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Abstract
We study verification problems for autonomous swarms of mobile robots that self-organize
and cooperate to solve global objectives. In particular, we focus in this paper on the model
proposed by Suzuki and Yamashita of anonymous robots evolving in a discrete space with a
finite number of locations (here, a ring). A large number of algorithms have been proposed
working for rings whose size is not a priori fixed and can be hence considered as a parameter.
Handmade correctness proofs of these algorithms have been shown to be error-prone, and
recent attention had been given to the application of formal methods to automatically prove
those. Our work is the first to study the verification problem of such algorithms in the
parameterized case.We show that safety and reachability problems are undecidable for robots
evolving asynchronously. On the positive side, we show that safety properties are decidable in
the synchronous case, as well as in the asynchronous case for a particular class of algorithms.
Several other properties of the protocol can be decided as well. Decision procedures rely
on an encoding in Presburger arithmetics formulae that can be verified by an SMT-solver.
Feasibility of our approach is demonstrated by the encoding of several case studies.
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1 Introduction

We consider sets of mobile oblivious robots evolving in a discrete space, with a finite num-
ber of locations, modeled as a graph. Robots follow the seminal model by Suzuki and
Yamashita [23]: they do not remember their past actions, they cannot communicate explicitly,
and are disoriented.

However, they can sense their environment and detect the positions of the other robots
on the graph. If several robots share the same position—i.e. the same node of the graph—
(forming a tower, or multiplicity point), other robots may or may not detect the tower. If
robots have weak multiplicity detection, they are assumed to sense a tower on a position,
but are not able to count the actual number of robots in this tower. With strong multiplicity
detection, they are able to count the exact number of robots on a given position. In case they
have no multiplicity detection, robots simply detect occupied positions. In this paper, we
assume strong multiplicity detection is available to all robots.

Each robot behaves according to the following cycle: it takes a snapshot of its environment,
then it computes its next move (either stay idle or move to an adjacent node in the ring), and
at the end of the cycle, it moves according to its computation. Such a cycle is called a look-
compute-move cycle. Since robots cannot rely on a common sense of direction, directions
that are computed in the compute phase are only relative to the robot. Robots are anonymous
and execute the same algorithm to achieve together a given objective. When the underlying
graph is symmetric (e.g. a ring), a lot of configurations of the robots become also symmetric,
making the problem of designing a protocol for the robot especially intricate. To tell apart its
two sides, a robot relies on a description of the ring in both clockwise and counter-clockwise
direction, which gives two views of the configuration. There are two consequences to this fact.
First, if the two views are identical, meaning that the robot is on an axis of symmetry, it cannot
distinguish the two directions and thus either decides to stay idle, or tomove. In the latter case,
the robot move becomes a non-deterministic choice between the two available directions.
Second, when two robots have the same two views of the ring, the protocol commands them
to move in the same relative direction, but this might result in moves in actual opposite
directions for the two robots. Such a symmetrical situation is pictured in Fig. 1.

Different objectives for ring-shaped discrete spaces have been studied in the literature [15]:
gathering—starting from any initial configuration, all the robots must gather on the same
node, not known beforehand, and then stop [16]; exploration with stop—starting from any
initial configuration, the robots reach a configuration where they all are idle and, in the
meanwhile, all the positions of the ring have been visited by a robot [14]; exclusive perpetual
exploration—starting from any tower-free configuration, each position of the ring is visited
infinitely often and no multiplicity point ever appears [5,10].

Existing execution models consider different types of synchronization for the robots: in
the fully synchronous model (FSYNC), all robots evolve simultaneously and complete a
full look-compute-move cycle. The semi-synchronous model (SSYNC) consider runs that

Fig. 1 A disoriented robot R1—symmetric robots R2 and R3 will move in opposite directions
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evolve in phases: at each phase, an arbitrary subset of the robots is scheduled for a full
look-compute-move cycle, which is executed simultaneously by all robots of the subset.
Finally, in the asynchronous model (ASYNC), robots evolve freely at their own pace. In
particular, a robot can move according to a computation based on an obsolete observation of
its environment, as others robots may have moved in between. Algorithms in the literature
are typically parameterized by the number of robots and/or number of positions in the ring.
In this work we focus on formally verifying algorithms parameterized by the number of ring
positions only, assuming a fixed number of robots.

1.1 Related work

Designing and proving mobile robot protocols is notoriously difficult. Formal methods
encompass a long-lasting path of research that is meant to overcome errors of human origin.
Unsurprisingly, this mechanized approach to protocol correctness was successively used in
the context of mobile robots [1–4,6,12,18].

When robots are not constrained to evolve on a particular topology (but instead are allowed
to move freely in a bidimensional Euclidian space), the Pactole (http://pactole.lri.fr) frame-
work has been proven useful. Developed for the Coq proof assistant, Pactole enabled the use
of high-order logic to certify impossibility results [1] for the problem of convergence: for any
positive ε, robots are required to reach locations that are at most ε apart. Another classical
impossibility result that was certified with Pactole is the impossibility of gathering starting
from a bivalent configuration [8]. Recently, positive certified results for SSYNC gathering
with multiplicity detection [9], and for FSYNC gathering without multiplicity detection [2]
were provided. However, as of now, no Pactole library is dedicated to robots that evolve on
discrete spaces.

In the discrete setting that we consider, model checking has shown to be useful both to
find bugs in existing literature [4,13] and to assess formally published algorithms [4,12].
Automatic program synthesis (for the problem of perpetual exclusive exploration in a ring-
shaped discrete space) is due to Bonnet et al. [6], and can be used to obtain automatically
algorithms that are “correct-by-design”. The approach was refined by Millet et al. [18] for
the problem of gathering in a discrete ring network. As all aforementioned approaches are
designed for a bounded setting where both the number of locations and the number of robots
are known, they cannot permit to establish results that are valid for any number of locations.

Recently, Aminof et al. [20] presented a general framework for verifying properties of
mobile robots evolving on graphs, where the graphs are a parameter of the problem. While
ourmodel could be encoded in their framework, their undecidability proof relies on persistent
memory used by the robots, hence is not applicable to the case of oblivious robots we are
interested in.Also, they obtain decidability for a subcase that is not relevant for robot protocols
like those we consider.

1.2 Contributions

In this work, we aim at verifying protocols for swarms of robots for any number of locations,
hence to remove the limitation encountered with the classical model checking approach taken
so far for this problem.

We provide a formal definition of the problem, where the protocol can be described as a
quantifier free Presburger formula. This logic, whose satisfiability problem is known to be
decidable, happens to be powerful enough to express existing algorithms in the literature.
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Objectives of the robots are also described by Presburger formulae and we consider two
problems: when the objective of the robots is a safety objective—robots have to avoid the
configurations described by the formula (SAFE), and when it is a reachability objective
(REACH).We show that REACH is undecidable in any semantics, while SAFE is decidable only
in FSYNC and SSYNC. We also show that when the protocol is uniquely-sequentializable
or pending-bounded, safety properties become decidable also in the asynchronous case.
Finally, we show practical applicability of this approach by using an SMT-solver to verify
safety properties for two algorithms from the literature.

We strongly believe that our formalism should be used when describing and presenting
such protocols, because it is formal and non-ambiguous, and thus eliminates any unclarity
often found in the literature. Moreover, if totally automated verification in the parameterized
setting seems unfeasible, our method provides a way to perform a “sanity check” of the
protocol, and to automatically prove intermediate lemmas, that can then be used as formally
proved building blocks of a handmade correctness proof.

This work has been first presented in [21]. In this version, we have included some detailed
proofs, proposed a new extension to verify safety properties in the asynchronous case, namely
when the protocols are pending bounded, and finallywe have addedmore experimental results
together with detailed information about our case studies.

2 Model of robots evolving on a ring

2.1 Formal model

In this section we present the formal language to describe mobile robots protocols as well as
the way it is interpreted.

2.1.1 Preliminaries

For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set {c ∈ Z | a ≤ c ≤ b}. For a ∈ Z

and b ∈ N, we write a � b for the natural d ∈ [0, (b − 1)] such that there exists j ∈ Z and
a = b · j + d (for instance −1 � 3 = 2). Note that � corresponds to the modulo operator,
but we recall its definition to avoid ambiguity, especially when a is negative.

We recall the definition of Existential Presburger (EP) formulae. Let Y be a countable set
of variables. First we define the grammar for terms

t:: = x | t + t | a · t | t mod a,

where a ∈ N and x ∈ Y , and then the grammar for formulae is given by

φ:: = t �� b | φ ∧ φ | φ ∨ φ | ∃x .φ,

where �� ∈ {=,≤,≥,<,>}, x ∈ Y , and b ∈ N. We sometimes write a formula φ as
φ(x1, . . . , xk) to underline that x1, . . . , xk are the free variables of φ. Negation of formulae is
not allowed to forbid universal quantification over variables. However, observe that inequality
between a term t and an integer b can be obtained with the formula t < b ∨ t > b. The set
of Quantifier Free Presburger (QFP) formulae is obtained by the same grammar deleting the
elements ∃x .φ. Note that when dealing with QFP formulae, we allow as well negations of
formulae.
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We say that a vector V = 〈d1, . . . , dk〉 satisfies an EP formula φ(x1, . . . , xk), denoted by
V | φ, if the formula obtained by replacing each xi by di holds. Given a formula φ with
free variables x1, . . . , xk , we write φ(d1, . . . , dk) the formula where each xi is replaced by
di . We let [[φ(x1, . . . , xk)]] = {〈d1, . . . , dk〉 ∈ N

k | 〈d1, . . . , dk〉 | φ} be the set of models
of the formula. In the sequel, we use Presburger formulae to describe configurations of the
robots, as well as protocols.

2.1.2 Configurations and robot views

In this paper, we consider a fixed number k > 0 of robots and, except when stated otherwise,
we assume the identities of the robots are taken from the set R = {R1, . . . , Rk}. We may
sometimes identify R with the set of indices {1, . . . , k}. On a ring of size n ≥ k, a (k,n)-
configuration of the robots (or simply a configuration if n and k are clear from the context)
is given by a vector p ∈ [0, n − 1]k associating to each robot Ri its position p(i) on the ring.
We assume w.l.o.g. that positions are numbered in the clockwise direction.

A view of a robot on this configuration gives the distances between the robots, starting
from its neighbor, i.e. the robot positioned on the next occupied node (a distance equal to
0 meaning that two robots are on the same node). A view V = 〈d1, . . . , dk〉 ∈ [0, n]k is a
k-tuple such that

∑k
i=1 di = n and d1 �= 0. We require the first constraint to ensure that the

sum of the distances between consecutive robots is equal to the length of the ring, otherwise
a vector in [0, n]k cannot represent a correct view of the entire ring. The second constraint
is for normalization questions that we will detail later. Observe that it is possible to obtain
a view with d1 �= 0 by putting 0 at the ‘end’ of the view instead. We let Vn,k be the set of
possible views for k robots on a ring of size n. Notice that all the robots sharing the same
position should have the same view. Finally, for a view V = 〈d1, . . . , dk〉 ∈ [0, n]k , we note←−
V = 〈d j , . . . , d1, 0, . . . , 0〉 the corresponding view when looking at the ring in the opposite
direction, where j is the greatest index such that d j �= 0.

