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Abstract
Runtime verification is an area of formal methods that studies the dynamic analysis of exe-
cution traces against formal specifications. Typically, the two main activities in runtime
verification efforts are the process of creating monitors from specifications, and the algo-
rithms for the evaluation of traces against the generated monitors. Other activities involve
the instrumentation of the system to generate the trace and the communication between
the system under analysis and the monitor. Most of the applications in runtime verification
have been focused on the dynamic analysis of software, even though there are many more
potential applications to other computational devices and target systems. In this paper we
present a collection of challenges for runtime verification extracted from concrete appli-
cation domains, focusing on the difficulties that must be overcome to tackle these specific
challenges. The computational models that characterize these domains require to devise new
techniques beyond the current state of the art in runtime verification.

Keywords Runtime verification · Formal methods · Computer science · Formal verification

1 Introduction

Runtime verification (RV) is a computing analysis paradigm based on observing executions
of a system to check its expected behavior. The typical aspects of an RV application are
the generation of a monitor from a specification and then the use of the monitor to analyze
the dynamics of the system under study. RV has been used as a practical application of
formal verification, and as a less ad-hoc approach complementing conventional testing and
debugging. Compared to static formal verification, RV gains applicability by sacrificing
completeness as not all traces are observed and typically only a prefix of a potentially infinite
computation is processed. See [185,225] for surveys on RV, and the recent book [47].

Most of the practical motivations and applications of RV have been related to the analysis
of software. However, there is a great potential for applicability of RV beyond software
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reliability if one generalizes to new domains beyond computer programs (like hardware,
devices, cloud computing and even human centric systems). Novel applications of RV to
these areas can have an enormous impact in terms of enabling new solutions or designs, and
the potential increase in reliability in a cost effective manner. Many system failures through
history have exposed the limitations of existing engineering methodologies and encouraged
the study and development of novel formal methods. Ideally, one would like to validate a
computational system prior to its execution. However, current static validation methods, such
as model checking, suffer from practical limitations preventing their wide use in real large-
scale applications. For instance, those techniques are often bound to the design stage of a
system and suffer from the state-explosion problem (the unfeasibility to exhaustively explore
all system states statically), or cannot handle many interesting behavioral properties. Thus,
as of today many verification tasks can only realistically be undertaken by complementary
dynamic analysis methods. RV is the discipline of formal dynamic analysis that studies how
to detect and ensure, at execution time, that a system meets a desirable behavior.

Even though research on runtime verification has flourished in the last decade,1 a big
part of the (European) community in the area has recently been gathered via a EU COST
action initiative2 in order to explore, among other things, potential areas of application of RV,
including finances, medical devices, legaltech, security and privacy, and embedded, cloud
and distributed systems.

In this survey paper, we concentrate in the description of different challenging and exciting
application domains for RV, others than programming languages. In particular we consider
runtime verification in the following application domains:

Distributed systems:where the timing of observationsmay varywidely in a non-synchronised
manner (Sect. 2).

Hybrid and embedded systems: where continuous and discrete behavior coexist and the
resources of the monitor are constrained (Sect. 3).

Hardware: where the timing must be precise and the monitor must operate non disruptively
(Sect. 4).

Security and privacy: where a suitable combination between static and dynamic analysis is
needed (Sect. 5).

Transactional information systems: where the behavior of modern information systems
is monitored, and the monitors must compromise between expressivity and non-
intrusiveness (Sect. 6).

Contracts and policies: where the connection between the legal world and the technical is
paramount (Sect. 7).

Huge, unreliable or approximated domains: where we consider systems that are not reliable,
or aggregation or sampling is necessary due to large amounts of data (Sect. 8).

In all these cases, we first provide an overview of the domain, and describe sufficient
background to present the context and scope. Then, we introduce the subareas of interest
addressed in the section, and identify challenges and opportunities from the RV point of view.
Sometimes the characteristics and applications are not specific to RV, and in these cases we
prefer to describe them in their generality, with the intention to motivate their importance
first, to later speculate on how RV can have an impact in these applications and what are the

1 See the the conference series at http://runtime-verification.org.
2 Runtime Verification beyond Monitoring (ARVI): ICT COST Action IC1402 (http://www.cost.eu/COST_
Actions/ict/IC1402).
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challenges to monitoring. Finally, we do not aim for completeness in the identification of the
challenges and admittedly only identify a subset of the potential challenges to be addressed
by the RV research community in the next years. We identify the challenges listed as some
of the most important.

2 Distributed and decentralized runtime verification

Distributed systems are generally defined as computational artifacts or components that run
into execution units placed at different physical locations, and that exchange information to
achieve a common goal. A localized unit of computation in such a setup is generally assigned
its own process of control (possibly composed of multiple threads), but does not execute in
isolation. Instead, the process interacts and exchanges information with other such remote
units using the communication infrastructure imposed by the distributed architecture, such
as a computer network [32,117,173].

Distributed systems are notoriously difficult to design, implement and reason about.Below,
we list some of these difficulties.

– Multiple stakeholders impose their own requirements on the system and the components,
which results in disparate specifications expressed in widely different formats and logics
that often concern themselves with different layers of abstraction.

– Implementing distributed systems often involves collaboration across multiple develop-
ment teams and the use of various technologies.

– The components of the distributed system may be more or less accessible to analysis,
as they often evolve independently, may involve legacy systems, binaries, or even use
remote proprietary services.

– The sheer size of distributed systems, their numerous possible execution interleaving,
and unpredictability due to the inherent dynamic nature of the underlying architecture
makes them hard to test and verify using traditional pre-deployment methods. Moreover,
distributed computation is often characterized by a high degree of dynamicity where all
of the components that comprise the system are not known at deployment (for example,
the dynamic discovery of web services)—this dynamicity further complicates system
analysis.

Runtime Verification (RV) is very promising to address these difficulties because it offers
mechanisms for correctness analysis after a system is deployed, and can thus be used in a
multi-pronged approach towards assessing system correctness. It is well-known that even
after extensive analysis at static time, latent bugs often reveal themselves once the system is
deployed. A better detection of such errors at runtime using dynamic techniques, particularly
if the monitor can provide the runtime data that leads to the error, can aid system engineers to
take remedial action when necessary. Dynamic analysis can also provide invaluable informa-
tion for diagnosing and correcting the source of the error. Finally, runtime monitors can use
runtime and diagnosis information to trigger reaction mechanisms correcting or mitigating
the errors.

We discuss here challenges from the domain of Distributed and Decentralized Runtime
Verification (DDRV), a broad area of research that studies runtime verification in connection
with distributed or decentralized systems, or when the runtime verification process is decen-
tralized. That it, this body of work includes the monitoring of distributed systems as well as
the use of distributed systems for monitoring.
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Solutions to some of these research efforts exist (see for instance [63,85,94,106,148,150,
163,216,217]). We refer to [162] for a recent survey on this topic.

2.1 Context and areas of interest

In order to provide context to later describe the challenges for RV, we begin by describing
some important characteristics of DDRV and then list some intended applications.

2.1.1 Characteristics

There are a number of characteristics that set DDRV apart from non-distributed RV. These
characteristics also justify the claim that traditional RV solutions and approaches commonly
do not necessarily (or readily) apply to DDRV. This, in turn, motivates the need for new
mechanisms, theories, and techniques. Some characteristics were identified in [79,158,203],
and recently revisited in [162].

Heterogeneity and Dynamicity. One of the reasons that makes distributed systems hard to
design, implement and understand is that there are typically many participants involved.
Each participant imposes its own requirements ending in a variety of specifications
expressed in different formats. In turn, the implementation often involves the collab-
oration of multiple development teams using a variety of technologies. Additionally, the
size and dynamic characteristics of the execution platform of distributed systems allow
many possible interleavings of the behaviors of the participating components, which
leads to an inherent unpredictability of the executions. Note that the existence of a set of
interleavings and the necessity to explore or reason about alternative paths in this set is
due to distributed systems being concurrent systems with asynchronous communication.
The inherent dynamicity of distributed systems makes this set larger and more complex,
and the exploration of the set harder.
Consequently, testing and verification with traditional pre-deployment methods are typ-
ically ineffective.

Distributed Clocks and Latency. Distributed systems can be classified according to the nature
of the clocks: from (1) synchronous systems, where the computation proceeds in rounds,
(2) timed asynchronous systems, where messages can take arbitrarily long but there is
a synchronized global clock, (3) asynchronous distributed systems. In an asynchronous
distributed system, nodes are loosely coupled, each having its own computational clock,
due to the impracticality of keeping individual clock synchronized with one another.
As a result of this asynchrony, the order of computational events occurring at distinct
execution units may not be easy (or even possible) to discern.

Partial Failure. A requirement of any long-running distributed system is that, when execution
units (occasionally) fail, the overall computation is able towithstand the failure. However,
the independence of failure between the different components of a distributed system and
the unavailability of accurately detecting remote failures, makes designing fail tolerant
systems challenging.When designing a solution based onRV, the independence of failure
between components is an important characteristic thatmust be handled by themonitoring
infrastructure (for example re-synchronization between living components, rebooting
monitors, etc).

Non-Determinism. Asynchrony implies fluctuations in latency, which creates unpredictabil-
ity in the global execution of a distributed system. In addition, resource availability
(e.g., free memory) at individual execution units is hard to anticipate and guarantee.
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These sources of unpredictable asynchrony often induce non-deterministic behavior in
distributed computations [155,156].

Multiple Administrative Domains and Multiple Accessibility. In a distributed system, com-
putation often crosses administrative boundaries that restrict unfettered computation due
to security and trust issues (e.g., mistrusted code spawned or downloaded from a different
administrative domain may be executed in a sandbox). Administrative boundaries also
limit the migration and sharing of data across these boundaries for reasons of confiden-
tiality. Also, different components may feature different accessibility when it comes to
analysis, maintenance, monitorability, instrumentation, and enforcement. The connected
technologiesmay range fromproprietary to the public domain, fromavailable source code
to binaries only, from well-documented developments to sparsely documented (legacy)
systems.

Mixed Criticality. The components and features of a distributed system may not be equally
critical for the overall goal of the system. The consequences of malfunctioning of certain
components are more severe than the malfunctioning of others. For instance, the failure
of one client is less critical than the failure of a server which many clients connect to.
Also, some components could be critical for preventing data or financial loss, or alike,
whereas others may only affect performance or customer satisfaction.

Evolving Requirements. The execution of a distributed system is typically characterized by
a series of long-running reactive computational entities (e.g., a web server that should
ideally never stop handling client requests). Such components are often recomposed
into different configurations (for example, service-oriented architectures) where their
intended users change. In such settings, it is reasonable to expect the correctness speci-
fications and demands to change over the execution of the system, and to be composed
of smaller specifications obtained from different users and views.

2.1.2 Applications

We briefly mention some of the existing or envisioned application areas of DDRV, namely
concurrent software, new programming paradigms such as reversible computing [161], the
verification of distributed algorithms or distributed data bases, privacy and security (intrusion
detection systems, auditing of policies on system logs [60,172], decentralized access control
[307]), blockchain technology [247], monitoring software-defined networks with software
defined monitoring, robotics (e.g., distributed swarms of autonomous robots), and home
automation.

Enforcing interleavings

Sometimes the system that one analyzes dynamically—using runtime verification—is dis-
tributed in nature. For example, multithreaded programs can suffer from concurrency errors,
particularly when executing in modern hardware platforms, as multicore and multiproces-
sor architectures are very close to distributed systems. This makes the testing of concurrent
programs notoriously difficult because it is very hard to explore the interleavings that lead to
errors [31]. The work in [233] proposes to use enforcement exploiting user-specified prop-
erties to generate local monitors that can influence the executions. The goal is to improve
testing by forcing promising schedules that can lead to violations, even though violations of
the specified property can also be prevented by blocking individual threads whose execution
may lead to a violation. The process for generating monitors described in [233] involves the
decomposition of the property into local decentralized monitors for each of the threads.
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Observing distributed computations

Checking general predicates in a distributed system is hard, since one has to consider all pos-
sible interleavings (which may be exponential in size). Techniques like computation slices
[12,31,100,241] have been invented as a datatype for the efficient distributed detection of
predicates. Slices allow to circumvent an explicit exploration of a large set of interleaving
paths by an implicit exploration of a smaller representation. Slices are a concise approxi-
mation of the computation, which are precise enough to detect the predicate because slices
guarantee that if a predicate is present in a slice of a computation then the predicate occurred
in some state of the computation.

Predicate detection can involve a long runtime and large memory overhead [100] except
for properties with specific structure (that is, for some fragments of the language of predi-
cates). Current efficient solutions only deal with sub-classes of safety properties like linear,
relational, regular and co-regular, and stable properties. Even though most techniques for
predicate detection [12,110,241] send all local events to a central process for inspection of
its interleavings, some approaches (like [100]) consider purely distributed detection.

Monitor decomposition and coordination

Most approaches to monitoring distributed systems consider that the system is a black-box
that emits events of interest, while others use a manual instrumentation and monitor place-
ment. Some exceptions, for example [7,8,148,158,163,249], investigate how to exploit the
hierarchical description of the system to generate monitors that are then composed back with
the original system. Themodified system shares the original decomposition (of course imple-
menting its functionality) and includes the monitors embedded, but this approach requires
to have access to the system description and is specific to a given development language.
Although the work in [148] does not specifically target distributed systems, the compiler can
generate a distributed system in which case the monitor will be distributed as well. A similar
approach is presented in [30,93,94,163], where a framework for monitoring asynchronous
component-based systems is presented based on actors—self contained software entities that
are easily distributed.

Monitoring efficiency

Most RV works assume a single monitor that receives all events and calculates the verdicts.
Even though a single monitor can be implemented for decentralized and distributed systems
by sending all information to a central monitor, distribution itself can be exploited to coor-
dinate the monitoring task more efficiently. Many research efforts study how to gain more
efficient solutions by exploiting the locality in the observations to also perform partially the
monitoring task locally asmuchas possible. For example, the approaches in [30,31,93,94,148]
exploit the hierarchical structure of the system to generate local monitors, and [5,95,163]
exploit the structure and semantics of the specification. In [7], the authors show how decen-
tralized monitor specifications can be consolidated into regular descriptions that guarantee
bounded state space. Lowering overheads is also pursued in [106] by offloading part of the
monitoring computation to the computing resources of another machine.

