
Formal Methods in System Design (2020) 56:90–126
https://doi.org/10.1007/s10703-020-00348-y

Exact quantitative probabilistic model checking through
rational search

Umang Mathur1 ·Matthew S. Bauer2 · Rohit Chadha3 · A. Prasad Sistla4 ·
Mahesh Viswanathan1

Published online: 29 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Model checking systems formalized using probabilistic models such as discrete timeMarkov
chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing
constrained reachability properties. Linear programming methods to compute reachability
probabilities for DTMCs andMDPs do not scale to large models. Thus, model checking tools
often employ iterative methods to approximate reachability probabilities. These approxima-
tions can be far from the actual probabilities, leading to inaccurate model checking results.
On the other hand, specialized techniques employed in existing state-of-the-art exact quan-
titative model checkers, don’t scale as well as their iterative counterparts. In this work, we
present a new model checking algorithm that improves the approximate results obtained by
scalable iterative techniques to compute exact reachability probabilities. Our techniques are
implemented as an extension of the PRISM model checker and are evaluated against other
exact quantitative model checking engines.

Keywords Exact quantitative model checking · Markov decision processes · Markov
chains · Probabilistic systems

1 Introduction

Probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision
processes (MDPs) are often used to describe systems in many application areas such as
distributed systems [25,50], hardware communication protocols [26], reliability engineer-
ing in circuits [15,35,46,47], dynamic power management [14,49], networking [41,42] and
security [20]. Probabilistic transitions in these models are used to capture random faults, the

We gratefully acknowledge the support of the following Grants—Umang Mathur was partially supported by
a Google PhD Fellowship; Rohit Chadha was partially supported by NSF CNS-1553548 and NSF
CCF-1900924; A. Prasad Sistla was partially supported by NSF CNS-1314485, NSF CCF-1319754, NSF
CCF-1564296 and NSF CCF-1901069; and Mahesh Viswanathan was partially supported by NSF
CCF-1901069.

B Umang Mathur
umathur3@illinois.edu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-020-00348-y&domain=pdf
http://orcid.org/0000-0002-7610-0660

Formal Methods in System Design (2020) 56:90–126 91

uncertainty of the environment, and explicit randomization used in algorithms. Analyzing
properties of these probabilistic models is typically achieved through Probabilistic Compu-
tation Tree Logic (PCTL) model checking [51], wherein, a desired property of the model
is specified as a PCTL formula, and the validity of such a formula is evaluated against the
system in question.

PCTL is a quantitative extension of the temporal logic Computation Tree Logic (CTL)
used to describe how a system evolves over time. For example, a PCTL formula ψ can be
used to specify the property that almost surely no execution of a probabilistic program leads
to a state with a deadlock. Given �� ∈ {≤,<,≥,>}, the formula P��p[ψ] expresses the
property that the measure of computation paths satisfyingψ is ��p. For a DTMC orMDPM
and a PCTL formula φ, the PCTL model checking procedure recursively computes the set of
states ofM that satisfy subformulas of φ. Each recursive step, in turn, reduces to constrained
quantitative reachability, wherein, given a set of good statesG and a set of target states T , the
goal is to compute the measure of the paths that reach T while remaining in G. If the model
is decorated with costs or rewards, one may also be interested in computing the expected
cost/reward of reaching T . It is well known that the constrained quantitative reachability
problem for DTMCs and MDPs can be solved in polynomial time by a reduction to linear
programming [10,51].

Despite low asymptotic complexity, linear programming, unfortunately, doesn’t scale to
large models and is rarely used to solve the constrained quantitative reachability problem
in practice. Instead, probabilistic model checkers [22,23,32,38,39,44], typically compute
approximations to the exact reachability probabilities through an iterative process. The most
prevalent iterative technique is value iteration, where exact reachability probabilities may
only be approached in the limit. For completion in a finite number of steps, it is common
practice for model checking tools to terminate value iteration based on various heuristics, for
example, when the difference between the computed reachability probabilities of successive
iterations is “small”. This approximation step may lead to unsound results [11,31,54], partic-
ularly in systems where high magnitude changes in value iteration are preceded by periods
of stability that cause iteration to terminate prematurely.

Another iterative technique for computing constrained quantitative reachability is inter-
val iteration [11,17,31,53]. Aimed at addressing the shortcomings of value iteration, interval
iteration utilizes two simultaneous value iteration procedures converging to the exact prob-
ability values from above and below. While, this allows one to bound the error present in
the approximation, the exact solution cannot be obtained from such an interval bound. Fur-
ther, state-of-the-art model checkers typically implement these iterative procedures using
floating-point numbers and finite-precision arithmetic. As a result, both iterative techniques
are susceptible to overflows in floating-point calculations. The inherent imprecision in the
approximate answers, combined with the errors introduced from finite precision arithmetic
can be further compounded by the presence of nested probability operators in PCTL formulas
when the sets of good states G and target states T are not correctly computed in the recursive
step (see Example 3 in Sect. 3).

1.1 Contributions

In this article, we present a new algorithm and its implementation that sharpens approximate
solutions computed by fast iterative techniques, to obtain the exact constrained reachability
probabilities. The starting point of our approach is the observation that when the transition
probabilities in the model are rational numbers, an exact solution is also a rational number of

123

92 Formal Methods in System Design (2020) 56:90–126

polynomially many bits. The second ingredient in our technique is an algorithm due to Kwek
and Mehlhorn [40], which, given a “close enough” approximation to a rational number, finds
the rational number efficiently. The rough outline of our algorithm is as follows. We use an
iterative technique (value iteration or interval iteration) to compute an approximate solution
and then apply the Kwek–Mehlhorn algorithm to find a close candidate rational solution.
Since the approximate solution that we start with is of unknown quality, the candidate rational
solution obtained may not be the exact answer. Therefore, we check if the candidate satisfies
certain necessary and sufficient conditions that characterize the actual solution. This allows
one to confirm the correctness of the candidate rational solution. If it is not correct, the process
is repeated, starting with an approximate solution of improved precision. Precise details of
the algorithm are given in Sect. 5.

We have implemented this approach as an extension of the PRISM model checker, called
RationalSearch. Our tool computes exact constrained reachability probabilities and exact
expected rewards when model checking DTMCs against PCTL specifications. Our imple-
mentation also computes min reachability probabilities and max expected rewards when
model checking MDPs against PCTL specifications. For max reachability probabilities, we
currently support only the Explicit engine of PRISM. Evaluation of our implementation
against a broad set of examples from the PRISM benchmark suite [2] and case studies [3]
shows that our technique can be applied to a wide array of examples. In many cases, our
tool is orders of magnitude faster than the exact model checking engines implemented in
state-of-the-art tools like PRISM [44] and STORM [22].

1.2 Related work

The work closest in spirit to ours is [30], which presents an approach to obtain exact solutions
for reachability properties for MDPs and discounted MDPs. The underlying idea in [30] is
to interpret the scheduler obtained for an approximate solution, as a basis for the linear
program corresponding to the verification question. By examining the optimality of the
solution associated with this basis, the exact solution can be obtained by improving the
scheduler using the Simplex algorithm. This is significantly different from our approach. In
particular, for the case of DTMCs (where there is no scheduler), the approach of [30] reduces
to solving a linear program, which is known to be not scalable. Since the implementation
from [30] is not available, we could not experimentally compare it with our approach.

Several existing tools [22,44] implement algorithms for exact quantitative model check-
ing. Essentially these tools work by creating a model representation using rational numbers
and performing a state elimination computation similar to Gauss elimination. Much of the
infrastructure of this computation can be derived from parametric model checking techniques
[21,23,33,34] that analyze systems in which portions of the model are left unspecified. These
computations are intrinsically more complicated than those performed by approximation
engines. Our techniques avoid these expensive computations while still producing exact
solutions for a large class of examples.

1.3 History and organization

An extended abstract of this article appeared in [13]. The main difference from [13] is that
in [13], we had claimed that in order to check whether a candidate solution vector represents
the actual exact solution of max/min reachability probabilities or that of max/min expected
costs for MDPs, it suffices to only check that the candidate vector is a solution to a linear

123

Formal Methods in System Design (2020) 56:90–126 93

program. This happens to be incorrect for the case of max reachability probabilities and min
expected costs (see Sect. 4), and additional checks are required to claim that the candidate
solution vector is indeed correct (Lemmas 1, 3). We have modified our algorithm to reflect
this. We have also updated our prototype implementation for computing max reachability
probabilities and evaluated the new version on our benchmarks. We do not currently support
the computation of min expected costs. We have also computed the asymptotic complexity
of the algorithm (see Theorem 2). Further, the version of RationalSearch evaluated in this
work extends our original prototypeby integratingwith interval iteration and including several
performance enhancements. Additionally, we describe the full details of our implementation
and provide a more comprehensive evaluation of the tool.

The paper is organized as follows. Section 2 discusses preliminary notations, definitions
and algorithms concerning PCTLmodel checking of DTMCs andMDPs. Section 3 describes
iterative model checking techniques and their shortcomings. In Sect. 4, we discuss fixpoint
characterizations for solutions to PCTL model checking questions of MDPs. In Sect. 5 we
present our exact model checking algorithm. Sects. 6 and 7 describe the implementation and
evaluation of our techniques and we conclude with Sect. 8.

2 Preliminaries

A common technique in the analysis of systems is to model them as state transitions systems
where states describe information about the system at a point in time and transitions describe
how the system evolves from one state to another. When this evolution is governed by
randomphenomena, such state transition systems can then be enriched to capture probabilistic
behavior. The resulting model is known as a DTMC, in which every state is mapped to a
distribution over the successor states. MDPs generalize DTMCs, in that, the distribution
over the successor states is non-deterministically chosen. Our presentation of DTMCs and
MDPs follows [52]. We begin by formalizing DTMCs and introducing the logic Probabilistic
computation tree logic (PCTL), which is used to specify properties of DTMCs. We then
discuss the model checking algorithm for DTMCs. We next formally describe MDPs and
then present PCTL semantics and model checking for MDPs. Unless otherwise stated, all the
transition probabilities in the paper are assumed to be rational numbers. The set of rational
numbers shall be denoted as Q and the set of non-negative rational numbers as Q

≥0.

2.1 Discrete timeMarkov chains (DTMCs)

2.1.1 Syntax and semantics

A DTMC is a tupleM = (Z ,Δ,C, L) where Z is a finite set of states, Δ : Z → Dist(Z) is
the probabilistic transition function that maps every state to a probability distribution over
Z , C : Z × Z → Q

≥0 is a cost (or reward) structure and L : Z → 2AP is a labeling
function that maps states to subsets of AP, the set of atomic propositions. For each z ∈ Z ,
Δ(z) : Z → Q∩[0, 1] defines a discrete probability distribution over Z , that is,Δ(z)(z′) ≥ 0
for all z′ ∈ Z , and

∑
z′∈Z Δ(z)(z′) = 1. We will henceforth denote Δ(z)(z′) by Δ(z, z′).

Intuitively, a DTMCM evolves as follows. IfM is in state z, it transitions to state z′ with
probability Δ(z, z′). Formally, a finite (resp. infinite) path ρ of M is a finite (resp. infinite)
sequence of states z0 → z1 → · · · such that Δ(zi , zi+1) > 0. We write ρ(i) to denote the
ith state zi in ρ. For a DTMC M, the set of all infinite paths starting from state z will be

123

94 Formal Methods in System Design (2020) 56:90–126

denoted by Pathsz(M). For a finite path ρfin = z0 → · · · → zm starting at state z0, we
associate a measure probz0(ρfin) = ∏m−1

i=0 Δ(zi , zi+1). The cylinder set of ρfin is Cyl(ρfin) =
{ρ ∈ Pathsz0(M) | ρfin is a prefix of ρ} and its associated measure is probz0(Cyl(ρfin)) =
probz0(ρfin). This measure probz0 can be extended to a unique probability measure over the
smallest σ -algebra on Pathsz0(M) that contain all cylinder sets; the resulting probability
measure will also be denoted by probz0 .

2.1.2 Reachability probability and expected cost

Let z ∈ Z and F ⊆ Z . The probability of reaching F from the state z is defined to be the
measure probz(Reach) where Reach is the set of all infinite paths ρ such that ρ(0) = z and
ρ(i) ∈ F for some i ≥ 0. For defining expected cost, we first define the function costz(F) :
Pathsz → Q

≥0 such that for any ρ ∈ Pathsz(M), costz(F)(ρ) = ∑m−1
i=0 C(zi , zi+1) if

z0 → · · · → zm is the shortest prefix of ρ such that zm ∈ F and costz(F)(ρ) = ∞ if no
such prefix exists. Let Ez be the usual expectation on Pathsz(M)with respect to the measure
probz . Then Ez[costz(F)] is defined to be the expected cost of reaching F . Observe that,
following [52], the expected cost Ez[costz(F)] is finite iff the set F can be reached from z
with probability 1.

Example 1 Consider an embedded control system [43] comprised of an input processor, a
main processor, an output processor and a bus. In each cycle of the system, the input processor
collects data from a set of n sensors S1, S2, . . . , Sn . The main processor polls the input
processor and passes instructions to the output processor controlling a set of m actuators
A1, A2, . . . Am . Communication between processors occurs over the bus. The system is
designed to tolerate failures in a limited number of components. If the input processor reports
that the number of sensor failures exceeds some thresholdMAX_FAILURES, then the main
processor shuts the system down. Otherwise, it activates the actuators, which again, are prone
to failure. When the probabilities with which each of these components fail are known, one
can model the system’s reliability using a DTMC. In Fig. 1, we give a DTMC that models
a single cycle of such a system with n = 2 sensors and m = 1 actuator. For simplicity, we
assume that each sensor fails with probability Es and each actuator fails with probability
Ea . States of the model are labeled with es1, . . . , e

s
n ∈ {0, 1} and ea1 , . . . , e

a
m ∈ {0, 1}, where

esi = 1 denotes the failure of sensor Si and eai = 1 denotes the failure of actuator Ai . In
Fig. 1, we omit labels if they are not relevant in a particular state.

2.2 Probabilistic computation tree logic (PCTL)

Properties of DTMCs be expressed in the logic PCTL, which extends the temporal logic CTL
with the ability to reason quantitatively. We start by describing the syntax and semantics of
PCTL.

2.2.1 Syntax

Analogous to CTL, PCTL has state formulas thatmodel properties of states and path formulas
that model properties of paths.

123

Formal Methods in System Design (2020) 56:90–126 95

Sensors

Init

es1=1

es1=0

es1=1
es2=1

es1=1
es2=0

es1=0
es2=1

es1=0
es2=0

Sensor
Failure

Sensor
Success

Processor

ea1=1

ea1=0

Actuators

Fail

Success

Result

Es

1-E
s

Es

1-E
s

Es

1-E
s

Ea

1-E
a

Fig. 1 Markov chain for a simple embedded control system with two sensors and one actuator tolerating a
single sensor fault

Definition 1 Let a ∈ AP be an atomic proposition, �� ∈ {≤,<,≥,>}, p ∈ [0, 1], c ∈ Q
≥0

and k ∈ N. The syntax of PCTL is

φ ::= true a ¬φ φ ∧ φ P��p[ψ] E��c[φ]
where ψ ::=Xφ | φUφ.

