
Formal Methods in System Design (2019) 54:64–109
https://doi.org/10.1007/s10703-019-00331-2

Quantitative static analysis of communication protocols
using abstract Markov chains

Abdelraouf Ouadjaout1 · Antoine Miné1,2

Published online: 17 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper we present a static analysis of probabilistic programs to quantify their perfor-
mance properties by taking into account both the stochastic aspects of the language and those
related to the execution environment. More particularly, we are interested in the analysis of
communication protocols in lossy networks and we aim at inferring statically parametric
bounds of some important metrics such as the expectation of the throughput or the energy
consumption. Our analysis is formalized within the theory of abstract interpretation and
soundly takes all possible executions into account. We model the concrete executions as a set
of Markov chains and we introduce a novel notion of abstract Markov chains that provides
a finite and symbolic representation to over-approximate the (possibly unbounded) set of
concrete behaviors. We show that our proposed formalism is expressive enough to handle
both probabilistic and pure non-deterministic choices within the same semantics. Our analy-
sis operates in two steps. The first step is a classic abstract interpretation of the source code,
using stock numerical abstract domains and a specific automata domain, in order to extract
the abstract Markov chain of the program. The second step extracts from this chain partic-
ular invariants about the stationary distribution and computes its symbolic bounds using a
parametric Fourier–Motzkin elimination algorithm. We present a prototype implementation
of the analysis and we discuss some preliminary experiments on a number of communica-
tion protocols. We compare our prototype to the state-of-the-art probabilistic model checker
Prism and we highlight the advantages and shortcomings of both approaches.

Keywords Static analysis · Abstract interpretation · Probabilistic programs · Quantitative
analysis · Markov chains · Performance analysis · Communication protocols

This work is partially supported by the European Research Council under Consolidator Grant Agreement
681393 – MOPSA.

B Abdelraouf Ouadjaout
abdelraouf.ouadjaout@lip6.fr

Antoine Miné
antoine.mine@lip6.fr

1 Laboratoire d’Informatique de Paris 6, LIP6, CNRS, Sorbonne Université, 75005 Paris, France

2 Institut Universitaire de France, Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-019-00331-2&domain=pdf
http://orcid.org/0000-0001-7248-5914

Formal Methods in System Design (2019) 54:64–109 65

1 Introduction

The analysis of probabilistic programs represents a challenging problem.The difficulty comes
from the fact that execution traces are characterized by probability distributions that are
affected by the behavior of the program, resulting in very complex forms of stochastic pro-
cesses. In such particular context, programmers are interested in quantitative properties not
supported by conventional semantics analysis, such as the inference of expected values of
performance metrics or the probability of reaching bug states.

In this work, we propose a novel static analysis for extracting symbolic quantitative
information from probabilistic programs. More particularly, we focus on the analysis of
communication protocols and we aim at assessing their performance formally. The proposed
approach is based on the theory of abstract interpretation [9] that provides a rigorous math-
ematical framework for developing sound-by-construction static analyses. In the following,
we describe informally the main contributions of our work and we illustrate our motivations
through some practical examples.

Stationary distributions Generally, the quantification of performance metrics for such
systems is based on computing the stationary distribution of the associated random process
[13]. It gives the proportion of time spent in every reachable state of the system by considering
all possible executions. This information is fundamental to compute the expected value of
most common performance metrics. For instance, the throughput represents the average
number of transmitted packets per time unit. By identifying the program locations where
packets are transmitted and by computing the value of the stationary distribution at these
locations, we obtain the proportion of packets sent in one time unit. Many other metrics are
based on this distribution, such as the duty cycle (proportion of time where the transceiver is
activated) or the goodput (the proportion of successfully transmitted data).

To our knowledge, no existing approach can obtain such information (i) automatically
by analyzing the source code, (ii) soundly by considering all executions in possibly infinite
systems and (iii) symbolically by expressing the distribution in terms of the protocol parame-
ters. Indeed, most proposed solutions focus on computing probabilities of program assertions
[7,43] or expectation invariants [3,8]. Only Prism [29], thanks to its extension Param [25],
can compute stationary distributions of parametric Markov chains, but it is limited to finite
state systemswith parametric transition probabilities, whereaswe also support systemswhere
the number of states is a (possibly unbounded) parameter.

Example 1 To illustrate this problem, consider the simple wireless protocol shown in Fig. 1a
representing a typical backoff-based transmission mechanism used in embedded sensing
applications. Assume a star network topology in which a central node collects the readings
of a set of surrounding sensor nodes that periodically send their measurements via wire-
less transmissions. To do that, each sensor node repeatedly activates its sensing device and
acquires some readings by calling the sense function. To avoid collisions when sending the
data, a random backoff is used by sampling a discrete uniform distribution from the range
[1, B], where B is an integer parameter of the protocol. The node remains in sleep mode
during this random period, and after it wakes up, data is transmitted using the unicast
function. Such functions are generally implemented in hardware by the wireless transceiver,
so we give in Fig. 1b its model. Transmission/reception operations are emulated with simple
waiting periods; the constant TX_DELAY models the transmission delay and the constant
RX_DELAYmodels the reception delay. Packet losses aremodeled using a Bernoulli distribu-
tion, meaning that a packet is transmitted and acknowledgedwith some parameter probability

123

66 Formal Methods in System Design (2019) 54:64–109

(a) (b)
Fig. 1 a Example of a backoff-based transmission protocol. b Hardware model of the unicast built-in
function

p, or lost with probability 1 − p. Finally, in order to save energy, the sensor node remains
inactive for a duration determined by a parameter S, and then iterates again the same process
indefinitely.

A critical task for designers of such systems is to fine-tune the protocol’s parameters B
and S in order to achieve optimal performance w.r.t. the requirements of the application.
Consider for instance that we are interested in the goodput Γ of a sensor; that is, the average
number of data packets that are successfully received in one time unit. To study the variation
of Γ , system designers generally derive manually a mathematical stochastic model of the
protocol. In this case, discrete time Markov chains are a powerful model embedding many
interesting properties that help quantify the performances of our system [23,42].

