1
! sE2

!

α | 2 1

α!

1

α | −1 1

α!

1

α!

1 α!

1

(b) 0-EC quotient Dw
\0-EC.

Fig. 8 MDPwhere value iteration yields wrong results and the corresponding 0-EC quotient (cf. Examples 15
to 17)

An EC E is a 0-EC w.r.t. reward function ρw if ρw(s, α) = 0 for all (s, α) ∈ E . A (0-)EC E
is maximal, if there is no other (0-)EC E ′ with E � E ′.

Example 16 TheMDPDw in Fig. 8a has twomaximal 0-ECw.r.t. the depicted reward function
ρw: E1 = {(s0, β)} and E2 = {(s2, α)}.

The set of all maximal ECs of an MDP can be computed efficiently [17]. The set of
maximal 0-ECs can be obtained by computing the maximal ECs of a modified MDP in
which all transitions incurring non-zero reward are erased. However, in this particular case
we know that all ECs (reachable from s0) actually are 0-ECs: If an EC is not a 0-EC, we
could construct a scheduler inducing infinite reward for at least one objective which violates
our assumption that all induced expected rewards are finite.

For an EC E we define states(E) := {s ∈ S | ∃α ∈ Act(s) : (s, α) ∈ E} and
exits(E):={(s, α) ∈ S × Act | s ∈ states(E), α ∈ Act(s), and (s, α) /∈ E}.

Intuitively, once a maximal 0-EC E is reached, a scheduler can choose to stay within the
states of E for arbitrary many steps by only picking actions α at states s ∈ states(E) with
(s, α) ∈ E . Since ECs are strongly connected, it is possible to reach any state s ∈ states(E)

almost surely. At some point, the scheduler may decide to leave the EC by choosing an exiting
state-action pair (s, α) ∈ exits(E). Although this decision could be delayed for arbitrary
many steps, such a delay has no effect on the induced expected total reward since no reward
is accumulated in 0-ECs.

Our approach is to replace each maximal 0-EC E ofDw by a state sE? in which a scheduler
immediately has to choose either an exiting state-action pair (s, α) ∈ exits(E) or an action α!,
indicating that the EC should never be left. This procedure coincides with the computation
of EC quotients in, e.g., [3,4,21,32].

Definition 20 (0-EC Quotient) The 0-EC quotient of Dw w.r.t. reward function ρw is the
MDP Dw\0-EC = (S′,Act′,P′, s0′, (ρ′

w)) obtained by applying the following steps on Dw for
every maximal 0-EC E :
1. Add two new states sE? and sE! and remove all states from states(E).
2. Add a new action αs for each (s, α) ∈ exits(E).
3. Redirect the target of transitions that enter the states in states(E) to sE? , i.e., P

′(s, α, sE? ) =∑
s′∈states(E) P(s, α, s′) for every (s, α) ∈ (S × Act)\E .

4. Redirect the origin of transitions that exit the states in states(E) to sE? , i.e., P
′(sE? , αs, s′) =

P(s, α, s′) for every (s, α) ∈ exits(E).
5. Add a new action α! and set P(s, α!, sE! ) = 1 for s ∈ {sE? , sE! }.
6. Restrict the reward function ρw to the remaining state-action pairs and set ρ′

w(sE? , α!) =
ρ′
w(sE! , α!) = 0 and ρ′

w(sE? , αs) = ρw(s, α) for all (s, α) ∈ exits(E).
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Example 17 Fig. 8b depicts the 0-EC quotient of theMDP in Fig. 8a w.r.t. the depicted reward
function ρw.

Considering the 0-EC quotient Dw\0-EC = (S′,Act′,P′, s0′, (ρ′
w)) instead of Dw preserves

maximal expected total rewards, i.e.,

max
σ∈TADw

ERDw

σ (ρw,∅) = max
σ ′∈TADw\0-EC

ER
Dw\0-EC
σ ′ (ρ′

w,∅).

Moreover, we can transform any scheduler σ ′ for Dw\0-EC to a scheduler σ for Dw with the

same expected reward, i.e., ERDw

σ (ρw,∅) = ER
Dw\0-EC
σ ′ (ρ′

w,∅). In particular, if σ ′ chooses an
actionαs at a state sE? , σ canmimic this by choosingα at state s ∈ states(E) and enforcing that
s is reached almost surely from any other state s′ ∈ states(E)\{s} of the 0-EC E . Similarly, if
σ ′ chooses α! at sE? , σ can mimic this by only picking actions α at states s ∈ states(E) with
(s, α) ∈ E . We refer to [4,21] for more details on the correctness of this construction.

Since there are no more ECs inDw\0-EC (other than the 0-ECs of the form {(sE! , α!)} which
can not be left), it can be shown that the value iteration algorithm on Dw\0-EC approaches the
correct expected total rewards [4,6].

5.1.3 Negative infinite rewards

We now lift our strengthened reward finiteness assumptions from the previous section (but
still impose the assumptions mentioned on page 29). More precisely, we now allow that
ERD

σ∞(ρi ,∅) = −∞ for some i ∈ {1, . . . , d} with �i ∈ {≤,<} and some scheduler σ∞.
Observe that such a scheduler does not achieve any point p ∈ R

d and can thus be excluded
from the analysis. Thus, for the computation of {p ∈ R

d | achieveD(O � p)} it suffices to
restrict the analysis to schedulers in {σ ∈ TA | ∀i ∈ {1, . . . , d} : ERD

σ (ρi ,∅) �= −∞}. Our
assumptions for reward finiteness imply that this set is not empty.

If the considered weight vector w = (w1, . . . , wd) satisfies wi > 0 for all i ∈ {0, . . . , d},
our approach from the previous section can be applied without further modifications: If
ERD

σ∞(ρi ,∅) = −∞ for some i ∈ {1, . . . , d} and some scheduler σ∞, we also have

ERDw

σ∞ (ρw,∅) = −∞ < maxσ∈TA ERDw

σ (ρw,∅).
However, if wi = 0 for some i ∈ {0, . . . , d}, there might be a 0-EC w.r.t. ρw that is not a

0-EC w.r.t. ρi . This is because the rewards of ρi are not considered in the weighted reward
function ρw. As a consequence, a scheduler forDw\0-EC as defined above might choose action

α! at a state sE? for an EC E that is not a 0-EC w.r.t. ρi . Transforming such a scheduler back
to D can then induce an expected total reward of −∞ w.r.t. ρi . We exclude such schedulers
during the computations by tweaking the elimination of 0-ECs in Def. 20: The action α! is
only inserted (Step 5) if there is a scheduler for D that stays in the given EC forever and that
yields finite expected reward for all individual objectives.

5.2 ds-bounded reachability

We generalize reachability objectives from Def. 6 to ds-bounded reachability objectives of
the form P(♦J

dsG) which concern ds-bounded reachability probabilities (cf. Def. 15). As
explained in Sect. 4.3, multi-objective queries for MA considering timed reachability objec-
tives can be approximated by checking ds-bounded reachability objectives on a digitization
of the MA. This section extends the approach of [28] to process such objectives.

123



Formal Methods in System Design (2022) 60:33–86 63

Assume the digitization Mδ = (S,Act,Pδ, s0, (ρδ
1, . . . , ρ

δ
� )) of an MA M w.r.t. δ > 0

and ds-bounded reachability objectives P(♦≤k1
ds G1), . . . , P(♦≤kd

ds Gd). Other digitization step
bounds (e.g. lower step bounds) are treated similarly. We further denote by MS ⊆ S the
set of states of Mδ that represent the Markovian states of the initially considered MA. We
present a transformation from ds-bounded reachability objectives to untimed reachability
objectives. The idea is to store the number of visited Markovian states in the state space.
Upon reaching a state in Gi , this information allows us to distinguish the cases where the
step bound ki has been exceeded or not. The procedure is based on the idea of [35, Algorithm
1] for single-objective MA.

For the largest occurring step bound kmax = maxi ki let D be the MDP consisting of
kmax + 2 copies ofMδ such that transitions to states s′ ∈ MS are redirected to the next copy.
Formally, D = (S × {0, . . . , kmax + 1},Act,P, (s0, kinit), {ρ1, . . . , ρ�}) where
– kinit = 1 if s0 ∈ MS, and kinit = 0 otherwise,
– P((s, k), α, (s′, k′)) = Pδ(s, α, s′) if s′ ∈ MS and k′ = min(k+1, kmax+1),
– P((s, k), α, (s′, k)) = Pδ(s, α, s′) if s′ /∈ MS,
– P((s, k), α, (s′, k′)) = 0 in all other cases, and
– every reward function ρi satisfies ρi ((s, k), α) = ρδ

i (s, α).