Here φ is a state formula and ψ a path formula.

2.2.2 Semantics

The state formulas are interpreted over states and path formulas over infinite paths.

Definition 2 LetM = (Z ,Δ,C, L) be a DTMC, φ, φ1, φ2 be state formulas andψ be a path
formula. The satisfaction relation |� for PCTL state formulas and for PCTL path formulas
is defined by mutual induction:

M, z |� true for all z ∈ Z
M, z |� a ⇔ a ∈ L(z)
M, z |� ¬φ ⇔ M, z |� φ

M, z |� φ1 ∧ φ2 ⇔ M, z |� φ1 and M, z |� φ2

M, z |� P��p[ψ] ⇔ pz(ψ)��p
M, z |� E��c[φ] ⇔ ez(φ)��c

M, ρ |� Xφ ⇔ M, ρ(1) |� φ

M, ρ |� φ1Uφ2 ⇔ ∃i≥0 : (M, ρ(i) |� φ2 and ∀ j < i : M, ρ(j) |� φ1)

where pz(ψ) = probz({ρ ∈ Pathsz(M) | M, ρ |� ψ}), ez(φ) = Ez[costz(Zφ)] with
Zφ = {z′ ∈ Z | M, z′ |� φ}.

Example 2 Consider the DTMCmodeling an embedded control system fromExample 1. One
can describe many important properties of this model using PCTL as follows (��, ��

′ ∈ {≤
,≥,<,>} and p ∈ [0, 1])

123

96 Formal Methods in System Design (2020) 56:90–126

1. The probability of success is ��p:

P��p [true U “Sucess′′]
2. The probability of reaching the set of states where there are no sensor failures is ��p:

P��p [true U (es1 + · · · + esn = 0)]
3. Let G be the set of states from which the probability of reaching a state where sensor S1

fails is ��
1
2 . Let T be the set of states from which the probability of reaching a state in

which actuator A1 fails is 0. The probability of remaining in some state from the set G
until reaching a state in T is ��

′ p:

P��
′ p [P

��
1
2
[true U (es1=1)] U P≤0[true U (ea1=1)]]

2.3 PCTLmodel checking

The PCTLmodel checking question asks, given a state z0 of aDTMCM and a PCTL formula
φ, determine whether M, z0 |� φ. Similar to the model checking algorithm for CTL, the
PCTL model checking algorithm recursively computes the set of states satisfying a state
sub-formula (see [10,52] for the complete details). We consider the special case when the
formula φ is of the form P��p[φ1 U φ2].

Let φ, φ′ be state formulas. To check whether M, z0 |� P��p[φ U φ′], one recursively
computes the set of states Zφ and Zφ′ satisfying the state formulas φ and φ′, respectively.
These can then be used to derive, for every z∈Z , the quantity pz(φ U φ′) which represents
the probability of reaching the set Zφ′ while remaining in the set Zφ , starting from the state
z. Let λz. pz(φ U φ′) denote the state-indexed vector (or the function) that maps z ∈ Z to
pz(φ U φ′). The state-indexed vector λz. pz(φ U φ′) can be computed as the unique solution
to following linear program [10,52]:

yz=

⎧
⎪⎪⎨

⎪⎪⎩

0 if z ∈ Prob0[φ U φ′]
1 if z ∈ Prob1[φ U φ′]

∑

z′∈Z
Δ(z, z′) · yz′ otherwise

(1)

In the equation above, Prob0[φ U φ′] and Prob1[φ U φ′] are the set of states of M that
satisfy φ Uφ′ with probability 0 and 1, respectively. These sets can be determined via a
pre-computation step that analyzes the underlying graph structure of the DTMC. The value
of yz in the solution is exactly the value pz(φ U φ′). To verify if M, z0 |� P��p[φ U φ′],
one computes λz. pz(φ U φ′) and compares pz0(z U z′)��p. The model checking algorithm
for ¬φ, φ ∧ φ′, and P��p[Xφ] are as expected.

To check whether E��c[φ], one recursively computes Zφ satisfying the state formula φ.
The expected costs {ez(φ) | z ∈ Z} can then be computed as the unique solution to the
following linear program [52] (with the convention that 0 · ∞ = 0):

yz=

⎧
⎪⎪⎨

⎪⎪⎩

0 if z ∈ Zφ

∞ iff z ∈ Cost∞[φ]
∑

z′∈Z
Δ(z, z′) · (C(s, s′) + yz′) otherwise

(2)

123

Formal Methods in System Design (2020) 56:90–126 97

In the equation above, Cost∞[φ] is the set of states for which the expected cost is ∞. The set
Cost∞ is exactly the set of states that satisfy φ with probability < 1, and can be determined
via a pre-computation step that analyzes the underlying graph structure of the DTMC.

2.4 Markov decision processes (MDPs) and PCTL

2.4.1 Syntax

AnMDP is a tupleM = (Z ,Act,Δ,C, L)where Z is a finite set of states,Act is a finite set of
actions, the partial functionΔ : Z ×Act ↪→ Dist(Z), called probabilistic transition function,
maps pairs of states and actions to probability distributions over Z , C : Z × Act → Q

≥0 is
a cost (or reward) structure and L : Z → 2AP is a labeling function. The set enabled(z) =
{α ∈ Act |Δ(z, α) is defined}, describing the actions enabled from a state z, is assumed to be
non-empty for every z ∈ Z . An MDP, therefore, differs from a DTMC, in that, at each state
z, there is a choice among several possible distributions. The choice of which distribution to
trigger is resolved by a scheduler (or an attacker). Informally, anMDPM evolves as follows.
It starts from some state z0 ∈ Z . After i execution steps, if M is in state z, the scheduler
chooses an action α ∈ enabled(z), which then defines a unique probability distribution
μ given by Δ(z, α). The process then moves to state z′ in step (i + 1) with probability
Δ(z, α)(z′). We will write Δ(z, α, z′) to denote Δ(z, α)(z′) when α ∈ enabled(z).

2.4.2 Reachability probability and expected cost

Formally, a path ρ of an MDP M is a sequence z0
α1−→z1

α2−→· · · such that for each i ≥ 0,
we have αi+1 ∈ enabled(zi) and Δ(zi , αi+1, zi+1) > 0. As discussed above, the choice of
which action to trigger in a given state is resolved by a scheduler, which is a functionS from

finite paths to actions1. A path z0
α1−→z1

α2−→· · · is a S-path if S(z0z1 . . . zi) = αi+1 for all
i ≥ 0. We will write Pathsz(M) for the set of infinite paths starting from z and PathsSz (M)

for the set of infinite S-paths starting from z. The set of all schedulers will be denoted by
S. A scheduler S ∈ S for MDP M induces a (potentially infinite) DTMC MS where the
states of MS, denoted ZS, are the set of finite paths of M and the transition function ΔS

is as follows. For any two finite paths ρ, ρ′ ∈ ZS where ρ = z0
α1−→ · · · αm−→ zm let

ΔS(ρ, ρ′)=
{

μ(z′) if ρ′ is of the form ρ
S(ρ)−−−→ z′ and Δ(zm,S(ρ)) = μ

0 otherwise.

This allows one to use probability measure over DTMCs to define a probability measure
probSz over the set of paths PathsSz (M). One can also define the expected cost of reaching
a target set of states F with respect to a scheduler S, denoted E

S
z [costz(F)], in a fashion

similar to the DTMC case. Interested readers should refer to standard texts such as [10,52]
for more details.

1 One can alternatively define a scheduler as a function from finite paths into probability distributions on
actions. Both definitions are equivalent in the context of PCTL model checking.

123

98 Formal Methods in System Design (2020) 56:90–126

2.4.3 Probabilistic computation tree logic (PCTL)

Like DTMCs, properties of MDPs can be expressed in the logic PCTL. The semantics of
PCTL formulae stay the same, except for the semantics of P��p[ψ] and E��c[φ], which now
require a quantification over all schedulers.

Definition 3 LetMbe anMDP,φ be a state formula, andψ be a path formula. The satisfaction
relation |� for PCTL state formulae is defined identically to Definition 2, except for the
following cases.

M, z |� P��p[ψ] ⇔ ∀S ∈ S, pSz (ψ)��p
M, z |� E��c[φ] ⇔ ∀S ∈ S, eSz (φ)��c

where given an adversary S ∈ S, pSz (ψ) = probSz ({ρ ∈ PathsSz (M) | M, ρ |� ψ}) and
eSz (φ) = E

S
z [costz(Zφ)] with Zφ = {z′ ∈ Z | M, z′ |� φ}.

2.5 PCTLmodel checking for MDPs

Similar to the PCTL model checking algorithm for DTMCs, the PCTL model checking
algorithm for MDPs recursively computes the set of states satisfying a state sub-formula (see
[10,52] for the complete details). We illustrate the differences when we model check the
probability and expected cost operators.
P��p[φ U φ′] operator. For checking whether a state z0 satisfies P��p[φ U φ′], we recur-
sively compute the sets of states Zφ and Zφ′ as in the case of DTMCs. Given a state z,
let pmax

z (φ U φ′) = max
S∈S pSz (φ U φ′) and pmin

z (φ U φ′) = min
S∈S pSz (φ U φ′). Thus,

pmax
z (φ U φ′) (resp. pmin

z (φ U φ′)) is the maximum (resp. minimum) probability of satisfy-
ing φ U φ′. We note that both pmax

z (φ U φ′) and pmin
z (φ U φ′) exist [9,10,14,16,52]). Thus,

in order to check whetherM, z0 |� P��p[φ U φ′], it suffices to compute pmax
z0 (φ U φ′)when

�� ∈ {<,≤} and to compute pmin
z0 (φ U φ′) if �� ∈ {>,≥}. We explain below how these are

computed.
In order to compute pmax

z0 (φ U φ′), we compute the function λz. pmax
z (φ U φ′) that maps

each z ∈ Z to pmax
z (φ U φ′). For each z ∈ Z , pick a variable yz . Consider the following

linear optimization problem:

min
∑

z∈Z
yz subject to

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz ≥ ∑

z′∈Z
Δ(z, α, z′) · yz′ if

z ∈ Z\(Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′])
α ∈ enabled(z)

(3)

where Probmax
0 [φ U φ′] (Probmax

1 [φ U φ′] respectively) is the set of states z such that
pmax
z (φ U φ′) is 0 (1 respectively). The sets Probmax

0 [φ U φ′] and Probmax
1 [φ U φ′] can be

computed using graph-theoretic algorithms. Now, the vector λz. pmax
z (φ U φ′) is the unique

solution set for this linear optimization problem, ie, objective is minimized and constraints
satisfied if and only if we replace yz by pmax

z (φ U φ′).
Computation of λz. pmin

z (φ U φ′), the state-indexed vector that maps z ∈ Z to
pmin
z (φ U φ′), is along similar lines; the objective changes tomaximization,Probmax

0 [φ U φ′]
and Probmax

1 [φ U φ′] are replaced by Probmin
0 [φ U φ′] and Probmin

1 [φ U φ′] respectively,

123

Formal Methods in System Design (2020) 56:90–126 99

and the direction the last inequality is reversed. Here Probmin
0 [φ U φ′] (Probmin

1 [φ U φ′]
respectively) is the set of states z for which pmin

z is 0 (1 respectively), and can be computed
using graph-theoretic algorithms.

E��p[φ]operator.For checkingwhether a state z0 satisfiesE��p[φ],we recursively compute
the set of states Zφ as in the case of DTMCs. Given a state z, let emax

z (φ) = max
S∈S eSz (φ) and

emin
z (φ) = min

S∈S eSz (φ). Thus, emax
z (φ) (emin

z (φ) respectively) is the maximum (minimum

respectively) expected cost of reaching the set Zφ. Again, we note that both emax
z (φ) and

emin
z (φ) exist [10,14,52]). Thus, it suffices to compute emax

z0 (φ) when �� ∈ {<,≤} and to
compute emin

z0 (φ) if �� ∈ {>,≥}.
In order to compute emax

z0 (φ), we compute the state-indexed vector λz. emax
z (φ). For each

z ∈ Z , pick a variable yz . Consider the following linear optimization problem (with the
convention that 0 · ∞ = 0):

min
∑

z∈Z
yz subject to

yz = 0 if z ∈ Zφ

yz = ∞ iff z ∈ Costmax∞ [φ]
yz ≥ C(z, α) + ∑

z′∈Z
Δ(z, α, z′) · yz′ if z ∈ Z\(Zφ ∪ Costmax∞ [φ]), α ∈ enabled(z)

(4)

where Costmax∞ is the set of states z such that emax
z (φ) = ∞. Observe that z ∈ Costmax∞

if and only if there is a scheduler S such that pSz (φ) < 1. This allows computation of
the set Costmax∞ using graph-theoretic methods. Now, the vector λz. emax

z (φ) is the unique
solution for this linear optimization problem, i.e., the objective is minimized and constraints
satisfied if and only if we replace yz by emax

z (φ). Computation of λz. emin
z (φ) is along similar

lines; the objective changes to maximization, Costmax∞ [φ] is replaced by Costmin∞ [φ], and the
direction the last inequality is reversed. Here Costmin∞ [φ] is the set of states z such that emin

z

is ∞. Observe that z ∈ Costmin∞ [φ] if and only if pSz (φ) < 1, for all schedulers S. The set
Costmin∞ [φ] can also be computed graph-theoretically.

3 Approximatemodel checking

As discussed before, solving quantitative properties of DTMCs and MDPs by a reduction
to linear programming does not scale well enough to make it a viable solution technique in
practice. As a result, techniques for approximating solutions to the model checking problem
using floating-point arithmetic have been widely adopted. In this section, we describe two
such techniques, value iteration and interval iteration, and demonstrate how each approach
can produce incorrect solutions.

3.1 Iterative techniques

The linear program described in Eq. (1) for DTMCs can equivalently be expressed in the
below, for some appropriate matrix A and vector b.

x̄ = Ax̄ + b

This allows for an alternate approach to solving the linear program from Eq. (1) known
as value iteration. In the case of DTMCs, the unique solution to Eq. (1) can be computed
iteratively as the the limit of the following sequence.