We give in Fig. 2a the chain associated with the protocol. Each state of the chain corre-
sponds to a duration of one time unit (e.g. one millisecond). The goodput Γ of the protocol
is, therefore, the proportion of time spent in state ack, which can be obtained by com-
puting the stationary distribution π of the chain. This is done by finding the eigenvector
π

def= 〈π ss,πbk11
, . . . ,π t x ,πack,πack,π sl1 , . . . 〉 associated with the eigenvalue 1 of the

following stochastic matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
B . . . 1

B 0 0 0 0 . . . 0
0 0 . . . 0 1 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
. . .

...

0 0 . . . 0 1 0 0 0 . . . 0
0 0 . . . 0 0 p (1 − p) 0 . . . 0
0 0 . . . 0 0 0 0 1 . . . 0
0 0 . . . 0 0 0 0 1 . . . 0
0 0 . . . 0 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
. . .

...

1 0 . . . 0 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which can be done by solving π = πP verifying
∑

π i = 1. Existing verification solutions,
such as Param [25], can handle symbolic entries within the stochastic matrix P in order to
find parametric solutions. However, to our knowledge, matrices with parametric structures

123

Formal Methods in System Design (2019) 54:64–109 67

Fig. 2 a Discrete time Markov
chain of the protocol. ss: sensing
state,
{ bk ji | i ∈ [1, B] ∧ j ∈ [1, i] }:
backoff states, t x : transmission
state, ack: acknowledgment state,
ack: loss state, { sli | i ∈ [1, S] }:
sleep states. b Inferred abstract
Markov chain

(a)

(b)

(i.e. when the size depends on some parameters; in this case B and S) are out of the scope of
existing solutions.

Our analysis can find solutions for such problems. When applied on this particular exam-
ple, it infers in finite time the following bounds of πack in terms of parameters B, S and
p:

B2(p − 1) − B(p − 3) + 2(p − 1)

3B2 + 2BS + B + 4
≤ πack ≤

(
B2 − B + 2

)
p

3B2 + 2BS + B + 4
(1)

Since Γ = πack , this parametric interval is guaranteed to cover all possible values of the
goodput.

To obtain the invariant (1), we first construct a computable, finite-size over-approximation
of the concrete chain using a novel domain of abstractMarkov chains.We proceed by abstract
interpretation of the program and we obtain the abstract Markov chain shown in Fig. 2b. Each
abstract state over-approximates a set of states of the concrete Markov chain by identifying
their (i) common program location, (ii) the invariant of reachable memory environments
and (iii) the number of time ticks ν spent in such configuration. For instance, the transition

〈l4,ack ≥ 0 ∧ pkt ≥ ack, ν = 1〉
1
B→ 〈l7,ack ≥ 0 ∧ pkt ≥ ack ∧ t = 1, ν = 1〉

represents the case of choosing a backoff window of length 1, while 〈l4,ack ≥ 0 ∧ pkt ≥
ack, ν = 1〉

B−1
B→ 〈l7,ack ≥ 0∧pkt ≥ ack∧t ∈ [2, B], ν = t〉 aggregates the remaining

B − 1 cases.

123

68 Formal Methods in System Design (2019) 54:64–109

Thanks to a novel widening operator, we ensure the finite size of the abstract chain and
the convergence of computations in finite time. After convergence, we extract from this
abstract chain a number of distribution invariants that characterize the boundaries of the
stationary distribution vector π . These invariants are represented as a parametric system
of linear inequalities where the unknowns are the entries of π partitioned with respect to
the abstract states of the abstract chain, and the coefficients are functions of the program
parameters. Using a resolution method based on a parametric Fourier–Motzkin elimination,
we obtain the invariant (1). 	

Generalized lumping One of the most important challenges that hamper the use of Markov
chains in modeling real-life systems is the state space explosion problem. The lumping
technique [27] aims to reduce the size of a Markov chain by aggregating states into partitions
in a way that allows to establish a link between the quantitative properties the original chain
and the lumped one. Themain challenge of this approach is to find the appropriate partitioning
that preserves (partially) the Markov property of the lumped chain [6]. This fundamental
property stipulates that the determination of future aggregate states should depend only upon
the present aggregate state, not the past ones. This allows us to take benefit from classic results
of Markov chains on the lumped process, but limits the application scope of the technique to
a narrow range of partitioning policies.

Our extraction and resolution method of distribution invariants—not being limited to the
case of communication protocols only—can be considered also as a generalized lumping
technique of arbitrary Markovian processes. Indeed, our method does not impose any condi-
tion on the input chain and can be applied using any partitioning policy, even if the resulting
lumped chain violates the Markov property. This represents a key missing property in exist-
ing lumping techniques because it decouples the analysis from the partitioning policies,
which offers a means to adjust the efficiency/precision tradeoff while keeping the soundness
guarantee in all cases.

Example 2 Consider the example Markov chain depicted in Fig. 3a and assume the partition-
ing P = {{a}, {b, c}, {d}}. We notice that this chain is not lumpable w.r.t. P since the states of
the partition {b, c} do not preserve the Markov property. Indeed, the probability distributions
of b and c for choosing the future partitions are different and cannot be merged into a single
valid probability distribution, except for the case when p = 1

2 .
Our method does not impose such restrictions, so we can construct the abstract Markov

chain shown in Fig. 3b that respects the partitioning P but violates the Markov property.

This is reflected by the non-standard outgoing transition probabilities {b, c} max(p,1−p)→ {b, c}
and {b, c} max(p,1−p)→ {d}, that cannot construct a valid probability distribution since their
sum exceeds 1. Informally, such a non-standard transition A

ω→ B means that the maximal
outgoing probability from a state in partition A to any state in partition B does not exceed
the probability ω.

By constructing the distribution invariants of this abstract Markov chain and resolving
the obtained parametric linear system, we find the symbolic bounds of πa , πa + πa and
πd shown in Fig. 3c–e respectively. We notice that the precision of the obtained results,
expressed as the distance between the upper and the lower bound, varies depending on the
value of p. However, the exact solution is found when p = 1

2 , which corresponds to the case
when the chain is lumpabale. 	