Example 1 Suppose, as it is represented on Fig. 2, that, on a ring of size 10, two robots, R1
and R2, are on the same position of the ring (say position 1), R3 is at position 4, R4 is at
position 8, and R5 is at position 9. Then, a view of R1 and R2 is 〈3, 4, 1, 2, 0〉. It is interpreted
by the fact that there is a robot at a distance 3 (R3), a robot a at distance 3+ 4 (R4) and so on.
We point out that all the robots at the same position share the same view. As a matter of fact
in the example of Fig. 2, there is a robot at distance 3 + 4 + 1 + 2 = 10 from R1 (resp. R2),
which is R2 (resp. R1). The sum of the di always corresponds to the size of the ring. Here, the
last element of the view of R1 is 0, meaning that there is a distance 0 between the last robot
(here R2) and R1. When looking in the opposite direction, their view becomes: 〈2, 1, 4, 3, 0〉

Given a configurationp ∈ [0, n−1]k and a robotRi ∈ R, the viewof robotRi when looking
in the clockwise direction, is given byVp[i →] = 〈di (i1), di (i2)−di (i1), . . . , n−di (ik−1)〉,

Fig. 2 A configuration with a tower R1, R2
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where, for all j �= i , di ( j) ∈ [1, n] is such that (p(i) + di ( j)) � n = p( j) and i1, . . . , ik are
indexes pairwise different such that 0 < di (i1) ≤ di (i2) ≤ · · · ≤ di (ik−1). When robot Ri
looks in the opposite direction, its view of to the configuration p is Vp[← i] = ←−−−−−

Vp[i →]. At
each step, when taking a snapshot of the ring, a robot captures the views in both clockwise
and anti-clockwise directions.

2.1.3 Protocols

In our context, a protocol for networks of k robots is given by a QFP formula respecting some
specific constraints.

Definition 1 (Protocol) A protocol is a QFP formula φ(x1, . . . , xk) such that for all views V
the following holds: if V | φ and V �= ←−

V then
←−
V �| φ.

A robot uses the protocol to know in which direction it should move according to the
following rules. As we have already stressed, all the robots that share the same position have
the same view of the ring. Given a configuration p and a robot Ri ∈ R, ifVp[i →] | φ, then
the robot Ri moves in the clockwise direction, ifVp[← i] | φ then it moves in the opposite
direction, if none of Vp[i →] and Vp[← i] satisfies φ then the robot should not move. The
conditions expressed in Definition 1 imposes hence a direction when Vp[i →] �= Vp[← i].
In case Vp[i →] = Vp[← i], the robot is disoriented and it can hence move in one direction
or the other. For instance, consider the configuration p pictured on Fig. 1: here, Vp[1 →] =
〈3, 1, 3〉 = Vp[← 1]. Note that such a semantics enforces that the behavior of a robot is not
influenced by its direction. In fact consider two symmetrical configurations p and p′ such that
Vp[i →] = ←−−−−−

Vp′ [i →] for each robot Ri . If Vp[i →] | φ (resp. Vp[← i] | φ), then neces-
sarily Vp′ [← i] | φ (resp. Vp′ [i →] | φ), and the robot in p′ moves in the opposite direc-
tion than in p (and the symmetry of the two configurations is maintained). Note that checking
if a given QFP formula is a protocol is decidable; it is not difficult to write an QFP formula
that is satisfiable if and only if the formula φ is not a protocol. Details will be given in Sect. 4.

We now formalize the way movement is decided. Given a protocol φ and a view V, the
moves of any robot whose clockwise direction view is V are given by:

move(φ,V) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{+1} if V | φ and V �= ←−
V

{−1} if
←−
V | φ and V �= ←−

V

{−1,+1} if V | φ and V = ←−
V

{0} otherwise

Here +1 (resp. −1) stands for a movement of the robot in the clockwise (resp. anticlock-
wise) direction.

Example 2 Consider the configuration with three robots depicted in Fig. 3. In this config-

uration, each robot has the same view V equal to 〈3, 3, 3〉 and such that
←−
V = V. If now

Fig. 3 A configuration with three robots
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we consider the protocol φ(x1, x2, x3) := (x1 = x3) ∧ (x1 > 1) ∧ (x3 > 1) (which
corresponds to a rule from the bigger protocol given in [5]), then for each of the robots,
the move according to the protocol will be non-deterministically either in the clockwise or
anti-clockwise direction.

2.2 Different possible semantics

We now describe different transition relations between configurations.We assume that robots
have a two-phase behavior : (1) look at the ring and (2) according to their view, com-
pute and perform a movement. In this context, we consider three different modes. In the
semi-synchronous mode, in one step, some of the robots look at the ring and move. In the
synchronous mode, in one step, all the robots look at the ring and move. In the asynchronous
mode, in one step a single robot performs a single action: look at the ring, if the last thing it
did was amovement, or move, if the last thing it did was to look at the ring. As a consequence,
its movement decision is a consequence of the view of the ring it has in its memory. In the
remainder of the paper, we fix a protocol φ and we consider a set R of k robots.

2.2.1 Semi-synchronous mode

We begin by providing the semantics in the semi-synchronous case. For this matter we define
the transition relation ↪→φ⊆ [0, n − 1]k × [0, n − 1]k (simply noted ↪→ when φ is clear
from the context) between configurations. We have p ↪→ p′ if there exists a subset I ⊆ R of
robots such that, for all i ∈ I , p′(i) = (p(i) + m) � n, where m ∈ move(φ,Vp[i →]), and
for all i ∈ R\I , p′(i) = p(i).

2.2.2 Synchronous mode

The transition relation ⇒φ⊆ [0, n−1]k ×[0, n−1]k (simply noted ⇒ when φ is clear from
the context) describing synchronous movements is very similar to the semi-synchronous
case, except that all the robots have to move. Then p ⇒ p′ if p′(i) = (p(i) + m) � n with
m ∈ move(φ,Vp[i →]) for all i ∈ R.

Example 3 Take again the configuration with three robots depicted in Fig. 3 together with
the protocol φ(x1, x2, x3) := (x1 = x3) ∧ (x1 > 1) ∧ (x3 > 1). Then, the configuration
represented in Fig. 4a represents a possible successor configuration in the semi-synchronous
mode where only the robot R2 has moved. The configuration represented in Fig. 4b represents
a possible successor configuration in the synchronous mode. In this case, we will have many
possible successor configurations, even in the synchronous mode, since all the robots are
disoriented, hence all their movements are non-deterministically chosen.

(a) (b)

Fig. 4 Successor configurations of configuration depicted in Fig. 3
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2.2.3 Asynchronous mode

The definition of the transition relation for the asynchronous mode is a bit more involved,
for two reasons: first, the move of each robot does not depend on the current configuration,
but on the last view of the robot. Second, in one step a robot either looks or moves. As a
consequence, an asynchronous configuration is a tuple 〈p, s,V〉 where p ∈ [0, n − 1]k gives
the current configuration, s ∈ {LK,MV}k gives, for each robot, its internal state (LK stands
for ready to look and MV stands for compute and move) and V ∈ (Vn,k)

k stores, for each
robot, the view (in the clockwise direction) it had the last time it looked at the ring.

The transition relation for asynchronous mode is hence defined by a binary relation �φ

(or simply �) working on [0, n − 1]k × {LK,MV}k × (Vn,k)
k and defined as follows:

〈p, s,V〉 � 〈p′, s′,V′〉 iff there exists a robot Ri ∈ R such that the following conditions are
satisfied:

– for all R j ∈ R such that j �= i , p′( j) = p( j), s′( j) = s( j) and V′( j) = V( j),
– if s(i) = LK then s′(i) = MV, V′(i) = Vp[i →] and p′(i) = p(i), i.e. if the robot

that has been scheduled was about to look, then the configuration of the robots does not
change, and this robot updates its view of the ring according to the current configuration.
Finally, it changes its internal state to MV.

– If s(i) = MV then s′(i) = LK, V′(i) = V(i) and p′(i) = (p(i) + m) � n, with
m ∈ move(φ,V(i)), i.e. if the robot was about to move, then it changes its internal state
and moves according to the protocol applied to its last view of the ring.

Example 4 Following Examples 2 and 3, from the configuration p = 〈0, 3, 6〉 depicted in
Fig. 3, we consider the asynchronous configuration 〈p, s,V〉 where s = 〈MV,MV,MV〉
and V = 〈〈3, 3, 3〉, 〈3, 3, 3〉, 〈3, 3, 3〉〉. This configuration captures the situation where each
of the robots has just taken a snapshot and is ready to move. We add a rule to the protocol and
consider the formula φ(x1, x2, x3) := ((x1 = x3)∧(x1 > 1)∧(x3 > 1))∨((x2 = 2)∧(x3 =
3)). We describe now a possible sequence of asynchronous configurations 〈p, s,V〉 �φ

〈p1, s1,V1〉 �φ 〈p2, s2,V2〉 �φ 〈p3, s3,V3〉. In this asynchronous run, R2 has moved first,
as shown in Fig. 5a, leading to p1 = 〈0, 2, 6〉, s1 = 〈MV,LK,MV〉, and V1 = V. Next, R1
moves, as shown in Fig. 5b, and p2 = 〈8, 2, 6〉, s2 = 〈LK,LK,MV〉 and V2 = V. The next
asynchronous configuration is reached when R2 has taken a snapshot again, hence p3 = p2,
s3 = 〈LK,MV,MV〉 and V3 = 〈〈3, 3, 3〉, 〈4, 2, 3〉, 〈3, 3, 3〉〉. Now one can see that both
R2 and R3 are ready to move, but their move will be computed based on views of different
configurations. In particular, the move of R3 will not correspond to the current configuration
anymore, and if robots R1 and R2 continue to evolve, its view can become more and more
outdated, in an unbounded way.

(a) (b)

Fig. 5 Successor asynchronous configurations of configuration depicted in Fig. 3
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2.2.4 Runs

A semi-synchronous (resp. synchronous) φ-run (or a run according to a protocol φ) is a
(finite or infinite) sequence of configurations ρ = p0p1 . . . , where for all 0 ≤ i < |ρ|,
pi ↪→φ pi+1 (resp. pi ⇒φ pi+1). Moreover, if ρ = p0 · · · pn is finite, then there is no p
such that pn ↪→φ p (respectively pn ⇒φ p). An asynchronous φ-run is a (finite or infinite)
sequence of asynchronous configurations ρ = 〈p0, s0,V0〉〈p1, s1,V1〉 · · · where, for all
0 ≤ i < |ρ|, 〈pi , si ,Vi 〉 �φ 〈pi+1, si+1,Vi+1〉 and such that s0(i) = LK for all i ∈ [1, k].
As a consequence, the value of V0 has no influence on the actual asynchronous run. We let
Runsss(φ) (respectivelyRunss(φ),Runsas(φ)) be the set of semi-synchronous (respectively
synchronous, asynchronous) φ-runs.

We let Postss(φ,p) = {p′ | p ↪→φ p′}, Posts(φ,p) = {p′ | p ⇒φ p′} and
Postas(φ,p) = {p′ | there exist V, s′,V′ s.t. 〈p, s0,V〉 �φ 〈p′, s′,V′〉}, with s0(i) = LK
for all i ∈ [1, k]. Note that in the asynchronous case we impose all the robots to be ready
to look. We respectively write ↪→∗

φ , ⇒∗
φ and �∗

φ for the reflexive and transitive closure of
the relations ↪→φ , ⇒φ and �φ , and we define Post∗ss(φ,p), Post∗s (φ,p) and Post∗as(φ,p) by
replacing in the definition of Postss(φ,p), Posts(φ,p) and Postas(φ,p) the relations ↪→φ ,
⇒φ and �φ by their reflexive and transitive closure accordingly.