123

100 Formal Methods in System Design (2020) 56:90–126

x̄0(z) =
{
1 if z ∈ Prob1[φ U φ′]
0 otherwise .

x̄i+1 = Ax̄i + b̄

(5)

For the case of MDPs, the unique solution that minimizes the objective function of the
linear program in Eq. (3) and used to compute maximum probabilities of satisfying [φ U φ′]
can be obtained as the limit of the iterative sequence {xi }i≥0:

x̄0(z) =
{
1 if z ∈ Probmax

1 [φ U φ′]
0 otherwise .

x̄i+1(z) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if z ∈ Probmax
1 [φ U φ′]

0 if z ∈ Probmax
0 [φ U φ′]

max{ ∑

z′∈Z
Δ(z, α, z′) · x̄i (z′) | α∈enabled(z)} otherwise

(6)

For the solution to the linear program that is used to compute minimum probabilities, the
iterative sequence is similar except thatmax is replaced bymin. The iterative sequences for
computing expected costs can be similarly defined with one notable variation. For computing
min expected costs, the MDPs have to be transformed to get rid of cost 0 cycles. We refer
the reader to [9,28,52] for details.

In many cases, the sequence does not converge in a finite number of steps, and therefore
model checkers terminate the sequence when successive vectors vk and vk+1 become “close
enough”. The choice of stopping criterion is based mainly on heuristics. The PRISM model
checker, for example, implements two criteria (i) absolute convergence, and (ii) relative con-
vergence. Under the absolute criterion, value iteration terminates if the norm ‖vk+1 − vk‖ <ε

for some ε > 0. Under the relative criterion, termination occurs when ‖vk+1−vk‖
‖vk‖ < ε. In spite

of the fact that iterative techniques only approximate solutions, value iteration remains the
popular choice for widely used tools that analyze PCTL properties as it vastly outperforms
linear programming techniques, despite their theoretically better asymptotic complexity.

As originally observed in [27], value iteration provides no guarantees about the qual-
ity of the solution, regardless of the stopping criterion used. To help rectify this problem,
Haddad et. al. [31] and Brázdil et. al. [17] concurrently introduced interval iteration for
computing min/max reachability probabilities in DTMCs and MDPs. In this approach, one
simultaneously computes two sequences of vectors, one converging to the solution from
below and one converging to the exact solution from above. In this setting, the stopping
criterion becomes straightforward; terminate when the distance between the two vectors is
within some ε threshold. Assuming the absence of floating-point errors, this effectively gives
a small ε-neighborhood that contains the actual solution. In order to achieve convergence,
interval iteration requires a pre-processing step that transforms the underlying graph of the
model. The interval iteration technique was extended to expected costs in [11].

Both iterative techniques described above can be further enhanced by performing
arithmetic operations using Multi-terminal binary decision diagrams (MTBDDs) [29,36].
MTBDDs generalize BDDs [18] by allowing terminal values to be different from 0 or 1.
Similar to the role of BDDs in symbolic model checking [45], MTBDD based model check-
ers leverage the performance benefit due to the succinct representations of the data structures
involved.

123

Formal Methods in System Design (2020) 56:90–126 101

3.2 Shortcomings of iterative techniques

When computing constrained reachability probabilities using value iteration, both the abso-
lute and relative convergence criteria can result in solutions that are very far from the actual
answers. In [31], the authors give a DTMC and a PCTL property whose solution is 1

2 , yet
PRISM reports 9.77 × 10−4 for the absolute criterion and 0.198 for the relative criterion.
This drastic error is the result of a premature termination of value iteration. Several other
sources of imprecision can also cause state-of-the-art quantitative model checkers to produce
unsound results. For example, consider a PCTL formula of the formP≥p(ψ) and a systemM
such that the probability measure of the formula ψ is exactly p. When value iteration, with
floating-point numbers, is used to compute this measure, the value pmay only be approached
in the limit, and hence the procedure will return some p′ that approximates p from below.
This means that the formula P≥p(ψ) will evaluate to false, where of course the correct value
is true. This phenomenon was first pointed out in [54]. We also demonstrate a similar phe-
nomenon with the DTMC from Example 1. For the sake of illustration, let Es = 1

2 . Clearly,
from the initial state, the probability of reaching a state where sensor 1 fails is exactly 1

2 and
hence the formula P< 1

2
[true U (es1=1)] evaluates to false for the initial state. However,

PRISM returns true. Errors such as these can be compounded in PCTL formulas contain-
ing nested operators, wherein the recursive step of the model checking algorithm returns an
incorrect set of states. This can lead to substantial logical errors in model analysis, as we
demonstrate with the example below.

Example 3 Let us instantiate the DTMC from Example 1 with n = 14 sensors, m = 1
actuator,MAX_FAILURES=1 and with Es = Ea = 1

2 . Recall the third PCTL property of the
embedded control system given in Example 2:

P��
′ p [P

��
1
2
[true U (es1=1)] U P≤0[true U (ea1=1)]].

When �� is ≤, the PRISM model checker returns “0.7096993582589287′′ as the prob-
ability for the initial state with both value iteration and interval iteration2. With our
tool RationalSearch, one can verify that the correct probability is 212895/229376,
or “0.9281485421316964′′. Further, when �� is <, PRISM again returns the value given
above for both iterative techniques. This time, the actual solution, as generated by Ratio-
nalSearch, is 0. The errors above are the result of the fact that PRISM incorrectly computes
the set of states satisfying P

��
1
2
[true U (es1=1)]. This error in the recursive step results in an

incorrect formulation of the constraints in the outermost constrained reachability problem.

When using interval iteration, we may be unable to conclude whether the DTMC or the
MDP being model checked satisfies the given formula. For example, when checking whether
a DTMCM satisfies a formula P≥p(ψ), we cannot provide a definite answer if the interval
iteration returns that the probability of satisfyingψ lies in the interval (a, b)where p ∈ (a, b).

4 Fixpoint formulations for constrained reachability and expected
costs

Asdiscussed in Sect. 2.3, the probability, associatedwith each state z in aDTMC, of satisfying
a PCTL path formula φ U φ′ can be characterized as the unique solution to a system of linear

2 Using the Hybrid engine, the absolute convergence criterion and ε = 10−16.

123

102 Formal Methods in System Design (2020) 56:90–126

equations. Similarly, the expected cost of reaching some state satisfying φ in a DTMC M
starting from any given state z in M can also be characterized as the unique solution to a
linear program. In both these cases, the solution can be seen as the unique fix point of a linear
transformation. Thus, when given a candidate solution for the collection of probabilities
(or the collection of expected costs), we can check the correctness of this collection by
plugging the candidate solution in the corresponding system of equations. In the case of
MDPs, the max probabilities, min probabilities, max expected and min expected costs can
also be characterized as a solution to a system of equations. ForMDPs, however, the system of
equationsmay havemultiple solutions.Wewill showbelow thatwhen the systemof equations
for MDPs is not guaranteed to have a unique solution, we can perform an additional graph-
theoretic check to confirm that a given candidate solution for the set of probabilities (or the
set of expected costs) is correct. Such a confirmation check, as we will discuss in Sect. 5, is
crucial to our algorithm for computing exact answers.

4.1 Fixpoint formulation for constrained reachability in MDPs

LetM = (Z ,Act,Δ,C, L) be anMDP and φ, φ′ be PCTL state formulas. The state-indexed
vector Pmax(φ U φ′) = λz. pmax

z (φ U φ′) can be characterized as the least fix point (least
under pointwise ordering) of the set of equations:

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz = max
α∈enabled(z)

∑

z′∈Z
Δ(z, α, z′) · yz′ if z ∈ Z\(Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′])

(7)

The state-indexed vector Pmin(φ U φ′) = λz. pmin
z (φ U φ′) can be similarly characterized

by replacingmax bymin. Formin, the fix point, in fact, turns out to be unique [9]. Formax,
the fix point is not unique, although several references claim this to be case (see Theorem
10.100 in [10] for example). The non-uniqueness has also been pointed out by [31]. However,
for the max case, we show that a simple graph-theoretic check can be performed to verify
if a given fix point to the set of equations is indeed the exact solution Pmax. We describe
this below. We shall need the notion of a memoryless scheduler, namely a scheduler that
assigns the same action to any two finite paths ending in the same state (see [9,10,52]). A
memoryless scheduler SV can be considered as a function from states to actions instead of
a function from paths to actions.

Let V : Z → [0, 1] be a solution of the set of equations in Eq. (7). We start by defining
a directed graph that is obtained from M by selecting, for each state, the set of actions that
potentially achieve the maximum reachability probabilities.

Definition 4 Let V : Z → [0, 1] be a fix point of Eq. (7). Let Z ? = Z\(Probmax
0 [φ U φ′] ∪

Probmax
1 [φ U φ′]) For each state z ∈ Z ?, let

argmaxVz = {α ∈ enabled(z) | V(z) =
∑

z′∈Z
Δ(z, α, z′) · V(z′)}.

Let GV = (Z , E) be a directed graph such that (z1, z2) ∈ E iff z1 ∈ Z ? and ∃α ∈
argmaxVz1 such that Δ(z1, α, z2) > 0.

With the above definition of the graph GV, we can characterize the solution to the max
reachability problem for MDPs as follows.

123

Formal Methods in System Design (2020) 56:90–126 103

Lemma 1 Let M = (Z ,Act,Δ,C, L) be a MDP and φ, φ′ be PCTL state formulas. For
each state z of M, let pmax

z (φ U φ′) be the maximum probability of satisfying φ U φ′. Let
V : Z → [0, 1] be a solution of the set of equations given by Eq. (7). Consider GV as defined
in Definition 4 above. Let Z0 be the set of states z such that there is no path from z to any
state z′ ∈ Probmax

1 [φ U φ′] in the graph GV. Then,
Z0 = Probmax

0 [φ U φ′] ⇔ ∀z ∈ Z . V(z) = pmax
z (φ U φ′).

Proof If Z = Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′] then the lemma is immediate. So
we will consider the case that Z\(Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′]) = ∅. Note also

that we have that for each state z ∈ Z , V(z) ≥ pmax
z (φ U φ′) as the state-indexed vector

Pmax = λz. pmax
z (φ U φ′) is the least fix point of Eq. (7).

It can be easily shown that in order to establish the Lemma, we can assume that φ is true,
φ′ is some a ∈ AP, Probmax

0 [φ U φ′] and Probmax
1 [φ U φ′] consists of exactly one state (say

rej and acc respectively), exactly one action α0 is enabled in rej and acc, Δ(rej, α0) = rej,
and Δ(acc, α0) = acc.

(⇒) It suffices to show that V(z) ≤ pmax
z (φ U φ′) for each state z ∈ Z . Let Z ? =

Z\(Probmax
0 [φ U φ′] ∪ Probmax

1 [φ U φ′]). Letm be the cardinality of Z ?. From the fact that
Probmax

0 [φ U φ′] = Z0, we can construct inductively an enumeration z1, . . . , zm of states in
Z ? and an enumeration of actions α1, . . . , αm in Act such that for each 1 ≤ i ≤ m,

1. αi ∈ argmaxVzi , and
2. Δ(zi , αi , z) = 0 for some z ∈ {acc, z1, . . . , zi−1}.

Consider the memoryless schedulerSV for the MDPM, that picks αi when the last state
in the execution is zi ∈ Z ? and picks α0 otherwise. By definition, probSV

z (true U a) ≤
pmax
z (true U a) for each z ∈ Z . Thus, it suffices to show that probSV

z (true U a) = V(z)
for each z ∈ Z .

Let us now construct a DTMC, M0, from M which picks for each state z, the action
SV(z). Formally, the DTMC M0 = (Z ,Δ0,C, L) where Δ0(z, z′) = Δ(z,SV(z), z′) for
all z, z′ ∈ Z . It is easy to see that probSV

z (true Ua) is the probability that z satisfies the
formula true Ua in M0. By construction of M0, this probability is 0 (1 respectively) if and
only if z is rej (acc respectively). Thus, {probSV

z (true U a)}z∈Z is the unique solution of
the set of equations:

xrej = 0

xacc = 1

xz =
∑

z′∈Z
Δ(z,SV(z), z

′) · xz′ otherwise.
(8)

As αi ∈ argmaxVzi , we get by construction, V is also a solution to Eq. (8). By uniqueness, we

must have that probSV
z (true U a) = V(z) for each z ∈ Z .

(⇐) The maximum probability of reaching acc is realized by a memoryless scheduler,
namely a scheduler that assigns the same action to any two finite paths ending in the same
state (see [9,10,52]). Fix one such scheduler S. We have that for all states z ∈ Z ,V(z) =
pmax
z (true U a) = probSz (true U a). From this, it is easy to show that the following hold:

1. S(z) ∈ argmaxz,V for all z ∈ Z\{acc, rej}.
2. For each z ∈ Z\{acc, rej}, there is a finite path ρ = z′1

S(z′1)−→ · · · S(z′�−1)−→ z′� such that
z′1 = z and z′� = acc.

From the above two observations, we have that Probmax
0 [φ U φ′] = Z0. ��

123

104 Formal Methods in System Design (2020) 56:90–126

4.2 Fixpoint formulation for expected costs in MDPs.

Let M = (Z ,Act,Δ,C, L) be an MDP and φ be a PCTL state formula. The state-indexed
vector Emax = λz. emax

z (φ) can be characterized as a fix point of the following set of equations
[28] (with the convention that 0 · ∞ = 0):

yz = 0 if z ∈ Zφ

yz = ∞ if z ∈ Costmax∞ [φ]
yz = max

α∈enabled(z)
C(z, α) +

∑

z′∈Z
Δ(z, α, z′) · yz′ otherwise

(9)

While Emax is described to be the least fix point of Eq. (9) in [28], we, in fact, show that
Eq. (9) admits only one solution.

Lemma 2 Let M = (Z ,Act,Δ,C, L) be a MDP and φ be a PCTL state formula. Let Zφ

be the set of states of M that satisfy φ. For each state z of M, let emax
z (φ) be the maximum

expected cost of reaching the set of states Zφ.Then Emax = λz. emax
z (φ) is the unique solution

to Eq. (9).

Proof We only need to show that Eq. (9) has a unique solution. Let V1 and V2 be two
solutions of Eq. (9). Observe that V1(z) = V2(z) for each z ∈ Zφ ∪ Costmax∞ [φ]. Let
U = Z\(Zφ ∪ Costmax∞ [φ]) and d = maxz∈U |V1(z)−V2(z)|. It suffices to show that d = 0.

We will establish the result reductio ad absurdum. Assume d > 0. By definition, each
state z ∈ U does not belong to the set Costmax∞ [φ]. This implies that for all schedulersS and
state z ∈ U , pSz (true U φ) = 1. This leads to the following observations:

1. For z ∈ U and α ∈ enabled(z), probability of transitioning from z on action α to each
state in Costmax∞ [φ] is 0.

2. For each k = 1, 2, z ∈ U andα ∈ enabled(z), let vk,αz = C(z, α)+ ∑

z′∈U
Δ(z, α, z′)·Vk(z′).

By definition and the previous observation, Vk(z) = max
α∈enabled(z)

vk,αz .