123

Formal Methods in System Design (2019) 54:64–109 69

(a) (b)

(c) (d) (e)

Fig. 3 Generalized Markov chain lumping. a Original chain. b Lumped chain. c Variation bounds of πa . d
Variation bounds of πb + πc . e Variation bounds of πd

Non-determinism When the stochastic behavior of the system is not totally known,
non-determinism is a valuable tool to overcome this lack of information. However, while
probability and non-determinism have been widely studied separately in the literature of
program analysis, there exist only few works that can mix them within a same computable
semantics [11,37]. The main challenge for such analyses is the difficulty to reason about pro-
gram traces in terms of (possibly unbounded) sets of heterogeneous probability distributions
in order to infer interesting quantitative information.

A well-known stochastic tool supporting both probabilities and non-determinism is the
model ofMarkov decision processes (MDP) [41]. Informally, a MDP is an extended Markov
chain model in which each state can decide which probability distribution to use before
choosing the next state according to it. In other words, at each state of the MDP, a non-
deterministic choice from a finite number of transition distributions is allowed, while in
(deterministic) Markov chains only one distribution can be used. Since (i) an MDP can
be viewed as an unbounded set of (possibly infinite) Markov chains as we will see later,
and (ii) our abstract domain can over-approximate sets of Markov chains of arbitrary sizes,
our analysis can be easily extended to handle MDPs, which allows a natural semantics
formalization for both pure non-determinism and probabilities.

Example 3 Let us go back to our first motivating example in order to introduce non-
deterministic choices. Assume that our target embedded system is equipped with a hardware
clock that may exhibit occasional drifts, but the distribution of these events is unknown. We
model this phenomenon by redefining wait using the non-deterministic boolean operator ?

as shown in Fig. 4c. For illustration purposes, we use a basic additive drift model that simply
increments the clock by one tick in a non-deterministic way. Despite being unrealistic, it

123

70 Formal Methods in System Design (2019) 54:64–109

(a) (b) (c)

Fig. 4 a Example of a non-deterministic backoff-based transmission protocol. b hardware model of the
unicast built-in function. c hardware clock model with non-deterministic drifts

simplifies the presentation of the main challenges of this problem. The corresponding MDP
is depicted in Fig. 5a.We can see that with this small change, the structure of model increased
significantly which makes it more difficult to study analytically.1

The abstract Markov chain inferred by our analysis is – on the other hand – quite similar to
the deterministic case, as shown in Fig. 5b. In fact, the structure remained the same while the
state invariants have changed according to the introduction of the non-determinism. More
particularly, the sojourn time in the backoff and sleep states (identified by the program
location l33) reflects such non-determinism with the interval invariants. Using the same
resolution method of distribution invariants as the deterministic case, we obtain the new
goodput invariant:

B2(p − 1)(S + 1) + 2BS + 3(p − 1)(S + 1)

3B2(S + 1) + 2B
(
S2 + 3S + 1

) + 5(S + 1)
≤ Γ

≤
(
B2 + 3

)
p(S + 1)

3B2(S + 1) + 2B
(
S2 + 3S + 1

) + 5(S + 1)

	

Contributions To sum up, we propose a novel static analysis by abstract interpretation
based on three main contributions:

1. First, we introduce a novel notion of abstract Markov chains that approximates a set
of discrete time Markov chains. These abstract chains are inferred automatically by
analyzing the source code of the program. For the sake of clarity, we start by limiting
the scope of the analysis to probabilistic programs without non-deterministic choices.
Thanks to a novel widening algorithm, these chains are guaranteed to have a finite size
while covering all possible probabilistic traces of the program.

2. Our second contribution is a result for extracting distribution invariants from an abstract
Markov chain in the form of a system of parametric linear inequalities for bounding
the concrete stationary distribution. Using a parametric-version of the Fourier–Motzkin

1 Note that the hardware model of the function unicast employs the wait primitive since it emulates the
physical delay of wireless transmissions, which is not affected by the drifts of the system clock.

123

Formal Methods in System Design (2019) 54:64–109 71

(a)

(b)

Fig. 5 a Markov decision process of the protocol. Diamond nodes represent non-deterministic choices. b
Associated abstract Markov chain

elimination algorithm, we can infer symbolic and guaranteed bounds of the property of
interest.

3. Finally, we extend the previous analysis in order to support programs with non-
deterministic choices and we show how we can preserve the soundness of the extracted
distribution invariants.

The foundations of our ideas have been previously described in [39]. The present article
extends our previous work by the support of non-determinism and the full correctness proof
of the distribution invariants. Also, we provide a more comprehensive description of the
semantics and a discussion of additional experimental results.

Limitations Our approach is still in a preliminary development phase and presents some
limitations. The analysis supports only discrete probability distributions, such as Bernoulli
and discrete uniformdistributions. Ourmodel supports symbolic parameters of these distribu-
tions, but does not support dynamic modification of the parameter of a Bernoulli distribution
during execution. We limit the description herein to a simple C-like language and we do not
support yet the analysis of real-world implementations. Finally, we support the analysis of

123

72 Formal Methods in System Design (2019) 54:64–109

only one node of the network. The interactions via messages with the remaining nodes is not
addressed in this work.

Outline The remaining of the paper is organized as follows. We present in Sect. 2 the
concrete semantics of the deterministic analysis. Section 3 introduces the domain of abstract
Markov chains and we detail in Sect. 4 the method to extract the stationary distribution
invariants from an abstract chain and how we can infer symbolic bounds of the property of
interest. We show in Sect. 5 how we can extend the analysis to support non-deterministic
programs. The results of the preliminary experiments are presented in Sect. 6. We discuss
the related work in Sect. 7 and we conclude the paper in Sect. 8.

2 Concrete semantics

We consider communication protocols that can be represented as (possibly infinite) discrete
timeMarkov chains. For the clarity of presentation, we target a simple probabilistic language
PSimplwith a limited, albeit sufficient, set of features. The language supports sampling from
Bernoulli and uniform distributions, which are widely used in communication protocols. We
consider a discrete time scale and we assume that all statements are instantaneous except
for a statement wait. In the following, we describe the syntax of the language, its con-
crete semantics and the computation method of the stationary distribution associated to a
probabilistic program.