The second component of a state (s, k) of D reflects the number of Markovian states visited
so far. Hence, eventually reaching Gi in Mδ with at most ki digitization steps is equivalent
to reaching G ′

i = {(s, k) | s ∈ Gi and k ≤ ki } in D. In particular, there is a mapping from

schedulers σδ for Mδ to schedulers σ for D such that PrMδ
σδ

(♦≤ki
ds Gi ) = PrDσ (♦G ′

i ).

Example 18 We illustrate the construction for the digitization Mδ depicted in Fig. 9a and
the objective P(♦≤2

ds {s2}). States that correspond to Markovian states of the original MA are
depicted with rectangles.

Figure 9b shows the reachable states of the MDP D as given by the construction above.

With the construction above, a digitization Mδ with objectives O can be transformed to
an MDP D and untimed reachability or expected reward objectives O

′ such that

achieveMδ (O) = achieveD(O′).

The latter can be computed using the approach of [28]. In practice, however, this approach
is not feasible as kmax may take high values, leading to huge model sizes. To avoid the
problematic, the different copies ofMδ are analyzed individually. For k ∈ {0, . . . , kmax+1}
let Sk denote the states (s, k) ofD with second entry k. A transition emerging from a state in
Sk can only point to a state in Sk ∪ Sk+1. As a consequence, for the computation of optimal
values for the states in Sk , only the results of the states in Sk+1 are relevant. We thus analyze
the sub-models of D induced by the state sets Skmax+1, Skmax , . . . , S1 and S0 sequentially in
the given order. Details on the sequential approach can be found in [35] for single-objective
MA and in [33] for multi-objective MDPs.

Dealingwith digitization errors Recall that the analysis of the digitizationMδ only approx-
imates the timed reachability probabilities of the MA. More precisely, given a weight vector
w, the approach outlined above computes an optimal point p for w on Mδ and the digitized
query. Applying our results from Sect. 4.3 (in particular Theorem 5), we can lift the point p
to the original time-bounded reachability query by considering the hyperrectangle ε(O,p).
Fig. 10a illustrates this, where ε(O,p) is depicted by the blue rectangle. The point q at the
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(b) MDP D.

Fig. 9 Transformation for ds-bounded reachability objectives (cf. Example 18)
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(a) Digitization gap.

w(1)

q

p(1)

achievable

not achievable

γ

ε(O,p(1))

(b) Extreme case (1/2).
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√
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(c) Extreme case (2/2).

Fig. 10 Illustration of digitization errors

bottom left of the rectangle is known to be achievable, implying that all points in the green
area are achievable, whereas the points in the red area are known to be unachievable. This
introduces a gap between the achievable and unachievable area. We measure the size γ of
this gap by considering the smallest distance between the achievable and the unachievable
points, i.e., the distance between the point q and the red area in Fig. 10a. The value of γ

depends on the size of the rectangle ε(O,p) and thus on the selection of the digitization
constant δ. However, γ also depends on the considered weight vector w which motivates a
dynamic selection of the δ, depending on the currently considered weight vector.

Example 19 Assume that an optimal point p has been computed for the weight vectorw(1) =
(0, 1), resulting in the (un-)achievable points and gap γ depicted in Fig. 10b. Note that γ

is not affected by the comparably large approximation error for the first objective (x-axis).

123



Formal Methods in System Design (2022) 60:33–86 65

We continue the example in Fig. 10c. To achieve the same gap γ also for the weight vector
w(2) = (1, 0), a smaller digitization constant has been chosen so that the rectangle ε(O,p(2))

becomes smaller. We assume that—by coincidence—the analysis forw(2) = (1, 0) produces
the same point q as in the previous step from Fig. 10b. For example, this is possible when
the nondeterminism of the model is spurious. Observe that the largest distance between a
point in the unknown (white) area and the green area is

√
γ 2 + γ 2 = √

2 · γ . Put differently,
the obtained approximation in Fig. 10c is a (

√
2 · γ )-approximation4 of the set of achievable

points for the considered MA.

In general, we can show the following. If all gaps γ are below η/
√
d for some η > 0 and the

number of objectives d , the approach of [28] converges to an η-approximation of the set of
achievable points.

In order to obtain an η-approximation, our implementation that we discuss in Sect. 6
therefore implements the following heuristic for the selection of the digitization constants.
Given a weight vector w, we choose the largest possible digitization constant δ for which
the resulting gap γ w.r.t. w is at most (η/

√
d) · 0.9. Here, the factor 0.9 ensures that we do

not have to explore the full set of achievable points of Mδ , which otherwise could result in
analyzing an unnecessarily large amount of weight vectors.

6 Experimental evaluation

ImplementationWe implemented multi-objective model checking of MAs into Storm [22,
36]. The input model is given in the PRISM language5 and translated into a sparse represen-
tation. ForMAM, the implementation performs amulti-objective analysis on the underlying
MDPMD or a digitizationMδ and infers (an approximation of) the achievable points ofM
by exploiting the results from Sect. 4. For computing the achievable points ofMD andMδ ,
we apply the approach of [28] with the extensions explained in Sect. 5.

All material to replicate the experiments is available at [45]. The implementation is part
of Storm since release 1.6.3 available at http://stormchecker.org.

Setup Our implementation uses a single core of an Intel Xeon Platinum 8160 CPU with
memory limited to 20GB RAM. The timeout (TO) is two hours. For a model, a set of
objectives, and a precision η ∈ R>0, we measure the time to compute an η-approximation
of the set of achievable points. This set-up coincides with Pareto queries as considered
in [28]. The digitization constant δ is chosen heuristically as discussed in Sect. 5.2. We
set the precision for value-iteration to ε = 10−6. Similar to [28], we use the conventional,
unsound variant of value iteration. The use of improved algorithms providing sound precision
guarantees [32] is left for future work.

Results for MAs We consider four case studies: (i) a job scheduler [12], see Sect. 1; (ii) a
polling system [48,50] containing a server processing jobs that arrive at two stations; (iii) a
video streaming client buffering received packages and deciding when to start playback; and
(iv) a randomizedmutual exclusion algorithm [50], a variant of [42]with a process-dependent

4 An η-approximation of A ⊆ R
d is given by A−, A+ ⊆ R

d with A− ⊆ A ⊆ A+ and for all p ∈ A+ exists
a q ∈ A− such that the distance between p and q is at most η.
5 We slightly extend the PRISM language in order to describe MAs.
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Table 1 Experimental results for multi-objective MAs

Benchmark (♦,ER, ♦I ) (♦,ER, ♦I ) (♦,ER, ♦I ) (♦,ER, ♦I )

N (-K) # states log10(η) Pts Time Pts Time Pts Time Pts Time

Job scheduling (0, 3, 0) (0, 1, 1) (1, 3, 0) (1, 1, 2)

10-2 12554 −2 10 2.19 9 13.4 17 120 18 695

−3 48 22.1 21 277 TO TO

12-3 116814 −2 11 7.3 10 273 23 855 TO

−3 58 65.7 23 5955 TO TO

17-2 4587537 −2 14 480 TO 22 1238 TO

−3 62 995 TO TO TO

Polling (0, 2, 0) (0, 4, 0) (0, 0, 2) (0, 2, 2)

3-2 990 −2 2 0.18 4 0.25 3 20.4 10 97.4

−3 2 0.13 4 0.47 7 449 32 6906

3-3 9522 −2 4 0.36 8 4.63 6 359 33 6040

−3 6 0.49 20 405 TO TO

4-4 813287 −2 8 158 20 936 TO TO

−3 10 287 TO TO TO

Stream (0, 2, 0) (0, 1, 1) (0, 0, 2) (0, 2, 1)

30 1426 −2 20 0.23 16 8.47 16 6.49 28 81

−3 51 2.01 44 241 38 160 99 3269

250 94376 −2 31 7.63 16 542 16 409 23 5291

−3 90 19.3 TO TO TO

1000 1502501 −2 41 288 TO 16 7054 TO

−3 118 488 TO TO TO

Mutex (0, 0, 3) (0, 0, 3)

2 10560 −2 18 221 16 869

−3 16 2232 TO

3 31733 −2 15 3227 TO

−3 TO TO

random delay in the critical section. Details on the benchmarks and the objectives are given
in App. E.1.