When atomic observations of the monitored system occur locally, monitors can be orga-
nized hierarchically according to the structure of the original specification [65,66,105,158].
Substantial savings in communication overheads are obtained because often a verdict is
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already reached in a sub-formula. All these results are limited to LTL and regular languages
in [145]. Decentralized monitoring assumes that the computation proceeds in rounds, so dis-
tributed observations are synchronized and messages eventually arrive. The assumption of
bounded message delivery is relaxed in [105].

Fault tolerance

One of the main and most difficult characteristics of distributed systems is that failures can
happen independently (see [160]). Most of the RV efforts that consider distributed systems
assume that there are no errors, that is, nodes do not crash and messages are not corrupted,
lost, duplicated or reordered. Even worse, failure dependencies between components can be
intricate and the resulting patterns of behaviors can be difficult to predict and explain. At the
same time, one of the common techniques for fault tolerance is the replication of components
so this is a promising approach for monitoring too [159]. For example, [154] studies the
problem of distributed monitoring with crash failures, where events can be observed from
more than onemonitor, andwhere the distributedmonitoring algorithm tries to reach a verdict
among the surviving monitors.

Another source of failure is network errors, studied in [4,54,63], which targets the incom-
plete knowledge caused by network failures and message corruptions and attempts to handle
the resulting disagreements. Node crashes are handled because message losses can simulate
node crashes by ignoring all messages from the crashed node.

2.2 Challenges

The characteristics outlined bring added challenges to obtain effective DDRV setups.

C 2.1 Distributed Specifications. It is a well-established fact that certain specifications can-
not be adequately verified at runtime [4,5,7,99,147,157,271]. The partial ordering on certain
distributed events, due to distributed clocks hinders the monitoring of temporal specifications
requiring a specific relative ordering of these events [31]. As such, the lack of a global system
view means that even fewer specifications can be monitored at runtime. Even though some
work exists proposing specific languages tailored to distributed systems [298], the quest for
expressive and tractable languages is an important and challenging goal.

C 2.2 Monitor Decomposition, Placement, and Control. The runtime analysis carried out
by monitors needs to be distributed and managed across multiple execution nodes. As argued
originally in [158], and later investigated empirically in works such as [31,66], the decom-
position and placement of monitoring analysis is an important engineering decision that
affects substantially the overheads incurred such as the number and size of messages, the
communication delay, the spread of computation across monitors [137]. Such placement also
affects the administrative domains under which event data is analyzed and may compromise
confidentiality restrictions and lead to security violations that may be due to the communi-
cation needed by monitors to reach a verdict (for instance if monitors communicate partial
observations or partial evaluations of the monitored properties).

C 2.3 Restricted Observability. The flip side of security and confidentiality constraints in
distributed systems translates into additional observability constraints that further limit what
specifications can be monitored in practice. Distributed monitors may need to contend with
traces whose event data may be obfuscated or removed in order to preserve confidentiality
which, in turn, affects the nature of the verdicts that may be given [4,180].
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C 2.4 Fault Tolerance. DDRV has to contend with the eventuality of failure in a distributed
system [63].Using techniques involving replication and dynamic reconfiguration ofmonitors,
DDRV can be made tolerant to partial failure. More interestingly, fault-tolerant monitoring
algorithms could provide reliability to the monitors. A theory allowing to determine which
specifications combined with which monitoring algorithms could determine the guarantees
that should be investigated.

C 2.5 Deterministic Analysis. Since monitoring needs to be carried out over a distributed
architecture, this will inherently induce non-deterministic computation. In spite of this, the
monitoring analysis and the verdicts reported need to feature aspects such as strong eventual
consistency [137] or observational verdict determinism [155,156], and conceal any internal
non-determinism. In practice, this may be hard to attain (e.g., standard determinization tech-
niques on monitors incur triple exponential blowup [6]); non-deterministic monitor behavior
could also compromise the correctness of RV setup and the validity of the verdicts reported
[155].

C 2.6 Limits of Monitorability. Distributed systems impose further limitations on the class
of properties that can be detected (see [5,8,67,121,146,147,157,271,314] for notions of
monitorability for non-distributed systems and [31,137] for decentralized systems [138]).
Associated with the challenge of exploring new specification languages for monitoring
distributed systems, there is the need to discern the limitations of what can be detected
dynamically.

3 Hybrid systems

Hybrid systems (HS) [189] are a powerful formal framework to model and to reason about
systems exhibiting a sequence of piecewise continuous behaviors interleaved with discrete
jumps. In particular, hybrid automata (HA) extend finite state-based machines with con-
tinuous dynamics (generally represented as ordinary differential equations) in each state
(also called mode). HS are suitable modelling techniques to analyze safety requirements
of Cyber-Physical Systems (CPS). CPS consist of computational and physical components
that are tightly integrated. Examples include engineered (i.e., self-driving cars), physical and
biological systems [51] that are monitored and/or controlled through sensors and actuators
by a computational embedded core. The behavior of CPS is characterized by the real-time
progressions of physical quantities interleaved by the transition of discrete software and
hardware states. HA are typically employed to model the behavior of CPS and to evaluate at
design-time the correctness of the system, and its efficiency and robustness with respect to
the desired safety requirements.

HA are called safe whenever given an initial set of states, the possible trajectories origi-
nated from these initial conditions are not able to reach a bad set of states. Proving a safety
requirement requires indeed to solve a reachability analysis problem that is generally unde-
cidable [27,189] for hybrid systems. However, this did not stop researchers to develop, in
the last two decades, semi-decidable efficient reachability analysis techniques for particular
classes of hybrid systems [14,29,102,119,120,164–166,181,213].

Despite all this progress, the complexity to perform a precise reachability analysis of
HS is still limited in practice to small problem instances (e.g., [26–28,189]). Furthermore,
the models of the physical systems may be inaccurate or partially available. The same may
happen when a CPS implementation employs third-party software components for which
neither the source code or the model is available.

123



Formal Methods in System Design (2019) 54:279–335 287

A more practical solution, close to testing, is to monitor and to predict CPS behaviors
at simulation-time or at runtime [46]. The monitoring technology include the techniques to
specify what we want to detect and to measure and how to instrument the system.Monitoring
can be applied to:

– Real systems during their execution, where the behavioral observations are constructed
from sensor readings.

– System models during their design, where the behaviors observed correspond to simula-
tion traces.

In the following, we provide an overview of the main specification-based monitoring
techniques available for CPS and HS. We also show the main applications of the monitoring
techniques in system design and finally we discuss the main open challenges in this research
field.

3.1 Context and areas of interest

To provide some context we first describe specification languages for hybrid systems, then
discuss from specific issues of monitoring continuous and hybrid systems and then briefly
present the state-of-the-art with respect to tools for monitoring these systems. Finally, we list
applications of RV to hybrid systems.

3.1.1 Specification languages

One of the main specification language that has been used in the research community for the
formal specification of continuous and hybrid systems is Signal Temporal Logic (STL) [234,
235]. STL extends Metric Interval Temporal Logic (MITL) [15], a dense-time specification
formalism, with predicates over real-valued variables. This mild addition to MITL has an
important consequence, despite its simplicity—the alphabet in the logic has an order and
admits a natural notion of a distance metric. Given a numerical predicate over a real-valued
variable and a variable valuation, we can henceforth answer the question on how far the
valuation is from satisfying or violating the predicate. This rich feedback is in contrast to the
classical yes/no answer that we typically get from reasoning about Boolean formulas. The
quantitative property of numerical predicates can be extended to the temporal case, giving
rise to the quantitative semantics for STL [134,144].

We can use with ease STL to specify real-time constraints and complex temporal rela-
tions between events occurring in continuous signals. These events can be trivial threshold
crossings, but also more intricate patterns, identified by specific shapes and durations. We are
typically struggling to provide elegant and precise description of such patterns in STL. We
can also observe that these same patterns can be naturally specified with regular expressions,
as time-constrained sequences (concatenations) of simple behavior descriptions.

Timed Regular Expressions (TRE) [25], a dense-time extension of regular expressions,
seem to fit well our need of talking about continuous signal patterns. While admitting nat-
ural specification of patterns, regular expressions are terribly inadequate for specification
of properties that need universal quantification over time. For instance, it is very difficult
to express the classical requirement “every request is eventually followed by a grant” with
conventional regular expressions (without negation and intersection operators). It follows
that TRE complements STL, rather than replacing it.

CPS consist of software and physical components that are generally spatially distributed
(e.g., smart grids, robotics teams) and networked at every scale. In such scenario, tem-
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poral logics may not be sufficient to capture not only time but also topological and spatial
requirements. In the past five years, there has been a great effort to extend STL for expressing
spatio-temporal requirements. Examples include Spatial-Temporal Logic (SpaTeL) [43,183],
the Signal Spatio-Temporal Logic (SSTL) [251] and the Spatio-Temporal Reach and Escape
Logic (STREL) [44].

3.1.2 Monitoring continuous and hybrid systems

We first discuss some issues that are specific to the analysis of continuous and hybrid behav-
iors. We also provide an overview of different methods for monitoring STL with qualitative
and quantitative semantics and matching TRE patterns.

Handling Numerical Predicates In order to implement monitoring andmeasuring procedures
for STL and TRE, we need to address the problem of the computer representation of continu-
ous and hybrid behaviors. Both STL and TRE have a dense-time interpretation of continuous
behaviors which are assumed to be ideal mathematical objects. This is in contrast with the
actual behaviors obtained from simulators ormeasurement devices andwhich are represented
as a finite collection of value-timestamp pairs (w(t), t), where w(t) is the observed behav-
ior. The values of w at two consecutive sample points t and t ′ do not precisely determine
the values of w inside the interval (t, t ′). To handle this issue pragmatically, interpolation
can be used to “fill in” the missing values between consecutive samples. Some commonly
used interpolations to interpreted sampled data are step and linear interpolation. Monitoring
procedures are sensitive to the interpolation used.

Monitoring STL with Qualitative and Quantitative Semantics An offline monitoring proce-
dure for STL properties with qualitative semantics is proposed in [235]. The procedure is
recursive on the structure (parse-tree) of the formula, propagating the truth values upwards
from input behaviors via super-formulas up to themain formula. In the same paper, the proce-
dure is extended to an incremental version that computes the truth value of the sub-formulas
along the observation of new sampling points.

There are several algorithms available in the literature for computing robustness degree
of STL formulas [130,132,134,144,200,201,285]. The algorithm for computing the space
robustness of a continuous behavior with respect to a STL specification was originally pro-
posed in [144]. In [132], the authors develop a more efficient algorithm for measuring space
robustness by using an optimal streaming algorithm to compute the min and the max of a
numeric sequence over a sliding window and by rewriting the timed until operator as a con-
junction of simpler timed and untimed operators. The procedure that combines monitoring
of both space and time robustness is presented in [134].

Finally, the following two approaches have been proposed to monitor the space robust-
ness of a signal with respect to an STL specification. The first approach proposed in [130]
considers STL formulas with bounded future and unbounded past operators. The unbounded
past operators are efficiently evaluated exploiting the fact that the unbounded history can
be stored as a summary in a variable that is updated each time a new value of the signal
becomes available. For the bounded future operators, the algorithm computes the number
of look-ahead steps necessary to evaluate these operators and then uses a model to predict
the future behavior of the system and to estimate its robustness. The second approach [126]
computes instead an interval of robustness for STL formulas with bounded future operators.

Matching TRE Patterns An offline procedure for computing the set of all matches of a timed
regular expression in a continuous or hybrid behavior was proposed in [308]. The procedure
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relies on the observation that any match set can always be represented as a finite union of
two-dimensional zones, a special class of convex polytopes definable as the intersection of
inequalities of the form (x < a), (x > a) and (x − y < a). This algorithm has been recently
extended to enable online matching of TRE patterns [309].

3.1.3 Tools

The following tools are publicly available and they support both the qualitative and the
quantitative semantics for monitoring CPSs.

1. AMT2.0 [254]: available at http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/
content.html

2. Breach [131]: available at https://github.com/decyphir/breach
3. S-Taliro [17]: available at https://sites.google.com/a/asu.edu/s-taliro/
4. U-Check [82]: available at https://github.com/dmilios/U-check

The AMT 2.0 tool [254] provides a framework for the qualitative and quantitative anal-
ysis of xSTL, which is an extended Signal Temporal Logic that integrates TRE with STL
requirements over analog system output signals. The software tool AMT is a standalone exe-
cutable with a graphical interface enabling the user to specify xSTL properties, the signals
and whether the analysis is going to be offline or incremental. The new version of the tool
provides also the possibility to compute quantitative measurements over segments of the
signals that match the properties specified using TRE [152]. AMT 2.0 offers also a trace
diagnostics [151] mechanism that can be used to explain property violations.

Breach [131] and S-Taliro [17] are add-on Matlab toolboxes developed for black-box
testing based verification [143] of Simulink/Stateflow models. These tools have also been
used for other applications includingparametermining [328,332], falsification [2] to synthesis
[277].

Finally, U-Check [82] is a stand-alone programwritten in Java, which deals with statistical
model checking of STL formulas and parameter synthesis for stochastic models described
as Continuous-Time Markov Chains.

3.1.4 Applications

Specification-basedmonitoring of cyber-physical systems (CPS) [253] has been a particularly
fertile field for research on runtime verification leading to several theoretical and practical
applications such as quantitative semantics, simulation-guided falsification, real-time online
monitoring, system design and control. Here is an overview of the most relevant applications
in the CPS scenario:

Real-time Monitoring of CPS. The complexity of the new generation of digital system-on-
chip (SoC) and analog/mixed-signal systems (AMS) requires new efficient techniques to
verify and to validate their behavior both at physical and software level. The simulation
of such systems is now too time-consuming to be economically feasible. An alternative
approach is to monitor the system under test (SUT) online by processing the signals and
software traces that are observable after instrumentation [253]. This approach leverages
the use of dedicated hardware accelerators such as Field Programmable Gate Arrays
(FPGA) and of proper synthesis tools [199,200,297] that can translate temporal logic
specifications into hardware monitors. This will be discussed in more detail in the next
section dedicated to hardware supported runtime verification.