2.1 Language syntax

We give in Fig. 6 the syntax of PSimpl. We consider boolean and integer expressions, with
standard constructs such as boolean/integer constants c ∈ V def= B ∪ Z, variables id ∈ X or
results of unary/binary operations.PSimpl supports common statements such as assignments,
if conditionals and while loops, in addition to the statement waitl e that models the fact
that the program spends e ticks in the current control location l. Probabilistic choices are
provided by two built-in functionsuniforml andbernoullil , where the annotation l ∈ L
represents the call site location. The function uniforml(e1, e2) draws a random integer
value from a discrete uniform distribution over the interval [e1, e2]. A call to the function
bernoullil() returns a boolean value according to a Bernoulli distribution with parameter
pl . Note that this parameter is not an argument of the function bernoullil() because our
analysis does not support dynamic modification of the parameter of Bernoulli distributions
at runtime. Nevertheless, pl is symbolic and can represent any range in [0, 1]. To sum up, our
analysis can accept as parameter pl an interval of values, andwill give a result that is sound for
any input value of pl within this interval, as long as pl is not modified during the execution.

2.2 Markov chains

PSimpl allows defining programs representing discrete time Markov chains over possibly
unbounded state spaces. Two key features of the language are important to achieve that. First,
the ability to draw values from probability distributions allows creating probabilistic control
flows, similarly to Markov chains. This leads us to the definition of the following notion of
events:

123

Formal Methods in System Design (2019) 54:64–109 73

Fig. 6 Syntax of PSimpl

Definition 1 (Events) The set of all possible random outcomes that can occur during execu-
tion defines the set of events:

Ξ
def= { bl , bl | l ∈ L↓bernoulli } ∪ { ui,a,b

l | l ∈ L↓uniform ∧ i ∈ [a, b] }

where L↓f ⊆ L is the set of call site locations of function f. Events bl and bl denote the
two outcomes of a call to bernoullil(). An event u

i,a,b
l denotes the i th outcome of a call

uniforml(e1, e2), where a and b are the evaluation in the current execution environment
of e1 and e2 respectively.

The second feature of the language is the function wait that expresses time elapse.
While communication protocols frequently use waits of more that one time unit, this can
be modeled without loss of generality as sequences of waits of one time unit, hence classic
Markov chains assume, for simplicity, that the sojourn time in each state is always one.
However, an important feature of our language is the ability to use symbolic expressions as
parameters of wait, hence, this simplification is no longer possible: we need to explicitly tag
each state of our Markov chains with a symbolic, possibly non-unit sojourn time.

Dually, all non-waiting operations in a communication protocol correspond to a change
of program state that does not advance time, and is thus not observable at the time scale of
Markov chains. Therefore, we adopt a two-level trace semantics, as introduced by Radhia
Cousot in her thesis [12, Section 2.5.4], that makes a distinction between observable and
non-observable transitions. We give here a definition of these two types of traces adapted to
our settings:

Definition 2 (Observable states) Let E def= X → V be the set of memory environments
mapping variables inX to their values in V. An observable state (l, ρ, ν) ∈ Σ

def= L×E×N
+

represents the memory environment ρ that the program reaches at location l while spending
a sojourn time of ν time ticks.

Definition 3 (Scenarios) A sequence of non-observable transitions is called a scenario and
is defined as ω ∈ Ω

def= Ξ∗ expressing sequences of random events that occur between two
observable states. In the sequel, we denote by ε the empty scenario word.

Definition 4 (Observable traces) The observable traces are the set TΩ
Σ

def= { σ0
ω1→ σ1

ω2→
· · · | σi ∈ Σ ∧ ωi ∈ Ω } ∪ { ε } composed of transitions among observable states labeled
with scenarios. An empty observable trace is denoted by ε.

123

74 Formal Methods in System Design (2019) 54:64–109

Fig. 7 Concrete semantics of expressions

Fig. 8 Concrete semantics of statements

2.3 Semantics domain

The concrete semantics domain of our analysis is defined as D def= ℘(TΩ
Σ × E × Ω). An

element (τ, ρ, ω) ∈ TΩ
Σ ×E×Ω encodes the set of traces reaching a given program location

and is composed of three parts: (i) the observable trace τ ∈ TΩ
Σ containing the past transitions

of the Markov chain before the current time tick, (ii) the current memory environment ρ ∈ E,
and (iii) the partial scenario ω ∈ Ω of non-observable random events that occurred between
the last tick and the current execution moment.

To obtain the set of all traces of a program, we proceed by induction on its abstract syntax
tree using a set of concrete evaluation functions E � . � ∈ D → ℘(V × Ω) for expressions
and a set of concrete transfer functions S � . � ∈ D → D for statements as follows:

Expressions We give in Fig. 7 the concrete semantics of expression evaluation over a
concrete element R ∈ D. Since expressions do not generate new time ticks but may involve
probabilistic events, evaluation functions E � . � ∈ D → ℘(V × Ω) return a set of evaluated
values alongwith the updated scenarios. Two cases are particularly interesting. The semantics
of a call bernoullil() is to fork the current partial scenarios ω depending on the result
of the function. We append the event bl in the true case, or the event bl in the false case
and we return the corresponding truth value. For the expression uniforml(e1, e2), we also
fork the partial scenarios, but the difference is that the number of branches depends on the
evaluations of e1 and e2 in the current memory environment. More precisely, the number of
forks corresponds to the number of integer points between the values of e1 and e2.

Statements The semantics of statements is shown in Fig. 8. Most cases have a standard
definition. The assignment statement updates the current memory environment by mapping
the left-hand variable to the evaluation of the expression. For the if statement, we filter
the current environments depending on the evaluation of the condition, and we analyze each
branch independently before merging the results. Also, a loop statement is formalized as a
fixpoint on the sequences of body evaluation with a filter to extract the iterations violating the

123

Formal Methods in System Design (2019) 54:64–109 75

loop condition. Finally, the semantics of the statement waitl e is to extend the observable
traces with a new transition to a state where the sojourn time is equal to the evaluation of the
expression e. The label of this new transition is simply the computed partial scenario, which
is reset to the empty word ε since we keep track of events traces only between two wait
statements.