Tab. 1 lists results. For each instance we give the defining constants, the number of states
of the MA and the used η-approximation. A multi-objective query is given by the triple
(l,m, n) indicating l untimed, m expected reward, and n timed objectives. For each MA and
query we depict the total run-time of our implementation (time) and the number of vertices
of the obtained under-approximation (pts).

Queries analyzed on the underlying MDP are solved efficiently on large models with up
to millions of states. For timed objectives the run-times increase drastically due to the costly
analysis of digitized reachability objectives on the digitization, cf. [30]. Queries with up to
four objectives can be dealt with within the time limit. Furthermore, for an approximation
one order of magnitude better, the number of vertices of the result increases approximately
by a factor three. In addition, a lower digitization constant has then to be considered which
often leads to timeouts in experiments with timed objectives.
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Fig. 11 Verification times (in seconds) of our implementation and other tools

Comparison with PRISM [39] and IMCA [30]. We compared the performance of our imple-
mentation with both PRISM6 and IMCA7.

For the comparison with PRISM (no MAs), we considered the multi-objective MDP
benchmarks from [28,29].We conducted our experiments on PRISMwith both variants of the
value iteration-based implementation (standard andGauss-Seidel) and chose the faster variant
for each benchmark instance. For all experiments the approximation precision η = 0.001
was considered.

For the comparison with IMCA (no multi-objective queries) we used the benchmarks from
Tab. 1, with just a single objective. The experiments on IMCA have been conducted with and
without enabling value-iteration and we chose the faster variant for each benchmark instance.
For timed reachability objectives, the precision η = 0.001 was considered in all experiments.

Verification times are summarized in Fig. 11: On points above the diagonal, our implemen-
tation is faster. Both implementations are based on [28]. We observe that our implementation
is competitive with these tools. Further details are given in App. E.2 and App. E.3.

7 Conclusion

We consideredmulti-objective verification ofMarkov automata, including in particular timed
reachability objectives. The next step is to apply our algorithms to the manifold applications
of MA, such as generalized stochastic Petri nets to enrich the analysis possibilities of such
nets, and to investigate whether recent advances in the single-objective timed reachability
analysis, in particular the methods of [14,15] may be lifted to the multi-objective case.

A Proofs about sets of achievable points

Let M = (S,Act,→, s0, (ρ1,. . ., ρ�)) be an MA and σ1, σ2 ∈ GM be two schedulers for
M. Further let w1 ∈ [0, 1] and w2 = 1− w1 ∈ [0, 1]. The proof of Proposition 1 considers

the scheduler σw ∈ GM, where for a path π = s0
κ0−→ . . .

κn−1−−→ sn ∈ FPaths and action

6 We considered PRISM 4.6 obtained from www.prismmodelchecker.org.
7 We considered IMCA 1.6 obtained from https://github.com/buschko/imca.
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α ∈ Act we have

σw(π, α) =
∑2

i=1

(
wi · σi (π, α) ·∏n−1

j=0 σi (pref (π, j), α(κ j ))
)

∑2
i=1

(
wi ·∏n−1

j=0 σi (pref (π, j), α(κ j ))
)

We now show the following lemma.

Lemma 8 ForM, σ1, σ2, w1, w2, and σ as above and arbitrary measurable set Π ⊆ IPaths
we have

PrMσw (Π) = w1 · PrMσ1 (Π) + w2 · PrMσ2 (Π).

To show the Lemma, we fix a time-abstract path π̂ = s0
α0−→ . . .

αn−1−−→ sn of M and show
that the claim holds for the cylinder set Cyl(Π) of some measurable Π ⊆ {π ∈ FPaths |
ta(π) = π̂}. The lemma also follows for arbitrary measurable sets as these can be described
via unions and complements of such cylinder sets.

We define the scheduler σπ̂ where for π ∈ FPaths and α ∈ Act we set

σπ̂ (π, α) =

⎧
⎪⎨

⎪⎩

1 if ∃ j < n : ta(π) = pref (π̂, j) and α = α j

0 if ∃ j < n : ta(π) = pref (π̂, j) and α �= α j
1

|Act(last(π))| otherwise.

On a path whose time abstraction is a proper prefix of π̂ , σπ̂ will choose exactly the action
given in π̂ . In other cases, the choice is arbitrary (for simplicity, we picked a uniform distri-
bution over available actions). We first show two auxiliary lemmas.

Lemma 9 For a scheduler σ ∈ GM and π̂ , Π ⊆ {π ∈ FPaths | ta(π) = π̂}, and σπ̂ as
above we have

PrMσ (Π) =
∫

π∈Π

( n−1∏

j=0

σ(pref (π, j), α j )
)
dPrMσπ̂

(π).

Proof The proof is by induction over the length n of π̂ = s0
α0−→ . . .

αn−1−−→ sn . If n = 0
we have either Π = {s0} or Π = ∅ and thus either Cyl(Π) = IPaths or Cyl(Π) = ∅.
The lemma follows immediately in both cases. Now assume that Lemma 9 holds for Π ′ =
{pref (π, n − 1) | π ∈ Π}, i.e., for paths of length n − 1. Notice that for π ′ ∈ Π ′ we have
last(π ′) = sn−1.
Case sn−1 ∈ PS :

PrMσ (Π) =
∫

π ′∈Π ′
σ(π ′, αn−1) · P(s, αn−1, s

′) dPrMσ (π ′)

=
∫

π ′∈Π ′
σ(π ′, αn−1) · P(s, αn−1, s

′) ·
( n−2∏

j=0

σ(pref (π ′, j), α j )
)
dPrMσπ̂

(π ′)

=
∫

π ′∈Π ′

( n−1∏

j=0

σ(pref (π ′, j), α j )
)
· P(s, αn−1, s

′) dPrMσπ̂
(π ′)

=
∫

π ′∈Π ′

( n−1∏

j=0

σ(pref (π ′, j), α j )
)
· σπ̂ (π ′, αn−1)︸ ︷︷ ︸

=1

·P(s, αn−1, s
′) dPrMσπ̂

(π ′)
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=
∫

π∈Π

( n−1∏

j=0

σ(pref (π, j), α j )
)
dPrMσπ̂

(π).

In the last step we use that for π ′ ∈ Π ′ we have π = π ′ αn−1−−→ sn ∈ Π .

Case sn−1 ∈ MS : For π ′ ∈ Π ′ let Tπ ′ = {(t, αn−1, sn) | π ′ t−→ sn ∈ Π}. We note that

αn−1 = ⊥, σ ′(π ′,⊥) = 1, and that the probability of the transition step PrStepsσ,π (Tπ ′) does
not depend on σ since sn−1 ∈ MS. We get:

PrMσ (Π) =
∫

π ′∈Π ′
PrSteps

σ,π ′ (Tπ ′) dPrMσ (π ′)

=
∫

π ′∈Π ′
PrSteps

σ,π ′ (Tπ ′) ·
( n−2∏

j=0

σ(pref (π ′, j), α j )
)
dPrMσπ̂

(π ′)

=
∫

π ′∈Π ′

( n−1∏

j=0

σ(pref (π ′, j), α j )
)
· PrStepsσπ̂ ,π (Tπ ′) dPrMσπ̂

(π ′)

=
∫

π∈Π

( n−1∏

j=0

σ(pref (π, j), α j )
)
dPrMσπ̂

(π).

��
Lemma 10 For σ1, σ2, σ

w as above and π = s0
κ0−→ . . .

κn−1−−→ sn ∈ FPaths we have

n−1∏

j=0

σw(pref (π, j), α(κ j )) =
2∑

i=1

⎛

⎝wi ·
n−1∏

j=0

σi (pref (π, j), α(κ j ))

⎞

⎠ .