We now come to our first result that shows that when a protocol has a special shape, the
three semantics are identical. For this matter, we introduce the notion of activatable robots in
a configuration p which is given by the set Actφ(p) = {i ∈ R | move(φ,Vp[i →]) �= {0}}.
Definition 2 A protocol φ is said to be uniquely-sequentializable if, for all configurations p,
|Actφ(p)| ≤ 1.

Itwill be shown in Sect. 4 that this property is decidable.Whenφ is uniquely-sequentializable,
at any moment at most one robot moves. Consequently, in that specific case, the three seman-
tics are equivalent as stated by the following theorem.

Theorem 1 If a protocol φ is uniquely-sequentializable, then for every configuration p,
Post∗s (φ, p) = Post∗ss(φ, p) = Post∗as(φ, p).

Before proving this theorem, we establish that, when φ is a uniquely-sequentializable
protocol, asynchronous φ-runs have the property that when a robot has an obsolete view, it
won’t move until it has its view updated.

Proposition 1 Let φ be a uniquely-sequentializable protocol, and let ρ = 〈p0, s0,V0〉
〈p1, s1,V1〉 · · · ∈ Runsas(φ) be an asynchronous φ-run. For every robot i ∈ R, for all
0 ≤ � < |ρ|, if V�(i) �= Vp�

[i →] and s�(i) = MV then move(φ,V�(i)) = {0}.
Proof of Proposition 1 We show it by induction on the length � of prefixes of ρ. For � = 0, it
is obvious since s0(i) = LK for all i ∈ R. Let � such that 0 < �+1 < |ρ| and let i ∈ R such
that s�+1(i) = MV and V�+1(i) �= Vp�+1

[i →]. If s�(i) = LK, then V�+1(i) = Vp�
[i →]

and p� = p�+1, which is impossible. Hence, s�(i) = MV and V�(i) = V�+1(i). Moreover,
either V�(i) �= Vp�

[i →] and by induction hypothesis, move(φ,V�(i)) = {0}, which yields
move(φ,V�+1(i)) = {0}. Or V�(i) = Vp�

[i →], then Vp�
[i →] �= Vp�+1

[i →] and there
exists another robot j �= i such that s�( j) = MV and s�+1( j) = LK and move(φ,V�( j)) �=
{0}. By induction hypothesis, V�( j) = Vp�

[ j →]. Since φ is uniquely-sequentializable,
move(φ,Vp�

[i →]) = move(φ,V�(i)) = move(φ,V�+1(i)) = {0}. ��
This result can now be used to prove Theorem 1.
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Proof of Theorem 1 Let φ be a protocol and p a configuration. From the definitions, it is
obvious that Post∗s (φ,p) ⊆ Post∗ss(φ,p) ⊆ Post∗as(φ,p). We show that Post∗as(φ,p) ⊆
Post∗s (φ,p) when φ is uniquely-sequentializable.

We show by induction on m ∈ N that, for any V ∈ (Vn,k)
k , if 〈p, s0,V〉 �m

φ

〈p′, s′,V′〉 then p′ ∈ Post∗s (φ,p), where 〈p, s0,V〉 �m
φ 〈p′, s′,V′〉 means that there

exist 〈p1, s1,V1〉, . . . , 〈pm−1, sm,−1,Vm−1〉 such that 〈p, s0,V〉 �φ 〈p1, s1,V1〉 �φ

. . . 〈pm−1, sm−1,Vm−1〉 �φ 〈p′, s′,V′〉. For m = 0, it is obvious. Let now m ∈ N and
let 〈p′, s′,V′〉, 〈p′′, s′′,V′′〉 ∈ [0, n − 1]k × {LK,MV}k × (Vn,k)

k , such that 〈p, s0,V〉 �m
φ

〈p′, s′,V′〉 �φ 〈p′′, s′′,V′′〉. By induction hypothesis, p′ ∈ Post∗s (φ,p). Let i ∈ R such
that s′′(i) �= s′(i). If s′(i) = LK then by definition, p′′ = p′ and p′′ ∈ Post∗s (φ,p).
Otherwise, if Vp′ [i →] �= V′(i), then by Proposition 1, move(φ,V′(i)) = {0} and then
p′ = p′′. Finally, if Vp′ [i →] = V′(i), either move(φ,V′(i)) = {0} and p′′ = p′ or,
move(φ,V′(i)) = move(φ,Vp′ [i →]) �= {0} and, since φ is uniquely-sequentializable, for
all j �= i , move(φ,Vp′ [ j →]) = {0} and p′ ⇒ p′′. Hence p′′ ∈ Post∗s (φ,p). ��

2.3 Problems under study

In this work, we aim at verifying properties on protocols where we assume that the number
of robots is fixed (equal to k > 0), but the size of the ring is a parameter and satisfies a given
property. Note that when executing a protocol the size of the ring never changes. For our
problems, we consider a ring property that is given by a QFP formula Ring(y), a set of bad
configurations given by a QFP formula Bad(x1, . . . , xk), and a set of good configurations
given by a QFP formula Goal(x1, . . . , xk). We then define two general problems to address
the verification of such algorithms, each of which declined according to the desired semantics
of execution: the SAFEm problem, and the REACHm problem with m ∈ {ss, s, as}.

The SAFEm problem is to decide, given a protocol φ and two formulae Ring and Bad,
whether for every size n ∈ N and every (k, n)-configuration p, if n ∈ [[Ring]] and p /∈
[[Bad]], then Post∗m(φ,p) ∩ [[Bad]] = ∅.

The REACHm problem is to decide given a protocol φ and two formulae Ring and
Goal whether for every size n ∈ N and every (k, n)-configuration p, if n ∈ [[Ring]]
then Post∗m(φ,p) ∩ [[Goal]] �= ∅.

Example 5 We can state in our context the problem that consists in checking that a protocol φ
working with three robots never leads to a collision (i.e. to a configuration where two robots
are on the same position on the ring) for rings of size strictly bigger than 6. In that case we
use the SAFEm problem with Ring := y > 6 and Bad := x1 = x2 ∨ x2 = x3 ∨ x1 = x3.

Another property that can be checked in our context is the fact that no matter where all
the robots are, they can all gather in the same point. Assume we want to verify this for a
protocol with 4 robots working on rings of size strictly greater than 10, then we can use the
REACHm problem with Ring := y > 10 and Goal := x1 = x2 = x3 = x4. If the answer to
this problem is positive, we know that the property is verified, in other words we know that
for all rings of size strictly greater than 10, from all configurations in such rings, the robots
can eventually gather on some position. On the other hand, if the answer is negative, we have
found a size of the ring and an initial position from which Goal is never attained.

Remark 1 Note that the two problems are not dual due to the quantifiers. As we will see later,
in some cases we are able solve the former problem but not the latter.
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3 Undecidability results

In this section, we present undecidability results for the two aforementioned problems. The
proofs rely on the encoding of the run of a deterministic k-counter machine. A determinis-
tic k-counter machine consists of k integer-valued registers (or counters) called c1, …, ck ,
and a finite list of labelled instructions L . Each instruction is either of the form � : ci =
ci + 1;goto �′, or � : if ci > 0 then ci = ci − 1; goto �′; else goto �′′,
where i ∈ [1, k]. We also assume the existence of a special instruction �h : halt. Configu-
rations of a k-counter machine are elements of L ×N

k , giving the current instruction and the
current values of the registers. The initial configuration is (�0, 0, . . . , 0), and the set of halting
configurations is HALT = {�h} × N

k . Given a configuration (�, n1, . . . , nk), the successor
configuration (�′, n′

1, . . . , n
′
k) is defined in the usual way and we write (�, n1, . . . , nk) �

(�′, n′
1, . . . , n

′
k). For the transitive closure of �, we write �+. A run of a k-counter machine

is a (finite or infinite) sequence of configurations (�0, n01, . . . , n
0
k), (�1, n

1
1, . . . , n

1
k) · · · ,

where (�0, n01, . . . , n
0
k) is the initial configuration, and, for all i ≥ 0, (�i , ni1, . . . , n

i
k) �

(�i+1, n
i+1
1 , . . . , ni+1

k ). The run is finite if and only if it ends in a halting configuration, i.e. in
a configuration inHALT. It is well known that the halting problem for deterministic 2-counter
machines, which consists in determining whether a given machine halts, is undecidable [19].
We will now see how we can encode such a problem to prove that the safety problem is
undecidable in the asynchronous mode.

Theorem 2 SAFEas is undecidable.

The proof relies on a reduction from the halting problem of a deterministic two-counter
machine M to SAFEas with k = 42 robots. It is likely that an encoding using less robots might
be used for the proof, but for the sake of clarity, we do not seek the smallest possible amount
of robots. The idea is to simulate the run of M in a way that ensures that a collision occurs if
and only if M halts. Positions of robots on the ring are used to encode values of counters and
the current instruction of the machine. The protocol for k robots makes sure that movements
of the robots simulate correctly the run of M . Moreover, one special robot moves only when
the initial configuration is encoded, and another only when the final configuration is encoded.
The collision is ensured in the following sequence of actions of the robots: when the initial
configuration is encoded, the first robot computes its action but does not move immediately.
When the halting configuration is reached, the second robot computes its action and moves,
then the first robot finally completes its move, entailing the collision. Note that if the ring is
not big enough to simulate the counter values then the halting configuration is never reached
and there is no collision.

Instead of describing configurations of the robots by providing their respective positions
on the ring, we use a sequence of letters F or R, representing respectively a free node and a
node occupied by a robot. When a letter A ∈ {F, R} is repeated i times, we use the notation
Ai , when it is repeated an arbitrary number of times (including 0), we use A∗. We also use
the notation Bi as a shorthand for FRiF, i.e. a block of i consecutive robots between two
empty positions. These fixed blocks of robots will be used as immutable marks on the ring
between which the other robots will move to encode configurations of the 2-counter machine.
A machine-like configuration is a configuration of the form

B3F∗RF∗B4F∗RF∗B5F∗RF∗B6F∗RF∗B7F∗RF∗B8P1P2P3P4P5RFR,

where P1P2 ∈ {RF, FR} and exactly one Pi = R for i ∈ {3, 4, 5}, and Pj = F for all
j ∈ {3, 4, 5}\{i} (see Table 1 for a graphic representation of the section P1P2P3P4P5 of the
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Table 1 Different types of machine-like configurations

ring). In fact, thanks to our encoding, each robot sees a different sequence when it looks at
the ring. For instance the first robot in the block B3 sees on its ‘right’ the sequence

RRFF∗RF∗B4F∗RF∗B5F∗RF∗B6F∗RF∗B7F∗RF∗B8P1P2P3P4P5RFRF

and the second robot of the same block sees

RFF∗RF∗B4F∗RF∗B5F∗RF∗B6F∗RF∗B7F∗RF∗B8P1P2P3P4P5RFRFR

which is distinguishable from the view of the first one. The same reasoning can be applied
to each pair of robots in our configuration. The blocks Bi are used to ensure that each robot
can determine where is its place in the configuration. Hence, in the rest of the proof we abuse
notations and describe the protocol using different names for the different robots, according
to their position in the ring, even if they are formally anonymous.