2.4 Stationary distributions

Informally, the stationary distribution of a discrete time Markov chain, also called limiting
or steady-state distribution, is the probability vector giving the proportion of time that the
chain will spend in each state after running for a sufficiently long period. However, in the
case where a program P ∈ stmt contains uninitialized parameters in a given initial set of
states I ⊆ E, the resulting traces S � P � may represent several distinct Markov chains. More
precisely, each initial environment ρ ∈ I corresponds to exactly one Markov chain. There-
fore, we will not obtain a single stationary distribution corresponding to P, but a parametric
stationary distribution function that maps initial values of parameters to the distribution of
the corresponding chain.

Let us define the extraction function M � P � ∈ E → ℘(TΩ
Σ) that computes the traces of

a single Markov chain as the output of S � P � on a given initial environment and an empty
trace:

M � P �ρ
def= { τ | ∃(τ, ρ′, ω) ∈ S � P �{ (ε, ρ, ε) } }

Let π � P � ∈ E → Σ → [0, 1] be the probability vector representing the stationary
distribution of the Markov chain corresponding to a given initial environment. To find this
distribution, we first define the notion of scenario probability:

Definition 5 (Scenario probability) The function Pr � ω � ∈ E → [0, 1] gives the probability
of a scenario ω ∈ Ω by combining the probabilities of its individual events. Let pl be a
symbolic variable representing the probability parameter of a Bernoulli distribution at call
site l ∈ L . We define Pr � ω � by structural induction as follows:

Pr � ω �ρ
def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ω = ε

ρ[pl] if ω = bl
1 − ρ[pl] if ω = bl

1
b−a+1 if ω = ui,a,b

l

Pr � ω �ρ Pr � ξ � ρ if ω = ωξ

Empty scenario ε has probability 1 since it represents a deterministic choice. The proba-
bility of a Bernoulli outcome bl is the evaluation of the associated parameter variable pl in
the current environment ρ. Outcomes ui,a,b

l of a uniform distribution are equiprobable over
the interval [a, b]. Finally, the probability of a composed sequence ωξ is the joint probability
of ω and ξ .

Afterwards,we construct a non-standard stochasticmatrix that characterizes the transitions
between observable states:

Definition 6 (Non-standard stochastic matrix) We denote by P � P � ∈ E → Σ × Σ → R
+

the square matrix function defined as:

P � P �
def= λρ. λ(si , s j).

ν j

νi

∑

si
ω→s j∈M� P �ρ

Pr � ω �ρ

123

76 Formal Methods in System Design (2019) 54:64–109

(a) (b)

Fig. 9 a A simple probabilistic model for the sense() function. b An abstraction of observable traces
represented as a hierarchical automaton

where νi and ν j denote the sojourn time in states si and s j respectively.

Note that this definition differs slightly from the classic construction of the stochastic
transition matrix of discrete time Markov chains. This is due to the fact that states in our
model embed the information of sojourn time ν, which is assumed to be equal to one time
unit in classic Markov chains.

In order to compute the family of distributions {π � P �ρ | ρ ∈ I } for a set of initial
environments I ⊆ E, as for the classic matrix, we solve the system:

∀ρ ∈ I :
{∀si ∈ Σ : π � P �(ρ)(si) = ∑

s j∈Σ π � P �(ρ)(s j) × P � P �(ρ)(s j , si)∑
s∈Σ π � P �(ρ)(s) = 1

(2)

Since the reachable state space inΣ can be unbounded, both P � P � and π � P �may not be
computable. In addition, system designers are generally interested in analyzing the system
for wide ranges of parameter settings I , which makes the problem more difficult. In the
following, we propose a computable abstraction of Markov chains to over-approximate the
traces { M � P �ρ | ρ ∈ I } for any initial setting. Afterwards, we show how we can construct
a finite stochastic matrix using information provided by our abstract chain, that helps infer
symbolic, guaranteed bounds of all distributions {π � P �ρ | ρ ∈ I }.

3 Abstract semantics

In order to analyze a program statically, we need a computable abstraction of the concrete
semantics domain D. The basic idea is to first partition the set of observable program states
℘(L× E× N) with respect to the program locations, resulting into the intermediate abstrac-
tion L → ℘(E× N). For each location, the set of associated environments is then abstracted
with a stock numerical domainN�, by considering the sojourn time as a program variable ν.
We obtain the abstract states domain Σ� def= L → N�. As a consequence of this partition-
ing, observable states at the same program location will be merged. Therefore, we obtain a
special structure in which observable abstract states are connected through possibly multiple
scenarios coming from the merged concrete states.

123

Formal Methods in System Design (2019) 54:64–109 77

Example 4 We illustrate this fact in Fig. 9a depicting a more complex probabilistic modeling
of the previous sense() function using a bounded geometric distribution that works as
follows. We start by warming up the sensing device during one tick. After that, we check
whether the sensor detects some external activity (high temperature, sound noise, etc.) and
we perform this check for at most 10 times. We assume that these external activities follow
a Bernoulli distribution. At the end, we perform some processing during 4 ticks in case of
detection and 2 ticks in case of non-detection.

We can see in Fig. 9b that between the observable program locations 2 and 11 many
scenarios are possible, which are abstracted with the regular expression b

∗
5 b5 that encodes

the pattern of having a number of Bernoulli failure outcomes at line 5 before a successful
one. However, between lines 2 and 13, we can have only a sequence of failures, which is
expressed as b

+
5 . 	

The presence of these multi-word transitions leads to a hierarchical automata structure
representing an automaton over an alphabet of automata. On the one hand, one automata
structure is used to encode the transitions between observable abstract states. On the other
hand, for each observable transition, another automata structure is used to encode the regular
expressions of scenarios connecting the endpoints of the transition.

In the section, we formalize this structure through our novel domain of abstract Markov
chains. For modularity reasons, we begin by presenting a generic data structure, called
abstract automata, for representing languages over an abstract alphabet. Afterwards, we
employ this data structure to instantiate two abstract domains that will be composed into
a two-level hierarchy. At a bottom level, we develop an abstract scenario domain as an
automaton over an alphabet of abstract probability events to over-approximate traces of non-
observable states. On top of it, we build our abstract Markov chain domain as an automaton
over the alphabet of abstract scenarios.

3.1 Abstract automata

Le Gall et al. proposed a lattice automata domain [30] to represent words over an abstract
alphabet having a lattice structure. We extend this domain to support also abstraction at the
state level by merging states into abstract states, which is important to approximate Markov
chains having an infinite state space.