3. There is an enumeration z1, . . . , zn of states inU such that for each 1 ≤ i ≤ n and action
α, if α ∈ enabled(zi) then Δ(zi , α, z) = 0 for some state z ∈ Zφ ∪ {z j | 1 ≤ j < i}.

Claim |V1(zi) − V2(zi)| < d for each 1 ≤ i ≤ n.

Proof The proof proceeds by induction on i .
Base case Fix α0 ∈ enabled(z1). By construction of z1,

∑

z′∈U
Δ(z1, α0, z′) < 1.

We have that for each k = 1, 2,

vk,α0z1 = C(z1, α0) +
∑

z′∈U
Δ(z1, α0, z

′) · Vk(z′)

= C(z1, α0) +
∑

z′∈U
Δ(z1, α0, z

′) · (Vk(z′) − V3−k(z′) + V3−k(z′))

= C(z1, α0) +
∑

z′∈U
Δ(z1, α0, z

′) · V3−k(z′)

+
∑

z′∈U
Δ(z1, α0, z

′) · (Vk(z′) − V3−k(z′))

= v3−k,α0
z1 +

∑

z′∈U
Δ(z1, α0, z

′) · (Vk(z′) − V3−k(z′))

123

Formal Methods in System Design (2020) 56:90–126 105

≤ v3−k,α0
z1 +

∑

z′∈U
Δ(z1, α0, z

′) · d

≤ v3−k,α0
z1 + d ·

∑

z′∈U
Δ(z1, α0, z

′)

< v3−k,α0
z1 + d · 1 ≤ max

α∈enabledz1
v3−k,α0
z1 + d = V3−k(z1) + d.

Since α0 is an arbitrary action in enabled(z1), we get that

Vk(z1) < V3−k(z1) + d for each k ∈ {1, 2}.
Thus, both V1(z1) − V2(z1) < d and V2(z1) − V1(z1) < d establishing the base case.

Induction step Assume that we have |V1(zi) − V2(zi)| < d for each 1 ≤ i ≤ �. Now,
consider z�+1 and fix α0 ∈ enabled(z�+1). By construction of z�+1,

– Either
∑

z′∈U
Δ(z�+1, α0, z′) < 1

– Or Δ(z�+1, α0, z j) > 0 for some 1 ≤ j ≤ �.

If
∑

z′∈U
Δ(z�+1, α0, z′) < 1 then we can show by an argument similar to the one used in base

case that
vk,α0z�+1

< v3−k
z�+1

+ d for each k = 1, 2.

Now, consider the case when Δ(z�+1, α0, z j) > 0 for some 1 ≤ j ≤ �. Fix one such j0.
Thus, we have Δ(z�+1, α0, z j0) > 0. By Induction hypothesis, we also have that |V1(z j0) −
V2(z j0)| < d. For each k = 1, 2,

vk,α0z�+1
= v3−k,α0

z�+1
+

∑

z′∈U
Δ(z�+1, α0, z

′) · (Vk(z′) − V3−k(z′))

= v3−k,α0
z�+1

+ Δ(z�+1, α0, z j0) · (Vk(z j0) − V3−k(z j0))

+
∑

z′∈U\{z j0 }
Δ(z�+1, α0, z

′) · (Vk(z′) − V3−k(z′))

≤ v3−k,α0
z�+1

+ Δ(z�+1, α0, z j0) · (Vk(z j0) − V3−k(z j0))

+
∑

z′∈U\{z j0 }
Δ(z�+1, α0, z

′) · d

< v3−k,α0
z�+1

+ Δ(z�+1, α0, z j0) · d +
∑

z′∈U\{z j0 }
Δ(z�+1, α0, z

′) · d

= v3−k,α0
z�+1

+ d ·
∑

z′∈U
Δ(z�+1, α0, z

′)

= v3−k,α0
z�+1

+ d · 1 ≤ V3−k(z�+1) + d.

Since α0 is an arbitrary action in enabled(z�+1), we get once again that

Vk(z�+1) < V3−k(z�+1) + d for each k ∈ {1, 2}.
Thus, we get both V1(z�+1) − V2(z�+1) < d and V2(z�+1) − V1(z�+1) < d establishing the
induction step.
(End: Proof of claim) ��

123

106 Formal Methods in System Design (2020) 56:90–126

Thus, we have that d = maxz∈U |V1(z) − V2(z)| < d , which is a contradiction. ��
The state-indexed vector Emin(φ) = λz. emin

z (φ) can also be characterized as a fix point
of the following set of equations [9,28]:

yz = 0 if z ∈ Zφ

yz = ∞ iff z ∈ Costmin∞ [φ]
yz = minα∈enabled(z)C(z, α) +

∑

z′∈Z
Δ(z, α, z′) · yz′ otherwise

(10)

However, in this case, the fix point may not be unique. Emin(φ) is the greatest fix point of
Eq. (10) [9]. Nevertheless, we can perform an additional check to see if a given solution of
Eq. (10) is indeed the function Emin(φ).

Let V : Z → Q
≥0 be a solution of the set of equations given by Eq. (10). We start by

defining a directed graph that is obtained fromM by selecting for each state, the set of actions
that potentially achieve the minimum expected costs.

Definition 5 Let V : Z → Q
≥0 be a fix point of Eq. (10). For each state z ∈ Z\(Zφ ∪

Costmin∞ [φ]), let
argminVz = {α ∈ enabled(z) | V(z) = C(z, α) +

∑

z′∈Z
Δ(z, α, z′) · V(z′)}.

Let HV = (Z , E) be a directed graph such that (z1, z2) ∈ E iff z1 ∈ Z\(Zφ ∪
Costmin∞ [φ]) and ∃α ∈ argminVz1 st Δ(z1, α, z2) > 0.

The following can be proved along the same lines as Lemma 1:

Lemma 3 Let M = (Z ,Act,Δ,C, L) be a MDP and φ be a PCTL state formula. For
each state z of M, let emin

z (φ) be the minimum expected cost of reaching the set Zφ. Let
V : Z → Q

≥0 be a solution of the set of equations given by Eq. (10). ConsiderHV as defined
in Definition 5 above. Let Z∞ be the set of states z such that there is no path from z to any
state z′ ∈ Zφ in the graph HV. Then

Z∞ = Costmin∞ [φ] ⇔ ∀z ∈ Z . V(z) = emin
z (φ).

5 Exact model checking

As demonstrated in Sect. 3, approximate solution techniques can lead to unreliable results
and the incorrect analysis of systems. To rectify this serious limitation, tools such as PRISM
and STORM have implemented exact model checking engines, which make heavy use of
techniques from parametric model checking [21,23,33,34]. The idea behind these engines is
to interpret the probabilisticmodel (DTMCorMDP) as a finite automaton inwhich transitions
probabilities are described by letters of an alphabet.When one is interested in costs, states are
additionally labeled by a cost structure. Using techniques derived from state elimination [37],
one can then calculate a regular expression representing the language of this automaton. The
core idea of this translation is to eliminate a state s by increasing the probability of moving
from each predecessor s1 of s to each successor s2 of s by the probability of moving from s1 to
s2 when passing through s. In the case of parametric model checking, various techniques can
then be used to translate the regular expression into a rational function over the parameters
of the model. When using this approach for exact model checking, one can likewise derive
a parameter-free function that describes the property in question.

123

Formal Methods in System Design (2020) 56:90–126 107

Although they rectify the problems with approximation techniques, the exact quantitative
model checking engines implemented in tools like PRISM and STORM don’t scale as well
as their iterative counterparts. See Example 4 below and Sect. 7 for a complete analysis. The
goal of our technique, to which the remainder of this section is dedicated, is to utilize the
advantages of fast approximate model checking techniques to produce exact solutions.

Example 4 Again consider theDTMCmodeling an embedded control systemwith the param-
eters given in Example 3. To guarantee the correctness of one’s analysis, exact solution
techniques must be employed. Unfortunately, the exact model checking engines of PRISM
and STORM do not scale well enough to analyze this example, which contains about 4.8
million states and about 44 million transitions. Under our test setup (see Sect. 7), both tools
reached a 30-min timeout when trying to analyze the properties fromExample 3. On the other
hand, RationalSearch found the exact answer to both the formulae in under a minute.

We now describe our approach for exact model checking. The broad idea is to utilize
approximate solutions generated by an iterative technique, and then successively refine
these solutions to the exact solution. We begin by first describing the first ingredient of our
solution—the Kwek Mehlhorn algorithm [40] in Section 5.1. We then describe the overall
algorithm in Sect. 5.2.

5.1 The Kwek–Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classical binary search algorithm can
be used to find the smallest element in the set that is larger than a given value, in logarithmic
time. Kwek and Mehlhorn [40] extend this methodology to efficiently locate the rational
number with the smallest size in a given interval. In our paper, we present a novel application
of this technique, where approximate answers to quantitative model checking problems can
be used to generate exact solutions efficiently.

Let I = [α
β
,

γ
δ
] be an arbitrary interval with rational end-points. It was established [40]

that for such an interval, there exists a unique rational amin(I)/bmin(I) such that for all
rational numbers a

b ∈ I , amin(I) ≤ a and bmin(I) ≤ b. We will call amin(I)/bmin(I) the
minimal fraction of I . Further, this minimal fraction amin(I)/bmin(I) can be found using
Algorithm 1 from [40]. The input to the findFraction procedure are integers denoting the
numerators and denominators of the endpoints of the interval I , and the output is a pair of
integers, corresponding to the numerator and denominator of the unique minimal fraction of
the input interval.

Algorithm 1 Compute the minimal rational in [α
β
,

γ
δ
]

function findFraction(α, β, γ , δ):
if � α

β � = � γ
δ � and α

β /∈ N then

b, a ← findFraction(δ, γ mod δ, β, α mod β)
return � α

β
�b + a, b

else
return � α

β
�, 1

end if
end function

123

108 Formal Methods in System Design (2020) 56:90–126

Let QM = {p/q | p, q ∈ {1, ..., M}} ∩ [0, 1]. For μ ∈ N, if a
b ∈ QM is contained in

the interval [μ

2M2 ,
μ+1
2M2] of length 1

2M2 then a
b is the unique element of QM in [μ

2M2 ,
μ+1
2M2]. It

turns out that a
b must also be the minimal element of [μ

2M2 ,
μ+1
2M2], meaning it can be found

using Algorithm 1 in time O(logM).

5.2 Rational search

In this section, we explain our approach for the exact quantitative model checking of PCTL
formulas. The critical insight we exploit is that iterative techniques for solving constrained
reachability typically converge very fast and produce a precise enough answer. Using this
precise approximation, we can then effectively construct a small interval so that the minimal
fraction in the interval corresponds to an element of the exact solution vector, and thus the
Kwek–Mehlhorn algorithm can be employed to find the exact solution.

Recall that each iterative technique for approximating a set of equations, like those given
in Eqs. (1) and (3), yields a different guarantee on the precision of an approximate solution.
The difference between the approximation generated by interval iteration and the actual
solution is bounded by a given ε value, provided there are no errors generated by floating-
point arithmetic. Value iteration, on the other hand, comes with no such guarantees. When an
approximate solution vector contains values of known precision, like in the case of interval
iteration, one can translate it into an exact solution vector as follows. For each value q in the
vector, construct the interval [q − ε, q + ε] and run Algorithm 1 to find the smallest rational
in this interval. Then, check that the generated rational values V� are correct by verifying
that they satisfy the fix point equations for constrained reachability and expected costs. In
addition, if the algorithm also checks that condition on the graph GV� (or HV�) also hold in
accordance with Lemma 1 (Lemma 3 respectively) if we are computing max reachability
probabilities (min reachability respectively) properties. Lemmas 1 and 3, along with the
uniqueness of the fix points for the rest of the cases, imply that these checks are only satisfied
by the desired solution vector. If these checks fail for the candidate solution vector, one
obtains a more precise approximation and re-runs the procedure.

When a solution vector contains values of unknown quality, we can find exact solutions
using a similar technique. Here the idea is to “guess” a sequence intervals, with decreasing
sizes, that may contain the actual value. This process is formalized in Algorithm 2, which
takes as input the model M, a maximum precision P and a state-indexed vector V† that
approximates the exact solution vector V.

Algorithm 2 Sharpen values of unknown precision

function sharpen(M, P , V†, ξ , obj):
for all p ∈ {1, ..., P} do

for all z ∈ Z do
α, β, γ, δ ← bounds(p, V†(z))
V�(z) ← �V†(z)� + findFraction(α, β, γ, δ)

end for
if fixpoint(M, V�, ξ , obj) then

return V�

end if
end for
return null

end function

123

Formal Methods in System Design (2020) 56:90–126 109

For a given precision p and state z, bounds(p,V†(z)) returns α, β, γ, δ such that α is
the first p decimal digits of the fractional part of V†(z), β = 10p , γ = α + 1 and δ = β.
Observe that α/β is the rational representation of the first p digits of the fractional part
of V†(z). From this approximation, we identify a sharpened solution vector V� using the
findFraction procedure from Algorithm 1. The procedure fixpoint then tests if V� is
the correct solution by checking if the equation satisfies the appropriate fix point equation
in addition to the check, if needed, required by Lemma 1 or 3. If the input vector V† is
not precise enough, then shapren returns “null”, indicating that more precision is required
to infer an exact solution. The guarantees of Algorithm 2 are formalized as follows. Let Vb

satisfying |V(z)−Vb(z)| ≤ 10−b for all z ∈ Z be an approximate solution vector of precision
b. Then, Lemma 4 establishes that starting from a close enough approximation, Algorithm 2
finds the actual solution vector.

Lemma 4 Let M be an MDP with the set of states Z. Let ξ be a PCTL path formula or a

PCTL state formula. Given an objective obj ∈ {max,min}, let V be the vector λz · pobjz [ξ] if
ξ is a path formula and the vector λz · eobjz [ξ] if ξ is a state formula. Let b, P ∈ N be such
that P ≥ b and Vb is an approximate solution vector of precision b. If V(z) ∈ Q�

√
10b/2� for

every z ∈ Z, then sharpen(M, P, Vb, ξ, obj) = V.