123

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html
https://github.com/decyphir/breach
https://sites.google.com/a/asu.edu/s-taliro/
https://github.com/dmilios/U-check


290 Formal Methods in System Design (2019) 54:279–335

Falsification-based Testing. Specification-based monitoring is a very useful technique also at
design-time. The engineers generally use MathWorks TM Simulink3 or OpenModelica4

toolsets to model CPS functionalities. These models are complex hybrid systems that are
very challenging to verify and test. Falsification-based testing [2,3,17,18,142,252,331]
aims at automatically generating counter-examples that violate the desired requirements
in a CPS model. This approach employs a formal specification language such as STL
to specify the desired requirements, and a monitor (the oracle), that verifies each sim-
ulation trace for correctness against the requirement and it provides an indication as
to how far the trace is from violation. For this reason, in the last decade there was a
great effort to develop quantitative semantics for STL [11,134,258,284,285], where the
binary satisfaction relation is replaced with a quantitative robustness degree function.
The positive and negative sign of the robustness value indicates whether the formula
is satisfied or violated, respectively. This quantitative interpretation can be exploited in
combination with several heuristics (e.g., ant colony, gradient ascent, statistical emula-
tion) to optimize the CPS design in order to satisfy or falsify a given formal requirement
[2,3,17,18,45,133,142,252,331].

From Monitoring to Control Synthesis. The use of formal logic-based languages has also
enabled control engineers to build tools that automatically synthesize controllers starting
from a given specification [70]. Temporal logics such as Metric Temporal Logic (MTL)
[214], and Signal Temporal Logic (STL) [234] have been employed to specify time-
dependent tasks and constraints in many control system applications [17,277,321]. In
the context of Model Predictive Control (MPC) [71,212,258,276], the monitoring of
temporal logics constraints over the simulated traces of a plant model can be used to
find iteratively the input that will optimize the robustness for the specification over a
finite-horizon.

3.2 Challenges

Although specification-based monitoring of CPS is a well-established research area, there
are still many open challenges that need to be addressed. We now discuss some of the most
important remaining challenges.

C 3.1 Autonomous CPS. The recent advances in machine learning (ML) has led to new fas-
cinating artificial intelligence (AI) applications, such as autonomous CPS that can perceive,
learn, decide and execute tasks independently, or with minimal human intervention in unpre-
dictable environments. The lack of predictability, that results from using learning-enabled
components, requires to think novel approaches for providing assurance. The main challenge
is to develop new methods that go beyond the current state-of-the-art of RV technology to
guarantee the trustworthiness of autonomous CPS by providing dynamic safety and security
assurance mechanisms.

C 3.2 From design-time to runtime. Specification languages for CPS typically assume
a perfect mathematical world in which time is continuous and the state variables are all
observable with infinite precision. This level of abstraction is suitable to reason about CPS
at the time of their design, where the system is modeled with differential equations and can
be simulated with arbitrary precision and perfect observability. However, the passage from

3 https://www.mathworks.com/products/simulink.html.
4 https://openmodelica.org/.
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a CPS model to its implementation results in a number of effects that runtime monitors
applied during the system operation need to take into account. For instance, CPS can be
only observed at sampled points in time, some state variables may not be observable and the
sensors may introduce noise and inaccuracies into measurements, including sampling noise.
As a consequence, there is an urgent need to address these questions in the context of runtime
verification of CPS.

C 3.3 Limited resources. CPS introduce some specific constraints on available resources
that need to be taken into account by runtime verification solutions. CPS are reactive systems
operating at a certain frequency, hence the monitor needs to operate at least at the same speed
as the system. In contrast to classical software, instrumentation of some components in the
CPS can be hard or impossible. It follows that runtime monitors may need to rely on partially
observable streams of data. CPS are often safety-critical and have hard timing constraints. As
a consequence, runtime monitors must not alter the timing-related behavior of the observed
system. Developing monitoring solutions that take into consideration specific limitations of
CPS remains an important challenge that needs still to be properly addressed.

C 3.4 From real-time to spatial and spectral specifications. Most of the existing work on
runtime monitoring of CPS is focused on real-time temporal properties. However, CPS often
consist of networked spatially distributed entities where timing constraints are combinedwith
spatial relations between the components. In addition, many basic properties of continuous
CPS entities are naturally definable in spectral (for instance frequency) domain [98,135].
There is a necessity to study specification formalisms that gracefully integrate these important
CPS aspects.

C 3.5 Fault-localisation and explanation. Detecting a fault while monitoring a CPS during
its design or deployment time involves understanding and correcting the error. Comple-
menting runtime verification methods with (semi) automated fault localisation [48] and
explanation could significantly reduce the debugging efforts and help the engineer in building
a safe and secure system.

4 Hardware

Hardware supported runtimeverification (HRV) studies how to use hardware to build dynamic
solutions for reliabilty assesment. The goal is to alleviate the extensive analysis required for
complex designs, by shifting from offline and limited data sets to online simultaneous non-
intrusive analysis. The use of hardware brings an immense potential for runtime observation
and can even allow the continuous assessment of the behavior exhibited by the system.
Observation and simultaneous correctness checking of system internals can reach a level of
detail that is orders of magnitude better than today’s tools and systems provide. Note that the
use of “hardware” in HRV refers to the use of hardware as an element of the RV solution, even
though the system under study can also be analyzed at a low-level that includes hardware
characteristics.

Online runtime verification hardware-based approaches may take advantage of multiple
technologies, for example, hardware description languages and reconfigurable hardware. The
combination of these technologies provides the means for observability, non-intrusiveness,
feasibility, expressiveness, flexibility, adaptability and responsiveness of hardware-based
monitors that observe and monitor a target system and allow to react to erroneous behavior.
In addition, HRV can be used for other analysis, such as performance monitoring.
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Several solutions have been proposed that approach runtime verification (RV) differently,
diverging on the methodologies used, goals and target system-induced limitations. Whether
the monitor executes on external hardware or on-system, what the monitor watches (that is,
the meaningful events it cares about: the events of interest), how it is connected to the system
and what is instrumented or not, are dependent on both the characteristics of the system being
monitored and the goals of the monitoring process.

4.1 Context and areas of interest

To present the context of HRV in order to later describe the challenges, we describe the
following aspects separately: the pursue of non-intrusiveness monitoring, the study of the
feasibility and limitations of hardware-based monitoring, the landscape of design approaches
and the flexibility. We finally list some existing use cases.

4.1.1 Non-intrusiveness

Ideally, observing and monitoring components should not interfere with the normal behavior
of the system being observed, thus negating what is called “the observer effect” or “the probe
effect” [168], in which the observing methodology hinders the system behavior by affect-
ing some of its functional or non-functional (e.g., timeliness) properties. Hardware-based
approaches are inherently non-intrusive, while software-based solutions normally exhibit
some degree of intrusiveness, even if minimal. Therefore, it is widely acknowledged that
these approaches must be used with care.

For example, the delays implicitly associated with the insertion of software-based probes
may ill affect the timing and synchronisation characteristics of concurrent programs. More-
over, and perhaps less intuitively, the removal of such probes from real-time embedded
software which, in principle, leads to shorter program/task execution times and may ren-
der a given task set unschedulable due to changes in the corresponding cache-miss profile
[232,248,320]. Non-intrusiveness, i.e. the absence of interference may then be referred to
as a RV constraint. RV constraints are not only relevant, but in fact fundamental, for highly
critical systems [268].

A comprehensive overview of various hardware (including on-chip), software and hybrid
(i.e., a combination of hardware and software) methodologies for system observation, mon-
itoring and verification of software execution in runtime is provided in [316].

System observing solutions can be designed to be directly connected to some form of
system bus, enabling information gathering regarding events of interest, such as data transfers
and signalling taking place inside the computing platform, namely instruction fetch, memory
read/write cycles and interrupt requests, with no required changes on the target system’s
architecture. Examples of such kind of hardware-based observation approaches are proposed
in [207,265,270,280].

As emphasized in [316] observing mechanisms should: (1) be minimally intrusive, or
preferably completely non-intrusive, so as to respect the RV constraint; (2) provide enough
information about the target system so that the objectives of runtime verification can be met.

4.1.2 Observability

Another important aspect raised in [316] is the occasional limited observability of program
execution with respect to its internal state and data information. In general, software-based
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monitoring may have access to extensive information about the operation of a complex
system, in contrast to the limited information available to hardware probes [316].

Thus, one first challenge is that hardware-based probes must be capable of observing
enough information about the internal operation of the system to fulfil the purpose of the
monitoring [316]. Gaining access to certain states or information is often problematic, since
most systems do not provide access to system operation and software execution details. So,
observability is sometimes limited to the data made available or accessible to observing com-
ponents. Low observability of target system operation affects not only traditional hardware
monitors, but also may jeopardize hybrid monitoring and may deem these observing and
monitoring techniques ineffective.

4.1.3 Feasibility

General purpose Commercial Off-The-Shelf (COTS) platforms offer limited observing and
monitoring capabilities. For example, in those platforms based on Intel x86 architectures
observability is restricted to the Intel Control Flow Integrity [196] and to the Intel Proces-
sor Trace [282] facilities. Trying to enhance system observability through physical probing
implies either a considerable engineering effort [209] or is restricted to specific behaviors,
such as input/output operations [265].

The trend to integrate the processing entities together with other functional modules of
a computing platform in an Application Specific Integrated Circuit (ASIC), often known as
System on a Chip (SoC), can dramatically affect the overall system observability, depending
on whether or not special-purpose observers are also integrated.

The shortcomings and limitations of debug and trace resources regarding runtime sys-
tem observation is analyzed in [222], concluding that the deep integration of software and
hardware components within SoC-based devices hinders the use of conventional analysis
methods to observe and monitor the internal state of those components. The situation is fur-
ther exacerbated whenever physical access to the trace interfaces is unavailable, infeasible
or cost prohibitive.

With the increased popularity of SoC-based platforms, one of the first on-chip approaches
to SoC observability was introduced in [301], where the authors presented MAMon, a
hardware-based probe-unit integrated within the SoC and connected via a parallel-port link
to a host-based monitoring tool environment that performs both logic-level (e.g., interrupt
request assertion detection) and system-level (e.g., system call invocation) monitoring. This
approach can either be passive (by listening to logic- or system-level events) or activated by
(minimally intrusive) code instrumentation.

Many SoC designs integrate modules made from Intellectual Property (IP) cores. An IP
core design is pre-verified against its functional specification, for example through assertion-
based verification methods. In hardware-based designs, assertions are typically written in
verification languages such as the Property Specification Language (PSL) [195] and System
Verilog Assertions (SVA) [194]. The pre-verification of IP core designs contributes to reduce
the effort placed in the debug and test of the system integration cycle.

The work [306] presents an in-circuit RV solution that targets the monitoring of the hard-
ware itself rather than software. Runtime verification is done by means of in-circuit temporal
logic-based monitors. Design specifications are separated into compile-time and runtime
properties, where runtime properties cannot be verified at compile-time, since they depend
on runtime data. Compile-time properties are checked by symbolic simulation. Runtime prop-
erties are verified by hardware monitors being able to run at the same speed as the circuits
they monitor.
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System-wide observation of IP core functionality requires the specification of a set of
events to be observed and a set of observation probes. The IP core designer will be the best
source of knowledge for determining which event probes can provide the highest level of
observability for each core. Such kind of approach is followed in [221], for the specification
of a low-level hardware observability interface: a separate dedicated hardware observability
bus is used for accessing the hardware observation interface.

The approach described in [221] was further extended in [222] to include system level
observations, achieved through the use of processor trace interfaces. The solution discussed
in [222] introduces a System-level Observation Framework (SOF) that monitors hardware
and software events by inserting additional logic within hardware cores and by listening to
processor trace ports. TheproposedSOFprovides visibility formonitoring complex execution
behavior of software applications without affecting the system execution. Engineering and
evaluation of such approaches has resorted to FPGA-based prototyping [221,222].

Support for such kind of observation can be found also in modern processor architectures
with multiple cores, implemented as single chip solutions and natively integrating embedded
on-chip special-purpose observation resources, such as the ARM CoreSight [22,255].

4.1.4 Design approaches

Nowadays there are two approaches for embedded multicore processor observation. Soft-
ware instrumentation is easy to use, but very limited for debugging and testing (especially
for integration tests and higher levels). A more sophisticated approach and key element in
multicore observation are embedded trace based emulators. A special hardware unit observes
the processor’s internal states, compresses and outputs this information via a dedicated trace
port. An external trace device records the trace data stream and forwards the data after the
observation period to, e.g. a personal computer for offline decompression and processing.
Unfortunately, this approach still suffers from serious limitations in trace data recording and
offline processing:

– Trace trigger conditions are limited and fixed to the sparse functionality implemented in
the “embedded trace” unit.

– Because of the high trace data bandwidth it is impracticable on today’s storage systems
to save all the data obtained during an arbitrary long observation.

– There is a discrepancy between trace data output bandwidth and trace data processing
bandwidth, which is usually several orders of magnitude slower. This results in a very
short observation period and a long trace data processing time, which renders the debug-
ging process inefficient.

Hardware supporting online runtime verification could overcome these limitations. Trace
data is not stored before being pre-processed and verified, because both are done online.
Debugging and runtime verification are accomplished without any noticeable interference
with the original system execution. Verification is based on a given specification of the sys-
tem’s correct behavior. In case amisbehavior is detected, further complex processing steps are
triggered. This challenging solution enables an autonomous, arbitrary enduring observation
and brings out the highest possible observability from “embedded trace” implementations.

Other solutions place the observation hardware inside the processing units, which may, in
some situations, require their modification. Some simple modifications may enable lower-
level and finer-grained monitoring, for example by allowing the precise instant of an
instruction execution to be observed. The choice of where to connect a runtime verifica-
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tion hardware depends on the sort of verification one aims to perform and at which cost,
being a design challenge.

A Non-Intrusive Runtime Verification (NIRV) observer architecture for real-time SoC-
based embedded systems is presented in [270]. The observer (also called Observer Entity,
OE) synchronously monitors the SoC bus, comparing the values being exchanged in the bus
with a set of configured observation points, the events of interest. Upon detection of an event
of interest, the OE time-stamps the event and sends it an external monitor. This approach is
extended in [178] to enforce system safety and security using a more precise observation of
programs execution, which are secured through the (non-intrusive) observation of the buses
between the processor and the L1 cache sub-system.

Awide spectrum of both functional and non-functional properties can be targeted by these
RV approaches, from timeliness to safety and security, preventing misbehavior overall. The
effectiveness of system observability is crucial for securing the overall system monitoring.
Hardware-based observation is advantageous given its non-intrusiveness, but software-based
observation is more flexible, namely with respect to capturing of context-related data.