Let A� be an abstract alphabet domain and S� an abstract state domain. We assume that
A� is an abstraction of some concrete alphabet symbols A, having a concretization function
γA� ∈ A� → ℘(A), a partial order �A� , a join operator �A� , a meet operator �A� , a least
element ⊥A� and a widening operator �A� . Similarly, S� is assumed to be an abstraction
of some concrete states S equipped with a concretization function γS� ∈ S� → ℘(S), a
partial order �S� , a join operator �S� , a least element ⊥S� and a widening operator �S� .

We define the functor domainA (A�,S�) of abstract automata over alphabetA� and states
S� as follows:

Definition 7 (Abstract automata) An abstract automaton A ∈ A (A�,S�) is a finite state
automaton A = (S, s�

0, F,Δ), where S ⊆ S� is the set of states, s�
0 ∈ S is the initial state,

F ⊆ S is the set of final states and Δ ⊆ S × A� × S is the transition relation. The meaning
of A is provided by two concretization functions:

123

78 Formal Methods in System Design (2019) 54:64–109

1. The sets of accepted traces abstracted by A is given by the concretization function γ T ∈
A (A�,S�) → ℘(TAS) defined by:

γ T
A (A)

def= { s0 a0→ s1 . . .
an−1→ sn | ∃s�

0

a�
0→ s�

1 . . .
a�
n−1→ s�

n ∈ T(A) :
∀i ∈ [0, n] : si ∈ γS� (s�

i) ∧ ∀i ∈ [0, n) : ai ∈ γA� (a�
i) }

where T(A)
def= { s�

0

a�
0→ s�

1 . . .
a�
n−1→ s�

n | ∀i ∈ [0, n) : (s�
i , a

�
i , s

�
i+1) ∈ Δ ∧ s�

n ∈ F } gives
the set of traces accepted by A.

2. The set of accepted words abstracted by A is given by the concretization function γ L ∈
A (A�,S�) → ℘(A∗) defined by:

γ L
A (A)

def= { a0a1 . . . an−1 | ∃a�
0a

�
1 . . . a�

n−1 ∈ L(A),∀i ∈ [0, n) : ai ∈ γA� (a�
i) }

where L(A)
def= { a�

0a
�
1 . . . a�

n−1 | ∃s�
0

a�
0→ s�

1 . . .
a�
n−1→ s�

n ∈ T(A) } gives the set of words
accepted by A.

This dual view of traces vs. words is important in our semantics since scenarios are
considered as words (sequence of events) and observable traces as traces. Let us now
define some important operators of the functor domain A . In the following, we denote
by A = (S, s�

0, F,Δ), A1 = (S1, s
�
0, F1,Δ1) and A2 = (Q2, q

�
0, F2,Δ2) three instances of

A (A�,S�).

3.1.1 Order

To compare two abstract automata, we define the following simulation relation that extends
the classic simulation concept found in transition systems by considering the abstraction in
alphabet and states:

Definition 8 (Simulation relation) A binary relation SA2
A1

⊆ S� ×S� is a simulation between

A1 and A2 iff ∀(s�
1, q

�
1) ∈ SA2

A1
we have s�

1 �S� q�
1 and:

∀s�
1

a�
1→ s�

2 ∈ Δ1, ∃q�
1

a�
2→ q�

2 ∈ Δ2 :
(
a�
1 �A� a�

2

)
∧

(
(s�

2, q
�
2) ∈ SA2

A1

)

Definition 9 (Partial order) Let �A2
A1

denotes the smallest simulation relation between A1

and A2 verifying (s�
0, q

�
0) ∈ �A2

A1
. We define the partial order relation �A as:

A1 �A A2 ⇔ �A2
A1

�= ∅ ∧ ∀(s�, q�) ∈ �A2
A1

: s� ∈ F1 ⇒ q� ∈ F2

which means that A2 should simulate and accept every accepted trace in A1.

Example 5 Consider the abstract automata shown in Fig. 10. For illustration purpose, we use
the integer intervals domain as state abstraction, and the set of regular expressions over two
symbols { a, b } as alphabet abstraction.

In the first case (a), no simulation relation exists between A1 and A2 since the transition

〈s�
1 : [0, 1]〉 a→ 〈s�

2 : [5, 7]〉 cannot be simulated by the transition 〈q�
1 : [0, 7]〉 ab→ 〈q�

1 : [0, 7]〉
given that a ���

A ab violates the condition of Definition 8. In case (b), A1 ��A A2 because

123

Formal Methods in System Design (2019) 54:64–109 79

(a) (b) (c)

Fig. 10 Examples of order comparison between abstract automata

the transition 〈s�
1 : [0, 1]〉 a→ 〈s�

2 : [5, 7]〉 in A1 cannot be simulated by the transition

〈q�
1 : [0, 1]〉 a+b→ 〈q�

2 : [6, 7]〉 since [5, 7] ���

S [6, 7]. Note that in both cases (a) and (b),
L(A1) ⊆ L(A2), but this is not sufficient to verify the order relation �A , in contrast to
the automata domain proposed by Le Gall et al. [30]. Finally, in case (c), the condition of
Definition (8) is fulfilled for every transition in A1, which implies that A1 �A A2. 	

3.1.2 Join

To compute the union of two abstract automata A1 and A2, we need to extend the simulation-
based traversal in a way to consider all traces of both automata, including those violating the
simulation condition (i.e. traces belonging to one automaton only). To do so, we introduce
the concept of product relation that builds a transition relation defined over the Cartesian
productS�×S� that over-approximates the transitions that can be performed simultaneously

by A1 and A2. A naive approximation is to map every couple transitions s�
1

a1→ s�
2 ∈ Δ1 and

q�
1

a2→ q�
2 ∈ Δ2 into (s�

1, q
�
1)

a1�A�a2→ (s�
2, q

�
2). While being sound, this approximation is too

coarse andwe can gain in precision by separating singular transitions where we can guarantee
that both automata cannot move simultaneously. Note that detecting singular transitions is
not always possible since the abstract alphabet domain A� may lack a complement operator
necessary to extract them precisely. Nevertheless, we propose a heuristic that can detect
singularity in a number of situations, while always preserving soundness.