Proof

n−1∏

j=0

σw(pref (π, j), α(κ j )) =
n−1∏

j=0

∑2
i=1

(
wi ·∏ j

k=0 σi (pref (π, k), α(κk))
)

∑2
i=1

(
wi ·∏ j−1

k=0 σi (pref (π, j), α(κ j ))
)

=
∑2

i=1

(
wi ·∏n−1

k=0 σi (pref (π, k), α(κk))
)

∑2
i=1

(
wi ·∏0−1

k=0 σi (pref (π, j), α(κ j ))
)

=
2∑

i=1

⎛

⎝wi ·
n−1∏

j=0

σi (pref (π, j), α(κ j ))

⎞

⎠

Proof (of Lemma 8) Using the auxiliary Lemmas 9 and 10, we can prove Lemma 8 as follows:

PrMσw (Π)
Lem.9=

∫

π∈Π

( n−1∏

j=0

σw(pref (π, j), α j )
)
dPrMσw

π̂
(π)

Lem.10=
∫

π∈Π

2∑

i=1

⎛

⎝wi ·
n−1∏

j=0

σi (pref (π, j), α j )

⎞

⎠ dPrMσw
π̂
(π)

=
2∑

i=1

⎛

⎝wi ·
∫

π∈Π

·
n−1∏

j=0

σi (pref (π, j), α j ) dPr
M
σw

π̂
(π)

⎞

⎠
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Lem.9=
2∑

i=1

(
wi · PrMσi (Π)

)
.

��

B Proofs for expected reward

B.1 Proof of Lemma 2

Lemma 2 For MA M = (S,Act,→, s0, (ρ1,. . ., ρ�)) with G ⊆ S, σ ∈ GM, and reward
function ρ it holds that

lim
n→∞ERM

σ (ρ,Πn
G) = ERM

σ (ρ,G ).

Furthermore, any reward function ρD for MD satisfies

lim
n→∞ERMD

ta(σ )(ρ
D,Πn

G) = ERMD
ta(σ )(ρ

D,G ).

Proof We show the first claim. The second claim follows analogously. For each n ≥ 0,
consider the function fn : IPathsM → R≥0 given by

fn(π) =
{
rewM(ρ, pref (π,m)) if m = min

{
i ∈ {0, . . . , n} | si ∈ G

}

rewM(ρ, pref (π, n)) if si /∈ G for all i ≤ n

for every path π = s0
κ0−→ s1

κ1−→ · · · ∈ IPathsM. Intuitively, fn(π) is the reward collected
on π within the first n steps and only up to the first visit of G. This allows us to express the
expected reward collected along the paths of Πn

G as

ERM
σ (Πn

G) =
∑

π̂∈Πn
G

∫

π∈〈π̂〉
rewM(ρ, π) dPrMσ (π) =

∫

π∈IPathsM
fn(π) dPrMσ (π).

It holds that limn→∞ fn(π) = rewM(ρ, π,G) which is a direct consequence from the
definition of the reward of π up to G (cf. Sect. 2.2.3). Furthermore, note that the sequence
of functions f0, f1, . . . is non-decreasing, i.e., we have fn(π) ≤ fn+1(π) for all n ≥ 0 and
π ∈ IPathsM. By applying the monotone convergence theorem [1] we obtain

lim
n→∞ERM

σ (Πn
G) = lim

n→∞

∫

π∈IPathsM
fn(π) dPrMσ (π)

=
∫

π∈IPathsM
lim
n→∞ fn(π) dPrMσ (π)

=
∫

π∈IPathsM
rewM(ρ, π,G) dPrMσ (π) = ERM

σ (ρ,G ).

��

The next step is to show that the expected reward collected along the paths of Πn
G coincides

for M under σ and MD under ta(σ ).
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B.2 Proof of Lemma 3

Lemma 3 Let ρ be some reward function of M and let ρD be its counterpart for MD . Let
M = (S,Act,→, s0, (ρ1,. . ., ρ�)) be an MA with G ⊆ S and σ ∈ GM. For all G ⊆ S and
n ≥ 0 it holds that

ERM
σ (ρ,Πn

G) = ERMD
ta(σ )(ρ

D,Πn
G).

We detail the terms (1) and (2) from the proof of Lemma 3 separately.

Term (1): Let Λ
≤n
G = {π̂ ∈ Πn+1

G | |π̂ | ≤ n} be the paths in Πn+1
G of length at most n.

We have Λ
≤n
G ⊆ Πn

G and every path in Λ
≤n
G visits a state in G. Correspondingly, Λ=n

¬G =
Πn

G\Λ≤n
G is the set of time-abstract paths of length n that do not visit a state in G. Hence,

the paths in Πn+1
G with length n + 1 have a prefix in Λ=n

¬G .
The set Πn+1

G is partitioned such that

Πn+1
G = Λ

≤n
G ∪·

{
π̂ ∈ Πn+1

G | |π̂ | = n + 1
}

= Λ
≤n
G ∪· {π̂ = π̂ ′ α−→ s′ ∈ FPathsMD | π̂ ′ ∈ Λ=n

¬G}.
The reward obtained within the first n steps is independent of the (n + 1)-th transition. To
show this formally, we fix a path π̂ ′ ∈ Λ=n

¬G with last(π̂ ′) = s and derive

∑

π̂ ′ α−→s′∈FPathsMD

∫

π∈〈π̂ ′ α−→s′〉
rewM(pref (π, n)) dPrMσ (π)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

π ′∈〈π̂ ′〉
rewM(π ′) ·

∑

(α,s′)∈Act×S

σ(π ′, α) · P(s, α, s′) dPrMσ (π ′) if s ∈ PS

∫

π ′∈〈π̂ ′〉
rewM(π ′) ·

∑

s′∈S
P(s,⊥, s′) dPrMσ (π ′) if s ∈ MS

=
∫

π ′∈〈π̂ ′〉
rewM(π ′) dPrMσ (π ′). (4)

With the above-mentioned partition of the set Πn+1
G , it follows that the expected reward

obtained within the first n steps is given by
∑

π̂∈Πn+1
G

∫

π∈〈π̂〉
rewM(pref (π, n)) dPrMσ (π)

=
∑

π̂∈Λ
≤n
G

∫

π∈〈π̂〉
rewM(π) dPrMσ (π)

+
∑

π̂ ′∈Λ=n¬G

∑

π̂ ′ α−→s′∈FPathsMD

∫

π∈〈π̂ ′ α−→s′〉
rewM(pref (π, n)) dPrMσ (π)

(4)=
∑

π̂∈Λ
≤n
G

∫

π∈〈π̂〉
rewM(π) dPrMσ (π) +

∑

π̂∈Λ=n¬G

∫

π∈〈π̂〉
rewM(π) dPrMσ (π)

= ERM
σ (Πn

G)
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IH= ERMD
ta(σ )(Π

n
G)

=
∑

π̂∈Λ
≤n
G

rewMD (π̂) · PrMD
ta(σ )(π̂) +

∑

π̂∈Λ=n¬G

rewMD (π̂) · PrMD
ta(σ )(π̂)

=
∑

π̂∈Λ
≤n
G

rewMD (π̂) · PrMD
ta(σ )(π̂)

+
∑

π̂ ′∈Λ=n¬G

∑

π̂∈FPathsMD
π̂=π̂ ′ α−→s′

rewMD (pref (π̂ , n)) · PrMD
ta(σ )(π̂)

=
∑

π̂∈Πn+1
G

rewMD (pref (π̂ , n)) · PrMD
ta(σ )(π̂). (5)

Term (2): For the expected reward obtained in step n + 1, consider a path π̂ = π̂ ′ α−→ s′ ∈
Πn+1

G such that |π̂ ′| = n and last(π̂ ′) = s.

– If s ∈ MS, we have π̂ = π̂ ′ ⊥−→ s′. It follows that
∫

π=π ′ t−→s′∈〈π̂〉
ρ(s) · t + ρ(s,⊥) dPrMσ (π)

=
∫

π=π ′ t−→s′∈〈π̂〉
ρ(s) · t dPrMσ (π) +

∫

π∈〈π̂〉
ρ(s,⊥) dPrMσ (π)

= ρ(s) ·
∫

π ′∈〈π̂ ′〉

∫ ∞

0
t · E(s) · e−E(s)t · P(s,⊥, s′) dt dPrMσ (π ′)

+ ρ(s,⊥) · PrMσ (〈π̂〉)
= ρ(s)

E(s)
· PrMσ (〈π̂〉) + ρ(s,⊥) · PrMσ (〈π̂〉)

= ρD(s,⊥) · PrMσ (〈π̂〉) Lem.1= ρD(s,⊥) · PrMD
ta(σ )(π̂). (6)

– If s ∈ PS, then
∫

π=π ′ α−→s′∈〈π̂〉
ρ(s, α) dPrMσ (π) = ρD(s, α)·PrMD

ta(σ )(π̂) follows similarly.