We let R be the set of robots involved. A machine-like configuration

B3Fn1Rc1F
∗B4Fn2Rc2F∗B5FmRcFnB6FiR�Fi

′
B7FpR�′FrB8Rt tFRtFFRgFRd

is said to be stable because of the positions of robots Rt and Rt t (see Table 1). Moreover, it
encodes the configuration (�i , n1, n2) of M (due to the relative positions of robots Rc1 , Rc2
and R� respectively to B3, B4 and B6). In the following, we distinguish between configurations
of the 2-counter machine and configurations of the robots by calling them respectively M-
configurations and φ-configurations. For a stable and machine-like φ-configuration p, we
let M(p) be the M-configuration encoded by p. We first present the part of the algorithm
simulating the behavior of M . We call this algorithm φ′. Since the machine is deterministic,
only one instruction is labelled by �i , known by every robot. The simulation follows different
steps, according to the positions of the robots Rt and Rt t , as pictured in Table 1.

We explain the algorithm φ′ on the configuration (�i , n1, n2) with the transition �i :
if c1 > 0 then c1 = c1 − 1;goto � j ;else goto � j ′ .

– When in a stable configuration, robot Rt t first moves to obtain amoving1 configuration.
– In a moving1 configuration, robot Rc moves until it memorizes the current value of c1.

More precisely, in amoving1 configuration where n1 �= m, robot Rc moves : if n1 > m,
and n �= 0, Rc moves towards B6, if n1 < m, it moves towards B5, if n1 > m and n = 0,
it does not move.

– In amoving1 configuration where n1 = m, Rt moves to obtain amoving2 configuration.
– In amoving2 configuration, if n1 = m �= 0, then Rc1 moves towards B3, hence encoding

the decrementation of c1.
– In a moving2 configuration, if n1 = m = 0 or if n1 �= m, (then the modification of c1

is either impossible, or already done), robot R�′ moves until it memorizes the position of
robot R�: if p < i , and r �= 0, R�′ moves towards B8; if p > i , R�′ moves towards B7.
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– In a moving2 configuration, if p = i and (n1 = m = 0 or n1 �= m), then Rt moves to
obtain amoving3 configuration.

– In a moving3 configuration, if n1 = m = 0, and robot R�′ encodes �i (i.e. p = i), then
c1 = 0 and robot R� has to move until it encodes � j ′ . If on the other hand n1 < m, then
robot R� moves until it encodes � j . More precisely, if n1 = m = 0, and the position
encoded by R� is smaller than j ′ (i < j ′), and if i ′ �= 0, then R� moves towards B7. If
n1 = m = 0, and the position encoded by R� is greater than j ′, R� moves towards B6. If
n1 �= m, then robot R� moves in order to reach a position where it encodes � j (towards
B6 if i > j , towards B7 if i < j and i ′ �= 0).

– In a moving3 configuration, if the position encoded by R�′ is �i , if n1 = m = 0 and the
position encoded by R� is � j ′ , or if n1 �= m, and the position encoded by R� is � j , then the
transition has been completely simulated : the counters have been updated and the next
transition is stored. The robots then return to a stable configuration: robot Rt t moves to
obtain a stabilizing1 configuration.

– In a stabilizing1 configuration, robot Rt moves to obtain a stabilizing2 configuration.
– In a stabilizing2 configuration, robot Rt moves to obtain a stable configuration.

For other types of transitions, the robots move similarly. When in a stable configuration
encoding a configuration in HALT, no robot moves. We describe now the algorithm φ that
simply adds to φ′ the two following rules. Robot Rg (respectively Rd ) moves in the direction
of Rd (respectively in the direction of Rg) if and only if the robots are in a stablemachine-like
configuration, and the encoded configuration of the machine is (�0, 0, 0) (respectively is in
HALT). Recall that since the configuration is machine-like, the distance between Rg and Rd
is 2.

On all configurations that are not machine-like, the algorithm makes sure that no robot
moves. This implies that once Rg or Rd has moved, no robot with an up-to-date view ever
moves. One can easily be convinced that the algorithm can be expressed by a QFP formula
φ.

Let the formulae

Bad(p1, . . . , p42) =
∨

i, j ∈ [1, 42]
i �= j

(pi = p j )

that is satisfied by all the configurations where two robots share the same position, and

Ring(y) = y ≥ 0

We show that M halts if and only if there exists a size n ∈ [[Ring]], a (42, n)-configuration
p with p /∈ [[Bad]], such that Post∗as(φ,p) ∩ [[Bad]] �= ∅.

For that matter we use several claims about φ′. First observe that according to the dif-
ferent rules stable, moving1, etc., φ′ is uniquely-sequentializable. This means that, in each
configuration, at most one robot is programmed to move.

Then, thanks to Theorem 1, it is enough to study the synchronous successors of a config-
uration. It is then not difficult to establish the following claim.

Claim 1 Let p be a machine-like φ-configuration. Then for every configuration p′ ∈
Post∗as(φ′, p) = Post∗s (φ′, p), p′ is machine-like.

The next claim states that, from a machine-like stable configuration encoding some M-
configuration (�, n1, n2), an asynchronous φ′-run will lead to the encoding of the successor
M-configuration of (�, n1, n2), provided that the ring on which robots evolve is big enough.
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Claim 2 Let 〈p, s,V〉 be a stable and machine-like asynchronous φ-configuration with p of
the following form:

B3F
n1Rc1F

n′
1B4F

n2Rc2F
n′
2B5F

mRcF
nB6F

iR�F
i ′B7F

pR�′FrB8Rt tFRtFFRgFRd

such that M(p) = (�i , n1, n2) is a non-halting M-configuration. Assume that p has the
following properties:

(i) if n1 > m then n ≥ n1 − m (if �i modifies c1) or if n2 > m then n ≥ n2 − m (if �i
modifies c2),

(ii) if �i increments c1 (resp. c2) then n′
1 > 0 (resp. n′

2 > 0), and
(iii) i + i ′ = p + r = |L|, where L is the set of instructions of the 2-counter machine.

Then there exists 〈p′, s′,V′〉 such that 〈p, s,V〉 �∗
φ′ 〈p′, s′,V′〉 with p′ stable and machine-

like, s′(Rg) = s(Rg), s′(Rd) = s(Rd), V′(Rg) = V(Rg) and V′(Rd) = V(Rd), such that
M(p) � M(p′).

Finally,we state the fact that, froman asynchronous configuration encoding (�, n1, n2), the
first stable asynchronous configuration reached in an asynchronous φ′-run indeed encodes
the successor of (�, n1, n2).

Claim 3 Let 〈p, s,V〉 and 〈p′, s′,V′〉 be two asynchronous configurations, with p and p′ stable.
If there exists k > 0 such that 〈p, s,V〉 �k

φ′ 〈p′, s′,V′〉, then M(p) �+ M(p′).

All these claims follow directly from the definition of φ′. We can now give the Proof of
Theorem 2.

Proof of Theorem 2 Assume that M halts. There is then a finite bound K ∈ N on the values of
the counters during the run. We show hereafter an asynchronous φ-run leading to a collision.
Let 〈p0, s0,V0〉 be the initial configuration of the run, with p0 encoding (�0, 0, 0), i.e. of the
form:

B3Rc1F
KB4Rc2F

KB5RcFKB6R�F|L|B7R�′F|L|B8Rt tFRtFFRgFRd ,

(hence such that M(p0) = (�0, 0, 0)), and s0(i) = LK for all i ∈ R.
First, Rg takes a snapshot of the ring, i.e. 〈p0, s0,V0〉 � 〈p1, s1,V1〉 where

p1 = p0,

s1(i) =
{
MV if i = Rg
s0(i) otherwise,

V1(i) =
{
Vp0 [g →] if i = Rg
V0(i) otherwise.

From now on, robots will simulate M . It is easy to check that p1 satisfies conditions (i), (i i)
and (i i i) of Claim 2. Then, 〈p1, s1,V1〉 �∗

φ′ 〈p2, s2,V2〉, with p2 stable and machine-like,
and such that (�0, 0, 0) � M(p2). Again, one can check that p2 satisfies also conditions (i),
(i i) and (i i i) of Claim 2. Then, since M halts, by applying iteratively Claim 2, we have
〈p1, s1,V1〉 �∗

φ′ 〈pn, sn,Vn〉 with M(pn) a halting configuration. Moreover, by Claim 2,
sn(Rd) = s0(Rd) = LK, and sn(Rg) = s0(Rg) = MV.

Now, the φ-run continues with robot Rd being scheduled to look, and then robots Rg and
Rd moving, leading to a collision. Formally: 〈pn, sn,Vn〉 � 〈p, s,V〉 � 〈p′, s′,V′〉 �
〈p′′, s′′,V′′〉, with
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p = pn

s(i) =
{
MV if i = Rd
sn(i) otherwise.

V(i) =
{
Vpn [d →] if i = Rd
Vn(i) otherwise.

Since pn encodes a halting configuration, with distance between Rg and Rd equal to 2,
applying the protocol makes Rd moves. Then,

p′(i) =
{
p(i) − 1 if i = Rd
p(i) otherwise

s′(i) =
{
LK if i = Rd
s(i) otherwise.

V′ = V

Last, Rg completes themove computed from its view at the beginning of the run. Formally:

p′′(i) =
{
p′(i) + 1 if i = Rg
p′(i) otherwise

s′′(i) =
{
LK if i = Rg
s′(i) otherwise.

V′′ = V′

sinceV′′(Rg) = Vn(Rg) = V1(Rg) = Vp0 [Rg →], and p0 is a stablemachine-like configura-
tion such thatM(p0) = (�0, 0, 0). Hence,p′′(Rg) = p′′(Rd) andp′′ ∈ Post∗as(φ,p0)∩[[Bad]].

Conversely assume there is an asynchronous φ-run ρ leading to a collision. We show first
that ρ contains moves from Rg and Rd . By Claim 1, if ρ is an asynchronous φ′-run, there
is no collision (either ρ starts in a non machine-like configuration and no robot moves, or
it starts in a machine-like configuration and it never reaches a collision, since machine-like
configurations are collision-free by construction).Henceρ containsmoves fromRg and/orRd .
Suppose by contradiction that Rg moves in ρ and not Rd . Before the first move of Rg , the run is
a φ′-run. The prefix ending in the first move of Rg can be written ρ′ · 〈p1, s1,V1〉〈p2, s2,V2〉
with p2(Rg) = p1(Rg) − 1 and p2(i) = p1(i) for all i �= Rg , and ρ′ · 〈p1, s1,V1〉 a prefix of
a φ′-run. Then p1 is a machine-like configuration and there is at most one robot i /∈ {Rg, Rd}
such that move(φ′,V1(i)) = move(φ′,V2(i)) �= {0}. Once Rg has moved, no robot can
take the decision to move anymore. Then ρ = ρ′ · 〈p1, s1,V1〉〈p2, s2,V2〉〈p3, s3,V3〉 · ρ′′
with p3(i) = p2(i) for all the robots i ∈ R but possibly one, and then p3 being the only
configuration appearing in ρ′′. According to φ, p3 is collision free, so such a run could not
lead to a collision.