Example 6 The intuition behind the heuristic is depicted in Fig. 11. In the first case (a),

singularity between the input transitions s�
1

ab∗→ s�
2 and q�

1
a∗b→ q�

2 cannot be decided because
the intersection ab∗ �A� a∗b is nonempty. Consequently, both transitions are combined into a
single over-approximated product transition that accepts the merged alphabet symbol ab∗ +

(a) (b)

Fig. 11 Cases of constructing a product transition

123

80 Formal Methods in System Design (2019) 54:64–109

a∗b. However, in the second case (b), no intersection exists between the transitions s�
1

a→ s�
2

and q�
1

b→ q�
2. This means that both input automata – when in states s�

1 and q�
1 respectively

– cannot perform a simultaneous transition, which is expressed as two singular transitions
from (s�

1, q
�
1) to (s�

2,⊥S�) and (⊥S� , q�
2). 	

Note that comparing alphabet symbols is not the only means to detect singular transitions.
Indeed, in some situations, destination states s�

2 and q�
2 should be kept separated in order to

preserve some of semantic precision of the analysis. To illustrate this point, let us consider
the computation of the goodput of a protocol. In order to obtain a precise quantification of
this metric, it is necessary to avoid merging states encapsulating different situations of packet
transmission status (reception, loss). To do so, we assume that the abstract states domainS�

is provided with some equivalence relation ≡S� that partitions the states into a finite set of
equivalence classes depending on the property of interest. Using this information, we define
our product relation as follows:

Definition 10 (Product relation) A binary relation PA2
A1

⊆ S� × S� is a product of A1 and

A2 iff ∀(s�
1, q

�
1) ∈ PA2

A1
we have s�

1 ≡S� q�
1 and:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(s�
2, q

�
2) ∈ PA2

A1
if ∃s�

1

a�
1→ s�

2 ∈ Δ1, ∃q�
1

a�
2→ q�

2 ∈ Δ2 :
(
s�
2 ≡S� q�

2

)
∧

(
a�
1 � a�

2 �= ⊥A�

)

(s�
2,⊥S�)∈PA2

A1
if ∃s�

1

a�
1→ s�

2 ∈Δ1,∀q�
1

a�
2→ q�

2 ∈Δ2 :
(
s�
2 �≡S� q�

2

)
∨

(
a�
1 �A� a�

2=⊥A�

)

(⊥S� , q�
2) ∈ PA2

A1
if ∃q�

1

a�
2→ q�

2 ∈Δ2,∀s�
1

a�
1→ s�

2 ∈Δ1 :
(
s�
2 �≡S� q�

2

)
∨

(
a�
1 �A� a�

2=⊥A�

)

with the convention that s� ≡S� ⊥S� ,∀s� ∈ S�.

Definition 11 (Join) Let �
A2
A1

denote the smallest product relation containing (s�
0, q

�
0) . We

define the structure of the join automaton (J , j�0 ,Δ, F) = A1 �A A2 as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J
def= { s� �S� q� | (s�, q�) ∈ �

A2
A1

}
j�0

def= s�
0 �S� q�

0

Δ
def= { j�1

a�→ j�2 |
∃(s�

1, q
�
1) ∈ �

A2
A1

, (s�
2, q

�
2) ∈ �

A2
A1

:
∃s�

1

a�
1→ s�

2 ∈ Δ1, q
�
1

a�
2→ q�

2 ∈ Δ2 :
j�1 = s�

1 �S� q�
1 ∧ a� = a�

1 �A� a�
2 ∧ j�2 = s�

2 �S� q�
2 }

F
def= { s� �S� q� | (s�, q�) ∈ �

A2
A1

∧ (s� ∈ F1 ∨ q� ∈ F2) }
In other words, we simply map each product state (s�, q�) ∈ �

A2
A1

to s� �S� q�. The final

states are the subsets of these images where at least s� or q� is final.

3.1.3 Append

We introduce also the append operator �φ ∈ A (A�,S�) × A� → A (A�,S�) that extends
a given abstract automaton with a set of new outgoing transitions. In addition to the abstract
alphabet symbol that will decorate the new transitions, the append operator requires an

123

Formal Methods in System Design (2019) 54:64–109 81

additional parameter φ ∈ S� → S� that encodes the effect of the transition at the state level.
By doing so, the functor A externalizes the definition of the semantics of transitions, which
is left to the instantiating domain.

Formally, we define the append operator as follows:

A �φ a� def=
let F ′ = {φ(s�) | s� ∈ F } in
(S ∪ F ′, s�

0, F
′,Δ ∪ { s� a�→ φ(s�) | s� ∈ F })

which means that from every final state s� ∈ F of A, a new edge is created, labeled with with
a�, that leads to a new final state computed as the image of s� through the parameter transfer
function φ that annotates the operator �φ .

3.1.4 Widening

Finally, we present a widening operator to avoid growing an automaton indefinitely during
loop iterations. The original lattice automata domain [30] proposed a widening operator,
inspired from [18,48], that employs a bisimulation-based minimization to merge similar
states by comparing their transitions at some given depth. However, it assumes that the
abstract alphabet domain is provided with an equivalence relation that partitions the symbols
into a finite set of equivalence classes. We believe that it is more meaningful to perform
this partitioning on the abstract states as explained earlier for the computation of the product
relation. Therefore, we employ a different approach inspired fromgraphwidening [31,47,49].
We compare the result of successive loop iterations and we try to detect the increment
transitions to extrapolate them by creating cycles. However, existing graph widenings are
limited to finite alphabets and may not ensure the convergence on ascending chains, so we
propose an extension to alleviate these shortcomings.

The proposed algorithm is executed in two phases. Firstly, we perform a structural widen-
ing to extrapolate the language recognized by the input automata and we ignore for the
moment the abstract states. We show in Fig. 12 the main steps of this widening. Assume that
A1 and A2 are the results of two successive iterations. Without loss of generality, we assume
that A1 �A A2 (if this is not the case, we replace A2 by A1 �A A2). First, we compare A1

and A2 in order to extract the increment transitions using the following function:

incr(A1, A2)
def= { (s�

1, q
�
1

a�
2→ q�

2) |
(
(s�

1, q
�
1) ∈ �

A2
A1

)
∧

(
s�
1, q

�
1 �= ⊥S�

)
∧

∃q�
1

a�
2→ q�

2 ∈ Δ2,∀s�
1

a�
1→ s�

2 ∈ Δ1 :
(
s�
2 �≡S� q�

2

)
∨

(
a�
2 ��A� a�

1

)
}

Essentially, an increment (s�
1, q

�
1

a�→ q�
2) means that A1 at state s�

1 cannot recognize the

symbol a� while A2 recognizes it through a transition from q�
1 to q

�
2.