C Proofs for timed reachability

C.1 Proof of Lemma 4

Lemma 4 Let M be an MA with scheduler σ ∈ GM, digitization Mδ , and digital path
π̄ ∈ FPathsMδ . It holds that

PrMσ ([π̄ ]cyl) = PrMδ

di(σ )(π̄).

Proof The proof is by induction over the length n of π̄ . LetM = (S,Act,→, s0, (ρ1,. . ., ρ�))

and Mδ = (S,Act,Pδ, s0, (ρδ
1, . . . , ρ

δ
� )). If n = 0, then π̄ = s0 and [π̄ ]cyl = IPathsM.

Hence, PrMσ ([s0]cyl) = 1 = PrMδ

di(σ )(s0). In the induction step it is assumed that the lemma

holds for a fixed path π̄ ∈ FPathsMδ with |π̄ | = n and last(π̄) = s. Consider a path

π̄
α−→ s′ ∈ FPathsMδ .
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If PrMσ ([π̄]cyl) = PrMδ

di(σ )(π̄) = 0, then PrMσ ([π̄ α−→ s′]cyl) = PrMδ

di(σ )(π̄
α−→ s′) = 0

because [π̄ α−→ s′]cyl ⊆ [π̄ ]cyl and Cyl({π̄ α−→ s′}) ⊆ Cyl({π̄}).
Now assume PrMσ ([π̄ ]cyl) > 0. We distinguish the following cases.

Cases ∈ PS : It follows that [π̄ α−→ s′]cyl = Cyl([π̄ α−→ s′]) since π̄
α−→ s′ ends with a prob-

abilistic transition. Hence,

PrMσ ([π̄ α−→ s′]cyl) = PrMσ ([π̄ α−→ s′])
=
∫

π∈[π̄]
σ(π, α) · P(s, α, s′) dPrMσ (π)

=
∫

π∈[π̄]
σ(π, α) · P(s, α, s′) dPrMσ ({π} ∩ [π̄])

=
∫

π∈[π̄]
σ(π, α) · P(s, α, s′) d

[
PrMσ (π | [π̄]) · PrMσ ([π̄ ])]

= PrMσ ([π̄ ]) · P(s, α, s′) ·
∫

π∈[π̄]
σ(π, α) dPrMσ (π | [π̄])

= PrMσ ([π̄ ]) · P(s, α, s′) · di(σ )(π̄, α)

IH= PrMδ

di(σ )(π̄) · P(s, α, s′) · di(σ )(π̄, α)

= PrMδ

di(σ )(π̄
α−→ s′).

Cases ∈ MS : As s ∈ MS we have α = ⊥ and it follows

PrMσ ([π̄ ⊥−→ s′]cyl) = PrMσ ([π̄ ]cyl ∩ [π̄ ⊥−→ s′]cyl)
= PrMσ ([π̄ ]cyl) · PrMσ ([π̄ ⊥−→ s′]cyl | [π̄ ]cyl). (7)

Assume that a path π ∈ [π̄ ]cyl has been observed, i.e., pref (di(π),m) = π̄ holds for

some m ≥ 0. The term PrMσ ([π̄ ⊥−→ s′]cyl | [π̄ ]cyl) coincides with the probability that also

pref (di(π),m + 1) = π̄
⊥−→ s′ holds.

We have either

– s �= s′ which means that the transition from s to s′ has to be taken during a period of δ

time units or
– s = s′ where we additionally have to consider the case that no transition is taken at s for

δ time units.

It follows that

PrMσ ([π̄ ⊥−→ s′]cyl | [π̄ ]cyl) =
{
P(s,⊥, s′)(1− e−E(s)δ) if s �= s′

P(s,⊥, s′)(1− e−E(s)δ) + e−E(s)δ if s = s′

= Pδ(s,⊥, s′). (8)

We conclude that

PrMσ ([π̄ ⊥−→ s′]cyl) (7), (8)= PrMσ ([π̄ ]cyl) · Pδ(s,⊥, s′)
IH= PrMδ

di(σ )(π̄) · Pδ(s,⊥, s′) = PrMδ

di(σ )(π̄
⊥−→ s′).

��
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C.2 Proof of Proposition 4

Proposition 4 Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ . Further, let
J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ )(♦
J
dsG).

Proof Consider the set Π J
G ⊆ FPathsMδ of paths that (i) visit G within J digitization steps

and (ii) do not have a proper prefix that satisfies (i). Every path in ♦J
dsG has a unique prefix

in Π J
G , yielding

♦J
dsG =

⋃·
π̄∈Π J

G

Cyl({π̄})

For the corresponding paths of M we obtain

[♦J
dsG] = {π ∈ IPathsM | di(π) ∈ ♦J

dsG}
= {π ∈ IPathsM | di(π) has a unique prefix in Π J

G}
=
⋃·

π̄∈Π J
G

[π̄ ]cyl .

The proposition follows with Lemma 4 since

PrMδ

di(σ )(♦
J
dsG) =

∑

π̄∈Π J
G

PrMδ

di(σ )(π̄)
Lem.4=

∑

π̄∈Π J
G

PrMσ ([π̄]cyl) = PrMσ ([♦J
dsG]).

��

C.3 Proofs of Lemmas 6 and 7

Lemma 7 Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) | s ∈ MS}. For
each δ ∈ R>0, k ∈ N, and t ∈ R≥0 it holds that

PrMσ (#[kδ + t]≤k) ≥ PrMσ (#[kδ]≤k) · e−λt .

Proof First, we show that the set #[kδ + t]≤k corresponds to the paths of #[kδ]≤k with the
additional requirement that no transition is taken between the time points kδ and kδ + t , i.e.,

#[kδ + t]≤k = {π ∈ #[kδ]≤k | there is no prefix π ′ of π with kδ < T(π ′) ≤ kδ + t}.
“⊆”: If π ∈ #[kδ + t]≤k , then π ∈ #[kδ]≤k follows immediately. Furthermore, assume
towards a contradiction that there is a prefixπ ′ ofπ with kδ < T(π ′) ≤ kδ+t . Then, k <
T(π ′)

δ
≤ |π ′|ds (cf. Lemma 5). As T(π ′) ≤ kδ+ t , this means that |prefT (π, kδ + t)|ds ≥

|π ′|ds > k which contradicts π ∈ #[kδ + t]≤k .
“⊇”: For π ∈ #[kδ]≤k with no prefix π ′ such that kδ < T(π ′) ≤ kδ + t , it holds that
prefT (π, kδ + t) = prefT (π, kδ). Hence, |prefT (π, kδ + t)|ds = |prefT (π, kδ)|ds ≤ k
and it follows that π ∈ #[kδ + t]≤k .

The probability for no transition to be taken between kδ and kδ + t only depends on the
current state at time point kδ. More precisely, for some state s ∈ MS assume the set of
paths {π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}. The probability that a path in this set takes
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no transition between time points kδ and kδ + t is given by e−E(s)t . With λ ≥ E(s) for all
s ∈ MS it follows that

PrMσ (#[kδ + t]≤k)

= PrMσ ({π ∈ #[kδ]≤k | there is no prefix π ′ of π with kδ < T(π ′) ≤ kδ + t})
=
∑

s∈MS

PrMσ ({π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}) · e−E(s)t

≥
∑

s∈MS

PrMσ ({π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}) · e−λt

= PrMσ (#[kδ]≤k) · e−λt .

��
Lemma 6 Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) | s ∈ MS}.
Further, let δ ∈ R>0 and k ∈ N. It holds that

PrMσ (#[kδ]>k) ≤ 1− (1+ λδ)k · e−λδk

Proof Let M = (S,Act,→, s0, (ρ1,. . ., ρ�)). By induction over k we show that

PrMσ (#[kδ]≤k) ≥ (1+ λδ)k · e−λδk .

The claim follows as #[kδ]>k = IPathsM\#[kδ]≤k .
For k = 0, we have π ∈ #[0 · δ]≤0 iff π takes no Markovian transition at time point zero.

As this happens with probability one, it follows that

PrMσ (#[0 · δ]≤0) = 1 = (1+ λδ)0 · e−λδ·0 .

Weassume in the induction step that the proposition holds for some fixed k.We distinguish
between two cases for the initial state s0 of M.