We know now that Rd moves in this run. Hence, there is a configuration 〈p, s,V〉 in ρ

where Rd has just been scheduled to look and is hence such that s(Rd) = MV, V(Rd) =
Vp[Rd →], with move(φ,V(Rd)) �= 0. By definition of φ, p is machine-like, stable and
M(p) is a halting M-configuration. Moreover, ρ = ρ′ · 〈p, s,V〉 · ρ′′, with ρ′ a φ′-run. After
〈p, s,V〉, the only robots that can move are Rg and Rd . Indeed, assume there is some robot
j /∈ {Rg, Rd} such that s( j) = MV. If move(φ, V ( j)) �= {0}, by Proposition 1, and since
move(φ, V ( j)) = move(φ′, V ( j)), V ( j) = Vp[ j →], and it is impossible since M(p) is a
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halting configuration. If Rg does not move, then all the following configurations in the run
are equal to p′ with p′(i) = p(i) for all i �= Rd and p′(Rd) = p(Rd) + 1. In that case, ρ does
not lead to a collision, which is again a contradiction with the hypothesis.

Hence, we know that in ρ both Rg and Rd move. Moreover, we can order these
actions in the run. From the above reasoning we deduce that in ρ, at some point Rg
has been scheduled to look, then later on, Rd has been scheduled to look, and finally
Rg and Rd have moved provoking a collision. Formally, ρ is in the following form:
ρ = ρ′ · 〈p0, s0,V0〉〈p1, s1,V1〉 · ρ′′ · 〈p2, s2,V2〉〈p3, s3,V3〉〈p4, s4,V4〉〈p5, s5,V5〉 with
ρ′, ρ′′ asynchronous φ′-runs, s0(Rg) = LK, s1(Rg) = MV, and for all other robots i ,
s0(i) = s1(i), andp0 = p1, andmove(φ,V1(Rg)) �= {0}.After the sub-runρ′′, robotRd looks,
i.e. p2 = p3, s2(Rd) = LK, s3(Rd) = MV, move(φ,V3(Rd)) �= {0}. Finally, configurations
p4 andp5 correspond tomovements ofRg andRd in any order. For instance, andwithout loss of
generality, p4(Rd) = p3(Rd)+1, and for all i �= Rd , p3(i) = p4(i) and p5(Rg) = p4(Rg)−1
and for all i �= Rg , p4(i) = p5(i). In both cases, since move(φ,V1(Rg)) �= {0}, we
deduce that p0 is a machine-like stable configuration such that M(p0) = C0, and since
move(φ,V3(Rd)) �= {0}, then p2 is a machine-like stable configuration encoding a halting
M-configuration Ch . Hence, from Claim 3, since p0 �+ p2 then C0 �+ Ch and M halts. ��

Observe that the previous result only holds for the asynchronous mode: the proof relies
on the fact that a robot can have a look and perform the movement later on. As soon as robot
Rg or robot Rd has moved, all the robots stop moving. Hence it is only because robot Rg can
look at the beginning of the simulation, and then stay idle for the whole simulation of the
2-counter machine, until robot Rd looks at the moment where the halting configuration is
encoded, that the collision can occur. We see now that for the reachability problem, the issue
is different. In fact, the following theorem states that for all the three presented modes, this
latter problem is undecidable.

Theorem 3 REACHm is undecidable, for m ∈ {ss, s, as}.
In that case, the proof relies on a reduction from the repeated reachability problem of

a deterministic three-counter zero-initializing bounded-strongly-cyclic machine M , which
is undecidable [17]. A (deterministic) counter machine is zero-initializing if from the ini-
tial location �0, it first sets all the counters to 0. Moreover, an infinite run is said to be
space-bounded if there is a value K ∈ N such that all the values of all the counters stay
below K during the run. A counter machine M is bounded-strongly-cyclic if, starting from
any configuration, any space-bounded infinite run visits �0 infinitely often. The repeated
reachability problem we consider is expressed as follows: given a 3-counter zero-initializing
bounded-strongly-cyclic machine M without any halting configuration, does there exist an
infinite space-bounded run of M starting from the initial configuration? A configuration
of M is encoded in the same fashion as in the Proof of Theorem 2, with 3 robots encod-
ing the values of the counters. A machine-like configuration in that case is of the form
B3Fn1Rc1F

∗B4Fn2Rc2F∗B5Fn3Rc3F∗B6FmRcFnB7FiR�Fi
′
B8FpR�′FrB9Rt tFRtFF. A transition of

M is simulated by the algorithm in a similar way than in the Proof of Theorem 2, with
the difference that if a counter is supposed to be increased, the corresponding robot moves
accordingly even if there is no room to do it, yielding a collision. Hence, in any machine-like
non stable configuration, exactly one robot moves and the only finite runs are ending in a
collision, which is not machine-like. The algorithm that governs the robots in that case is
called φ and is also uniquely-sequentializable.

Let Machine_like be a three QFP formulae (with 50 free variables) such that
p ∈ [[Machine_like]] if and only if p is machine-like. We then let Goal =
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¬Machine_like and Ring(y) = y ≥ 0. We will also use a QFP formula Collision
such that p ∈ [[Collision]] if and only if p(i) = p( j) for some i, j ∈ R.

We now show that there is a size n ∈ [[Ring]], and a (50, n)-configuration p such that
Post∗s (φ,p) ∩ [[Goal]] = ∅ if and only if there exists an infinite space-bounded run of M .
From Theorem 1, since φ is uniquely-sequentializable, this also provides an undecidability
proof for REACHss and REACHas. We use the following claims, reminiscent of the claims used
in the Proof of Theorem 2.

Claim 4 Let p be a machine-like configuration. Then, for all configurations p′ ∈ Post∗s (φ, p),
we have p′ ∈ [[Machine_like ∨ Collision]].

The two following claims establish the correspondence between successive configurations
of the counter machine and successive configurations of the robots.

Claim 5 Let p be a stable and machine-like synchronous φ-configuration of the following
form:

B3F
n1Rc1F

n′
1B4F

n2Rc2F
n′
2B5F

n3Rc3F
n′
3B6F

mRcF
nB7F

iR�F
i ′B8F

pR�′FrB9Rt tFRtFF.

Let M(p) = (�i , n1, n2, n3) be the encoded M-configuration. Assume that p has the following
properties.

(i) if n1 > m (respectively n2 > m, n3 > m), then n ≥ n1 − m (respectively n ≥ n2 − m,
n ≥ n3 − m)(if �i modifies c1—respectively c2 or c3),

(ii) if �i increments c1 (resp. c2 or c3) then n′
1 > 0 (resp. n′

2 > 0, or n′
3 > 0), and

(iii) i + i ′ = p + r = |L|.
Then there exists a configuration p′ stable and machine-like such that p′ ∈ Post∗s (φ, p) and
M(p) � M(p′).

Claim 6 Let p, p′ be two stable, machine-like configurations. If there exists some k > 0 such
that p ⇒k

φ
p′ and for all 0 < j < k, if p ⇒ j

φ
p′′ then p′′ is not stable, then M(p) � M(p′).

The last claim formalizes the fact that the protocol makes the robots evolve infinitely from
stable configuration to stable configuration, unless a collision occurs, which stops all the
robots.

Claim 7 Let p be a machine-like configuration, which is not stable. Then, either |Post∗s (φ, p)|
is finite, or there exists p′ ∈ Post∗s (φ, p) with p′ stable.

We can now give the Proof of Theorem 3.

Proof of Theorem 3 Assume there is an infinite space-bounded run of M , and let K ∈ N be
the maximal value of all the counters during this run. Let p0 be the φ-configuration having
the following word-representation:

B3Rc1F
KB4Rc2F

KB5Rc3F
KB6RcFKB7R�Fi

′
B8FpR�′FrB9Rt tFRtFF.

Hence M(p0) is the initial configuration of M . It is easy to show that, for all p ∈
Post∗s (φ,p0), p satisfies conditions (i), (i i), and (i i i) of Claim 5. Hence, by applying itera-
tively Claim 5, we can build an infinite φ-run ρ = p0p1 · · · such that pi /∈ [[Collision]]
for all i ≥ 0. By Claim 4, pi ∈ [[Machine_like]] for all i ≥ 0, then pi /∈ [[Goal]] for all
i ≥ 0. Moreover, for all machine-like configurations p, for all i ∈ R, Vp[i →] �= Vp[← i],
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then p can have at most one successor by the relation ⇒φ , and ρ is the only φ-run starting

from p0. Hence, Post
∗
s (φ,p0) ∩ [[Goal]] = ∅.

Conversely, assume that there is n ∈ N and a (50, n)-configuration p0 such that
Post∗s (φ,p0) ∩ [[Goal]] = ∅. Hence, for all p ∈ Post∗s (φ,p0), p ∈ [[Machine_like]].
According to the definition of the protocol, there is a unique synchronous φ-run starting
from p0. By definition of the protocol, all the machine-like configurations have a successor
configuration. Hence, the run ρ starting from p0 is infinite. Let ρ = p0p1 · · · be such a run
and assume that p0 is not stable. Then, by Claim 7, there exists i ≥ 0, such that pi is stable.
By definition of φ, pi+1 is not stable, but by Claims 7 and 6, there exists j > i + 1 such that
p j is stable and M(pi ) � M(p j ). By iterating this reasoning, we can build an infinite run
of M starting in M(pi ). Let K be the maximal number of positions between respectively B3
and B4, B4 and B5 and B5 and B6 in p0. It is easy to see that this distance is an invariant of any
configuration in ρ. Hence, for any k ≥ 0 such that pk is stable, M(pk) = (�, n1, n2, n3)with
ni ≤ K for i ∈ {1, 2, 3}, and the infinite run of M built from ρ is indeed space-bounded. Let
C0 � C1 � . . . be such a run. Since M is bounded-strongly-cyclic, there exists i ≥ 0 such
that Ci = (�0, n1, n2, n3) with ni ∈ N for i = {1, 2, 3}, and since M is zero-initializing,
then there exists j ≥ i such that C j = (�0, 0, 0, 0). Hence, M has an infinite space-bounded
run from (�0, 0, 0, 0). ��

4 Decidability results

In this section,we show that even thoughSAFEas,REACHas,REACHss andREACHs are undecid-
able, the other cases SAFEs and SAFEss can be reduced to the complement of the satisfiability
problem for EP formulae, which is decidable and NP-complete [7]. This result may seem
strange at a first sight but it can easily be explained by the fact that robots protocols are most
of the time designed to work without any assumption on the initial configuration, except
that it is not a bad configuration, hence we can restrict the analysis to one-step successor
configurations.

4.1 Reducing safety to successor checking

The first step towards decidability is to remark that to solve SAFEs and SAFEss, it is enough
to look at the one-step successor. Let φ be a protocol over k robots and Ring and Bad
be respectively a ring property and a set of bad configurations. We have then the following
lemma.

Lemma 1 Let n ∈ N such that n ∈ [[Ring]] and m ∈ {s, ss}. There exists a (k, n)-
configuration p with p /∈ [[Bad]], such that Post∗m(φ, p) ∩ [[Bad]] �= ∅ iff there exists a
(k, n)-configuration p′ with p′ /∈ [[Bad]], such that Postm(φ, p′) ∩ [[Bad]] �= ∅.
Proof The ⇐ direction is obvious. For the ⇒ direction, if there exists a synchronous or
semi-synchronous run ρ = p0p1 . . . pn with p0 = p and pn being the first configuration in
ρ belonging to [[Bad]], then by taking p′ = pn−1 we have p

′ /∈ [[Bad]] and Postm(φ,p′) ∩
[[Bad]] �= ∅. ��
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4.2 Encoding successor computation in Presburger

We now describe various EP formulae to be used to express the successor configuration in
synchronous and semi-synchronous mode.