4.1.5 Flexibility: (self-)adaptability and reconfiguration

Requirements for (self-)adaptability to different operational conditions call for observers
(and monitors) flexibility, which may be characterized by a ready capability to adapt to
new, different, or changing needs. Flexibility implies that observing resources should be re-
configurable in terms of the types and nature of event triggers. This configurability may be
defined via configuration files, supported online by self-learning modules, or a combination
of both. Reconfigurable hardware implementations usually provide sufficient flexibility to
allow for changes of the monitored specification without re-synthesising the hardware infras-
tructure. This is a fundamental characteristic since logic synthesis is a very time-consuming
task and therefore unfit to be performed online. Observer and monitor reconfigurability can
be obtained in the following ways:

– Using reconfiguration registers that can be changed online [270], a flexible characteristic
that supports simple to moderate adaptability capabilities. Examples include to redefine
the address scope for a function stack frame, upon its call, or to define function’s calling
addresses upon dynamic linking with shared object libraries.

– Selecting an active monitor or a monitor specification from a predefined set of mutually
exclusive monitors [286]. This corresponds to a mode change in the operation of the
system. Mode changes needs to secure overall system stable operations [266].

– Using a reconfigurable single monitor [275], which allows to update the monitor through
the partial reconfiguration capabilities enabled by modern FPGAs.

The approach in [275] implements intrusion detection in embedded systems by detecting
behavioral differences between the correct system and the malware. The system is imple-
mented using FPGA logic to enable the detection process to be regularly updated and adapt
to new malware and changing system behavior. The idea is to protect against the execution
of code that is different from the correct code the system designer intends to execute. The
technique uses hardware support to enable attack detection in real time, using finite state
machines.

System adaptation triggered by non-intrusive RV techniques is approached in [286] for
complex systems, such as Time- and Space-Partitioned (TSP) systems, where each partition
hosts a (real-time) operating system and the corresponding applications. Special-purpose
hardware resources provide support for: partition scheduling, which are verified in runtime
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through (minimally intrusive) RV software; process deadline violation monitoring, which is
fully non-intrusive while deadlines are fulfilled. Process level exception handlers, defined
the application programmer, establish the actions to be executed by software components
when a process deadline violation is detected. The monitoring component which analyzes
the observed events (the trace data) may be a component belonging to RV hardware itself,
checking the system behavior as it observes.

4.1.6 Use case examples

Given the numerous possibilities for implementing RV in hardware, multiple contributions
have been made that tackle the ongoing search for improvement of hardware-based RV
monitors. Some solutions address monitoring and verification in a single instance [280].
Here, the verification procedure is mapped into soft-microcontroller units, embedded within
the design, and use formal languages such as past-time Linear Temporal Logic (ptLTL). An
embedded CPU is responsible for checking ptLTL clauses in a software-oriented fashion.

A System Health Management technique was introduced in [281] which empowers real-
time assessment of the system status with respect to temporal-logic-based specifications and
also supports statistical reasoning to estimate its health at runtime. By seamlessly intercepting
sensor values through read-only observations of the system bus and by on-boarding their
platform (rt-R2U2) aboard an existing FPGA already built into the standard UAS (Unmanned
Aerial Systems) design, system integration problems of software instrumentation or added
hardware were avoided, as well as intrusiveness.

A runtime verification architecture for monitoring safety critical embedded systemswhich
uses an external bus monitor connected to the target system, is presented in [206]. This archi-
tecturewas designed for distributed systemswith broadcast buses and black-box components,
a common architecture in modern ground vehicles. This approach uses a passive external
monitor which lines up well against the constraints imposed by safety-critical embedded
systems. Isolating the monitor from the target system helps ensure that system functionality
and performance is not compromised by the inclusion of the monitor.

The use of a hardware-based NIRV approach for mission-level adaptation in unmanned
space and aerial vehicles is addressed in [287] with the goal to contribute to mission/vehicle
survivability. For each phase of a flight, different schedules are defined to three modes:
normal, survival, recovery. The available processor time is allocated to the different vehicle
functions accordingly with its relevance within each mode: normal implies the execution of
the activities defined for the mission; survival means the processor time is mostly assigned
to fundamental avionic functions; recovery foresees also the execution of fault detection,
isolation and recovery functions.

Gouveia and Rufino [178] attack the problem of fine-grained memory protection in cyber-
physical systems using a hardware-based observation andmonitoring entity are presented. To
ensure the security of the observer itself, the monitor is designed as a black box, allowing it to
be viewed in terms of its input and output but not its internal functioning and thus preventing
malicious entities from hijacking its behavior.

No previous study concerning hardware-based observability has tackled the problem of
applying the concepts and techniques to the non-intrusive observation and monitoring of
programs in interpreted languages, such as Python and Java bytecode, running on the corre-
sponding virtual machines.

123



Formal Methods in System Design (2019) 54:279–335 297

4.2 Challenges

C 4.1 Observability. There is no general results on defining which hardware entities (sys-
tem bus, processor internal buses, IP core internals) of a system should be instrumented to
guarantee the required observability and how to probe such entities. In general, observation
at different levels of abstraction should be supported, from logic-level events (e.g., interrupt,
request, assertion) up to system (e.g., system call invocation) and application levels (e.g.,
value assigned to a given variable).

C 4.2 Effectiveness. To ensure that hardware-based probing is able to provide effective sys-
tem observability, meaning all the events of interest should be captured, while maintaining
the complexity of hardware instrumentation in conformity with SWaP (Size, Weight and
Power) constraints. This is especially important for observation and monitoring of hard-
ware components, where the RV resources should have a much lower complexity than the
observed infrastructure, but this results could also be applicable to the monitoring of software
components.

C 4.3 Feasibility and flexibility. To handle the potentially high volumes of trace data pro-
duced by extensive system observation is challenge. It includes confining the observed events
of interest, and the use of advanced compression, pre-processing and runtime verification
techniques to reduce the gap between trace data output and trace data processing capabili-
ties. Also, mapping of formal specification of system properties into actual observing and
monitoring actions, making use of a minimal set of highly effective hardware/software prob-
ing components and monitors. If applicable, provide support for flexible observation and
monitoring, thus opening room for the integration of RV techniques in (self-)adaptable and
reconfigurable systems.

C 4.4 Hybrid approaches for observability. Combining software-based instrumentation
with hardware-based observability in a highly effective hybrid approach, to: (1) Capture
program execution flows and timing, without the need for special-purpose software hooks;
(2) Observe fine-grained data, such as read/write accesses to global and local variables; (3)
Monitor bulk data (e.g. arrays) through the observation of read/write accesses to individual
members.

C 4.5 Advanced systemarchitectures. Extendinghardware-basedobservability to advanced
system architectures, such as processor andmemory virtualisation, including time- and space-
partitioning, and also to the execution of interpreted languages including bytecode that runs
on virtual machines, like JVM.

5 Security and privacy

In the last years there has been a huge explosion in the availability of large volumes of
data. Large integrated datasets can potentially provide a much deeper understanding of both
nature and society and open up many new avenues of research. These datasets are critical
for addressing key societal problems—from offering personalized services, improving public
health and managing natural resources intelligently to designing better cities and coping with
climate change. More and more applications are deployed in our smart devices and used by
our browsers in order to offer better services. However, this comes at a price: on one side
most services are offered in exchange of personal data, but on the other side the complexity
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of the interactions of such applications and services makes it difficult to understand and track
what these applications have access to, and what they do with the users’ data. Privacy and
security are thus at stake.

Cybersecurity is not just a buzzword, as stated in the recent article “All IT Jobs Are
Cybersecurity Jobs Now” [239] where it is said that “The rise of cyberthreats means that the
people once assigned to setting up computers and email servers must now treat security as
top priority”. Also, “The largest ransom-ware infection in history” [304]. Referring to the
event above, the Europol chief stated in a recent BBC interview that “Cybersecurity should
be a top line executive priority and you need to do something to protect yourself” [69].

Besides the above examples,which arewell-knowngiven theirmassive impact in themedia
and society, we know that security and privacy issues are present in our daily lives in different
forms, including botnets, distributed denial-of-service attacks (DDoS), hacking, malware,
pharming, phishing, ransomware, spam, and numerous attacks leaking private information
[299]. The (global) protection starts with the protection of each single computer or device
connected to the Internet. However, nowadays only partial solutions can be done statically.
Runtime monitoring, verification and enforcement are thus crucial to help in the fight against
security and privacy threats.

Remark.Given the breadth of the Security and Privacy domain, we do not present an exhaus-
tive analysis of the different application areas. We deliberately focus our attention on a
small subset of the whole research area, mainly privacy concerns from the EU General Data
Protection Regulation (GDPR), information flow, malware detection, browser extensions,
and privacy and security policies. Even within those specific areas, we present a subset of
challenges emerging from this areas.

5.1 Context and areas of interest

We present now the context and state-of-the-art of monitoring in the following security relate
sub-areas: GDPR, information flow, malware detection, browser extensions and privacy and
security policies.

5.1.1 GDPR (general data protection regulation)

The European General Data Protection Regulation [118] (GDPR)—which as adopted on 27
April 2016 and entered into application on 25May 2018—subjects companies, governmental
organizations and any other data collector to stringent obligations when it comes to user
privacy in their digital products and services. Consequently, new systems need to be designed
with privacy in mind (privacy-by-design [97]) and existing systems have to provide evidence
about their compliance with the new GDPR rules. This is mandatory, and sanctions for data
breaches are tough and costly.

As an example, Article 5 of GDPR, related to the so-called data minimization principle,
states: “Personal data must be adequate, relevant, and limited to the minimum necessary in
relation to the purposes for which they are processed”.While determining what is “adequate”
and “relevant” might seem difficult given the inherent imprecision of the terms, identifying
what is “minimum necessary in relation to the purpose” is easier to define and reason about
formally.

Independently on whether we are considering privacy by design or giving evidence about
privacy compliance for already deployed systems, there are some issues to be considered. Not
all the obligations stated in the regulations can be easily translated into technical solutions,
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so there is a need to identify which regulations are enforceable by technical means. For those
rules or principles identified as being enforceable by software, it is hard for engineers to
assess and provide evidence of whether a technical design is compliant with the law due
to the gap existing between a legal document written in natural language and a technical
solution in the form of a software system.

Consider again the data minimization principle. One way to understand minimization is
on how the data is used, that is we could consider ways to identify the purpose for which
the input data collected is used in the program. In this case we would need to look inside the
program and track the usage of the data by performing static analysis techniques like tainting,
def-use, information flow, etc. This, in turn, requires a precise definition of what “purpose”
means and a way to check that the intended purpose matches the real actions that the program
take to process the data at runtime. Another aspect of minimization is related to when and
how the data is collected in order to limit the collection of data to what is actually needed to
perform the purpose of the program. In this case we could consider that the purpose is given
by the specification of the program, which is the approach followed by Antignac et al. [19].
This results indicate that it may be possible to enforce data minimization at runtime, at least
in what concerns some of its aspects. But other privacy principles are more difficult to tackle.

5.1.2 Information flow

In computer systems, it is often necessary to prevent some objects to access specific data.
These permissions are usually defined through security policies, and enforced using access
control mechanisms. However, such mechanisms are typically insufficient in practice. For
instance, an application could require to access both private data—such as the user contact
list—and to connect to Internet but, once the application is granted by the operating system’s
access control policy, one would like to ensure that no data from the contact list (assumed to
be confidential) leaks to the Internet (a public channel). Enforcing such fine-grained security
policies require information flow control mechanisms. These mechanisms allow untrusted
applications to access confidential data as soon as they do not leak these data to public
channels. Denning’s seminal work [123,124] in that field proposed static verification tech-
niques to ensure that a program does not leak any confidential data. This property is usually
called non-interference, first formalized by Goguen and Meseguer [176]. More generally,
non-interference states that no private data leaks to a public channel, either directly or indi-
rectly. An indirect non-secure flow may appear for instance when two different values of
some public data may be emitted on a public channel depending on some private conditions.
In this case, an observer can infer part of the private information just by observing public data.
From the eighties to the early 2000s, many efforts have been put in verifying non-interference
properties statically [290,315].

In 2004 Vachharajani et al. [310] abandoned static approaches and proposed Rifle, a
runtime information flow security system. After that, dynamic information flow approaches
have been proposed for different settings (e.g. JavaScript [34], or applied to databases [333]).
Themain advantage of dynamic information flow is its ability to deal with dynamic languages
and dynamic security policies. It is also usually more permissive than static approaches with
respect to non-interference: dynamic approaches may accept secure flows that would be
rejected statically. However, pure dynamic approaches have a major drawback: they cannot
take into account the branches uncovered by the examined executions and so they may miss
(indirect) insecure flows. In particular, Russo and Sabelfeld [289] demonstrated that pure
dynamic approaches cannot be sound with respect to flow-sensitive non-interference, in the
form of Hunt and Sands [193]. However flow-sensitivity is a very useful feature in practice,
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since it is more permissive than flow-insensitivity by accepting that memory locations store
values of different security level.

In 2006 Le Guernic et al. [220] proposed a hybrid approach that combines soundness of a
static approach andpermissiveness of a dynamic approach. In recent years, hybrid information
flow has received a lot of attention, for instance for languages such as C [41], Haskell [84],
and JavaScript [187,294]. To deal with the unsoundness of dynamic approaches, it is also
possible to consider multiple executions [127] or multiple facets [35], the latter consisting in
mapping a variable to several values (or facets), each of them corresponding to a particular
security level.

Different variants of non-interference and ways of verifying them are described by Hedin
and Sabelfeld’s [188] and by Bielova and Rezk [78].

5.1.3 Malware detection and analysis

Malware refers to a malicious software specifically designed to disrupt, damage, or gain
unauthorized access to a computer system. Malware usually exploits specific system vulner-
abilities, such as a programming bug in software (e.g., a browser application plugin) or a bug
in the underlying platform or OS. Malware infiltration effects range from simple disruption
of the proper behavior of the system to destruction or theft of private and sensitive data.
The huge number of devices interconnected through the Internet has turned the infection
of malware a very serious threat, even more with the current trend of digitizing almost all
human activities, notably economical transactions.

Malware detection is concerned with identifying software that is potentially malicious,
ideally before the malware acts destructively. Malware analysis is about identifying the true
intent and capabilities of malware by looking at some aspects of the code (statically) or by
running it (dynamically).

Static analysis examines malware with or without viewing the actual code. The technical
indicators gathered with basic static analysis can include file name, hashes, file type, file size
and recognition by using tools like antivirus. When it is possible to inspect the source code,
static malware analyzers try to detect whether the code has been intentionally obfuscated
or try to identify concrete well-known malicious lines of code. Dynamic analysis, on the
other hand, runs the malware in a controlled environment to observe its behavior, in order
to understand its functionality and identify indicators of potential danger. These indicators
include domain names, IP addresses, file path locations, and whether there are additional files
located on the system. See [197,292,299,334] for surveys on malware detection techniques.