Case s0 ∈ MS : We partition the set #[kδ + δ]≤k+1 = Λ≥δ ∪·Λ<δ with

Λ≥δ = {s0 t−→ s1
κ1−→ · · · ∈ #[kδ + δ]≤k+1 | t ≥ δ} and

Λ<δ = {s0 t−→ s1
κ1−→ · · · ∈ #[kδ + δ]≤k+1 | t < δ}.

Hence, Λ≥δ contains the paths where we wait at least δ time units at s0 and Λ<δ con-
tains the paths where the first transition is taken within t < δ time units. It follows that
PrMσ (#[kδ + δ]≤k+1) = PrMσ (Λ≥δ) + PrMσ (Λ<δ). We consider the probabilities for Λ≥δ

and Λ<δ separately.

– PrMσ (Λ≥δ): For a path s0
t+δ−−→ s1

κ1−→ · · · ∈ Λ≥δ , after the first δ time units there are at
most k digitization steps within the next kδ time units, i.e.,

s0
t+δ−−→ s1

κ1−→ · · · ∈ Λ≥δ ⇐⇒ s0
t−→ s1

κ1−→ · · · ∈ #[kδ]≤k .

The probability for Λ≥δ can therefore be derived from the probability to wait at s0 for
at least δ time units and the probability for #[kδ]≤k . In order to apply this, we need to
modify the considered scheduler as it might depend on the sojourn time in s0. Let σδ be
the scheduler for M that mimics σ on paths where the first transition is delayed by δ,
i.e., σδ satisfies

σδ(s0
t−→ . . .

κn−1−−→ sn, α) = σ(s0
t+δ−−→ . . .

κn−1−−→ sn, α).
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for all s0
t−→ . . .

κn−1−−→ sn ∈ FPathsM and α ∈ Act. It holds that

PrMσ (Λ≥δ) = e−E(s0)δ · PrMσδ
(#[kδ]≤k)

IH≥ e−E(s0)δ · (1+ λδ)k · e−λδk

= e−E(s0)δ · (1+ λδ)k · e−λδk · e−λδ · eλδ

= (1+ λδ)k · e−λδ(k+1) · e(λ−E(s0))δ . (9)

– PrMσ (Λ<δ): For a path s0
t−→ s1

κ1−→ · · · ∈ Λ<δ , the first digitization step happens at less
than δ time units, i.e., 0 ≤ t < δ. It follows that there are at most k digitization steps in
the remaining kδ + δ − t time units, i.e.,

s0
t−→ s1

κ1−→ s2
κ2−→ · · · ∈ Λ<δ ⇐⇒ s1

κ1−→ s2
κ2−→ · · · ∈ #s1 [kδ + δ − t]≤k ,

where #s1 [kδ + δ − t]≤k refers to the paths #[kδ + δ − t]≤k of Ms1 = (S,Act,→,

s1, (ρ1, . . . , ρ�)), the MA obtained from M by changing the initial state to s1. Hence,
the probability for Λ<δ can be derived from the probability to take a transition from s0
to some state s within t < δ time units and the probability for #s[kδ + δ − t]≤k . Again,
we need to adapt the considered scheduler. Let π ∈ FPathsM with last(π) = s. The
scheduler σ [π] forMs mimics the scheduler σ forM, where π is prepended to the given
path, i.e., we set

σ [π ](s κ j−→ . . .
κn−1−−→ sn, α) = σ(π

κ j−→ . . .
κn−1−−→ sn, α)

for all s
κ j−→ . . .

κn−1−−→ sn ∈ FPathsM
s
and α ∈ Act. With Lemma 7 it follows that

PrMσ (Λ<δ)

=
∫ δ

0
E(s0) · e−E(s0)t ·

(
∑

s∈S
P(s0,⊥, s) · PrMs

σ [π ](#s[kδ + δ − t]≤k)

)

dt

≥
∫ δ

0
E(s0) · e−E(s0)t ·

(
∑

s∈S
P(s0,⊥, s) · PrMs

σ [π ](#s[kδ]≤k) · e−λ(δ−t)

)

dt

IH≥
∫ δ

0
E(s0) · e−E(s0)t ·

(
∑

s∈S
P(s0,⊥, s) · (1+ λδ)k · e−λδk · e−λ(δ−t)

)

dt

= (1+ λδ)k · e−λδk · E(s0) ·
∫ δ

0
e−E(s0)t · e−λ(δ−t) ·

(
∑

s∈S
P(s0,⊥, s)

)

dt

= (1+ λδ)k · e−λδk · E(s0) ·
∫ δ

0
e−E(s0)t · e−λδ · eλt dt

= (1+ λδ)k · e−λδ(k+1) · E(s0) ·
∫ δ

0
e(λ−E(s0))t dt . (10)

Combining the results for Λ≥δ and Λ<δ (i.e., Equations 9 and 10), we obtain

PrMσ (#[kδ + δ]≤k+1)

= PrMσ (Λ≥δ) + PrMσ (Λ<δ)

≥ (1+ λδ)k · e−λδ(k+1) ·
(
e(λ−E(s0))δ + E(s0) ·

∫ δ

0
e(λ−E(s0))t dt

)
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∗≥ (1+ λδ)k · e−λδ(k+1) · (1+ λδ) = (1+ λδ)k+1 · e−λδ(k+1) ,

where the inequality marked with ∗ is due to

e(λ−E(s0))δ + E(s0) ·
∫ δ

0
e(λ−E(s0))t dt

= e(λ−E(s0))δ + (E(s0) − λ + λ) ·
∫ δ

0
e(λ−E(s0))t dt

= e(λ−E(s0))δ − (λ − E(s0)
) ·
∫ δ

0
e(λ−E(s0))t dt + λ ·

∫ δ

0
e(λ−E(s0))t dt

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− 0+ λ ·
∫ δ

0
e(λ−E(s0))t dt if E(s0) = λ

e(λ−E(s0))δ − (e(λ−E(s0))δ − 1
)+ λ ·

∫ δ

0
e(λ−E(s0))t dt if E(s0) < λ

= 1+ λ ·
∫ δ

0
e(λ−E(s0))t dt ≥ 1+ λ ·

∫ δ

0
1 dt = 1+ λδ .

Case s0 ∈ PS : Since M is non-zeno, a state s ∈ MS is reached from s0 within zero time
almost surely (i.e., with probability one). From the previous case, it already follows that the

Proposition holds for Ms with s ∈ MS and the set #s[kδ + δ]≤k+1. With ΠMS = {s0 κ0−→
. . .

κn−1−−→ sn ∈ FPathsM | sn ∈ MS and ∀i < n : si ∈ PS} we obtain

PrMσ (#[kδ + δ]≤k+1) =
∫

π∈ΠMS
last(π)=s

PrM
s

σ [π ](#s[kδ + δ]≤k+1) dPrMσ (π)

≥
∫

π∈ΠMS
last(π)=s

(1+ λδ)k+1 · e−λδ(k+1) dPrMσ (π)

= (1+ λδ)k+1 · e−λδ(k+1) · PrMσ (ΠMS)

= (1+ λδ)k+1 · e−λδ(k+1) .

��

C.4 Proof of Proposition 5

Proposition 5 For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization constant
δ ∈ R>0 and time interval I

PrMσ (♦IG ) ∈ PrMσ ([♦I
dsG]) +

[
−ε↓(I ), ε↑(I )

]
.

We show Eq. 3, that is,

PrMσ ([♦di(I )
ds G]\♦I G) ≤ ε↓(I ) and PrMσ (♦I G\[♦di(I )

ds G]) ≤ ε↑(I )

for the remaining forms of the time interval I .

Case I = [0,∞) : In this case we have di(I ) = N. It follows that

[♦di(I )
ds G] = ♦I G = {s0 κ0−→ s1

κ1−→ · · · ∈ IPathsM | si ∈ G for some i ≥ 0}.
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Hence,

PrMσ ([♦di(I )
ds G]\♦I G) = PrMσ (♦I G\[♦di(I )

ds G]) = PrMσ (∅) = 0 = ε↓(I ) = ε↑(I ).

Case I = [a,∞) f ora = diaδ : We have di(I ) = {dia + 1, dia + 2, . . . }.
– We show that [♦di(I )

ds G]\♦I G ⊆ #[a]>dia . With Lemma 6 we obtain

PrMσ ([♦di(I )
ds G]\♦I G) ≤ PrMσ (#[a]>dia ) ≤ 1− (1+ λδ)dia · e−λa = ε↓(I ).