First we show how to express the view of some robot Ri in a configuration p, with the
following formula:

ConfigViewi (y, p1, . . . , pk, d1, . . . , dk)

:= ∃d ′
1, . . . , d

′
k−1, i1, . . . , ik−1.

k−2∧

j=1

d ′
j ≤ d ′

j+1

∧
k−1∧

�=1

⎛

⎝
k∨

j=1, j �=i

(p j = pi + d ′
� ∨ p j + y = pi + d ′

�) ∧ i� = j

⎞

⎠

∧0 < d ′
1 ∧

k−1∧

j=1

d ′
j ≤ y ∧

∧

��= j

i� �= i j

∧d1 = d ′
1 ∧

k−1∧

j=2

d j = d ′
j − d ′

j−1 ∧ dk = y − d ′
k−1.

Note that this formula only expresses in the syntax of Presburger arithmetic the definition
of Vp[i →] where the variable y is used to store the length of the ring, p1, . . . , pk represent
p and the variables d1, . . . , dk represent the view. In fact, we have the following statement.

Lemma 2 For all i ∈ [1, k], we have n, p,V | ConfigViewi if and only if V = Vp[i →]
on a ring of size n.

Proof Assume n,p,V | ConfigViewi . Then, there exist k − 1 variables, d ′
1, . . . , d

′
k−1 ∈

[1, n] such that 0 < d ′
1 ≤ d ′

2 ≤ · · · ≤ d ′
k−1. Moreover, thanks to the hypothesis on the

variables i1, . . . , ik−1, we deduce that there exists a bijection f : [1, k−1] → [1, k−1] such
that for all j �= i we have i f ( j) = j and p j = (pi + d ′

f ( j)) mod n. Finally, d1 = d ′
1 and for

all j ∈ [2, k−1], d j = d ′
j−d ′

j−1 and dk = n−d ′
k−1.Hence, ifwe consider the configurationp

defined by p( j) = p j for all j ∈ [1, n], then 〈d1, . . . , dk〉 = Vp[i →]. Conversely, let p be a
(k, n)-configuration andVp[i →] = 〈d1, . . . , dk〉. Then, n,p,V | ConfigViewi . Indeed,
by definition of the view, we let di ( j) ∈ [1, n] be such that (p(i) + di ( j)) � n = p( j) for all
j �= i and we let i1, . . . , ik−1 be a permutation of positions such that 0 < di (i1) ≤ di (i2) ≤
· · · ≤ di (ik−1). Then, for all j ∈ [2, k − 1], d j = di (i j ) − di (i j−1), d1 = di (i1) and dk =
n−di (ik−1). By interpreting the variables d ′

1, . . . , d
′
k−1 by respectively di (i1), . . . , di (ik−1),

it is easy to see that the formula is satisfied. ��
We also use the formula ViewSym(d1, . . . , dk, d ′

1, . . . , d
′
k) to compute the symmetry of

a view.

ViewSym(d1, . . . , dk, d
′
1, . . . , d

′
k)

:=
k∨

j=1

⎛

⎝
k∧

�= j+1

(d� = 0 ∧ d ′
� = 0) ∧

j∧

�=1

d ′
� = d j−�+1

⎞

⎠

Lemma 3 For all n ∈ N, for all views V,V′ ∈ [0, n]k , we have V,V’ | ViewSym if and

only if V′ = ←−
V .
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Proof Given n ∈ N, d1, . . . , dk, d ′
1, . . . , d

′
k ∈ [0, n] such that d1 �= 0we have 〈d ′

1, . . . , d
′
k〉 =←−−−−−−−〈d1, . . . , dk〉 if and only if there exists 1 ≤ j ≤ k such that d� = 0 for all j + 1 ≤ � ≤ k

and d ′
1 = d j , …, d ′

j = d1 and d ′
� = 0 for all j + 1 ≤ � ≤ k (by definition), if and only if

d1, . . . , dk, d ′
1, . . . , d

′
k | ViewSym. ��

We are now ready to introduce the formula Moveφ
i (y, p1, . . . , pk , p′), which is true if

and only if, on a ring of size n (represented by the variable y), the move of robot Ri according
to the protocol φ from the configuration p leads Ri to the new position p′. Here the variables
p1, . . . , pk characterize p.

Moveφ
i (y, p1, . . . , pk, p

′)
:= ∃d1, . . . , dk, d ′

1, . . . , d
′
k .

ConfigViewi (y, p1, . . . , pk, d1, . . . , dk)

∧ViewSym(d1, . . . , dk, d
′
1, . . . , d

′
k)

∧
[(

φ(d1, . . . , dk) ∧ (
(pi < y − 1 ∧ p′ = pi + 1)

∨(pi = y − 1 ∧ p′ = 0)
))

∨
(
φ(d ′

1, . . . , d
′
k) ∧ (

(pi > 0 ∧ p′ = pi − 1)

∨(pi = 0 ∧ p′ = y − 1)
))

∨
(
¬φ(d1, . . . , dk) ∧ ¬φ(d ′

1, . . . , d
′
k) ∧ (p′ = pi )

)]

Lemma 4 For all n ∈ N, for all (k, n)-configurations p and p′ ∈ [0, n−1], for all i ∈ [1, k],
we have n, p, p′ | Moveφ

i if and only if p′ = (p(i) +m) � n with m ∈ move(φ,Vp[i →]).

Proof We have n,p,p′ | Moveφ
i if and only if there exist d1, . . . , dk, d ′

1, . . . , d
′
k ∈ [0, n]

such that 〈d1, . . . , dk〉 = Vp[i →] (by Lemma 2) and 〈d ′
1, . . . , d

′
k〉 = ←−−−−−−−〈d1, . . . , dk〉 = Vp[←

i] (by Lemma 3) and either (a) Vp[i →] | φ and p′ = (pi + 1) � n, or (b) Vp[← i] | φ

and p′ = (pi − 1) � n, or (c) Vp[i →] �| φ, Vp[← i] �| φ and p′ = pi , if and only if
either (a) 1 ∈ move(φ,Vp[i →]) and p′ = (pi +1)�n or (b) −1 ∈ move(φ,Vp[i →]) and
p′ = (pi−1)�n or (c)move(φ,Vp[i →]) = {0} and p′ = pi if and only if p′ = (pi+m)�n
with m ∈ move(φ,Vp[i →]). ��
Now, given two (k, n)-configurations p and p′, and a k-protocol φ, it is easy to express the
fact that p′ is a successor configuration of p according to φ in a semi-synchronous run (resp.
synchronous run); for this we define the two formulae SemiSyncPostφ(y, p1, . . . , pk,
p′
1, . . . , p

′
k) and SyncPostφ(y, p1 . . . , pk, p′

1, . . . , p
′
k)) as follows:

SemiSyncPostφ(y, p1, . . . , pk, p
′
1, . . . , p

′
k)

:=
k∨

i=1

(
Moveφ

i (y, p1, . . . , pk, p
′
i )

∧
k∧

j=1, j �=i

((p′
j = p j ) ∨ Moveφ

j (y, p1, . . . , pk , p
′
j ))

)
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SyncPostφ(y, p1, . . . , pk, p
′
1, . . . , p

′
k)

:=
k∧

i=1

Moveφ
i (y, p1, . . . , pk, p

′
i )

Lemma 5 For all n ∈ N and all (k, n)-configurations p and p′, we have:
1. p ↪→ p′ if and only if n, p, p′ | SemiSyncPostφ ,
2. p ⇒ p′ if and only if n, p, p′ | SyncPostφ .

4.3 Results

Now, gathering the results above, in particular Lemmas 1 and 5, allows to conclude that
SAFEss and SAFEs can be expressed in Presburger arithmetic, hence the following theorem.

Theorem 4 SAFEs and SAFEss are decidable and in co-NP.

Proof We consider a ring property Ring(y), a protocol φ for k robots (which is a QFP
formula) and a set of bad configurations given by a QFP formula Bad(x1, . . . , xk). We know
by Lemma 1 that there exists a size n ∈ N with n ∈ [[Ring]], and a (k, n)-configuration p
with p /∈ [[Bad]], such that Post∗s (φ,p) ∩ [[Bad]] �= ∅ if and only if there exists a (k, n)-
configuration p′ with p′ /∈ [[Bad]], such that Postm(φ,p′) ∩ [[Bad]] �= ∅. By Lemma 5, this
latter property is true if and only if the following formula is satisfiable:

SyncPostφ(y, p1, . . . , pk, p
′
1, . . . , p

′
k)

∧Ring(y) ∧ ¬Bad(p1, . . . , pk)

∧Bad(p′
1, . . . , p

′
k)

For the semi-synchronous case, we replace SyncPostφ by SemiSyncPostφ . The co- NP
upper bound is obtained by the fact that the built formula is an EP formula of polynomial
size if the size of the formulae φ, Ring and Goal and that the satisfiability problem for EP
formulae is NP-complete [7]. ��

4.4 Restrictions to deal with asynchrony

We have seen that when we consider the asynchronous mode, then SAFEas is undecidable.
However, decidability can be regained by considering some restrictions on the protocol. First,
when it is uniquely-sequentializable, i.e. when in each configuration at most one robot can
decide to move then Theorems 1 and 4 lead us to the following result.

Corollary 1 When the protocol φ is uniquely-sequentializable, SAFEas is decidable.

We will see that it is possible to relax a bit this restriction by allowing more robots to
be able to move in a given configuration, but only if the following points are respected: the
movement of a strict subset of these robots does not allow new robots to move and does not
make the robots that could move originally change their move direction. This restriction can
be formalized as follows.

Definition 3 A protocol φ is pending-bounded if, for every configuration p, for all configu-
ration p′ ∈ Postss(p)\Posts(p), for every i ∈ R, move(φ,Vp′ [i →]) ⊆ move(φ,Vp[i →])
and if p(i) �= p′(i) then i /∈ Actφ(p′).
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We will now show that this new restriction, which is more general than the property of
being uniquely-sequentializable, allows us to regain decidability for the safety problem in
asynchronous mode.

Theorem 5 When a protocol φ is pending-bounded, then Post∗as(φ, p) = Post∗ss(φ, p) for all
configurations p.

In order to prove this theorem, we will need an intermediate proposition. When all the
robots are in an internal state where they are ready to look, the corresponding configuration
can be an initial configuration of the run. The following proposition establishes that, when a
protocol is pending-bounded, in a finite asynchronous run in which no configuration (apart
from the first one) could be an initial configuration, any reachable configuration could be
reached in one semi-synchronous step from the initial configuration.

Proposition 2 Let φ be a pending-bounded protocol, and consider an asynchronous φ-run
ρ = 〈p0, s0,V0〉〈p1, s1,V1〉 · · · 〈pL , sL ,VL 〉 ∈ Runsas(φ) satisfying the two following con-
ditions:

1. for all 0 < � < L, there exists i ∈ R such that s�(i) = MV.
2. there is no 0 < � ≤ L and no i ∈ R such that s�−1(i) = LK, s�(i) = MV and

move(φ,V�(i)) = {0} .
Then p� ∈ Postss(φ, p0) for all 0 < � ≤ L.