Proof Fix a state z and assume V(z) ∈ QM for M=�√10b/2�. If P≥b then
sharpen(M, P,Vb, ξ, obj) searches for V(z) in I = [α/β, γ /δ] for α, β, γ, δ =
bounds(b,Vb(z)). Now, V(z) ∈ I since Vb(z) satisfies |V(z) − Vb(z)| ≤ 10−b. Further,
|I | = 10−b ≤ 1

2M2 . Due to Kwek et. al. [40], we have that an interval of size
1

2M2 contains at
most 1 element of QM . Clearly, findFraction(α, β, γ, δ) returns V(z) which is the unique
“minimal” element in I ∩ QM . ��

Using the techniques for sharpening an approximate solution into an exact value from
Algorithm 2, we can now derive a procedure for solving constrained reachability (and hence
PCTL) formulas exactly. The procedure is given in Algorithm 3, which takes as arguments an
MDP or DTMC M, a constrained reachability formula φ and a precision ε. The iteration
procedure can be either of value iteration or interval iteration. Algorithm 3 begins by running
the iteration procedure up to a given precision ε. If the procedure is value iteration, ε is used
in the convergence criterion—absolute or relative—described in Section 3. In the case of
interval iteration, ε defines the bound on the maximum error in the approximate solution
vector. The approximate solution vector V† generated by the iteration procedure is then used
by the shapren procedure, which attempts to strengthen the approximate answer to an exact
one. Note the version of the shapren varies according to the iterative method being utilized.
If it succeeds, the whole process terminates. Otherwise, V† is further refined by re-invoking
iteration with an increased ε precision, and the sharpening process is repeated.

When successive approximations in value iteration or interval iteration are computed
using arbitrary precision arithmetic, the correctness guarantees of Algorithm 3 can be stated
as follows.

Theorem 1 Let M be an MDP with the set of states Z. Let ξ be a PCTL path formula or a
PCTL state formula. Given an objective obj ∈ {max,min}, let V be the state-indexed vector

λz · pobjz [ξ] if ξ is a path formula and the vector λz · eobjz [ξ] if ξ is a state formula. Then,
RationalSearch(M, ξ, obj, ε0) (with ε0 > 0) terminates and returns the exact solution
vector V.

123

110 Formal Methods in System Design (2020) 56:90–126

Algorithm 3 Rational Search
function rationalSearch(M, ξ , obj, ε0):

Vinit ← init(M, φ)
ε ← ε0
while true do

V† ← iteration(M, ξ , obj, V init, ε)
V� ← sharpen(M, �log10(1ε)�, V†,ξ , obj)
if V� = null then

return V�

end if
Vinit ← V†

ε ← ε/10
end while

end function

Proof It is easy to see that there is a b > 0 such that, for every state z, V(z) ∈ QN for
N = �√10b/2�. Now, since value iteration converges in the limit, we have that the first b
digits of V†(z) match that of V(z) for each state z ∈ Z , eventually. Also, in every iteration of
the loop in Algorithm 3, sharpen is invoked with an incremented value of P and eventually
P ≥ b. ��

We now state the complexity of computing the exact solutions using RationalSearch.
As before, we assume that the transition probabilities are given as rational numbers.

Theorem 2 Let M be an MDP with the set of states Z. Let n = |Z |, m = |{(z, α, z′)|α ∈
enabled(z),Δ(z, α)(z′) > 0}| and let δ be the largest denominator in any probability value in
the transition function ofM. Let ξ be a PCTL path formula. Let pmin be themin{δ(z, α, z′) |
Δ(z, α)(z′) > 0}. Given an objective obj ∈ {max,min} and let V be the state-indexed vector

λz · pobjz [ξ]. Let � = n(m+n) log δ

pnmin
. Then,RationalSearch(M, ξ, obj, 1)makes at most O(�)

value iteration steps, O(n�2) calls to FindFraction, and O(�2) calls to FixPoint, assuming
arbitrary precision arithmetic.

Proof Observe thatwe can assumewithout loss of generality that there is at least one transition
probability that is contained in the open interval (0, 1) (Otherwise, the value iteration finishes
in zero steps as all probabilities are 0 or 1).

We will proceed as follows. We assume that the objective obj ismin.We first estimate the
number of iterations k of value iteration that are required to reach an approximate solution
state-indexed vector V† of precision b such that V† can be used to obtain the exact solution
V using one call to sharpen based on Lemma 4..

From [19],weknow that themaximumdenominator (and thusmaximumnumerator) of any

value in {V(z)|z ∈ Z} is less than δ4m . Now, the required precision b satisfies
⌊√

10b
2

⌋ ≥ δ4m ,
giving us

10−b ≤ δ−8m

2
.

Let us now estimate an upper bound on the number of steps of value iteration that are
required to guarantee that the resulting approximate solution vector ||V−V†|| < 10−b. Here,
the norm || · || is defined to be the pointwise maximum.

123

Formal Methods in System Design (2020) 56:90–126 111

Let U = [0, 1]Z be the set of all state-indexed vectors. For a vector x̄ we denote its zth

component by x̄(z). Consider the function f : U → U be the function such that

f (x̄)(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if z ∈ Probmin
0 [ξ]

1 if z ∈ Probmin
1 [ξ]

min
α∈enabled(z)

∑

z′∈Z
Δ(z, α, z′) · x̄(z′) otherwise

Observe that value-iteration described in Section 3 is such that x̄0 is the vector all of
whose components is 0, and x̄i+1 = f (x̄i). The n-th iterate of f , namely f n , is a contracting
mapping (Please see Appendix A for the proof):

Claim For all vectors x̄, ȳ ∈ U,

|| f n(x̄) − f n(ȳ)|| ≤ q||x̄ − ȳ||
where q = (1− pnmin) and pmin is the smallest non-zero probability in the description ofM.

Let V† = x̄i ·n be the required approximation, obtained after i · n value iteration steps. Using,
Banach’s fixpoint theorem [12], we have

||V − x̄i ·n || ≤ qi

1 − q
||x̄n − x̄0|| = qi

1 − q
||x̄n || <

qi

1 − q
.

Based on our requirement for k = i · n, we will need only one function call to Sharpen if

qi

1 − q
< 10−b ≤ δ−8m

2
.

Let i0 be an integer such that

qi0 <
δ−8m(1 − q)

2
.

We have that i0 is an upper bound on i .

Now qi0 <
δ−8m (1−q)

2 iff

i0 log(1 − pnmin) < −1 − 8m log δ + n log pmin.

Since log(1 − pnmin) is negative, we get that q
i0 <

δ−8m (1−q)
2 iff

i0 >
−1 − 8m log δ + n log pmin

log(1 − pnmin)
.

Observe that pmin ≥ 1
δ
. Thus, log pmin ≥ − log δ and hence

log pmin

log(1 − pnmin)
≤ − log δ

log(1 − pnmin)
.

Thus, qi0 <
δ−8m (1−q)

2 if

i0 >
−1 − 8m log δ − n log δ

log(1 − pnmin)
.

123

112 Formal Methods in System Design (2020) 56:90–126

Using the inequality ln(1 + x) ≤ x for x > −1, we have that ln(1 − pnmin) ≤ −pnmin and
hence − ln 2

pnmin
≤ 1

log(1−pnmin)
and hence −1

pnmin
≤ 1

log(1−pnmin)
. Since multiplying an inequality by

a negative number changes signs, we get that

1 + 8m log δ + n log δ

pnmin
≥ −1 − 8m log δ − n log δ

log(1 − pnmin)
.

Thus, qi0 <
δ−8m (1−q)

2 if

i0 >
1 + 8m log δ + n log δ

pnmin
.

Thus, we are guaranteed to terminate the algorithm using one call to Sharpen after k
steps, where

k = i0 · n = 1 + 8m log δ + n log δ

pnmin
· n = O(

n(m + n) log δ

pnmin
) = O(�).

Now, let us analyze the calls to Sharpen. Note that the j th call to Sharpen has precision
Pj = j . The maximum value of Pj is k. Every call to Sharpen gives rise to nPj calls
to FindFraction and Pj calls to FixPoint, giving us O(n�2) calls to FindFraction and
O(�2) calls to FixPoint.

When obj is max, then please note that there is a memoryless scheduler S : Z → Act
such that for each state z ∈ Z , pmax

z (ξ) = pSz (ξ). Consider the functions f1, f2 : U → U
defined as follows:

f1(x̄)(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if z ∈ Probmax
0 [ξ]

1 if z ∈ Probmax
1 [ξ]

∑

z′∈Z
Δ(z,S(z), z′) · x̄(z′) otherwise

and

f2(x̄)(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if z ∈ Probmax
0 [ξ]

1 if z ∈ Probmax
1 [ξ]

maxα∈enabled(z)

∑

z′∈Z
Δ(z, α, z′) · x̄(z′) otherwise

Observe that value-iteration described in Sect. 3 is such that x̄0 is the vector all of whose
components is 0, and x̄i+1 = f2(x̄i) = f i2 (x̄0).

Now, it is easy to see that the required solution vector V is the pointwise limit
limi→∞ f i1 (x̄0) = limi→∞ f i2 (x̄0). Further, we also have that for each i , f

i
1 (x̄0) ≤ f i2 (x̄0) ≤

V and hence ||V − x̄i || ≤ ||V − f i1 (x̄0)||. Observe that we can show f i1 is contracting with
factor 1 − pnmin exactly like the claim above. The theorem now follows similar to the case
when obj is min. ��
Example 5 Our experiments show that Algorithm 3 can make non-trivial improvements to
solution quality. Consider the standard example of tossing N biased coins independently,
where each coin yields heads with probability 1/3 and tails with probability 2/3. Analyzing
the DTMC model to compute the probability of the event that 11 coins land heads, PRISM’s
floating-point model checker returned the decimal “0.000005645029269476758”. Our tool
could correctly determine the exact probability to be 1/177,147 by examining with the first 12
digits of this approximate answer. This is remarkable given that the period of this fraction (and
hence its most succinct decimal representation) is almost 20,000 digits long. Moreover, the

123

Formal Methods in System Design (2020) 56:90–126 113

algorithm is able to simultaneously infer the reachability probabilities for all of the roughly
200,000 states of the model with a single fixpoint check. This illustrates another advantage
of our technique; the algorithm is agnostic of the number of initial states in the system. The
exact model checking engine of PRISM, on the other hand, currently only supports systems
with a single initial state.

6 Implementation

We have implemented Algorithm 3 in our tool RationalSearch, which is an extension of
the PRISM model checker (version 4.3.1). RationalSearch is available for download at
[8]. Before describing our integration with PRISM, we briefly describe the relevant portions
of its architecture. PRISM is a Java-based tool comprised of four solution engines, three
of which (Mtbdd, Hybrid, Sparse) are based (entirely or partially) on symbolic methods
using compact data structures like MTBDDs. The fourth engine (Explicit) manipulates
sparse matrices, vectors and bit-sets directly (without any symbolic data structures).

The Sparse engine is similar to the Explicit engine in that it uses explicit data structures
for storing vectors and matrices. However, it makes use of symbolic data structures during
model construction, allowing it to efficiently remove portions of the state space that are not
reachable. This is achieved through a conjunction of the MTBDD representing the model’s
state space with a BDD representing the characteristic function for the reachable states of
the model. The Mtbdd engine is based entirely on symbolic data structures. During value
iteration, the transition matrix and solution vector are both given as MTBDDs. The matrix-
vector multiplications used to update the solution vector are carried out over these data
structures. As described in [48], one drawback of this approach is that the size of theMTBDD
storing the solution vector can grow substantially as more computations are performed. To
tackle the MTBDD size explosion, the Hybrid engine combines the advantages present in
both the symbolic and explicit engines. In particular, it stores the solution vector as a fixed
size array and the transition matrix as anMTBDD (which can usually be done succinctly due
to symmetry in the model). Updates to the solution vector are carried out by operations over
these mixed-type data structures.

RationalSearch implements Algorithm 3 on top of all four engines for model checking
DTMCs against PCTL specifications. For exact model checking of MDPs, our tool Ratio-
nalSearch implements Algorithm 3 for all four engines when the PCTL specification
does not involve computing any max probabilities and minimum expected costs. Ratio-
nalSearch only supports the Explicit engine for the case of max probabilities and min
rewards in MDPs, for which the fixpoint check involves additional graph-theoretic analyses
(see Section 4). The architecture of our extension is outlined in Fig. 2. It intercepts PRISM’s
routine for solving constrained reachability probabilities and expected costs, sharpening the
probabilities every time it is invoked. These engines are built using floating-point num-
bers, which can store at most 16 digits in the fractional part of the decimal expansion of
any floating-point number. Hence, the convergence criteria support a minimum ε of 10−16.
Our implementation, thus, bypasses the ε refinement loop from Algorithm 3 and directly
invokes the procedure iteration for the maximum precision supported by doubles. Fur-
ther, for computing max reachability probabilities, checking whether the candidate solution
vector returned by the Explicit engine is a fixpoint, we do not take recourse to Lemma 1.
Instead, we take advantage of PRISM’s ability to return a candidate memoryless scheduler
that achieves the maximum reachability property. The candidate scheduler S returned by
PRISM is a proper scheduler, whose definition we articulate below.

123

114 Formal Methods in System Design (2020) 56:90–126

PRISM

PCTL Formula
ϕ

Approximation
Engine

CUDD

sharpen

Approximate
solution V †

CUDD
+

GMP
Exact

SolutionFound

ε ← ε/10

Not
found

Kwek Mehlhorn

Fixpoint

Candidate solution

YES NO

Fig. 2 RationalSearch Architecture: Given a PCTL formula ϕ, PRISM (equipped with CUDD) approximates
the solution using value/interval iteration. The sharpen procedure uses this approximation V † and employs
findFraction, in conjunction with the rational extension to CUDD (CUDD + GMP), to generate a candidate
rational vector. If this candidate rational vector satisfies an appropriate fixpoint check, it is guaranteed to be
correct. Otherwise, the process is repeated with a better approximation

Definition 6 Let M = (Z ,Act,Δ,C, L) be a MDP and φ, φ′ be PCTL state formu-
las. A memoryless scheduler S for M is said to be proper for M, φ, φ′ if for each
z ∈ Z\Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′], there is a sequence of states z1, . . . , z� such

that

– z1 = z,
– z� ∈ Probmax

1 [φ U φ′], and
– Δ(zi ,S(z), zi+1) > 0 for each 1 ≤ i < �.

In order to check whether a given candidate solution, V̂, to the set of Eqs. (7) is indeed the
actual exact solution V = λz · pmin

z (φ U φ′), it suffices to check that the proper scheduler,

S, returned by PRISM is such that S(z) ∈ argmaxV̂z for every z ∈ Z\Probmax
0 [φ U φ′] ∪

Probmax
1 [φ U φ′] :

Proposition 1 Let M = (Z ,Act,Δ,C, L) be a MDP, φ, φ′ be PCTL state formulas and S

a proper memoryless scheduler for M, φ, φ′. For each state z of M, let pmax
z (φ U φ′) be

the maximum probability of satisfying φ U φ′ in M. Let V̂ : Z → [0, 1] be a solution of the
set of equations given by Eq. (7). Suppose further that

V̂(z) =
∑

z′∈Z
Δ(z,S(z), z′) · V̂(z′) for each z ∈ Z\Probmax

0 [φ U φ′] ∪ Probmax
1 [φ U φ′].

Then ∀z ∈ Z , V̂(z) = pmax
z (φ U φ′).

Proof As V = λz · pmax
z (φ U φ′) is the least fix point of Eq. (7), we have that for each state

z ∈ Z ,

pSz (φ U φ′) ≤ pmax
z (φ U φ′) ≤ vz .