Consider a path π ∈ [♦di(I )
ds G]\♦I G. As π /∈ ♦I G, it follows that π has to reach (and

leave) G within less than a time units. Let π̄ be the largest prefix of di(π) that satisfies
last(π̄) ∈ G. Our observations yield that π leaves last(π̄) before time point a. Hence,
π̄ is a prefix of di(prefT (π, a)). Moreover, |π̄ |ds ∈ di(I ) as di(π) ∈ ♦di(I )

ds G. It follows
that |prefT (π, a)|ds ≥ |π̄ |ds > dia which implies π ∈ #[a]>dia .

– Now consider a path π ∈ ♦I G\[♦di(I )
ds G]. π visits G at least once since π ∈ ♦I G.

Moreover, di(π) does not visit G after dia digitization steps due to π /∈ [♦di(I )
ds G]. This

means π visits G only finitely often. Let π ′ = s0
κ0−→ . . .

κn−1−−→ sn be the largest prefix

of π such that sn ∈ G. Notice that |π ′|ds ≤ dia holds. Let π ′ κ−→ s be the prefix of π of

length |π ′| + 1. We show by contradiction that a ≤ T(π ′ κ−→ s) < a + δ holds:

– If T(π ′ κ−→ s) < a, then last(π ′) ∈ G is left before time point a which contradicts
π ∈ ♦I G.

– Further, assume that T(π ′ κ−→ s) ≥ a + δ. With Lemma 5 we obtain

t(κ) ≥ a + δ − T(π ′)
≥ a + δ − |π ′|ds · δ
≥ (dia + 1− |π ′|ds︸ ︷︷ ︸

≤dia

) · δ > 0 .

Hence, π stays at last(π ′) for at least ( j + 1 − |π ′|ds) · δ time units which means

that di(π ′)
( ⊥−→last(π ′)

) j+1−|π ′|ds = π̄ is a prefix of di(π). Since |π̄ |ds = j + 1, this

contradicts π /∈ [♦di(I )
ds G].

We infer that π takes at least one transition in the time interval [a, a+δ). The probability
for this can be upper bounded by 1− e−λδ , i.e.,

PrMσ (♦I G\[♦di(I )
ds G])

≤ PrMσ ({π ∈ IPathsM | π takes a transition in time interval [a, a + δ)})
≤ 1− e−λδ = ε↑(I ).

Case I = [a, b] f ora = diaδandb = dibδ : We have di(I ) = {dia + 1, dia + 2, . . . , dib}.
– As in the case “I = [a,∞)”, we show that [♦di(I )

ds G]\♦I G ⊆ #[a]>dia . With Lemma 6
we obtain

PrMσ ([♦di(I )
ds G]\♦I G) ≤ PrMσ (#[a]>dia ) ≤ 1− (1+ λδ)dia · e−λa = ε↓(I ).

Let π ∈ [♦di(I )
ds G]\♦I G and let π̄ be the largest prefix of di(π) with last(π̄) ∈ G and

|π̄ |ds ∈ di(I ). Such a prefix exists due to π ∈ [♦di(I )
ds G]. π reaches last(π̄) with at
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most dib digitization steps and therefore within at most b time units (cf. Lemma 5). As
π /∈ ♦I G, we conclude that π has to reach (and leave) last(π̄) within less than a time
units. It follows that |prefT (π, a)|ds ≥ |π̄ |ds > dia which implies π ∈ #[a]>dia .

– Next, let π ∈ ♦I G\[♦di(I )
ds G] and let π ′ = s0

κ0−→ . . .
κn−1−−→ sn be the largest prefix of π

such that sn ∈ G and T(π ′) ≤ b. Such a prefix exists due to π ∈ ♦I G. We distinguish
two cases.

– If |π ′|ds > dib, then π ∈ #[b]>dib since |prefT (π, b)|ds ≥ |π ′|ds > dib.
– If |π ′|ds ≤ dib, then |π ′|ds ≤ dia holds due to π /∈ [♦di(I )

ds G]. Similar to the case
“I = [a,∞)′′ we can show that π takes at least one transition in time interval
[a, a + δ).

It follows that

♦I G\[♦di(I )
ds G]

⊆ #[b]>dib ∪ {π ∈ IPathsM | π takes a transition in time interval [a, a + δ)}
Hence,

PrMσ (♦I G\[♦di(I )
ds G]) ≤ 1− (1+ λδ)dib · e−λb + 1− e−λδ = ε↑(I ).

D Comparison to single-objective analysis

We remark that the proof in [30, Theorem 5.3] can not be adapted to show our result. The
main reason is that the proof relies on an auxiliary lemma which claims that8

PrMσ (♦[0,b]G | #[δ]<2) ≤ PrMσ (♦[0,b]G) (11)

holds for all schedulers σ ∈ GMM. We show that this claim does not hold. The intuition is
as follows. Assume we observe that at most one Markovian transition is taken in M within
the first δ time units (i.e., we observe a path in #[δ]<2). The lemma claims that under this
observation the probability to reach G within b time units does not increase. We give a
counterexample to illustrate that there are schedulers for which this is not true. Consider the
MA M from Fig. 12 and let σ be the scheduler for M satisfying

σ(s0
t1−→ s1

t2−→ s2, α) =
{
1 if t1 + t2 > δ

0 otherwise.

Hence, σ chooses α iff there are less than two digitization steps within the first δ time units.
It follows that the probability to reach G = {s3} on a path in #[δ]≥2 is zero. We conclude
that

PrMσ (♦[0,b]{s3}) = PrMσ (♦[0,b]{s3} ∩ #[δ]<2) + PrMσ (♦[0,b]{s3} ∩ #[δ]≥2)
︸ ︷︷ ︸

=0

= PrMσ (♦[0,b]{s3} | #[δ]<2) · PrMσ (#[δ]<2)
︸ ︷︷ ︸

<1

< PrMσ (♦[0,b]{s3} | #[δ]<2)

which contradicts Eq. 11.

8 We adapt [30, Lemma G.2] to our notations from “Appendix C.4”.
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s0 s1 s2

s3

s4

λ λ

α

β
λ

λ

Fig. 12 MA M (cf. “Appendix D”)

Table 2 Additional model details N(-K) #states #choices #transitions #MS λmax

Job scheduling

10-2 1× 104 2× 104 3× 104 1× 104 5.7

12-3 1× 105 2× 105 5× 105 1× 105 8.5

17-2 5× 106 9× 106 1× 107 4× 106 5.9

Polling

3-2 990 1762 2387 508 14

3-3 9522 2× 104 2× 104 4801 14

4-4 8× 105 2× 106 2× 106 5× 105 16

Stream

30 1426 1861 2731 931 8

250 9× 104 1× 105 2× 105 6× 104 8

1000 2× 106 2× 106 3× 106 1× 106 8

Mutex

2 1× 104 2× 104 3× 104 216 2

3 3× 104 7× 104 8× 104 729 3

E Further details for the experiments

E.1 Benchmark details

We provide additional information regarding our experiments on multi-objective MAs.
Table 2 provides details of the considered MA. We further describe the considered case
studies and objectives.

Job scheduling The job scheduling case study originates from [12] and was already dis-
cussed in Sect. 1. We consider N jobs that are executed on K identical processors. Each of
the N jobs gets a different rate between 1 and 3. We consider the following objectives.

E1: Minimize the expected time until all jobs are completed.
E2: Minimize the expected time until  N

2 " jobs are completed.
E3: Minimize the expected waiting time of the jobs.
P: Minimize the probability that the job with the lowest rate is completed before the job
with the highest rate.
P
≤
1 : Maximize the probability that all jobs are completed within N

2K time units.
P
≤
2 : Maximize the probability that  N

2 " jobs are completed within N
4K time units.
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The objectives have been combined as follows: (Oi refers to the objectives considered in
Column i of Table 1):

O
1 = (E1, E2, E3) O

2 = (E1, P
≤
2 ) O

3 = (P, E1, E2, E3) O
4 = (P, E3, P

≤
1 , P

≤
2 )

Polling The polling system is based on [48,50]. It considers two stations, each having a
separate queue storing up to K jobs of N different types. The jobs arrive at Station i (for
i ∈ {1, 2}) with some rate λi as long as the queue of the station is not full. A server polls the
two stations and processes the jobs by (nondeterministically) taking a job from a non-empty
queue. The time for processing a job is given by a rate which depends on the type of the job.
Erasing a job from a queue is unreliable, i.e., there is a 10% chance that an already processed
job stays in the queue. For i ∈ {1, 2} we assume the following objectives:

Ei : Maximize the expected number of processed jobs of Station i until its queue is full.
E2+i : Minimize the expected sum of all waiting times of the jobs arriving at Station i
until the queue of Station i is full.
P
≤
i : Minimize the probability that the queue of Station i is full within two time units.