Proof We consider a φ-run ρ = 〈p0, s0,V0〉〈p1, s1,V1〉 · · · 〈pL , sL ,VL 〉 respecting the
stated hypothesis. Observe that any asynchronous run is in fact a succession of sequences of
robots that look and sequences of robots that move. We will now consider ρ as a sequence

〈p0, s0,V0〉 LK1�φ 〈p′
1, s

′
1,V

′
1〉 MV1�φ 〈p′

2, s
′
2,V

′
2〉 LK2�φ · · · MVm�φ 〈p′

2m, s′2m,V′
2m〉 where LK j

is a set of robots that perform a look action, and 〈p′
2 j−1, s

′
2 j−1,V

′
2 j−1〉 is the configuration

reached from 〈p′
2 j−2, s

′
2 j−2,V

′
2 j−2〉 when all the robots from LK j have looked (the order

does not matter). In fact
LK j�φ is a macro-transition gathering several consecutive transitions

from the original run. Similarly, MV j is a set of robots that perform a move action, and
〈p′

2 j , s
′
2 j ,V

′
2 j 〉 is the configuration reached from 〈p′

2 j−1, s
′
2 j−1,V

′
2 j−1〉 when all the robots

fromMV j have moved. The intermediate configurations successively reached while execut-
ing the different look or move actions gathered in this macro transition are of no interest for
the proof.

We now show by induction, for all 0 < � < m:

P1(�) for every robot i ∈ ⋃�
j=1 LK j , move(φ,V′

2�−1(i)) ⊆ move(φ,Vp0 [i →]),
P2(�) p′

2� ∈ Postss(φ,p0)\Posts(φ,p0), with
⋃�

s=1 MVs the set of robots that moved in
the semi-synchronous transition.

If � = 1, for all i ∈ LK�,V′
1(i) = Vp0 [i →], hence P1(1) is true.Moreover,p′

2(i) = p0(i)
if i /∈ MV1 and p′

2(i) = (p′
1(i) + m) � n, with m ∈ move(φ,V′

1(i)), if i ∈ MV1. Since
p′
1 = p0, MV1 ⊆ LK1 by definition, and V′

1(i) = Vp0 [i →] for all i ∈ MV1, then
p′
2 ∈ Postss(φ,p0). Finally, since there exists i ∈ R such that s′2(i) = MV, and since we

have assumed that if i ∈ LK1, then move(φ,V′
1(i)) �= {0}, we also have p′

2 /∈ Posts(φ,p0)
and P2(1) is also true.

Let now 1 ≤ � < m and assume that P1( j) and P2( j) are true for all 1 ≤ j ≤ �. We first
establish the following facts, that will be useful for the induction step.
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– For all j ≤ �+1,LK j ⊆ Actφ(p0). Indeed, let j ≤ �+1, then by the second condition on
the run considered in the proposition, we know that LK j ⊆ Actφ(p′

2 j−2). Moreover, by
induction hypothesis, p′

2 j−2 ∈ Postss(φ,p0)\Posts(φ,p0). Let i ∈ Actφ(p′
2 j−2). Then

move(φ,Vp′
2 j−2

[i →]) �= {0} and since φ is pending-bounded,move(φ,Vp′
2 j−2

[i →]) ⊆
move(φ,Vp0 [i →]). Hence, i ∈ Actφ(p0) and LK j ⊆ Actφ(p0). This fact also yields
⋃�+1

s=1 MVs ⊆ ⋃�+1
s=1 LKs ⊆ Actφ(p0).

– For all j, j ′ ≤ �+1,LK j∩LK j ′ = ∅ andMV j∩MV j ′ = ∅. For the sakeof contradiction,
let i ∈ LK j ∩ LK j ′ , and assume that j < j ′. Then there exists some j ≤ r < j ′
such that i ∈ MVr , because the robot has to execute its move before looking again. By
induction hypothesis,p′

2r ∈ Postss(φ,p0)\Posts(φ,p0). Sinceφ is pending-bounded and
p′
2r (i) �= p0(i) because robot i moved in that step, then i /∈ Actφ(p′

2r (i)). By iterating this
reasoning for every position between r and j ′ − 1, we obtain that i /∈ Actφ(p′

2 j ′−2), and
hence i /∈ LK j ′ , which contradicts the hypothesis. Hence LK j ∩ LK j ′ = ∅. Similarly,
if i ∈ MV j ∩ MV j ′ , then robot i has necessarily looked before the move in the macro-
step MV j and between the two moves, and there exist some r ≤ j ≤ r ′ ≤ j ′ with
i ∈ LKr ∩ LK′

r . Since LKr ∩ LKr ′ = ∅, this is impossible too.
– Finally, we show that

⋃�+1
s=1 MVs � Actφ(p0). We already know from the first item

that
⋃�+1

s=1 MVs ⊆ Actφ(p0). Assume for the sake of contradiction that
⋃�+1

s=1 MVs =
Actφ(p0). For i ∈ Actφ(p0), let si ≤ � + 1 be the unique index such that i ∈ MVsi .
Then s′2si = LK, and since the elements of {LKs | 1 ≤ s ≤ � + 1} are pairwise distinct,
s′r = LK for all 2si ≤ r ≤ 2�+2. Finally, s′2�+2(i) = LK for all i ∈ Actφ(p0), and since⋃�+1

s=1 LKs ⊆ Actφ(p0), s
′
2�+2(i) = LK for all i ∈ R. This contradicts the hypothesis

on the considered run. Hence
⋃�+1

s=1 MVs � Actφ(p0).

We have now the elements to show the induction step. Let i ∈ ⋃�+1
j=1 LK j . If

i ∈ LK�+1, V′
2�+1(i) = Vp′

2�
[i →] by definition. By P2(�), we know that p′

2� ∈
Postss(φ,p0)\Posts(φ,p0) and, since the protocol is pending-bounded, move(φ,Vp′

2�
[i →

]) ⊆ move(φ,Vp0 [i →]). Otherwise, there exists a unique j such that i ∈ LK j and
V′
2�+1(i) = V′

2 j−1(i) = Vp′
2 j−2

[i →]. By P1(2 j − 2), move(φ,Vp′
2 j−2

[i →]) ⊆
move(φ,Vp0 [i →]). Hence move(φ,V′

2�+1(i)) ⊆ move(φ,Vp0 [i →]) and P1(� + 1) is
true.

To show P2(� + 1), we examine the value of p′
2�+2. Let i ∈ R. Then,

p′
2�+2(i) =

{
p′
2�(i) if i /∈ MV�+1

(p′
2�(i) + m) � n, with m ∈ move(φ,V′

2�+1(i)) otherwise.

Let i ∈ MV�+1 ⊆ ⋃�+1
j=1 LK j . Since theMV j are pairwise distinct, i /∈ ⋃�

j=1MV j , and
by P1(� + 1), move(φ,V′

2�+1(i)) ⊆ move(φ,Vp0 [i →]). By P2(�),

p′
2�(i) =

{
(p0(i) + m) � n,m ∈ move(φ,Vp0 [i →]) if i ∈ ⋃�

j=1MV j

p0(i) otherwise.

Gathering these observations, we obtain

p′
2�+2(i) =

{
(p0(i) + m) � n,m ∈ move(φ,Vp0 [i →]) if i ∈ ⋃�+1

j=1MV j

p0(i) otherwise.
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We can conclude then that p′
2�+2 ∈ Postss(φ,p0). Since

⋃�+1
j=1MV j � Actφ(p0), not all

the activatable robots have moved in this portion of run, hence p′
2�+2 /∈ Posts(φ,p0) and

P2(� + 1) is true.
Il � = m, it is easy to show that p′

2� ∈ Postss(φ,p0) (and maybe also in Posts(φ,p0)).
Indeed, we can show P1(m) thanks to P2(m − 1) and all the P1( j), 0 < j < m, like in the
induction step. Then, with the same reasoning than in the induction step for P2, we can show
that p′

2m ∈ Postss(φ,p0) (only the fact that
⋃m

j=1MV j � Actφ(p0) is not ensured). So we
have the property

P ′(�) p′
2� ∈ Postss(φ,p0) for all 0 < j ≤ m.

Thanks to this, we can show the proposition. Let 0 < � ≤ L .

– If p� = p′
2k for some 0 < k ≤ m, then by P ′(k), p� ∈ Postss(φ,p0).

– If p� = p′
2k+1 for some 0 ≤ k < m, then by construction, p′

2k+1 = p′
2k , and again by

P ′(k), p� ∈ Postss(φ,p0).
– If p� corresponds to a configuration reached in the middle of a macro-transition MV j ,

it means that the run looks like 〈p0, s0,V0〉 LK1�φ 〈p′
1, s

′
1,V

′
1〉 MV1�φ 〈p′

2, s
′
2,V

′
2〉 LK2�φ

· · · LK j�φ 〈p′
2 j−1, s

′
2 j−1,V

′
2 j−1〉

MV′
j�φ 〈p�, s�,V�〉 · · · with MV′

j � MV j . Then,

MV′
j ⊆ ⋃ j

s=1 LKs . Let i ∈ MV′
j the last robot that moved and led to p�.

Then, by P1( j), move(φ,V′
2 j−1) ⊆ move(φ,Vp0 [i →]). By P2( j − 1), p′

2 j−2 ∈
Postss(φ,p0)\Posts(φ,p0). As above, these two facts allow with a simple computation
to prove that p� ∈ Postss(φ,p0). ��
Equipped with this result, we can now show easily Theorem 5.

Proof of Theorem 5 We show that for all configurations p, Post∗as(φ,p) ⊆ Post∗ss(φ,p),
the inverse inclusion being straightforward. Consider an asynchronous φ-run ρ =
〈p0, s0,V0〉〈p1, s1,V1〉 · · · 〈pm, sm,Vm〉 ∈ Runsas(φ). First we assume that this run respects
the condition (2) of Proposition 2, which is that no robot is scheduled to look unless it induces
an actual move, i.e. for all 0 ≤ k ≤ m, if sk(i) = MV, then move(φ,Vk(i)) �= {0}. If this
is not the case, we can modify the run by deleting the look action and the subsequent move
(if it exists) without modifying the reached configurations. We show the property by induc-
tion of the length of ρ. If m = 0, it is trivial. Assume now by induction hypothesis that
p j ∈ Post∗ss(φ,p0), for all j < m. Let 0 < � < m be the largest index such that s�(i) = LK
for all i ∈ R. If no such index exists, then, by Proposition 2, pm ∈ Postss(p0). Otherwise,
by induction hypothesis, p� ∈ Post∗ss(φ,p0). Moreover, 〈p�, s�,V�〉 . . . 〈pm, sm,Vm〉 is an
asynchronous φ-run such that, for all � < j < m, there exists i ∈ R such that s j (i) = MV.
Note that this run is well initialized because we have s�(i) = LK for all i ∈ R. Then from
Proposition 2, we deduce that pm ∈ Postss(φ,p�), hence pm ∈ Post∗ss(φ,p0). ��

Again, from Theorems 4 and 5 we immediately obtain the following result.

Corollary 2 When the protocol φ is pending-bounded, SAFEas is decidable.