123

Formal Methods in System Design (2020) 56:90–126 115

Thus, it suffices to show that pSz (φ U φ′) = V̂(z) for each z ∈ Z .

Let propφ,propφ′ be distinct propositions. Given a proper memoryless scheduler S

for M, φ, φ′, let MS
φ,φ′ = (Z ,Act,ΔS,C, LS) be the DTMC such that ΔS(z, z′) =

Δ(z,S(z), z′), LS(z) = {propφ} if M, z |� φ and LS(z) = {propφ′ } if M, z |� φ′.
It is easy to see that pSz (φ U φ′) is exactly the probability of z satisfying the formula
propφ′ U propφ′ in MS

φ,φ′ . Observe further that from the fact that S is proper, the set

of states of MS
φ,φ′ that satisfy propφ′ U propφ′ with probability 0 (1 respectively) is

exactly the set Probmax
0 [φ U φ′] (Probmax

1 [φ U φ′] respectively). Since MS is a DTMC,
VS = λz · pSz (φ U φ′) is the unique solution to the set of equations:

yz = 0 if z ∈ Probmax
0 [φ U φ′]

yz = 1 if z ∈ Probmax
1 [φ U φ′]

yz =
∑

z′∈Z
ΔS(z, z′) · yz′ =

∑

z′∈Z
Δ(z, α, z′) · yz′ otherwise

(11)

Finally, observe that V̂ is a solution to the above Eq. (11). Hence, wemust have pSz (φ U φ′) =
V̂(z) for each z ∈ Z . ��

Among the four engines,Explicit is the only one implemented entirely in Java. To support
the Explicit engine, our tool uses the libraries JScience [7] and Apfloat [4] to construct the
transition matrix using rational entries, performmatrix-vector multiplications for the fixpoint
check in Algorithm 3, and implement the Kwek–Mehlhorn algorithm (Algorithm 1).

PRISM implements the remaining three engines using an extension of the CUDD library
[5]. The off-the-shelf version of CUDDonly supports floating-point numbers at the terminals.
RationalSearch enhances CUDD by allowing terminals to hold either floating-points or
arbitrary-precision rational numbers provided by the GNU MP library [6]. Our extension
allows the data type at a terminal node to be easily interchanged, and the full suite ofMTBDD
operations can be performed regardless of the data type.

RationalSearchmakes use of this extended CUDD functionality in the following man-
ner. When the model is parsed, it constructs two transition matrices, one with doubles at
the terminal nodes and one with rationals. The procedure iteration uses double-precision
transition matrix to generate a double-precision solution vector. RationalSearch trans-
lates this solution vector into a candidate solution vector stored as a rational MTBDDs using
sharpen. The fixpoint check from sharpen can then be performed by an MTBDD matrix-
vector multiplication between rational MTBDDs.

Algorithm 3 has also been integrated into the STORM model checker. Their implemen-
tation3 differs from ours in that it supports running iteration with both floating-point and
arbitrary-precision numbers. It begins by running value iteration using floating-point num-
bers and attempts to infer and exact solution from the approximation. If double-precision is
determined to be insufficient for extracting the precise solution, the approximation engine is
re-invoked using arbitrary-precision numbers. Another significant difference in the STORM
implementation is that STROM uses the Sylvan [24] MTBDD library instead of CUDD.
Sylvan provides built-in support for arbitrary precision arithmetic.

3 Information about the implementation of Algorithm 3 in STORM was obtained through private email
conversations with the developers.

123

116 Formal Methods in System Design (2020) 56:90–126

7 Evaluation

7.1 Setup

We evaluated our tool against examples involving quantitative reachability and costs from
the PRISM benchmark suite and case studies [2,3] and compared the results with the exact
parametric engines implemented in PRISM and STORM. In particular, we used version
4.3.1 of PRISM and version 1.0.0 of STORM. Our tests were carried out on an Intel core i7
dual-core processor @2.2GHz with 8Gb RAM running macOS 10.12.4.

7.2 Benchmarks

Our focus has been to evaluate the performance of our technique on different probabilistic
models (MDPs and DTMCs) against different objectives (Reachability, Cost, full-fledged
PCTL). Our PCTL examples, in particular, have been crafted from scratch. Our benchmarks
have been selected from the PRISM benchmark suite and case studies [2,3] by keeping
some key objectives in mind. First, in order to stress-test our technique, we tried to choose
benchmarks with large state spaces. In fact, most of our benchmarks have state spaces of the
order of 105–106. Second, we also selected some benchmarks (for example, biased coins,
ECS, leader election) for which the probability values corresponding to the properties have
high precision, that is, their decimal representation requires many digits.We believe that such
benchmarks demonstrate the need for exact model checking, as well as, the effectiveness of
our technique in determining the correct rational representations of the probabilities. In this
process of benchmark selection, we omitted benchmarks for which the resulting answers are
trivial (either 0 or 1 probability) or those for which our technique could not result in a fix
point. We recall that due to floating-point errors, PRISM’s approximate answer may never
get close enough (in a precise sense stated in Theorem 1, Sect. 5) to the actual exact answer
(despite an arbitrary number of iterations) and as a consequence, RationalSearch may
declare that it did not find an exact answer. We note that our tool never reports an incorrect
answer.

7.3 Performance overhead

We examined the overhead incurred byRationalSearch’s extension of PRISM. The results
are given inTable 1 for the approximation enginesExplicit,MTBDD andHybridof PRISM.
Due to the similarity between the Explicit and Sparse engines, we chose to only report
metrics for the former. In Table 1, all of the tests were conducted using value iteration
as the approximation scheme. The overhead incurred for interval iteration is similar and
thus not reported. The quantitative properties tested against in two of the MDP benchmarks
(‘Fair Exch.’ and ‘Dice Coin’) involve computation of max probabilities. Recall that Ratio-
nalSearch supports this combination only for the Explicit engine, and as a result, the
corresponding entries in columns 8–11 (MTBDD and Hybrid engines) are marked ‘-’ for
these benchmarks.

On several examples with large state spaces, the Explicit engine fails with an out-of-
memory exception. This can be attributed to the fact that the implementation stores two
copies of the transition matrix in memory. On all the examples where Explicit fails, the
symbolic engines (MTBDD andHybrid) find the solution quickly, typicallywith an overhead
of less than 50%. For the examples on which the Explicit engine did not encounter an

123

Formal Methods in System Design (2020) 56:90–126 117

Ta
bl
e
1

E
xp
er
im

en
ta
le
va
lu
at
io
n
of

R
a
ti
o
n
a
lS

ea
rc

h
O
ve
rh
ea
d

1
2

3
4

5
6

7
8

9
10

11
M
o
d
el

E
x
pl
ic
it

M
T
B
D
D

H
y
br

id

N
am

e
Ty

pe
Pr
op

Pa
ra
m

St
at
es

T
im

e
O
ve
rh
ea
d

T
im

e
O
ve
rh
ea
d

T
im

e
O
ve
rh
ea
d

B
ia
se
d
co
in
s

D
T
M
C

R
ea
ch

15
14

,3
48

,9
07

O
O
M

n/
a

.1
8

62
%

2.
23

3%

IP
v4

D
T
M
C

R
ea
ch

10
0,
00

0
10

0,
00

3
4.
1

25
4%

17
08

1%
17

02
1%

C
ro
w
ds

D
T
M
C

R
ea
ch

15
11

9,
80
0

M
P

n/
a

M
P

n/
a

M
P

n/
a

L
ea
d.

E
le
c.

D
T
M
C

C
os
t

4
12

,3
02

1.
5

11
7%

6.
3

27
%

19
.6

7%

E
C
S

D
T
M
C

PC
T
L

14
4,
81

5,
78

2
O
O
M

n/
a

.4
70

%
11

.1
1%

D
ic
e

M
D
P

R
ea
ch

6
4,
82

6,
80

9
O
O
M

n/
a

.5
7

48
%

2.
4

6%

D
in
.C

ry
pt
.

M
D
P

R
ea
ch

9
85

5,
09

5
O
O
M

n/
a

.3
81

41
%

.8
4

13
%

Fa
ir
E
xc
h.

M
D
P

R
ea
ch

40
0

32
1,
60

0
11

.4
49

0%
–

–
–

–

Fi
re
w
ir
e

M
D
P

R
ea
ch

11
,0
00

42
8,
36

4
87

.7
64

0%
15

.1
7%

16
.7

7%

D
in
.P

hi
l.

M
D
P

C
os
t

3
95

6
.5
4

55
%

2.
86

1%
.2
2

10
%

V
ir
us

M
D
P

C
os
t

3
80

9
.4
7

70
%

2.
3

1%
.2

19
%

D
ic
e
C
oi
n

M
D
P

PC
T
L

1
72

8
.5
9

11
4%

–
–

–
–

C
ol
um

ns
1–

5
de
sc
ri
be

th
e
be
nc
hm

ar
k
ex
am

pl
es
.C

ol
um

ns
6–

10
re
po

rt
th
e
pe
rf
or
m
an
ce

an
d
ov
er
he
ad

m
et
ri
cs

fo
r
R
a
ti
o
n
a
lS

ea
rc

h
’s
ex
te
ns
io
n
of

th
e
va
ri
ou

s
PR

IS
M

en
gi
ne
s.

R
un

ni
ng

tim
es

ar
e
re
po

rt
ed

in
se
co
nd

s.
O
ve
rh
ea
d
pe
rc
en
ta
ge
s
w
er
e
ca
lc
ul
at
ed

by
ex
am

in
in
g
th
e
tim

e
th
e
ro
ut
in
es

ad
de
d
by

R
a
ti
o
n
a
lS

ea
rc

h
co
nt
ri
bu
te
d
to

th
e
ov
er
al
lr
un

ni
ng

tim
e.
A
ll
te
st
s
w
er
e
co
nd
uc
ed

w
ith

th
e
ab
so
lu
te
co
nv
er
ge
nc
e
cr
ite
ri
on

(ε
=

10
−1

6
),
j
a
v
a
m
a
x
m
e
m
=
4
g
an
d
c
u
d
d
m
a
x
m
e
m
=
4
g
.T

O
re
pr
es
en
ts
a
tim

eo
ut

(s
et
to

30
m
in
),
O
O
M

in
di
ca
te
s
an

ou
to
fm

em
or
y
ex
ce
pt
io
n
an
d
M
P
in
di
ca
te
s
th
at
m
or
e
th
an

do
ub

le
pr
ec
is
io
n
is
re
qu

ir
ed

to
pr
od

uc
e
an

ex
ac
ta
ns
w
er
.W

e
w
ri
te
n/
a
if
in
fo
rm

at
io
n
co
ul
d
no

tb
e
de
te
rm

in
ed

du
e
to

a
tim

eo
ut

or
an

ou
to

f
m
em

or
y
ex
ce
pt
io
n

123

118 Formal Methods in System Design (2020) 56:90–126

out-of-memory exception, overhead times where much higher. One major reason for this
difference is that the Explicit engine stores the solution vector as an array. Further, in this
case, RationalSearch runs the sharpen procedure for each element of this array, thus
resulting in redundant computation when a number appears multiple times. By contrast, the
symbolic engines perform symmetry reductions on the data structures and store only distinct
values at the terminal nodes of the solution vector. As a result, sharpen needs only be run
once for each terminal node.

An encouraging observation from our results was that the overhead times did not vary
drastically with the size of the model or the type of property being checked. In particular,
both PCTL properties that we examined required solving three instances of constrained
reachability properties. In spite of this, the overhead induced by RationalSearch on these
examples remained consistent with the other examples.
Comparison with exact enginesWe also compared RationalSearchwith the exact engines
implemented in PRISM and STORM. The results are reported in Table 2. The existing exact
engines of both PRISM and STORM were invoked with the -exact flag. In addition,
STORM also uses the flag –minmax:method pi. RationalSearch was run with the
underlying Hybrid engine and value iteration with absolute convergence criterion (with
ε = 10−16) as the underlying approximation scheme. We set javamaxmem=4g and
cuddmaxmem=4g wherever applicable. As before, Table 2 does not include benchmarks
‘Fair Exch.’ and ‘Dice Coin’ from Table 1. This is because these benchmarks are MDPmod-
els, and the specifications to be tested involve computation of max probabilities, which the
Hybrid engine of RationalSearch does not currently support.

RationalSearch drastically outperformed PRISM’s exact engine; in many cases, by
several orders of magnitude. For about half of the examples, PRISM’s exact engine reached
the 30-min timeout. In every case, RationalSearch was able to find the exact solution in
a matter of seconds. The comparison with the STORM tool is more competitive. For the
majority of the small and medium-size examples (IPv4, Fair Exchange, Firewire, Dining
Philosophers), the running times for both engines were within the same order of magnitude.
However, the performance benefit of RationalSearch became apparent with large models
(Biased Coins, Dice, ECS). RationalSearch achieved a 200x speed-up on the example of
the biased coins and 45x speed-up on the dice example. For the embedded control system
example, RationalSearch returned a solution in a matter of seconds while both PRISM
and STORM hit the 30min timeout.

In order to check the scalability of each of the exact engines, we also compared the running
times on specific models (Biased Coins and Dice) where the number of states is governed
by parameters that can be tuned to change the size of the underlying models. The results
are depicted in Fig. 3, where we use an approximate engine of PRISM as a baseline for our
comparative analysis. Several interesting observations can be made here. As expected, the
approximate engine of PRISM is the fastest. Since, RationalSearch is crucially tied to the
approximate engine(s) in PRISM, it is not surprising again, that (RationalSearch) scales
very well on large models, with comparable performance to the underlying approximate
engine because of the low overhead our technique imposes. While the existing exact model
checking engines in PRISM and STORM do perform well when the models are small, the
performance quickly degrades when the models become reasonably large (the scale is a
logarithmic scale). This clearly demonstrates the power of the insight that the approximate
answers from fast iterative model checking techniques can be utilized to obtain exact rational
solutions with only a little overhead.
Comparison of iterative techniques. The final goal of our evaluation was to determine which
approximation technique, amongst value iteration and interval iteration, could be more effec-

123

Formal Methods in System Design (2020) 56:90–126 119

Ta
bl
e
2

E
xp

er
im

en
ta
lc
om

pa
ri
so
n
of

ex
ac
te
ng

in
es

1
2

3
4

5
6

7
8

9
10

11
M
o
d
el

PR
IS
M

E
x
a
ct

ST
O
R
M

E
x
a
ct

R
a
ti
o
n
a
lS

ea
rc

h

N
am

e
Ty

pe
Pr
op

Pa
ra
m

St
at
es

T
im

e
M
od

el
T
im

e
M
od

el
T
im

e
M
od

el

B
ia
se
d
C
oi
ns

D
T
M
C

R
ea
ch

15
14

,3
48

,9
07

T
O

n/
a

45
8

37
5

2.
23

.0
2

IP
v4

D
T
M
C

R
ea
ch

10
0,
00

0
10

0,
00

3
11

41
6

34
2

.6
17

02
17

01

L
ea
d.