5.1.4 Browser extensions

Browser extensions are small applications executed in a browser context in order to provide
additional capabilities and enrich the user experiencewhile surfing theweb. The acceptance of
extensions in current browsers is unquestionable. For instance, as of 2018, Chrome’s official
extension repository has more than 140,000 applications, with some of these extensions
having more than 10 million users. When an extension is installed, the browser often pops up
a message showing the permissions that this new extension requests and, upon user approval,
the extension is then installed and integrated within the browser. Extensions run through the
JavaScript event listener system. An extension can subscribe to a set of events associated with
the browser (e.g., when a new tab is opened or a new bookmark is added) or the content (e.g.,
when a user clicks on an HTML element or when the page is loaded). When a JavaScript
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event is triggered, the event is captured by the browser engine and all extensions subscribed
to this event are executed.

Research on the understanding of browser extensions, detecting possible privacy and
security threats, and mitigating them is on its infancy. The potential danger of extensions
has been highlighted in [192] where extensions were identified to be “the most dangerous
code to user privacy” in today’s browsers. Some recent works have focused on tracking the
provenance of web content at the level of DOM (Document Object Model) elements [24].

Another relevant issue is the order in which extensions are executed. When installed,
extensions are pushed to an internal stack within the browser, which implies that the last
installed extension is the last one that will be executed.

Recent works [267] demonstrates empirically that this order could be exploited by an
unprivileged malicious extension (i.e., one with no more permissions than those already
assigned when accessing web content) to get access to any private information that other
extensions have previously introduced. To the best of our knowledge, there still is no solution
to this problem.

Finally, there is the problem of collusion attacks, which occurs when two or more
extensions collaborate to extract more information from the user based on the individual
permissions of each extension. Even tough in isolation they cannot do any harm, they can
exercise an additional power by collaborating and combining their privileges. With few
exceptions [291], this is an unexplored area.

Given that extensions may subscribe to events after they have been installed (i.e., at
runtime), there is noway to statically detect potential attacks.5 One of the fewworks providing
a runtime solution to information flow in browsers (Chromium in particular) is [68].

Overall, there still are concerns regarding the effect of browser extensions on security
and privacy. Giving the limitations on what can be obtained by static analysis, solutions to
mitigate these issues must be accomplished by means of runtime monitoring techniques.

5.1.5 Privacy and security policies

One way to mitigate security and privacy threats is to have suitable and powerful policies
which are enforced statically or at runtime. This, however, is not easy for different reasons.
First, defining precisely a policy language requires to introduce its syntax (what the poli-
cies can talk about), characterize its scope (what are the limitations, i.e., what cannot be
expressed/captured by the language), and define an enforcement mechanism (how to imple-
ment the mechanism that ensures the policies are to be respected). Getting a sound and
complete result is too restrictive in general. Second, static policies may be enforced only in
very specific cases and have to be done by designers and programmers at a very early stage of
the software development process. In some cases, this may be done at runtime when the code
is downloaded, but it requires to isolate the code to perform the analysis, which is not always
possible. Last, security and privacy policies could be enforced at runtime: by mitigating the
attack right after it is detected. This is not possible in general as we cannot foresee all possible
future threats and sometimes when an attack is detected, it is usually too late.

5 Extensions may statically declare to which events they want to subscribe, but there is nothing forbidding
them to subscribe to new events later at runtime.
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5.2 Challenges

C 5.1 Monitoring GDPR. One of the main challenges is to identify which privacy princi-
ples might be verified or enforced by using monitors. As the regulation is quite extensive,
we advocate to start with the principle of data minimization as an example of the kind of
challenges the community might face.

C 5.2 Monitoring Data Minimization. When considering how the data is used, a challenge
is that we will not be able to do runtime verification in a black box manner. Getting access to
proprietary code can be an issue. Concerning when and how the data is collected, we could
do runtime verification in a black box manner, but data minimization is not monitorable in
general [269]. For the more general notion of distributed data minimization, the property
is not monitorable, therefore new techniques using grey box runtime verification might be
needed [80].

C 5.3 Hybrid Information Flow. As mentioned earlier, it is not possible to have a sound
yet permissive dynamic information flow analysis [289]. Therefore, an important challenge
for information flow monitoring is the design of a hybrid (static/dynamic) mechanism that is
efficient yet permissive, and that can deal with real programs and security policy.

C 5.4 Monitoring Declassification and Quantitative Information Flow. Non-interference
is often too strong a property. For instance, a password checker usually leaks one bit of
information: whether the password is correct. Declassification and quantitative information
flow aim to solve this issue, but verifying these properties is very hard. In spite of some
initial work on hybrid approaches [74], monitoring these properties remains an unresolved
challenge.

C 5.5 Generic Language for Information Flow. There are many variants and flavors of
important properties like non-interference, but there is currently no mainstream accepted
language that encompasses all these security policies, which are now recognized to be
hyper-properties [103]. The challenge is the design and adoption of a formalism for the
hyperproperties of interest in information flow security and the thorough study of its moni-
toring algorithms and limitations.

C 5.6 Browser extensions. One challenge on the enforcement side is how to ensure that
malicious extensions do not expose private information from a user’s homepage. This private
leakagemight be done by an external entity or by another extension whichmay aggregate this
informationwith the information the extension has already collected, eventually performing a
collusion attack. A related issue has to dowith implementation: a robust runtime enforcement
mechanism might need to modify the core of the browser (e.g., Chromium), which is quite
invasive and requires a high level of expertise.

C 5.7 Privacy and security policies. One challenge is how to define security and privacy
policy languages to write policies about concrete known threats. Also, this challenge involves
the use of runtime monitoring techniques in order to detect potential and real threats, log that
information and give this to an offline analyzer to identify patterns in order to generalize
existing policies, or create new ones. A related challenge is how to learn the policies at
runtime. This could be done by learning them from the attacker models (e.g., as in [1]), and
improve the precision taking feedback from the runtime monitors.
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6 Reliable transactional systems

The human society is increasingly dependent on computing systems, even in areas like enter-
tainment (e.g., Netflix), social (e.g., Facebook) and economic interactions (e.g., Amazon).
The ubiquity of computer systems, and the large scale at which they operate, make hardware
and software failures both common and inevitable. At first glance it might seem that the
majority of systems should not experience failures as frequently because they do not serve
a world-scale user base. But with the advent of Infrastructure as a Service (IaaS) products
(e.g., Amazon EC2) small and medium-sized companies are deploying their systems over
IaaS offerings [23], which are supported by fault prone large-scale clusters [175]. This setting
exploits modern hardware systems features to provide fault tolerance while keeping the soft-
ware systems running efficiently, correctly, and with ease to develop and use, hence building
computer systems with improved reliability and resilience and lower energy consumption.

Database systems have successfully exploited parallelism for decades, both at software
and hardware levels. Databases can improve their performance by issuing many queries
simultaneously and by running those queries on multiple computing systems in parallel,
while preserving the same programming model as if the queries were executed one at a
time in a single computing system. Transactions are at the core of most database systems. A
transaction is an abstraction that specifies a program semantics where computations behave
as if they are executing one at a time with exclusive access to the database. Transactional
systems implement a serializable model. This means that even if the system allows multiple
transactions to execute concurrently, the final result of their execution must be indistinguish-
able from executing one after the other (in some total order). Consequently, a transaction is a
sequence of actions that appear to execute instantaneously as a single, indivisible, operation.
The transactional system manages concurrency between transactions automatically, and is
free to execute transactions concurrently as long as the result is equivalent to some serial
execution of the transactions.

State machine replication (SMR) [218,295] is the standard way to build such fault-tolerant
systems. An SMR system maintains multiple replicas that keep a copy of the system’s data,
and coordinates the execution of operations on each of those data replicas. Since replicas
also execute every operation submitted to the system, the system can continue operating
as long as a majority of correct replicas execute the operations. When requests to execute
operations arrive, an “agree-execute” protocol keeps replicas synchronized: they first agree
on an order to execute the incoming operations, and then execute the operations sequentially
in the agreed order, driving all replicas to the same final state. However, to take advantage of
contemporary hardware systems, one should use all the available processor cores to execute
multiple operations at the same time. That said, this concurrent execution of operations is
at odds with the “agree-execute” protocol because concurrent execution is inherently non-
deterministic so replicas may arrive at different final states and the system could become
inconsistent.

Improving SMR’s efficiency and performance can be achieved by exploiting multi-core
processors, while still preserving determinism and correctness. This, however, requires to
have operations that can be expressed as serializable transactions, and that the concurrency
control protocol ensures that the concurrent execution of transactions respects the order
replicas have agreed upon.

In a typical SMR setting, a set of clients concurrently submit requests to the system.
The system, made of replicas, runs an agreement protocol, e.g., Paxos [219], that totally
orders the incoming requests. Each replica executes the requests sequentially in the agreed
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order, driving all the (correct) replicas to the same final state. Essentially, we can divide state
machine replication in two phases. First, the agreement phase, where replicas agree on an
order for all requests. This is then followed by the execution phase, where replicas execute the
requested operations in the agreed order. When using SMR there is a clear tension between
the fact that the replicas have multi-core processors and the requirement that replicas execute
the operations in a specific order.

Recovery and reparations in transactional systems [108] are multi-layered: when recover-
ing within a transaction which may still succeed, reparations may be expressed in a try-catch
fashion. However, if the action is considered to have failed, then any previously completed
parts of the transaction need to be rolled back. This is done to preserve the atomicity of the
transaction, i.e., either the transaction entirely succeeds or entirely fails. The problem arises
when it is not possible to isolate a transaction with the result that its actions affect other
parts of the system before the transaction is committed. This usually happens due to the
long-life nature of the transaction—making it infeasible to lock the relevant resources for a
long duration.

6.1 Context and areas of interest

Transactional systems cover a broad area. To later present challenges to RV, we describe
here some of the important aspects, in particular dependable storage, coordination services,
network services and memory contention management.

6.1.1 Dependable storage systems

Main database vendors, such as IBM andOracle, have business solutions for high-performant
dependable storage systems. Innovative approaches to such dependable storage systems are
based on state machine replication, either in KV-stores [73,81,300], filesystems [96,226], or
transactional storages [140,170]. These systems are frequently used to build business-critical
(and sometimes even life-critical) systems and must be constantly monitored to assess the
correct behavior of the storage system. Monitoring these systems, specially those involving
SMR, is challenging, as it allies the challenges of monitoring distributed systems with the
challenges ofmonitoring transactional systems, both in termsof the architecture ofmonitoring
system itself and of the information to be collected to reason upon [75,202].

6.1.2 Coordination services

Concurrent operations on distributed applications frequently need to be coordinated to ensure
system correctness, otherwise the operations may be executed out-of-order or, in the case of
SMR, the nodes may diverge and render the system inconsistent. These services are often
provided by a small database, which stores configuration data to implement resource locking,
leader election, message ordering, etc. Such coordination systems have been recently used
in more complex solutions, for example in: i) Google’s Chubby distributed lock service [87],
which is used by Bigtable (now in production in Google Analytics and other products); ii) the
Ceph storage system [318], where the coordination system is part of the monitor processes
to agree which OSDs are up and in the cluster; iii) the Clustrix distributed SQL database,
which leverages on a coordination system for distributed transaction resolution. A monitor
for such systems must incorporate the complexities of the coordination/decision rules and of
the control system itself.
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6.1.3 Network services

Software-Defined Networks (SDNs) are a step towards the separation of the network control
and data planes, aiming at improving the manageability, programmability and extensibility
of computer networks. In these SDNs, the controller should neither be a bottleneck nor a
single point of failure. State machine replication is a natural answer to such fault-tolerance
requirements. For example, the Ananta distributed load balancer [264] uses Paxos for main-
taining high-availability in its manager component and serves thousands of data flows per
day in the Windows Azure cloud. Such network services are transparently used by applica-
tions running in the cloud, and are yet another example of a SMR system, with the same
monitoring requirements.

6.1.4 Main memory contention management

The transactional model as used by database systems can be of use to manage the contention
to shared data residing in main memory. This was first observed by Lomet in 1977 [227],
and proposed as a hardware solution by Herlihy and Moss in 1993 [191], and by Herlihy et
al. in 2003 [190] as the first practical software only solution. Some programming languages
include memory transactions in their core, such as Closure, or as a library, such as Java,
Haskel, OCaml, Python. In the case of C and C++, there is ongoing work to include it in their
standards.

6.2 Challenges

C 6.1 Low-overheadmonitoring. A step towards the reconciliation of SMRwith the current
computer processor architecture, i.e. multicore processors, is to devise new concurrency con-
trol protocols that explore pre-ordered transactions to ensure the correctness of a SMR system
where individual replicas execute the local operations concurrently [311]. The correctness of
such new concurrency protocols must be assessed by intensive testing and monitoring of the
system behavior. Any deviations to the specification must be fully diagnosed and corrected.
Understanding what is happening at the level of the concurrency protocol itself (including
the algorithm internal state and the ordering of concurrent events) plays an important role in
such process and must be supported by lightweight (non-intrusive) monitoring techniques,
so that the errors are not masked when monitoring is active.

C 6.2 Reduction of the conflicting window. When using the typical API to declare transac-
tions (e.g., begin, read, write, and commit) the system is blind to the application’s semantics,
i.e., how values read are used by the application. Since transactional speculation is only effec-
tive when it succeeds, there is also the need to reduce the number of conflicting transactions
by introducing variations in the typical API to declare transactions. The allows clients to
express more clearly the intended semantics of the program while executing over an abstract
replica state, resulting in fewer conflicts and thus more successful speculative executions.
How to reduce both the interactions with the remote database nodes (replicas) and to the
“conflicting window” for transactions? Some work has been done on delaying read accesses
to the database using futures [40] and double barriers and epochs [278]. Such concepts are
still not mainstream in monitoring and logging of transactional systems. Another alterna-
tive would be to increase the expressiveness of the transactional API to better express the
application semantics and hence improving transactional performance in SMR.
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C 6.3 Expressiveness of logs. The performance of concurrency control protocols depends
on whether concurrent transactions conflict with each other. The decision of whether two
transactions conflict depends on how aware of the concurrency control protocol is of the
transactions’ semantics. How to do the automatic translation of existing applications into the
new transactional SMR infrastructure and how to ensure the new application (using the new
transactional API) is functionally equivalent to the original? Any changes to the protocol
will create a new transactional infrastructure and any changes to the API will create a new
application. In both cases, the new system must be backwards compatible with the original
system. Such backward compatibility must be assessed by observing the dynamic behavior
of both systems and reason over the collected information to detect any deviations of the new
system to the expected behavior. In addition to the huge logs, this challenge raises another
question on expressiveness of the logs:What information is registered and howdoes it express
the semantics of the intended transactional operations.