4.5 Using logic to verify other interesting properties

Not only the method consisting in expressing the successor computation in Presburger arith-
metic allows us to obtain the decidability for SAFEs and SAFEss, as well as for SAFEas in some
restricted cases, but it also allows us to express other interesting properties. For instance, we
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can compute the successor configuration in asynchronous mode for a protocol φ working
over k robots thanks to the following formula:

AsyncPostφ(y, p1, . . . , pk, s1, . . . , sk, v1 . . . , vk, p
′
1, . . . , p

′
k, s

′
1, . . . , s

′
k, v

′
1, . . . , v

′
k)

:= ∃d1, . . . , dk ·
k∨

i=1

( ∧

j �=i

(p′
j = p j ∧ s′

j = s j ∧ v′
j = v j )

∧ s′
i = 1 − si ∧ (

(si = 0 ∧ v′
i = 〈d1, . . . , dk〉

∧ConfigViewi (n, p1, . . . , pk, d1, . . . , dk) ∧ p′
i = pi )

∨ (si = 1 ∧ v′
i = vi ∧ Moveφ

i (n, p1, . . . , pk, p
′
i )

))

To prove the correctness of this formula for an asynchronous configuration (p, s,V) with
k robots we make the analogy between the flags LK andMV and the naturals 0 and 1, which
means that in the definition of the vector s ∈ {LK,MV}k , we encode LK by 0 andMV by 1
and we then apply the definition of →as.

Lemma 6 For all n ∈ N and all (k, n) asynchronous configurations〈p, s,V〉 and 〈p′, s′,V′〉,
we have 〈p, s,V〉 � 〈p′, s′,V′〉 if and only if n, p, s,V, p′, s′,V′ | AsyncPostφ .

Note that one can also express the fact that one configuration is a predecessor of the other
in a straightforward way.

As stated earlier, one can also automatically check whether a given formula φ is indeed a
protocol, thanks to the formula

Protocolφ() := ¬∃d1, . . . , dk, d ′
1, . . . , d

′
k .

k∨

i=1

di �= d ′
i ∧ ViewSym(d1, . . . , dk, d

′
1, . . . , d

′
k) ∧ φ(d1, . . . , dk) ∧ φ(d ′

1, . . . , d
′
k)

We immediately obtain that

Lemma 7 A QFP formula φ for k variables is a protocol for k robots if and only if
Protocolφ is satisfiable.

It is also possible to check whether a protocol φ over k robots fits into the hypothesis
of Corollary 1, i.e. whether it is uniquely-sequentializable. We define for this matter the
formula:

UniqSeqφ() := ¬∃y, p1, . . . , pk, p′
1, . . . , p

′
k .

∨

i �= j,1≤i, j≤k

(Moveφ
i (y, p1, . . . , pk , p

′
i ) ∧ Moveφ

j (y, p1, . . . , pk , p
′
j )

∧p′
i �= pi ∧ p′

j �= p j .

By applying the definition of uniquely-sequentializable protocol and the result of
Lemma 4, we obtain directly the next result.

Lemma 8 The protocol φ is uniquely-sequentializable if and only if the formula UniqSeqφ

is satisfiable.
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Hence we deduce the following statement.

Theorem 6 Checking whether a protocol φ is uniquely-sequentializable is decidable.

Moreover we can as well verify whether a protocol φ over k robots is pending bounded
with a formula that encodes the conditions presented in Definition 3. For this matter we define
the formula PendingBoundedφ that is satisfiable if and only if φ is pending-bounded

PendingBoundedφ() := ¬∃y, p1, . . . , pk, p′
1, . . . , p

′
k .

SemiSyncPostφ(y, p1, . . . , pk, p
′
1, . . . , p

′
k)

∧¬SyncPostφ(y, p1, . . . , pk, p
′
1, . . . , p

′
k)

∧
∨

1≤i≤k

(
pi �= p′

i ∧ (∃q · q �= p′
i ∧ Moveφ

i (y, p′
1, . . . , p

′
k , q))

)

∨(
pi = p′

i ∧ (∃q.q �= p′
i ∧ ¬Moveφ

i (y, p1, . . . , pk , q) ∧ Moveφ
i (y, p′

1, . . . , p
′
k , q))

)

By the definition of pending-bounded protocols and applying the results of Lemmas 4
and 5, we get directly the following property concerning this formula.

Lemma 9 Theprotocolφ is pending-bounded if andonly if the formulaPendingBoundedφ

is satisfiable.

This allows us to deduce this last decidability result.

Theorem 7 Checking whether a protocol φ is pending-bounded is decidable.

5 Case studies

As explained in the previous section, given a protocol it is possible to reduce the verification
of certain properties to the satisfiability problem of some Presburger formulae. In order to
see if this translation was useful in practice, we have implemented a small prototype which
takes as input a protocol in the form of a formula, an initial set of configurations and a bad
set of configurations and generates the Presburger formulae corresponding to the property
we want to solve.

For our experiments, we have considered the exclusive perpetual exploration algorithms
proposed by Blin et al. [5]. The exclusive perpetual exploration consists in having robots
exploring a ring forever, that is, each node is visited infinitely often by at least one robot.
Moreover, for the protocol to be exclusive, no two robots should collide at the same node.
For small instances of k (number of robots) and n (number of nodes), it was possible to
model-check protocol proposals to ensure their correctness, but going to arbitrary n required
a manual proof [4] that was not mechanically verified. For the protocols proposed to solve
this problem we have generated the formulae corresponding to the following properties:

1. The proposed formula for the protocol is well defined, i.e. respects the conditions stated
in Definition 1;

2. No configuration where two robots collide at the same node is ever reached in the
synchronous mode (applying Theorem 4);

3. No configuration where two robots collide at the same node is ever reached in the
semi-synchronous mode (applying Theorem 4);
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4. The protocol is uniquely-sequentializable; (applying Theorem 6)
5. The protocol is pending-bounded (applying Theorem 7).

We have translated these problems into Presburger formulae in the SMT- LIB format [22]
and we have then used the SMT solver Z3 [11] to verify whether the generated formulae
were satisfiable or not.

The first algorithm we have studied from [5] is the one using a minimum of 3 robots. For
this algorithm, we have considered a correct version and a new one where we have introduced
a bug on purpose. Our two models for this algorithm are provided in “Appendix”. Note that
in this case, when we have studied the absence of collision, we have been able to verify that
this property holds (for the correct version of the algorithm) for any ring of size greater than
10, providing hence an automatic correctness criteria. We then studied another algorithm
proposed in [5] dedicated as well to the exclusive perpetual exploration of a ring. The goal
of this second algorithm was to maximize the number of robots. In that case the verification
process is not parametric anymore because the size of the ring is fixed and depends on the
number of robots (it is exactly 5 plus the number of robots). As a matter of fact, each time
we fix a number of robots, we obtain a different protocol to check and we have studied this
algorithm for 5 up to 12 robots. Models of this algorithm for 6 and 7 robots are provided in
“Appendix”. Note that in this case, the main reason we performed experiments was to see
whether the solver could handle relatively big formulae generated by our method.

Table 2 summarizes the results we obtained by running the solver Z3 on the generated
files. In this table, we use the symbol ✓ to state that a property holds and in the other case we
use ✗. In some cases, the ones indicated by ?, we stopped the solver because the computation
was taking too much time (more than 15 min).

We have hence proved automatically that the algorithm using a minimum of 3 robots was
safe for any rings of size greater than 10 in the synchronous and semi-synchronous modes.
We have also checked that our method was able to detect a bug introduced on purpose (as it
is shown in the second column of the table). We have furthermore verified that this algorithm
is not uniquely-sequentializable neither pending bounded and as a matter of fact, we cannot
deduce any correctness result for the asynchronous mode. An example of the SMT- LIB file
used to prove the absence of collision is given in “Appendix”.

For the algorithm designed to put a maximum robot on a ring in order to perform the
perpetual exploration, we have shown automatically that for any number of robots going
from 5 to 12, the protocol is not well specified, in the sense that there exists a configuration in
which a robot’s view is not symmetric and yet the robot can move in both directions. We have
checked manually that this was indeed the case and found that the problem comes from the
rules RL2M and RL3M presented in [5]. However, even if the considered protocol is not well
specified, our translation into Presburger formula to check the absence of collision allows to
deal with such non deterministic moves. We have shown that the algorithm for 6 robots was
safe, but we found some bugs for 5, 7, 8, 9, 10, 11 and 12 robots. It was stated in [5] that the
algorithm was not working for 5 robots however the other cases are new bugs. We point out
that the bugs are on the version of the algorithm we have manually translated from [5], but
on the other hand our way to present the protocol is unambiguous oppositely to the protocol
presented in [5] which is sometimes unclear. On the other hand, on these examples, we have
as well seen the limit of our methods: with many robots and long protocols, the SMT solver
may not be able to finish the computation. In our case, it was not able to handle the files to
check that the protocol is uniquely-sequentializable for more than 10 robots and that it is
pending bounded for more than 8 robots.
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6 Conclusion

We have addressed two main problems concerning formal verification of protocols of mobile
robots, and answered the open questions regarding decidability of the verification of such
protocols, when the size of the ring is given as a parameter of the problem. Note that in
such algorithms, robots can start in any position on the ring. Simple modifications of the
proofs in this paper allow to obtain undecidability of both the reachability and the safety
problem in each of the three presented modes, when the starting configuration of the robots
is given. Hence we give a precise view of what can be achieved in the automated verification
of protocols for robots in the parameterized setting, and provide ameans of partially verifying
them. Of course, to fully demonstrate the correctness of a tentative protocol, more properties
are required (like, all nodes are visited infinitely often) that are not handledwith our approach.
Nevertheless, as intermediate lemmas (for arbitrary n) are verified, thewhole process of proof
writing is both eased and strengthened.

An application of Corollary 1 and Theorem 6 deals with robot program synthesis as
depicted in the approach ofBonnet et al. [6]. To simplify computations and savememorywhen
synthesizingmobile robot protocols, their algorithmonlygenerates uniquely-sequentializable
protocols (for a given k and n). Now, given a protocol description for a given n, it becomes
possible to check whether this protocol remains uniquely-sequentializable for any n. After-
wards, regular safety properties can be devised for this tentative protocol, for all models of
computation (that is, FSYNC, SSYNC, and ASYNC). Protocol design is then driven by the
availability of a uniquely-sequentializable solution, a serious asset for writing handwritten
proofs (for the properties that cannot be automated).

Last, we would like to mention possible applications of our approach for problems whose
core properties seem related to reachability only. One such problem is exploration with
stop [4]: robots have to explore and visit every node in a network, then stop moving forever,
assuming that all robots initial positions are distinct. All of the approaches published for this
problem make use of towers, that is, locations that are occupied by at least two robots, in
order to distinguish the various phases of the exploration process (initially, as all occupied
nodes are distinct, there are no towers). Our approach still makes it possible to check if the
number of created towers remains acceptable (that is below some constant, typically 2 per
block of robots that are equally spaced) from any given configuration in the algorithm, for
any ring size n. As before, such automatically obtained lemmas are very useful when writing
the full correctness proof.

Appendix: Models for the algorithmwith three robots

See Figs. 6, 7, 8, 9, 10 and 11.
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Fig. 6 Correct model for the algorithm with 3 robots

Fig. 7 Buggy model for the algorithm with 3 robots
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Fig. 8 Model for the algorithm with 6 robots on ring of size 11
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Fig. 9 Model for the algorithm with 7 robots on ring of size 12 (part I)
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Fig. 10 Model for the algorithm with 7 robots on ring of size 12 (part II)
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Fig. 11 Extract of the SMT- LIB code to check the absence of collision in the algorithm with 3 robots
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