E
le
c.

D
T
M
C

C
os
t

4
12

,3
02

70
1.
7

1.
37

0.
2

19
.6

1.
2

E
C
S

D
T
M
C

PC
T
L

14
4,
81

5,
78

2
T
O

14
35

T
O

10
4

11
.1

.0
4

D
ic
e

M
D
P

R
ea
ch

6
4,
82

6,
80

9
T
O

10
16

10
9

76
2.
4

.0
5

D
in
.C

ry
pt
.

M
D
P

R
ea
ch

9
85

5,
09

5
T
O

39
12

11
.5

.8
4

.0
6

Fi
re
w
ir
e

M
D
P

R
ea
ch

11
,0
00

42
8,
36

4
24

4
6.
8

27
2.
4

16
.7

6.
6

D
in
.P

hi
l.

M
D
P

C
os
t

3
95

6
2.
1

.2
.1
3

.1
25

.2
2

.0
3

V
ir
us

M
D
P

C
os
t

3
80

9
1.
3

.5
PE

PE
.2

.0
5

C
ol
um

ns
1–

5
de
sc
ri
be

th
e
be
nc
hm

ar
k
ex
am

pl
es
.C

ol
um

ns
6,
8,
10

re
po

rt
th
e
ru
nn

in
g
tim

es
(i
n
s)
fo
r
ea
ch

of
th
e
to
ol
s.
C
ol
um

ns
7,
9,
11

re
po

rt
th
e
po

rt
io
n
of

th
e
m
od

el
ch
ec
ki
ng

tim
es

(C
ol
um

ns
6,

8,
10

)
us
ed

fo
r
m
od

el
co
ns
tr
uc
tio

n.
T
he

co
nfi

gu
ra
tio

n
op

tio
ns

fo
r
ea
ch

of
th
e
to
ol
s
is
de
sc
ri
be
d
in

th
e
m
ai
n
te
xt
.T

O
re
pr
es
en
ts
a
tim

eo
ut

(s
et
to

30
m
in
)
an
d

O
O
M

in
di
ca
te
s
an

ou
to

f
m
em

or
y
ex
ce
pt
io
n.

W
e
w
ri
te
n/
a
if
in
fo
rm

at
io
n
co
ul
d
no

tb
e
de
te
rm

in
ed

du
e
to

a
tim

eo
ut

or
an

ou
to

f
m
em

or
y
ex
ce
pt
io
n.

T
he

PE
in

C
ol
um

ns
8
an
d
9

re
pr
es
en
ta

pa
rs
in
g
er
ro
r
in

ST
O
R
M

123

120 Formal Methods in System Design (2020) 56:90–126

2 4 6 8 10
10−2

10−1

100

101

102

Biased Coins

2 3 4 5 6

10−1

100

101

102

Dice

RationalSearch PRISM Exact PRISM Approx STORM Exact

Fig. 3 Scaling Comparison. Running times for various model checking engines on the biased coins (left)
and dice (right) examples. In both graphs, the values on the x-axis represent the parameters of the given
model, and the values on the y-axis represent the running times (in log10 scale). The configuration options for
RationalSearch, PRISMExact and STORM exact identical to those in Table 2. PRISM approx was invoked
using the same base options as RationalSearch. No data point is given for PRISM Exact with parameter
six on the dice example as a 30-min timeout was reached

tively integrated with Algorithm 3. In particular, we compared the two approaches for speed
and the quality of their approximations. The results are given in Table 3. We integrated
RationalSearch with the implementation of interval iteration in PRISM from prior work
[11], available at [1].

To our surprise, we found that the interval iteration implementation from [1] did not always
produce an approximate solution within the specified ε threshold. In particular, for the dice
example under parameter six, the approximations for both ε = 10−6 and ε = 10−12 were
not within the given threshold. This resulted in RationalSearch not being able to infer
an exact solution. Several other examples also suffered from this symptom. Although the
approximate probabilities for the initial states were precise enough, poor approximations for
the other states in the solution vector prevented RationalSearch from finding an exact
solution.

The accuracy and precision of solution produced by approximation techniques varied
according to the ε threshold and the iterative technique used. Although we have not reported
the numbers in Table 3, there are also examples for which the approximations for value
(interval) iteration differ across the solution engines (for the same value of ε). In spite of the
difference in the approximations, RationalSearch is able to infer an exact solution for all
of these different approximations.

In terms of speed, we observed only a small variance in the performance of the two
techniques on the benchmarks we used. In most cases, value iteration slightly outperformed
interval iteration. The difference is primarily a result of the extra cost incurred by interval
iteration to perform the additional pre-processing steps it requires. This cost outweighs the
savings afforded by the version of sharpen used with interval iteration that requires only
a single fixpoint. In addition, our benchmarks did not identify any examples for which the
improved precision of interval iteration allowed RationalSearch to infer an exact solu-
tion where value iteration could not. The preceding observations, in conjunction, lead us to
conclude value iteration is the more effective partner for Algorithm 3.

123

Formal Methods in System Design (2020) 56:90–126 121

Ta
bl
e
3

E
xp

er
im

en
ta
lc
om

pa
ri
so
n
of

ite
ra
tiv

e
te
ch
ni
qu

es

1
2

3
4

5
6

7
8

9
10

M
o
d
el

V
a
lu

e
It
er

a
ti
o
n

In
te
rv

a
l
It
er

a
ti
o
n

N
am

e
Pa
ra
m

St
at
es

E
ps
ilo

n
So

lu
tio

n
A
pp

ro
x

FP
T
im

e
A
pp

ro
x

T
im

e

Fi
re
w
ir
e

11
,
00

0
42

8,
36

4
10

−6
2,
08

7,
48

1/
2,
09

7,
15

2
0.
99

53
88

50
78

43
01

76
n/
a

n/
a

0.
99

53
88

50
78

43
01

76
n/
a

Fi
re
w
ir
e

11
,
00

0
42

8,
36

4
10

−1
2

2,
08

7,
48

1/
2,
09

7,
15

2
0.
99

53
88

50
78

43
01

76
11

16
.2

0.
99

53
88

50
78

43
01

76
27

.7

D
ic
e

3
21

97
10

−6
1/
21

6
0.
00

46
29

45
55

06
80

16
05

4
.1

0.
00

46
29

70
51

01
25

16
02

n/
a

D
ic
e

3
21

97
10

−1
2

1/
21

6
0.
00

46
29

62
96

29
06

48
8

4
.1

0.
00

46
29

62
96

29
70

08
15

5
n/
a

D
ic
e

6
4,
82

6,
80

9
10

−6
1/
46

,6
56

2.
13

12
38

57
97

50
06

1E
−5

n/
a

n/
a

2.
14

35
91

77
93

95
71

2E
−5

n/
a

D
ic
e

6
4,
82

6,
80

9
10

−1
2

1/
46

,6
56

2.
14

33
47

02
41

02
79

3E
−5

9
2.
6

2.
14

33
47

05
55

45
09

64
E
−5

n/
a

D
in
.c
ry
pt
.

9
85

5,
09

5
10

−6
1/
25

6
0.
00

39
06

25
4

.7
1

0.
00

39
06

25
.9
7

D
in
.c
ry
pt
.

9
85

5,
09

5
10

−1
2

1/
25

6
0.
00

39
06

25
4

1
0.
00

39
06

25
1

B
ia
se
d
co
in
s

11
17

7,
14

7
10

−6
1/
17

7,
14

7
5.
64

50
29

26
94

76
75

8E
−6

10
.1
1

5.
64

50
29

26
94

76
75

8E
−6

n/
a

B
ia
se
d
co
in
s

11
17

7,
14

7
10

−1
2

1/
17

71
47

5.
64

50
29

26
94

76
75

8E
−6

10
.1
5

5.
64

50
29

26
94

76
75

8E
−6

.1

D
in
.p

hi
l.

3
95

6
10

−6
27

26
.9
99

99
08

34
14

38
37

1
.1
3

27
.0
00

00
01

48
76

29
8

.2
8

D
in
.P

hi
l.

3
95

6
10

−1
2

27
26

.9
99

99
99

99
99

12
3

1
.1
4

27
.0
00

00
00

00
00

01
42

.2
2

L
ea
d.

el
ec
.

4
12

,
30

2
10

−6
25

6/
49

5.
22

44
89

76
30

36
21

75
3

12
.2

5.
22

44
89

86
74

67
29

3
30

.1

L
ea
d.

el
ec
.

4
12

,
30

2
10

−1
2

25
6/
49

5.
22

44
89

79
59

18
26

1
3

12
.4

5.
22

44
89

79
59

18
33

29
.7

C
ol
um

ns
1–

5
de
sc
ri
be

th
e
be
nc
hm

ar
k
ex
am

pl
es
.C

ol
um

ns
6
an
d
9
ar
e
th
e
ap
pr
ox

im
at
e
va
lu
es

ge
ne
ra
te
d
by

va
lu
e
ite

ra
tio

n
an
d
in
te
rv
al
ite

ra
tio

n,
re
sp
ec
tiv

el
y.
C
ol
um

ns
8
an
d
10

re
po

rt
th
e
ru
nn

in
g
tim

es
fo
r
ea
ch

en
gi
ne

(i
nc
lu
di
ng

th
e
tim

e
fo
r
m
od

el
co
ns
tr
uc
tio

n)
.C

ol
um

n
7
gi
ve
s
th
e
nu

m
be
r
of

fix
po

in
ts
ch
ec
ks

co
m
pu

te
d
by

A
lg
or
it
hm

2.
W
e
do

no
tr
ep
or
t

th
e
nu

m
be
r
of

fix
po

in
tc
he
ck
s
fo
r
in
te
rv
al
ite

ra
tio

n
as

th
e
im

pl
em

en
ta
tio

n
of

sh
a
rp
en

fo
r
th
is
te
ch
ni
qu

e
al
w
ay
s
ca
lc
ul
at
es

a
si
ng

le
fix

po
in
t.
T
he

pr
ob

ab
ili
tie

s
gi
ve
n
in

co
lu
m
ns

5,
6
an
d
9
re
pr
es
en
tt
he

pr
ob

ab
ili
ty

of
sa
tis
fy
in
g
th
e
gi
ve
n
pr
op

er
ty

fr
om

th
e
in
iti
al
st
at
e.
T
he

m
od

el
ty
pe
s
an
d
pr
op

er
tie

s
fo
r
th
e
ev
al
ua
te
d
ex
am

pl
es

ar
e
th
e
sa
m
e
as

in
Ta
bl
e
1.

B
ot
h
ite

ra
tiv

e
te
ch
ni
qu

es
w
er
e
in
vo
ke

us
in
g
th
e
H
y
br

id
en
gi
ne

w
ith

th
e
op

tio
ns

j
a
v
a
m
a
x
m
e
m
=
4
g
an
d
c
u
d
d
m
a
x
m
e
m
=
4
g
.W

e
w
ri
te
n/
a
in

co
lu
m
n
10

if
no

fix
po

in
tw

as
fo
un

d
by

th
e
sh

a
pr
en

pr
oc
ed
ur
e

123

122 Formal Methods in System Design (2020) 56:90–126

8 Conclusion

Techniques for exact model checking allow one to avoid logical errors in system analy-
sis that can arise due to approximation techniques. We presented an algorithm and tool,
RationalSearch, that computes the exact probabilities described by PCTL formulas for
DTMCs and MDPs. Our tool works by sharpening approximate results obtained through
value iteration, allowing it to benefit from the performance enhancements gained through
approximation techniques. Our experimental evaluation concurs with this hypothesis, and
shows that our approach often performs significantly better than existing exact quantitative
model checking tools while also scaling to largemodel sizes.We believe there are also perfor-
mance enhancements that can be achieved by a tighter integration with the Kwek–Mehlhorn
algorithm, wherein computations from previous iterations can be reused.

Acknowledgements We thank the anonymous reviewers for their useful comments. In particular, we would
like to thank the reviewer who pointed out that it is insufficient to check that a proposed solution was a solution
to a system of linear equations when computing max reachability probabilities and min expected costs.

A Proof of the claim in Theorem 2

It can be shown easily that f is non-expanding, i.e, for any x̄1, x̄2 ∈ U ,

|| f (x̄2) − f (x̄1)|| ≤ ||x̄1 − x̄2||.
We will assume without loss of generality that Probmin

1 [ξ] consists of exactly one element
z0. Further, we assume that Probmin

0 [ξ] consists of at least 1 element as otherwise the claim
is trivially true.

Let Z ? = Z\(Probmin
0 [ξ] ∪ Probmin

1 [ξ]). For x̄ ∈ U, z ∈ Z ? and α ∈ enabled(z), we

denote the sum
∑

z′∈Z
Δ(z, α, z′) · x̄(z′) by hx̄,z,α. By definition

f (x̄)(z) = min
α∈enabled(z)

hx̄,z,α.

Fix x̄, ȳ ∈ U . The definition of Z ? implies that for any scheduler S, the probability
of reaching z0 from a state z ∈ Z ? is not zero. From this, there it follows that there is an
enumeration z1, z2, . . . zr of Z ? such that for any 1 ≤ i ≤ r and any action α ∈ enabled(zi),
Δ(zi , α, z j) > 0 for some 0 ≤ j < i .

We will show by induction on 0 ≤ i ≤ r ,

| f i+1(x̄)(zi) − f i+1(ȳ)(zi)| ≤ (1 − pimin)||x̄ − ȳ||.
Observe that this suffices to conclude the claim since this implies for any zi ∈ Z ?,

| f n(x̄)(zi) − f n(ȳ)(zi)| ≤ || f i+1(x̄)(zi) − f i+1(ȳ)(zi)||
≤ (1 − pimin)||x̄ − ȳ|| ≤ (1 − pnmin)||x̄ − ȳ||.

Now we show, by induction, that for each 0 ≤ i ≤ r , | f i+1(x̄)(zi) − f i+1(ȳ)(zi)| ≤
(1 − pimin)||x̄ − ȳ||.
Base case: The base case is trivial since f (x̄)(z0) = 1 = f (ȳ)(z0).

123

Formal Methods in System Design (2020) 56:90–126 123

Induction hypothesis: Let | f i+1(x̄)(zi) − f i+1(ȳ)(zi)| ≤ (1 − pimin)||x̄ − ȳ|| for each
0 ≤ i ≤ �. Fix β ∈ enabled(z�+1). Denote the set {z0, z1, . . . , z�} by Z�. We have that

h f �+2(x̄),z�+1,β
=

∑

z′∈Z
Δ(z�+1, β, z′) · f �+1(x̄)(z′)

= h f �+2(ȳ),z�+1,β
+

∑

z′∈Z
Δ(z�+1, β, z′) · (f �+1(x̄)(z′) − f �+1(ȳ)(z′))

= h f �+2(ȳ),z�+1,β
+

∑

z′∈Z�

Δ(z�+1, β, z′) · (f �+1(x̄)(z′) − f �+1(ȳ)(z′))

+
∑

z′∈Z\Z�

Δ(z�+1, β, z′) · (f �+1(x̄)(z′) − f �+1(ȳ)(z′)).