The objectives have been combined as follows: (Oi refers to the objectives considered in
Column i of Table 1):

O
1 = (E1, E2) O

2 = (E1, E2, E3, E4) O
3 = (P

≤
1 , P

≤
2 ) O

4 = (E1, E2, P
≤
1 , P

≤
2 )

Stream This case study considers a client of a video streaming platform. The client
consecutively receives N data packages and stores them into a buffer. The buffered packages
are processed during the playback of the video. The time it takes to receive (or to process)
a single package is modeled by an exponentially distributed delay. Whenever a package is
received and the video is not playing, the client nondeterministically chooses whether it starts
the playback or whether it keeps on buffering. The latter choice is not reliable, i.e., there is a
1% chance that the playback is started anyway. In case of a buffer underrun9, the playback is
paused and the client waits for new packages to arrive. We analyzed the following objectives:

E1: Minimize the expected buffering time until the playback is finished.
E2: Minimize the expected number of buffer underruns during the playback.
E3: Minimize the expected time to start the playback.
P
≤
1 : Minimize the probability for a buffer underrun within 2 time units.

P
≤
2 : Maximize the probability that the playback starts within 0.5 time units.

The objectives have been combined as follows: (Oi refers to the objectives considered in
Column i of Table 1):

O
1 = (E1, E2) O

2 = (E3, P
≤
1 ) O

3 = (P
≤
1 , P

≤
2 ) O

4 = (E1, E3, P
≤
1 )

Mutex This case study regards a randomized mutual exclusion protocol based on [42,50].
Three processes nondeterministically choose a job for which they need to enter the critical
section. The amount of time a process spends in its critical section is given by a rate which
depends on the chosen job. There are N different types of jobs. For each i ∈ {1, 2, 3} the
following objective are considered:

9 A buffer underrun occurs when the next package needs to be processed while the buffer is empty.
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Table 3 Results for our implementation (Storm) and PRISM on the multi-objective MDP benchmarks
from [28]. All run-times are in seconds

Benchmark PRISM Storm

Instance #states (♦,ER,≤) Pts Iter Verif Total Pts Iter Verif Total

Consensus

2-3-2 691 (2,0,0) 4 < 0.01 0.12 1.25 2 0.03 0.06 1.74

2-4-2 1517 (2,0,0) 4 0.01 0.16 1.26 2 0.02 0.03 0.14

2-5-2 3169 (2,0,0) 4 0.02 0.25 1.25 2 0.03 0.03 0.15

3-3-2 2× 104 (2,0,0) 4 0.10 0.73 1.28 2 0.06 0.10 0.31

3-4-2 6× 104 (2,0,0) 4 0.35 2.13 2.87 2 0.16 0.29 0.87

3-5-2 2× 105 (2,0,0) 4 1.08 4.84 5.8 2 0.48 0.89 2.56

dpm

100 636 (0,0,2) 12 0.07 0.09 1.29 6 0.07 0.07 0.18

200 636 (0,0,2) 8 0.08 0.09 1.23 4 0.10 0.10 0.20

300 636 (0,0,2) 6 0.08 0.10 1.23 3 0.11 0.11 0.21

Scheduler

05 3× 104 (0,2,0) No convergence ∞ reward detected

25 6× 105 (0,2,0) No convergence ∞ reward detected

50 2× 106 (0,2,0) No convergence ∞ reward detected

Team

3 1× 104 (1,1,0) 6 0.10 5.92 6.61 3 0.07 0.08 0.29

4 1× 105 (1,1,0) 6 1.13 136 138 3 0.47 0.56 1.22

5 9× 105 (1,1,0) 6 5.9 3814 3818 3 9.32 10.6 17.1

3 1× 104 (2,1,0) >2 objectives not supported 6 0.17 0.18 0.35

4 1× 105 (2,1,0) >2 objectives not supported 6 1.19 1.32 1.97

5 9× 105 (2,1,0) >2 objectives not supported 6 20.6 22.4 32.2

Zeroconf

4 5449 (2,0,0) 4 0.05 2.66 3.22 2 0.12 0.14 0.28

6 1× 104 (2,0,0) 4 0.16 5.87 6.55 2 0.33 0.36 0.76

8 2× 104 (2,0,0) 4 0.14 9.71 10.5 2 0.78 0.83 1.09

Zeroconf-tb

2-14 3× 104 (2,0,0) 2 0.08 21 21.6 2 0.47 0.54 0.84

4-10 2× 104 (2,0,0) 2 0.12 22.3 23 2 1.02 1.06 1.29

4-14 4× 104 (2,0,0) 2 0.18 55.5 56.5 1 3.07 3.17 3.54

P
≤
i : Maximize the probability that Process i enters its critical section within 0.5 time

units.
P
≤
3+i : Maximize the probability that Process i enters its critical section within 1 time

unit.

The objectives have been combined as follows: (Oi refers to the objectives considered in
Column i of Table 1):

O
1 = (P

≤
1 , P

≤
2 , P

≤
3 ) O

2 = (P
≤
4 , P

≤
5 , P

≤
6 )
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E.2 Comparison with PRISM

The detailed results of our experiments with PRISM are given in Table 3. We depict the
different benchmark instances with the number of states of the MDP (Column #states) and
the considered combination of objectives (♦ represents an (untimed) probabilistic objective,
ER an expected reward objective, and≤ a step-bounded reward objective).We list the number
of vertices of the obtained under-approximation (Column pts). Column iter lists the time
required for the iterative exploration of the set of achievable points as described in [28]. In
Column verif we depict the verification time—including the time for the iterations as well
as the conducted preprocessing steps. Column total indicates the total runtime of the tool
which includes model building time and verification time.

During our experiments we observed that PRISM does not detect that both objectives
considered for the scheduler-instances yield infinite rewards under every possible resolution
of non-determinism. As a result, the value iteration-based procedure does not converge and
PRISM reports that the maximal number of iterations are exceeded. Storm detects this issue
and shows a proper warning to the user.

We further note that PRISM can not compute Pareto curves for more than two objectives.
However, it can answer achievability- and numerical queries as introduced in [28] with three
or more objectives.

Table 4 Results for our implementation (Storm) and IMCA for single-objective MAs. All run-times are in
seconds

Benchmark IMCA Storm (multi) Storm (single)

N(-K) # states O Verif. time Verif. time Verif. time

Job scheduling

10-2 1× 104 E1 < 0.01 0.05 0.02

10-2 1× 104 P
≤
2 4.02 5.94 0.02

12-3 1× 105 E1 0.05 0.64 0.24

12-3 1× 105 P
≤
2 62.1 111 0.29

Polling

3-3 9522 E1 1.9 0.03 0.01

3-3 9522 P
≤
1 81.1 53.3 0.05

4-4 8× 105 E1 966 5.85 3.2

4-4 8× 105 P
≤
1 TO 6513 4.66

Stream

30 1426 E1 < 0.01 < 0.01 < 0.01

30 1426 P
≤
1 1.85 1.42 < 0.01

250 9× 104 E1 0.84 2.14 0.14

250 9× 104 P
≤
1 129 91.2 0.13

Mutex

2 1× 104 P
≤
1 8.19 3.92 0.51

2 1× 104 P
≤
4 32.8 15.6 0.71
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E.3 Comparison with IMCA

The resulting verification times are given in Table 4. We depict the different benchmark
instances with the number of states of the MA (Column #states) and the considered objective
(as discussed in App. E.1). Besides the run-times of IMCA, we depict the run-times of
our implementation (effectively performing multi-objective model checking with only one
objective) in Column Storm (multi). Column Storm (single) shows the run-times obtained
when Storm is invoked with standard (single-objective) model checkingmethods. The latter
uses the more recent Unif+ algorithm [15].
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