C 6.4 Unification of multiple system huge logs. Observing long living distributed compu-
tations such as transactional systems replicated using SMR, may be a main requirement to
automatically decompose transactions [330] and/or ensure that the workload is safe [329]. In
these cases, if the workload changes or new operations are created, the whole systemmust be
monitored, re-analyzed and re-deployed. In such a distributed setting, possibly many huge
logs are collected (one per processor or one per replica) that must be dealt with (see Sect. 8)
and possibly unified into a single log, raising issues on resources’ usage and consistency of
the multiple observations.

C 6.5 Expressing reparations in transactional systems. In non-transactional applications
monitors typically need to have their own reparation code that executes in case the monitor
flags a problem. In the case of transactional application monitoring, reparations are readily
available and the monitor simply needs to trigger them. While this is more of an opportunity,
the challenge lies in how to improve upon current practices and express the behavior of repa-
rations formally and succinctly in a specification language—similarly to the way monitors
are defined. There have been several works in this regard [107,109] for example through
the use of compensating automata. However, future work can focus on further simplifying
the specification language and perhaps providing a library of ready-made constructs which
developers can use directly.

C 6.6 Management of historic data to be used in the reparations. From a more pragmatic
point of view, compensations and rollbacks present the challenge of managing historic data
values to be used in the reparation code. In this respect runtime monitors can be useful in the
same way software monitors are typically stateful. Reparations can be parametrized through
the monitors’ state, avoiding complex wiring to pass the data around. To the best of our
knowledge this approach has not been implemented.

C 6.7 Monitoring transactionalmemory. The time-scale for transactionalmemory is orders
of magnitude smaller than transactional databases. In transactional memory, each access to
a shared memory location must be handled by the transactional monitor and considered
for the success or failure of the memory transaction. Any additional probing or logging
introduced by a monitoring system may influence the scheduling and have a strong impact
in a malfunctioning transactional memory application, by changing the serialization order of
the transactions, possibly masking or hiding previously observed errors. Researchers have
partially addressed this challenge in the past [128,129,230,256] aiming at both correctness
and performance.
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7 Contracts and policies

The term contract is overloaded in computer science, so it may be understood in different
ways depending on the community:

(i) Conventional contracts are legally binding documents, establishing the rights and
obligations of different signatories, as in traditional, judicial and commercial, activities.

(ii) Normative documents are a generalization of the notion of legal contracts. The main
feature is the inclusion of certain normative notions such as obligations, permissions,
and prohibitions, either directly, or by representing them indirectly. These include
legal documents, regulations, terms of services, contractual agreements and workflow
descriptions.

(iii) Electronic contracts are machine-oriented, and may be written directly in a formal
specification language, or translated from a conventional contract. In this context, the
signatories of a contract may be objects, agents, web services, etc.

(iv) Behavioral interfaces are considered to be contracts between different components
specifying the history of interactions between different agents (participants, objects,
principals, entities, etc.). Rights and obligations are thus determined by “legal” (sets
of) traces which are permissible.

(v) The term “contract” is sometimes used for specifying the interaction between commu-
nicating entities (agents, objects, etc.). It is common to talk then about a contractual
protocol.

(vi) Programming by contract or design by contract is an influential methodology popu-
larized first in the context of the programming language Eiffel [238]. “Contract” here
means a relation between pre- and post-conditions of routines, method calls, etc. This
concept of contract is also used in approaches such as the KeY program verification
tool [211].

(vii) In the context of web services, “contracts” may be understood as service-level agree-
ments usually written in an XML-like language like IBM’s Web Service Level
Agreement (WSLA [325]).

(viii) More recently, the term “contract” is used in the context of blockchain and other
distributed ledger technologies as programs that ensure certain properties concerning
transactions. These programs are called smart contracts [305], as popularized by the
Ethereum platform [88].

In this section we focus on the use of the term in the computational domain but with
a richer interpretation than just a specification or property. In particular, we consider two
types of contracts: (ii) normative documents (including conventional contracts and their
electronic versions as described above), and (viii) smart contracts. In both cases, we refer to
“full contracts” [257], that is agreements between different entities regulating not only the
normal interactive behaviors, but also exceptional ones. A common aspect of such contracts
is that they should express not only the sequence and causality of events, but also what
obligations, permissions and prohibitions the participating entities have (basic modalities
studied in deontic logic [324]), as well as the associated penalties in case of violations.

An example of a full contract in the case of a normative document in the context of
a stringent renting agreement, would be one containing for instance the following clauses
(among others): “1. The tenant must pay 200 EUR, in advance, on the 5th of each calendar
month. 2. In case of not complying with clause 1, the tenant will have till the 15th of the
month to pay the above mentioned sum plus an additional fee of 5% of the amount. 3. In
case of not complying with clause 2, the tenant will have to leave the premises before the
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end of the month and the deposit will be retained by the landlord.” Note that the contract
includes clauses which may be violated, but includes reparatory clauses to cover such cases.
Although violating clause 1 and paying late is a behavior covered by the contract, it is clearly
less desirable (in terms of compliance) than if clause 1 were to be satisfied. In the case of
a smart contract, the corresponding program should implement all the above, including the
exceptional behavor (i.e., not only the primary obligations but also enforce the penalties
associated with the non-compliance of such obligations). A contract not containing clauses
stipulating the penalties and deadlines associated with the non-compliance with the written
obligations, would not be considered to be a “full contract.”

The specification of such contracts requires a formal language rich enough to capture
these deontic notions, temporal and dynamic aspects, real-time issues such as deadlines,
the handling of actions (events) and exception mechanisms. The main aim is not only to
specify such contracts, but to analyze them using techniques likemodel checking and runtime
verification. Clearly, the use of contracts is onlymeaningful if there is amechanism to validate
their fulfillment.

A related concept is that of policies. At a certain level of abstraction, policies can be
seen as contracts in the sense that they prescribe behavior. Since the term policy is also very
generic with a broad scope, we concentrate on privacy policies (or privacy settings) and more
specifically in the context of Online Social Networks (OSN) like Facebook and Twitter.

As mentioned before, deontic logic is a natural formalism to represent normative doc-
uments as they mostly talk about obligations, permissions and prohibitions, as well as to
capture what happens in case of violations. In the case of privacy policies, one may be inter-
ested in prescribing who should knowwhat about whom and under which circumstances. So,
it makes sense then to use epistemic logic [141] to reason about privacy policies. That said,
note when describing such policies we informally use deontic modalities, who should (not)
access certain information, and who is allowed to perform certain actions (e.g., to make a
friend request). Those (deontic) normative concepts are, however, not needed as primitives
in this context. Giving a detailed explanation on why this is the case is beyond the scope
of the paper (see for instance the formalization of privacy policies for OSNs presented in
[260–262]).

What is important here is that from a runtime verification perspective, monitoring privacy
policies for OSNs and normative documents, have similarities mostly in what concerns their
challenges as explained at the end of this section.

7.1 Context and areas of interest

We provide now some more detail context of the following aspects of contracts: contracts as
normative documents, the so-called smart contracts, and policies for online social networks.

7.1.1 Contracts: normative documents

The complete specification of full contracts—normative texts which include tolerated excep-
tion, and which enable reasoning about the contracts themselves—can be achieved using a
combination of temporal and deontic concepts [257]. Formalizing such contracts requires
operators and combinators for choice, obligations over sequences, contrary-to-duty obliga-
tions, and the representation of how internal and external decisions may be incorporated in an
action- or state-based language for specifying contracts. There have been several interpreta-
tions and approaches for the development of such a logic [257], including modal extensions
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of logics and automata in order to address the issue of how contracts can be formalized and
reasoned about. See, for example [37,89,169,228,242,272,273,326], just to mention a few.6

Why is there a need for a logic or some other formal language? One of the aims of
formalizing contracts is not simply to use them as specification, but also to be able to prove
properties about the contracts themselves, to perform queries on the contracts (like what
each party is agreeing to), and ultimately to ensure at runtime that the contract is satisfied
(or alternatively to detect for violations). An alternative approach is to use machine learning
(or other artificial intelligence techniques). For instance, one may avoid the use of formal
methods by using natural language processing (NLP) combined with machine learning to
directly perform queries on the textual representation. While this is feasible in certain cases,
it is well known that the state of the art in NLP is still far from being able to deliver fully
automatic and sufficiently reliable techniques. Moreover, performing semantic queries or
running simulations still require a formal representation. This is an important and interesting
research area in itself, but here we are concerned not with the problems of obtaining such
normative documents but with the specific issue of monitoring their satisfaction or violation.

In terms of monitoring of contracts, most of the current work start from some form
of formal semantics. There are various outstanding questions of what subsets of deontic
logics are tractably and practically monitorable. For example, are more standard logics, like
classic or temporal logics, enough? How important is to get full complex semantics (e.g.,
based on Kripke semantics) for the logic? For a full representation and analysis of contracts,
Kripke semantics might be necessary, but for monitoring purposes a much simpler approach
considering trace semantics seems to be sufficient.

Concerning monitoring, an ideal goal is to automatically extract a monitor from the doc-
ument’s formal representation, but this is, in general, not feasible. We assume then that we
obtain the monitors from a given contract manually or semi-automatically. This is still not
an easy task, as there is no standard, easy and direct way to extract a model from a document
in natural language.

The use of controlled natural languages (CNL) [215] has been proposed in different works
in order to facilitate bridging the gap between the natural language description of the original
document and a more formal representation in the form of a formal language [89,91,327].
In a legal specification setting, there is initial work in this direction, but we are still far from
reaching this goal [86,90,91].

7.1.2 Smart contracts

If the computer science community borrowed the notion of contracts by remarking on the sim-
ilarity between specifications and legal agreements, the legal community saw an opportunity
in viewing computer code as a form of executable enforcement or enactment of agreements
or legislation. The notion that executable code regulates the behavior of different parties very
much in the same manner that legal code does was proposed by Lessig [223]. The dual view,
that the use of executable smart contracts can enforce compliance as an integral part of the
behavior, was argued earlier by Szabo [305].

The introduction of blockchain [247] and other distributed ledgers technologies, which
enable the automated management of digital assets, has changed the way in which computer
systems can regulate the interaction between real-world parties. In particular, these technolo-
gies have enabled the deployment of Szabo’s notion of smart contracts in a distributed setting,

6 The literature is quite vast and the list of citations is not exhaustive. The main conferences, workshops
and journals in the area include JURIX [204], DEON [125], RuleML [288], and the Journal of Artificial
Intelligence and Law [198].

123



310 Formal Methods in System Design (2019) 54:279–335

without the participation of trusted central authorities or resource managers. For instance, the
Ethereum [322] blockchain supports smart contracts which can be expressed using a Turing-
complete programming model, to be executed on the Ethereum Virtual Machine (EVM)
and typically programmed using one of a number of languages supporting a higher level of
abstraction.

Smart contracts are executable specifications of the way the contract will update the state
of the underlying system. Although specifications can be executable or not (see [167] and
[186]), it is generally accepted that executable specificationsmust elucidatehow to achieve the
desired state of affairs,while non-executable specifications simply characterize properties that
the desired state should satisfy. The former is substantially more complex, which is why the
fields of validation and verification arose to explore ways in which executable specifications
(code) can be verified against non-executable ones (properties).

This gives rise to a challenge: that of verifying that smart contracts indeed perform as they
should. Although one can argue that the challenge behind verification of such executable
code is no different from that of verifying standard programs, there are a number of issues
which are particular to smart contracts. There has been little work yet addressing the special
idiosyncrasies of smart contracts. Static analysis techniques for the verification of smart con-
tracts has been proposed in [76], via a translation from smart contracts into another language
(F* in this case) for verification. See [10] for a discussion on some challenges concerning
the verification of smart contracts using deductive verification techniques. From a runtime
perspective, there has been somework on using blockchain technology to regulate distributed
systems (see [171,179,274,317]), but the focus of this work is not on the verification of the
smart contracts themselves. Initial attempts to address runtime verification of smart contracts
and building tools to automate this have started to appear [104,139], but many challenges
remain to be addressed [36].

One particular aspect that presents specific challenges is that these smart contracts are
typicallymainly concernedwith themovement of digital assets,with built-in notions of failing
transactions and computation roll-back to handle failure. Although this has been investigated
in the domain of financial systemverification [109,263], there is amajor difference.Before the
rise of cryptocurrencies, all such systemswere deployed on a central trusted system, typically
residing within the infrastructure of the payment institution. In contrast, in the context of
distributed ledgers, the storage and computation are, by their very nature, distributed, and
particularly runtime verification require the instrumentation and deployment to take this into
consideration.

There is a major difference with regular financial transaction software deployed on, or
interacting with, payment institutions. That is that given the critical nature of such systems
(payment applications have been built using a strict validation process) ensuring compli-
ance to legislation and adherence to specifications. However, with what has been hailed as
the democratization of currency systems, came the popularization of payment application
development, with many smart contracts being developed without the necessary care and
responsibility. This approach has suffered a number of huge financial losses due to bugs
[33]. The need for lightweight runtime validation of such systems, whether inbuilt in the exe-
cution of the smart contracts or inherent in the blockchain or alternative distributed ledger
technology is essential to ensure user safety.

Turing-complete environments for smart contracts suffer from the possibility of non-
termination or excessively long computation. Rather than limit the power of the programming
language, the solution adopted in systems such as Ethereumwas that of introducing the notion
of gas—a resource required to enable computation and that has to be paid for using other
digital assets, typically the underlying cryptocurrency. Although efficiency of computation
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has always been an important issue in computing, it has typically been detached from func-
tional correctness issues addressed by formal methods. With the notion of gas, the direct
correlation between execution steps and financial cost is a new challenge for runtime veri-
fication. As a direct corollary, additional computation to check for correctness will directly
induce additional cost. However, there is also the issue that gas affects computation, in that
once gas runs out, computation is reverted, which has been exploited in a number of smart
contract attacks. Finally, the use of gas throughout the computation may justify qualitative
dynamic analysis to measure the extent of satisfaction or violation using a distance metric to
detect failure due to lack of gas.