Now, note that (1− pimin) ≤ (1− p�
min) for each i ≤ �. Thus, we get by induction hypothesis,

h f �+2(x̄),z�+1,β
≤ h f �+2(ȳ),z�+1,β

+ (1 − p�
min)

∑

z′∈Z�

Δ(z�+1, β, z′) · ||x̄ − ȳ||
∑

z′∈Z\Z�

Δ(z�+1, β, z′) · (f �+1(x̄)(z′) − f �+1(ȳ)(z′)).

As f is non-expanding, we get that

h f �+2(x̄),z�+1,β
≤ h f �+2(ȳ),z�+1,β

+ (1 − p�
min)

∑

z′∈Z�

Δ(z�+1, β, z′) · ||x̄ − ȳ||

+
∑

z′∈Z\Z�

Δ(z�+1, β, z′) · ||x̄ − ȳ||

≤ h f �+2(ȳ),z�+1,β
+ ||x̄ − ȳ|| ·

∑

z′∈Z
Δ(z�+1, β, z′)

− p�
min||x̄ − ȳ|| ·

∑

z′∈Z�

Δ(z�+1, β, z′)

≤ h f �+2(ȳ),z�+1,β
+ ||x̄ − ȳ||(1 − p�

min

∑

z′∈Z�

Δ(z�+1, β, z′)).

By construction,
∑

z′∈Z�
Δ(z�+1, β, z′)) ≥ pmin and hence

h f �+2(x̄),z�+1,β
≤ h f �+2(ȳ),z�+1,β

+ ||x̄ − ȳ||(1 − p�+1
min)||.

Now, we have that

f �+2(x̄)(z�+1) ≤ h f �+2(x̄),z�+1,β
≤ h f �+2(ȳ),z�+1,β

+ ||x̄ − ȳ||(1 − p�+1
min)||.

As β is arbitrary, the above inequality also holds for the β that minimizes h f �+2(ȳ),z�+1,β
.

Hence,
f �+2(x̄)(z�+1) ≤ f �+2(ȳ)(z�+1) + ||x̄ − ȳ||(1 − p�+1

min)||.
Similarly, we can show that

f �+2(ȳ)(z�+1) ≤ f �+2(x̄)(z�+1) + ||x̄ − ȳ||(1 − p�+1
min)||.

Thus, we get
| f �+2(x̄)(z�+1) − f �+2(ȳ)(z�+1)| ≤ (1 − p�+1

min)||x̄ − ȳ||
as required.

123

124 Formal Methods in System Design (2020) 56:90–126

References

1. (2017) Ensuring the reliability of your model checker: interval iteration for Markov decision processes.
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/

2. (2017) PRISM benchmark suite,http://www.prismmodelchecker.org/benchmarks/. Accessed 5May 2020
3. (2017) PRISM case studies, http://www.prismmodelchecker.org/casestudies/. Accessed 5 May 2020
4. (2019) Apfloat. http://www.apfloat.org/
5. (2019) CUDD. http://vlsi.colorado.edu/~fabio/CUDD/html/
6. (2019) GNU multiple precision arithmetic library. https://gmplib.org/
7. (2019) JScience. http://jscience.org/
8. (2019) RationalSearch. https://publish.illinois.edu/rationalmodelchecker/
9. de Alfaro L (1997) Formal verification of probabilistic systems. Ph.D. thesis, Stanford University

10. Baier C, Katoen JP (2008) Principles of model checking (representation and mind series). TheMIT Press,
Cambridge

11. Baier C, Klein J, Leuschner L, Parker D, Wunderlich S (2017) Ensuring the reliability of your model
checker: interval iteration for Markov decision processes. In: Computer aided verification

12. Banach S (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations inté-
grales. Fundamenta Mathematicae 3(1):133–181

13. Bauer MS, Mathur U, Chadha R, Sistla AP, ViswanathanM (2017) Exact quantitative probabilistic model
checking through rational search. In: Proceedings of the 17th conference on formal methods in computer-
aided design, FMCAD Inc, Austin, TX, FMCAD ’17, pp 92–99. https://doi.org/10.23919/FMCAD.2017.
8102246. http://dl.acm.org/citation.cfm?id=3168451.3168475

14. Benini L, Bogliolo A, Paleologo GA, De Micheli G (1999) Policy optimization for dynamic power
management. IEEE Trans Comput-Aided Des Integr Circuits Syst 13:813–833

15. Bhaduri D, Shukla SK, Graham PS, Gokhale MB (2007) Reliability analysis of large circuits using
scalable techniques and tools. IEEE Trans Circuits Syst I: Regul Pap 54:2447–2460

16. BiancoA, deAlfaro L (1995)Model checking of probabilistic and nondeterministic systems. In: 15thCon-
ference foundations of software technology and theoretical computer science, lecture notes in computer
science. Springer, Berlin, vol 1026, pp 499–513

17. Brázdil T, Chatterjee K, Chmelík M, Forejt V, Křetínský J, Kwiatkowska M, Parker D, Ujma M (2014)
Verification of markov decision processes using learning algorithms. In: Automated technology for veri-
fication and analysis. Springer, Cham, pp 98–114

18. Bryant RE (1986) Graph-based algorithms for boolean function manipulation. EEE Trans Comput
100(8):677–691

19. ChatterjeeK,Henzinger TA (2008)Value iteration. Springer, Berlin, pp 107–138. https://doi.org/10.1007/
978-3-540-69850-0_7

20. Chaum D (1988) The dining cryptographers problem: Unconditional sender and recipient untraceability.
J Cryptol 1(1):65–75

21. DawsC (2004) Symbolic and parametricmodel checking of discrete-timeMarkov chains. In: International
Colloquium on theoretical aspects of computing. Springer, Berlin, pp 280–294

22. Dehnert C, Junges S, Katoen JP, VolkM (2017) A storm is coming: Amodern probabilistic model checker.
In: 29th international conference computer aided verification CAV 2017

23. Dehnert C, Junges S, Jansen N, Corzilius F, VolkM, Bruintjes H, Katoen JP, Abraham E (2015) Prophesy:
a probabilistic parameter synthesis tool. In: International conference on computer aided verification, CAV

24. van Dijk T, van de Pol J (2015) Sylvan: Multi-core decision diagrams. In: International conference on
tools and algorithms for the construction and analysis of systems. Springer, Berlin, pp 677–691

25. Dijkstra EW (1982) Self-stabilization in spite of distributed control. In: Selected writings on computing:
a personal perspective. Springer, Berlin

26. Duflot M, Kwiatkowska M, Norman G, Parker D (2006) A formal analysis of bluetooth device discovery.
Int J Softw Tools Technol Transf (STTT) 8(6):621–632

27. Forejt V, Kwiatkowska M, Norman G, Parker D (2011a) Automated verification techniques for proba-
bilistic systems. In: International school on formal methods for the design of computer, communication
and software systems. Springer, Berlin, pp 53–113

28. Forejt V, Kwiatkowska MZ, Norman G, Parker D (2011b) Automated verification techniques for proba-
bilistic systems. In: Formal methods for eternal networked software systems—11th international school
on formal methods for the design of computer, communication and software systems, SFM, pp 53–113

29. FujitaM,McGeer PC, Yang JY (1997)Multi-terminal binary decision diagrams: an efficient data structure
for matrix representation. Formal Methods Syst Des 10(2–3):149–169

30. Giro S (2012) Efficient computation of exact solutions for quantitative model checking. In: Proceedings
of 10th workshop on quantitative aspects of programming languages (QAPL’12)

123

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/
http://www.prismmodelchecker.org/benchmarks/
http://www.prismmodelchecker.org/casestudies/
http://www.apfloat.org/
http://vlsi.colorado.edu/~fabio/CUDD/html/
https://gmplib.org/
http://jscience.org/
https://publish.illinois.edu/rationalmodelchecker/
https://doi.org/10.23919/FMCAD.2017.8102246
https://doi.org/10.23919/FMCAD.2017.8102246
http://dl.acm.org/citation.cfm?id=3168451.3168475
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7

Formal Methods in System Design (2020) 56:90–126 125

31. Haddad S, Monmege B (2014) Reachability in MDPS: refining convergence of value iteration. In: Inter-
national workshop on reachability problems. Springer, Berlin, pp 125–137

32. Hahn EM, Hermanns H, Wachter B, Zhang L (2010) PARAM: a model checker for parametric Markov
models. In: International conference on computer aided verification (CAV’10)

33. Hahn EM, Han T, Zhang L (2011a) Synthesis for PCTL in parametric Markov decision processes. In:
NASA formal methods symposium. Springer, Berlin, pp 146–161

34. Hahn EM, Hermanns H, Zhang L (2011b) Probabilistic reachability for parametric Markov models. Int
J Softw Tools Technol Transf 13(1):3–19

35. Han J, Chen H, Boykin E, Fortes J (2011) Reliability evaluation of logic circuits using probabilistic gate
models. Microelectron Reliab 51:468–476

36. Hoey J, St-Aubin R, Hu A, Boutilier C (1999) Spudd: Stochastic planning using decision diagrams. In:
Proceedings of the fifteenth conference on uncertainty in artificial intelligence

37. Hopcroft JE (2008) Introduction to automata theory, languages, and computation. Pearson Education
India, Delhi

38. Jeannet B, D’Argenio P, Larsen K (2002) Rapture: a tool for verifying Markov decision processes. In:
Proceeding of tools day, affiliated to 13th international conference concurrency theory (CONCUR’02)

39. Katoen JP, Khattri M, Zapreevt I (2005) A Markov reward model checker. In: Second international
conference on the quantitative evaluation of systems (QEST’05), IEEE

40. Kwek S, Mehlhorn K (2003) Optimal search for rationals. Inf Process Lett 86(1):23–26
41. KwiatkowskaM, Norman G, Sproston J (2002) Probabilistic model checking of the IEEE 802.11 wireless

local area network protocol. In: Proceedings of 2nd joint international workshop on process algebra and
probabilistic methods, performance modeling and verification (PAPM/PROBMIV’02)

42. Kwiatkowska M, Norman G, Sproston J (2003) Probabilistic model checking of deadline properties in
the IEEE 1394 FireWire root contention protocol. Formal Aspects Comput 14(3):295–318

43. Kwiatkowska M, Norman G, Parker D (2004) Controller dependability analysis by probabilistic model
checking. In: 11th IFAC symposium on information control problems in manufacturing (INCOM’04)

44. Kwiatkowska M, Norman G, Parker D (2011) Prism 4.0: verification of probabilistic real-time systems.
In: International conference on computer aided verification. Springer, Berlin, pp 585–591

45. McMillan KL (1993) Symbolic model checking. Kluwer Academic Publishers, Norwell
46. Mohyuddin N, Pakbaznia E, Pedram M (2011) Probabilistic error propagation in a logic circuit using the

Boolean difference calculus. In: Advanced techniques in logic synthesis, optimizations and applications.
Springer, Berlin, pp 359–381

47. Norman G, Parker D, Kwiatkowska M, Shukla S (2005) Evaluating the reliability of NANDmultiplexing
with PRISM. IEEE Trans Comput-Aided Des Integr Circuits Syst 24:1629–1637

48. Parker D (2002) Implementation of symbolic model checking for probabilistic systems. Ph.D. thesis,
University of Birmingham

49. Qiu Q, Qu Q, Pedram M (2001) Stochastic modeling of a power-managed system-construction and
optimization. IEEE Trans Comput-Aided Des Integr Circuits Syst 20:1200–1217

50. Rabin M (1983) Randomized Byzantine generals. In: Proceedings of symposium on foundations of
computer science, pp 403–409

51. Rutten J,KwiatkowskaM,NormanG,ParkerD (2004a)Mathematical techniques for analyzing concurrent
andprobabilistic systems. In: PanangadenP, vanBreugel F (eds)CRMmonograph series, vol 23.American
Mathematical Society, Providence

52. Rutten JJ, Kwiatkowska M, Norman G, Parker D (2004b) Mathematical techniques for analyzing con-
current and probabilistic systems. American Mathematical Society, Providence

53. St-Aubin R, Hoey J, Boutilier C (2001) APRICODD: approximate policy construction using decision
diagrams. In: Advances in neural information processing systems, pp 1089–1095

54. Wimmer R, Kortus A, Herbstritt M, Becker B (2008) Probabilistic model checking and reliability of
results. In: 11th IEEE workshop on design and diagnostics of electronic circuits and systems, 2008.
DDECS, IEEE, pp 1–6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

126 Formal Methods in System Design (2020) 56:90–126

Affiliations

Umang Mathur1 ·Matthew S. Bauer2 · Rohit Chadha3 · A. Prasad Sistla4 ·
Mahesh Viswanathan1

Matthew S. Bauer
mbauer@galois.com

Rohit Chadha
chadhar@missouri.edu

A. Prasad Sistla
sistla@cs.uic.edu

Mahesh Viswanathan
vmahesh@illinois.edu

1 University of Illinois, Urbana Champaign, Champaign, USA
2 Galois Inc., Portland, USA
3 University of Missouri, Columbia, USA
4 University of Illinois, Chicago, Chicago, USA

123

http://orcid.org/0000-0002-7610-0660

	Exact quantitative probabilistic model checking through rational search
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 History and organization

	2 Preliminaries
	2.1 Discrete time Markov chains (DTMCs)
	2.1.1 Syntax and semantics
	2.1.2 Reachability probability and expected cost

	2.2 Probabilistic computation tree logic (PCTL)
	2.2.1 Syntax
	2.2.2 Semantics

	2.3 PCTL model checking
	2.4 Markov decision processes (MDPs) and PCTL
	2.4.1 Syntax
	2.4.2 Reachability probability and expected cost
	2.4.3 Probabilistic computation tree logic (PCTL)

	2.5 PCTL model checking for MDPs

	3 Approximate model checking
	3.1 Iterative techniques
	3.2 Shortcomings of iterative techniques

	4 Fixpoint formulations for constrained reachability and expected costs
	4.1 Fixpoint formulation for constrained reachability in MDPs
	4.2 Fixpoint formulation for expected costs in MDPs.

	5 Exact model checking
	5.1 The Kwek–Mehlhorn algorithm
	5.2 Rational search

	6 Implementation
	7 Evaluation
	7.1 Setup
	7.2 Benchmarks
	7.3 Performance overhead

	8 Conclusion
	Acknowledgements
	A Proof of the claim in Theorem 2
	References