Finally, the multitude of contracts and interaction platforms provided by the underlying
distributed technology is likely to give increased importance to contract comparison and
negotiation. We envision a scenario, in which one may negotiate for increased dependability
(e.g. by monitoring additional logic) against a stake paid by the developer or provider of
the contract. At a more complex level, one can have a system where different or additional
functionalities are negotiated upon setting up a smart contract. In both cases, the process is
a form of meta-contract which regulates how the parties may interact to negotiate and agree
upon a contract which will be set up.

See [10] and references therein for a discussion on the verification of smart contracts, as
well as papers in [283] for recent advances and a discussion on open issues in the area.

7.1.3 Privacy policies for OSNs

Policies may be understood, at a certain level of abstraction, as contracts: they prescribe what
actions are allowed or not. The term policy is generic and may be applied to many different
cases or applications. We focus here on privacy policies, and in particular on privacy policies
for Online Social Networks (OSNs). OSNs provide an opportunity for interaction between
people in different ways depending on the kind of relationship that links them. One of the
aims of OSNs is to be flexible in the way one shares information, being as permissive as
possible in how people communicate and disseminate information. While preserving the
spirit of OSNs, users would like to be sure that their privacy is not compromised. One way
to do so is by providing users with means to define privacy policies and provide them with
guarantees that their requested policy will be respected.

For defining policies one might use simple checkbox privacy settings (as it is the case in
most OSNs today), or allow user to define more richer policies using expressive formal lan-
guages or logics. Givenmeans to specify privacy policies is not enough, as these policiesmust
be enforced at runtime. Enforcement of checkbox privacy settings is rather well-understood,
at least for most of the kind of policies currently implemented in existing OSNs. However,
if one wants to allow the definition of richer policy languages, the challenge goes beyond
identifying an appropriately expressible language to the problem of automatically extracting
a runtime monitor to act as an enforcement mechanism. This is currently beyond the state of
the art and no concrete solutions exist.

Furthermore, the state of the art today is focused on static policies. For instance, in
Facebook users can state polices like “Only my friends can see a post on my timeline”
or “Whenever I am tagged, the picture should not be shown on my timeline unless I approve
it”. However, no current OSN provides the possibility of defining and enforcing evolving
(dynamic) privacy policies. Policies may evolve due to explicit changes done by the users
(e.g., a user may change the audience of an intended post to make it more restrictive), or
because the privacy policy is dynamic per se. Consider for instance: “Co-workers cannot see
my posts while I am not at work, and only family can see my location while I am at home”,
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“Only up to 3 posts disclosing my location are allowed per day on my timeline”, “My boss
cannot know my location between 20:00-23:59 every day”, and “Only my friends can know
my location from Friday at 20:00 till Monday at 08:00”. No current OSN addresses the
specification and enforcement of such policies. Formal languages are needed to express such
time and event-dependent recurrent policies, and suitable enforcement mechanisms need
to be defined. This could be done by defining real-time extensions of epistemic logic, or
combining existing static privacy policy languages with automata, as done for instance in
[259–261].

7.2 Challenges

C 7.1 Formalizing natural language contracts. A major challenge is the identification of
techniques to extract a formal model from a normative document in an automatic manner. In
particular, the challenge is to adapt NLP techniques and use machine learning techniques to
(semi-)automatically translate natural language text into a suitable CNL.

C 7.2 Formal reasoning about legal documents. A challenge in the formalization of legal
documents is the choice of the right formal language adequate for the type of analysis required,
as there is a trade-off between expressiveness and tractability. In particular, the notion of
permission (and rights) poses challenges in monitoring, since one party’s permission to
perform an action typically entails an obligation on the other party to allow the action, and
this obligation may not be observable unless the right is exercised.

C 7.3 Operationalization of legal documents. Most legal texts are written in a declarative
style, and typically require to be operationalized for automated analysis. Furthermore, parts of
these textsmay refer to events or attributeswhich are not observable and thus notmonitorable.
Most runtimemonitoring and verification approaches for legal texts interpret the term runtime
to refer to the time during which the legal text regulates. Another possible interpretation is
that of monitoring the process of drafting of a contract or legislation, or the negotiation of a
contract. A monitoring regime could be useful in this setting.

C 7.4 Smart contract monitoring and verification. How to adapt dynamic verification to
smart contract monitoring is unclear, particularly because once a problem arises, it is not
always possible to take reparatory action to recover. An open question is how enforcement,
verification and reparation can be combined in a single formalism and framework.

C 7.5 Monitoring gas in smart contracts. Another challenge is the use of the notion of
‘gas’ to justify computation on ledger systems such as Ethereum, although it is unclear how
dynamic analysis can be used effectively to track such a non-functional property. Furthermore,
the introduction of runtime verification overheads in terms of gas poses new challenges for
monitoring.

C 7.6 Compliance between legal and smart contracts. The relation between the underly-
ing legal document and smart contracts is still to be addressed. The challenge here is how
to monitor compliance between both versions of the contract, and relate violations in the
execution of the smart contract with the corresponding clause in the real legal contract.

C 7.7 Policy monitoring and verification. The challenges we identified for contracts also
apply to policies. In particular, there might be a need to combine the enforcement mechanism
with machine learning techniques and with natural language processing. For instance, a post
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might contain a sentence like “I am here with John drinking a glass of wine”, where “here”
clearly refers to a place which might be inferred from the location associated with the post.
This kind of inference is difficult to do automatically by machine.

C 7.8 Policymonitoring inOSNs. For Online Social Networks (OSNs), the use of epistemic
logic to reason about whether and how explicit (and derived) knowledge of users adhere to
policies has been explored.However, the operationalization of such policies and the extraction
of monitors from policies have proved to be particularly difficult.

C 7.9 Policymonitoring and verification. The evolution of policies due to specific events or
timeouts also poses a number of challenges. Some initial work has been recently done on the
specification side with a proof of concept implementation. The work in [260,261] presents
an approach based on extending a privacy language with real-time, while [259] proposes a
combination of static privacy policy language with automata. However, a general working
solution to this challenge is still missing.

8 Huge data and approximatemonitoring

This section describes runtime verification challenges related to the analysis of very large
logs or streams of events from the system under observation. The general goal when dealing
with huge data streams is to develop algorithms that offer scalability, specification language
expressiveness, accuracy, and utility. Below we discuss the advances made along each of
these dimensions and some of the remaining challenges.

8.1 Context and areas of interest

Before we present the challenges for RV in the area of huge data and approximatemonitoring,
we first provide some context and state-of-the-art related to the following areas: scalability,
expressiveness, accuracy and utility.

8.1.1 Scalability

In runtime verification, the focus to date has mainly been on efficiency, expressiveness, and
correctness, and less so on scalability to Big Data in realistic scenarios. A few exceptions
exist and are summarized below, which mostly address offline monitoring.

Barre et al. [42] and Hallé and Soucy-Boivin [184] use Hadoop’s MapReduce framework
to scale up the monitoring of propositional LTL properties using parallelization. In their
experiments, they used event logs with more than nine million entries. In these approaches,
formulas are processed bottom up usingmultipleMapReduce iterations.While the evaluation
in the map phase is completely parallelized for different time points from the event log, the
results of the map phase for a subformula for the whole log are collected and processed by
a single reducer. In a single iteration there are as many reducers as there are independent
subformulas with the same height. The reducers, therefore, become bottlenecks that limit the
scalability.

Bianculli et al. [77] extend this approach to the offline monitoring of large traces, for
properties expressed in MTL with aggregation operators. Similarly to the aforementioned
approaches, the memory consumption of the reducers limits the scalability of this approach.

123



314 Formal Methods in System Design (2019) 54:279–335

More specifically, reducers (that implement the semantics of temporal and aggregate opera-
tors) need to keep track of the positions relevant to the time window specified in the formula:
the more time points there are the denser the time window becomes, with a consequent
increase in memory usage. Bersani et al. [72] worked around this problem by considering an
alternative semantics for MTL, called the lazy semantics. This semantics evaluates temporal
formulas and Boolean combinations of temporal-only formulas at any arbitrary time instant.
It is more expressive than the point-based semantics and supports the sound rewriting of any
MTL formula into an equivalent onewith smaller, bounded time intervals. The lazy semantics
has the drawback that basic logical properties do not hold anymore. This disallows formula
simplifications and complicates the formalization of properties given in natural language,
since familiar concepts have a different meaning. Unlike the previous approaches, Bersani et
al. implemented the monitor on top of the Apache Spark framework [337] that is optimized
for iterative distributed computations.

Parametric trace slicing [101,279] is a technique formonitoring a parametric LTL property
by grounding it to several plain LTL properties. In this approach logged events are grouped
into slices based on the values of the parameters. A slice is created for each parameter value or
for each combination of values depending on the number of parameters. The individual slices
are then processed by a propositional LTL monitor unaware of the parameters. The initial
main goal of this approach was not scalability, but rather monitoring the more expressive
parametric LTL specification language. However, the approach is also relevant for scalability
since it easily lends itself to parallelization.

Another line of work [53,58] similarly splits the logged events into slices, but it avoids
grounding first-order properties altogether. This is enabled by using amore powerful monitor,
MonPoly [55,59,61,62], to process the slices. Overall, the approach allows for scalable offline
monitoring of properties expressed in Metric First-Order Temporal Logic (MFOTL). The
core idea in this work is to split the log into multiple slices and check the same formula
on each slice independently. This allows the solution to scale, by handling one slice on a
single computer. The key component is a log-splitting framework used to distribute the log to
different parallel monitors based on data and time. The framework takes as input the formula
and a splitting strategy and splits the log ensuring soundness and completeness. The approach
was implemented in Google’s MapReduce framework where the log-splitting framework is
executed in the map phase. The approach is, however, limited to offline monitoring since
it uses MapReduce. Parallelization is not limited as in the previous approaches, but it is
potentially wasted, since to ensure correctness, the log splitting framework may completely
duplicate the original log into some of the individual slices. Another limitation is that the
slicing framework relies on a domain expert to supply a splitting strategy manually. For
example, if a monitored property involves events parametrized with “servers” and “clients”,
one could split the log along the different “servers”, along the different “clients”, or along
both.

Loreti et al. [229] discuss two MapReduce architectures to tame scalability in the context
of compliance monitoring of business processes, using the SCIFF framework [13]. Such a
framework provides a logic-based proof procedure for checking declarative constraints on
sequences of events, in terms of expectations and happened events. The two MapReduce
architectures proposed in this work were adapted from similar ideas in process mining [312]
and distinguish between vertical and horizontal distribution. In the vertical distribution all
nodes receive the complete specification and a subset of the complete log. During the map
phase, the log is split across the various nodes such that all the events of a trace are sent to the
same node. In the reduce phase, each node checks the conformance of each log fragment to
the specification. In horizontal distribution both the specification and the logs are partitioned
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across the nodes. Each node checks a partial specification on a fragment of the log that
contains only the events used in the partial specification. The results of all the nodes are then
merged together with a logical AND. The limitation of the approach is the expressiveness of
the SCIFF logic programming framework that cannot handle parametric specification.

Yu et al. [336] propose an approach for parallel runtime verification of programswritten in
the Modeling, Simulation and Verification Language (MSVL), with properties expressed in
Propositional Projection Temporal Logic (PPTL). The approach divides each program trace
into several segments, which are verified in parallel by threads running on under-utilized
CPU cores. The verification results of all segments are then merged and further analyzed to
produce a verdict.

8.1.2 Expressiveness

Most of the works on runtime verification borrow logics from static verification approaches
and focus on designing algorithms that either (1) generate a monitor that can analyze a
trace online, or (2) can process dumps of traces offline. Optionally, one could use a general
programming language or a domain-specific language to write the queries that process the
input traces online or offline. In both cases, we would like to monitor Big Data with a highly
expressive specification language.More expressive logics naturally requiremore computation
resources for monitoring. Thus, a worthwhile research question is:What are the limits of the
specification language expressiveness to achieve scalable monitoring of Big Data? Below
we discuss some directions of how expressive specification languages could look like.

Complex Event Processing (CEP) andData StreamManagement Systems (DSMS), for exam-
ple, can serve as specialized languages for building stream processors (see [237] for a recent
survey). The query languages of DSMS are mostly extensions of SQL (e.g., with window
operators [21]), and thus typicallymuchweaker than logics such asMFOTLdue to the absence
of proper negation andmore limited capabilities for expressing temporal relationships.More-
over, DSMS tend to focus on efficient query execution at the expense of sacrificing a clean
semantics of the property specifications. The reference model of DSMS has been defined in
the seminal work on the Continuous Query Language (CQL) [21]. In CQL, the processing
of streams is split in three steps. (i) Stream-to-relation operators—that is, windows—select
a portion of each stream thus implicitly creating static database table. (ii) The actual com-
putation takes place on these tables, using relation-to-relation (mostly SQL) operators. (iii)
Finally, relation-to-stream operators generate new streams from tables, after data manipu-
lation. Several variants and extensions have been proposed, but they all rely on the same
general processing abstractions defined above.

CEP [231,237] systems are closely related to DSMS. CEP systems analyze timestamped
data streams by recognizing composite events consisting of multiple atomic events from
the original stream that adhere to certain patterns. The user of a CEP system controls the
analysis by specifying such patterns of interest. The predominant specification languages
for patterns are descendants of SQL [182]. An alternative is given by rule-based languages,
such as Etalis [16], which resembles Prolog. Although CEP systems improve the ease of
specification of temporal relationships between events over DSMS, they are still significantly
less expressive than MFOTL due to their restricted support for parametrization of events
and lack of quantification over parameters. Interestingly, some CEP systems use interval
timestamps. In this model, each data element is associated with two points in time that define
the first and the last moment in time in which the data element is valid [296,319].
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For logical specification languages such as LTL a recent trend has been to incorporate
regular-expression-like constructs in the logic. This gave rise to the industrially standardized
Property Specification Language (PSL) [136], the development of Regular Linear Temporal
Logic (RLTL) [224,293] and its more recent incarnation in the form of (Parametric) Lin-
ear Dynamic Logic ((P)LDL) [149,174] and its metric counterpart (MDL) [56]. Due to the
extensionwith regular expressions, those languages aremore expressive than LTL in that they
capture all ω-regular languages. Vardi [313] observed that these extensions were essential
for the practical usage of PSL in many industrial application settings. First-order extensions
of languages like PSL, RLTL, (P)LDL, and MDL, which should be more expressive than
MFOTL, have not yet been considered for monitoring.

However, to keep things manageable for Big Data, it may be necessary to restrict or
even remove features from our property specification languages. The usage of negation is a
candidate for restriction while the first-order aspect of MFOTL is a candidate for removal (or
for replacementwith freeze quantifiers).Manyworks [53,60–62,64] had to define (efficiently)
monitorable fragments using similar restrictions. A syntactic restriction (e.g., of the allowed
occurrences of negation) is preferable over a modification of the semantics as seen on the
example of negation in many data stream management systems (DSMS). The user of a
specification language with a syntactic restriction can at least rely on the familiar semantics.
Moreover, properties outside of themonitorable fragment can be often automatically rewritten
into equivalent formulas within the fragment.

8.1.3 Accuracy

Compromising on soundness is not a common approach in runtime verification. However,
when faced with very large logs (or streams) of data and hard real-time constraints on provid-
ing verdicts, it can become a very useful compromise. In some cases, sound algorithms cannot
be used in practice. For example, a sound algorithm that determines the number of distinct
elements in a data stream must use space linear in the cardinality it estimates, which is often
impractical. Determining cardinality is a large component of many practical monitoring tasks
such as detecting worm propagations, denial of service (DoS) attacks, or link-based spam.
Ideally, tradeoffs betweenmonitoring efficiency and accuracy of the provided verdicts should
be formulated as an additional input to the monitor. We call such an extension approximate
monitoring.

Approximate monitoring deals with the issue of providing approximate (or inaccurate)
results to the standard monitoring problem, with bounds on the “distance” between the
actual (correct) results and the provided ones. The definition of such a distance depends on
the particular output that a monitor provides. For instance, in the case of a simple stream
of violations, distance can be defined as the percentage of unreported violations, or the
percentage of spuriously reported violations. For other monitoring outputs that contain richer
verdicts, distance can be defined to further include the accuracy of the additional information
in the verdicts.

One should make a clear distinction between approximate monitoring and monitoring
probabilistic properties. The latter deals with monitoring specification languages that can
express probabilistic and statistical properties of data streams. However, it still provides
correct verdicts given the semantics of the specification language. A related facet is the
monitoring of uncertain data, which deals with the problems of data collection and data
reliability, and it often carries over to monitoring by invalidating certain assumptions on the
data stream. There are many sources of uncertainties in the monitored data: timestamps can
be imprecise due to clock skew, logsmay be incomplete due to outages, or even disagreewhen
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coming from various sources. Uncertainty can come from the monitored systems themselves
which can exhibit stochastic and faulty behavior. Another related field is state inference of
the monitored system using probabilistic approaches where a belief state is maintained and
updated during monitoring. Although these approaches provide probabilistic guarantees as
part of the resulting belief state, they perform a specific monitoring task.

Existing work on approximate monitoring stems from the fields of databases [38], stream-
ing algorithms [250], and property testing [177]. All approaches can be classified based on
two criteria: the specific queries they approximate and the resources they optimize. Com-
monly approximated queries in the literature are cardinality estimation [153], top-k items
[39], frequent items (heavy hitters) [210,236,335], quantiles [114,335], frequency moments
[112,115], entropy [20], other non-linear functions over (possibly distributed) streams, and
distance queries [9]. Orthogonally, the approaches either optimize memory consumption,
communication cost, execution time, or the monitor’s overhead.

Optimizing memory consumption has led Morris to develop his well-known approximate
algorithm for counting [243]. The HyperLogLog algorithm [153] tackles the cardinality
estimation problem mentioned in the example above. Counting the most frequent items in a
stream is a very common query. In fact there has been an ample amount of work in devising
good approximation algorithms.One of the oldest streaming algorithms for detecting frequent
items is the MJRTY algorithm [83] and its generalizations [122,208,240].

Optimizing communication cost is a common problem in the field of streaming databases.
Consider k data streams and a monitor that consisting of k + 1 distributed components—one
for every stream and an additional central coordinator. Components are only allowed to send
messages to the central coordinator. The goal is to track a (reasonably accurate) value of a
function defined over the data in all k streams at the central coordinator, while minimizing the
number of messages sent. This problem is a good abstraction of many network monitoring
tasks where the goal is to detect global properties of routed data. The communication cost is
the primary measure of complexity of a tracking algorithm. Initial work dealt with optimiz-
ing the top-k items query [39]; it was then extended to non-temporal functions [115,323].
Temporal queries are facilitated by introducing various types of windows, and the approxi-
mation is achieved by maintaining a uniform sample of events per window at the coordinator
[111,116].

Optimizing execution time using approximation methods involves ignoring parts of the input,
predicated on strong statistical guarantees on the accuracy of the output. This is enabled by
sampling techniques [113] that are shown to work for specific queries. These techniques are
often referred to asApproximateQuery Processing (AQP) and they are implemented bymany
existing systems [9,244,245,302]. When sampling, a random sample is a “representative”
subset of the data, obtained via some stochastic mechanism. Samples are quicker to obtain,
smaller than the data itself and are hence used to answer queries more efficiently. A histogram
summarizes the data by grouping its values into subsets (or “buckets”) and then computing
a small set of summary statistics for each bucket. These statistics allow to approximately
reconstruct the data in each bucket. Wavelets are techniques by which a dataset is viewed as
a set of M elements in a vector, i.e., a function defined on the set {0, 1, 2, . . . , M −1}. Such a
function can be seen as a weighted sum of some carefully chosen wavelet “basis functions”.
Coefficients that are close to zero in magnitude can then be ignored, with the remaining
small set of coefficients serving as the data summary. Sketches are particularly well-suited to
streaming data. Linear sketches view a numerical dataset as a matrix, and multiply the data
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by some fixed matrix. Such sketches are massively parallelizable and used to successfully
estimate answers to set cardinality, union and sum queries, as well as top-k or min-k queries.

Optimizing monitoring overhead is a problem often encountered in runtime verification.
When optimizing overhead, one must consider the monitored system in addition to the event
stream. In this setting, computing resources (time, memory, and network) are shared by the
monitored system and the monitor. Overhead can be seen as the percentage of the resources
used by themonitor. Bartocci at al. [50,205,303] use dynamic knowledge about themonitored
system to control the amount of resources that are allocated for monitoring. More precisely
they enable and disable monitoring of certain events as needed. This can be seen as sampling,
however the stochastic mechanism is informed by the probabilistic model of the monitored
system. Given how likely it is that an event will participate in a violation of a given temporal
property, the system decides to include it in the monitored stream. The aforementioned
approaches all differ in the probabilistic formalism used to model the monitored system [49].

8.1.4 Utility

Another important dimension is the usefulness (or utility) of the monitoring output. The
expected output of the monitoring problem is often underspecified and usually different
approaches employ different assumptions derived from the implementation details of the
monitoring algorithms. Yet, the underlying time and space complexity of the monitoring
problem highly depends on its precise output specification.

For instance, some monitoring algorithms output a single Boolean verdict stating that,
overall, the trace satisfies or violates the monitored property. Other monitoring algorithms
solve a strictly harder problem—they output a stream of Boolean verdicts attesting to the
satisfaction of the monitored property for every prefix of the trace (or stream). While the
complexity of the former variants have been studied for various specification languages
[85,150,216], the latter have mostly been ignored.

An interesting distinction to make is between outputting a stream composed only of
violations, versus giving a (more general) stream of verdicts that includes satisfactions of the
monitored property as well.

Traditional monitoring algorithms for temporal logics with future operators, scale poorly
when subjected to high-velocity event streams. One reason is that the monitor is constrained
to produce outputs strictly in the order defined by the incoming events. It can be shown that
this ordering constraint, although providing more usable output, makes for a more complex
monitoring problem. An interesting special case of monitors producing out-of-order output
are monitors that output violations as soon as possible, i.e., as soon as they have enough
information from the input to pinpoint some violation. Monitors that produce ordered output
violate this seemingly natural monitoring requirement.

Orthogonally, in contrast to reporting all violations of a property, there are many valid
use cases where monitors report only some (most relevant) violations. Examples include
reporting only the first, or the last (most recent) violation. However, the impact of these
choices on the monitoring complexity is unclear.

It is also possible to design algorithms that produce non-Boolean verdicts, for example
using Stream Runtime Verification [121], which allows to compute streams from arbitrary
domains. Other system use verdicts that target specific (potentially relaxed) output require-
ments and may or may not contain enough information to reconstruct the standard Boolean
verdict output. For example, Basin et al. [57] proposed the so-called equivalence verdicts
that state that the monitor does not know the Boolean verdict at a particular point in the
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event stream, but it knows that the verdict will be equal to another, also presently unknown,
verdict at a different point. The equivalence verdicts carry enough information to reconstruct
a stream of Boolean verdicts. To do so, one must reorder the verdicts reported in the output
stream and propagate Boolean verdicts to the equivalent ones.

All output variations mentioned so far compromise utility for the sake of scalability.
However, sometimes starting from a stream of verdicts, it is quite nontrivial to understand
why a complex property is satisfied (or violated) at some point in the trace. One can increase
the utility of the monitors by replacing the stream of Boolean verdicts with a stream of proof
objects that encode the explanations as to why property has been satisfied or violated. The
proof objects can take the forms of minimal-size proof trees [52], or a compressed summary
trace capturing the essentials of the original trace that contribute to a violation.

8.2 Challenges

C 8.1 Combining Horizontal and Vertical Parallelization. The different approaches to
parallelize monitoring algorithms have different advantages and limitations. Horizontal par-
allelization as in Barre et al. [42] and Hallé and Soucy-Boivin [184] does not dependent
on the actual events but is limited by the formula’s structure. Vertical parallelization as in
Basin et al. [53] or parametric trace slicing [101,279] offers an a priori unbounded amount
of parallelization but may lead to data duplication for certain formulas. A combination of the
approaches may achieve the best of both worlds and is worth investigating.

C 8.2 Scalable Monitoring in Online Setting. Most of the described approaches rely on
MapReduce as a technical solution for distributed fault tolerant computation. However, its
batch-processing nature restricts monitoring to the offline setting, in which the complete
log of events is given as input to the monitor at once. More recently, systems research has
moved towards a proper streaming paradigm, as witnessed by widely adopted streaming
frameworks such as Apache Flink [92] or Timely Dataflow [246]. These frameworks can be
used to achieve scalability in the online setting, in which individual events steadily arrive at
the monitor. The challenge thereby is to adapt the offline approaches (both horizontal and
vertical) to the online setting.

C 8.3 Adaptive Scalability A related challenge that arises only in the online setting is adap-
tivity. To retain scalability, a parallel monitor, and in particular its log slicing component,
may need to adapt to changes in behavior of the monitored system. For example, an event-
rate increase or change in the occurrence distribution of some system events. Detecting such
changes and adequately reacting to them are both challenging. In particular, the latter will
most likely require a reshuffling of the parallel monitors’ states in a way that maintains a
consistent global state, that is, it does not compromise the soundness of monitoring.

C 8.4 Automatically Synthesizing Splitting Strategies. Log slicing techniques, like Basin
et al. [53] rely on a domain expert to supply a splitting strategy. An open challenge is how
to synthesize such a splitting strategy automatically, based on the monitored property and
some formalized domain knowledge, for example, statistics on types of events in the log.
The holy grail would be an algorithm that picks the optimal splitting strategy, i.e., one that
minimizes the amount of duplicated data between the slices and creates balanced slices that
require equal computational effort to monitor.

C 8.5 Expressive Specification Languages. Richer specification languages allow to cap-
ture more sophisticated properties. For example, hyperproperties allow to express relational
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properties (essentially properties that relate different traces). These traces can come from a
single large trace that is processed offline. For example, a specification can relate two traces,
which are extracted from the large trace as requests coming from different users or different
requests performed at different points in time. This richer language would allow to express
properties like differential SLA that are beyond the expressiveness of the specification for-
malisms currently used. Another family of specification languages that allow to express rich
properties is stream runtime verification languages. Currently, these languages only have
online and offline evaluation algorithms for small traces, in the sense of traces that can be
stored in a single computer. A challenge is then to come up with parallel algorithms for large
traces.

C 8.6 Richer Verdicts and Concise Model Witnesses. Classical specification formalisms
from runtime verification, borrowed from behavioral languages used in static verification,
generate Boolean outcomes from a given trace, which indicate whether the trace observed is
a model of the specification. One challenge is to compute richer outcomes of the monitoring
process. Examples include computing quantitative verdicts, like for example how robustly
was the specification satisfied or computing statistics from the input trace, like the average
number of retransmissions or the worst-case response time. A related challenge is the compu-
tation of witnesses of the satisfaction or violation of the property for offline traces. The main
goal is that the monitoring algorithm computes the verdict and, as by-product, a compressed
summary trace, where irrelevant information has been omitted and consolidated. Algorithms
will have to be created to (1) check that the summary trace is indeed a summary of the input
trace, and (2) that the summary trace has the claimed verdict against the specification. This
process, if successful, will allow to check fast and independently that the runtime verification
process was correctly performed.

C 8.7 Approximate monitoring. The monitoring setting should provide a systematic and
explicit way to specify tradeoffs between the resources the monitoring algorithmsmay utilize
(e.g., maximum memory consumption or running time) and the accuracy of the verdicts
they provide. Existing work provides such tradeoffs for a few fixed monitored properties
(usually involving aggregations), however, support for complete language fragments is an
open problem.

C 8.8 Impact of utility on monitoring complexity. The existing work on the complexity of
monitoring [85,150,216] (called path checking in this context) only considers the problem
of providing a single Boolean verdict in an offline manner. Tight complexity bounds for the
online monitoring problem or other variants of the problem with different output utility (e.g.,
a verdict stream) have not yet been established. The impact of the different kinds of verdicts
on the complexity of the resulting monitoring problem needs to be better understood.

9 Conclusion

Runtime verification techniques have been traditionally applied to software in order to mon-
itor programs. One of the missions of the EU COST Action IC1402 (Runtime Verification
beyondMonitoring) was to identify application domainswhere runtime verification andmon-
itoring could be applied, and describe the challenges that these domains would entail. This
paper has explored seven selected areas of application, namely, distributed systems, hybrid
systems, hardware based monitoring, security and privacy, transactional systems, contracts
and policies and monitoring large and unreliable traces. For each of these seven domains,
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we survey the state-of-the-art focusing on monitoring techniques in these areas, and finally
presented some of the most important challenges (collecting a total of 47 challenges) to be
addressed by the runtime verification research community in the next years.
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