Now, we need to extrapolate A1 in order to recover this difference, which is done by
adding the missing word suffix a�

2 while trying not to grow A1 in size. The basic idea is to

sort states in A1 depending on how they compare to the missing state q�
2. The comparison is

performed with the following similarity index expressing the proportion of common partial
traces that a state shares with q�

2:

123

82 Formal Methods in System Design (2019) 54:64–109

Fig. 12 Structural widening algorithm for abstract automata

IA1,A2

q�
2

(s�)
def=

∥∥∥{ a�
1 . . . a�

n ∈→
L A2,k (q�

2) | ∃b�
1 . . . b�

n ∈→
L A1,k (s�),∀i : a�

i �A� b�
i }

∥∥∥ +
∥∥∥{ a�

1 . . . a�
n ∈←

L A2,k (q�
2) | ∃b�

1 . . . b�
n ∈←

L A1,k (s�),∀i : a�
i �A� b�

i }
∥∥∥

where
→
L A,k (s�) (resp.

←
L A,k (s�)) is the set of words starting from (resp. ending at) s� of

length less than k, where k is a parameter of the analysis. In other words, these two utility
functions denote respectively the set of reachable and co-reachable words of a given state at
some depth k.

After selecting the state s�≡ with the highest similarity index, we add themissing transitions
after widening the alphabet symbol if a transition already exists in A. By iterating over all
increment transitions, we obtain an automata structure that does not grow indefinitely since
we add new states only if no existing one is equivalent. By assuming that the number of
equivalence classes of ≡S� is finite, the widening ensures termination.

After the structuralwidening,we inspect the states of the resulting automaton to extrapolate
them if necessary. We simply compute the simulation relation �A

A2
between A2 and the

widened automaton A, and we replace every state s� ∈ S with s��S� (s�
1 �S� s�

2 �S� . . .)

where s�
i �A

A2
s�,∀i .

Example 7 The different steps of the proposed widening algorithm are illustrated in Fig. 13 in
which we consider two example automata A1 and A2, where A1 �A A2. Let us assume that

123

Formal Methods in System Design (2019) 54:64–109 83

Fig. 13 Example of abstract automata widening

the similarity depth parameter is k = 1. During the first iteration, the algorithm detects the

increment transition (s�
3, q

�
3

a→ q�
4). By comparing the reachable and co-reachable k-words

of the states of A1 to those of q�
4, we obtain the following similarity indices:

IA1,A2

q�
4

(s�
1) = 0 IA1,A2

q�
4

(s�
2) = 2 IA1,A2

q�
4

(s�
3) = 0

Therefore, s�
2 is selected as the most similar state to q�

4 and the missing transition s�
3

a→ s�
2 is

added. Note that we can combine structural and state widening at this point, which allows as
to over-approximate s�

2 by s�
2�S� (s�

2 �S� q�
4) to accelerate convergence.

During the second iteration, we use the resulting automaton as the left argument of the

widening operator and we iterate the same process. The algorithm selects (s�
2, q

�
4

b+bb→ q�
5)

as the increment transition and computes the following similarity indices:

IA,A2

q�
5

(s�
1) = 0 IA,A2

q�
5

(s�
2) = 0 IA,A2

q�
5

(s�
3) = 1

The state s�
3 being the most comparable one to q�

5, the automaton A is enriched with the

transition s�
2

b+bb→ s�
3. Since a transition s�

2
b→ s�

3 already exists, we just need to com-

pute the widening of its alphabets b�A� (b + bb) and endpoint state s�
3�S�q�

5. By doing so,

123

84 Formal Methods in System Design (2019) 54:64–109

no increment transition can be found, which means that no more widening iterations are
required. 	

3.2 Abstract scenarios

Using the functor domain A , we instantiate an abstract scenario domain for approximat-
ing words of random events. Two considerations are important to take into account. First,
the length of these words may depend on some variables of the program. It is clear that
ignoring these relations may lead to imprecise computations of the stationary distribution.
Consequently, we enrich the domain with an abstract Parikh vector [40] to count the number
of occurrences of random events within accepted words. By using a relational numerical
domain, such as octagons [34] or polyhedra [10], we preserve some relationships between
the number of events and program variables.

The second consideration is related to the uniform distribution. As shown previously in
the concrete evaluation function of Fig. 7, the number of outcomes depends on the bounds
provided as argument to the function uniform. Since these arguments are evaluated in the
running environment, we can have an infinite number of outcomes at a given control location
when considering all possible executions.

We perform a simplifying abstraction of the random events Ξ in order to obtain a finite
size alphabet and avoid the explosion of the uniform distribution outcomes. Assume that
we are analyzing the statement x = uniforml(e1, e2) in abstract environment ρ�. Several
abstractions are possible. In this work, we choose to partition the outcomes into a fixed
number U of abstract outcomes, where U is a parameter of the analysis. The first U − 1
partitions represent the concrete individual outcomes {min(e1 + i − 1, e2) | i ∈ [1,U − 1]},
to which we associate the abstract events {uil | i ∈ [1,U −1] }. For the remaining outcomes,
we merge them into a single aggregate abstract event u✩

l .

Formally, we obtain a simple finite set of abstract events Ξ� def= {bl ,bl | l ∈
L↓bernoulli } ∪ {uil ,u✩

l | l ∈ L↓uniform ∧ 1 ≤ i ≤ U − 1 }. For the Parikh vector, we
associate to every abstract event ξ� ∈ Ξ� a counter variable κξ� ∈ N that will be incremented
whenever the event ξ� occurs.

Therefore,wedefine thedomainof abstract scenarios asΩ� def= A (℘ (Ξ�),Σ�),whereΣ�

is our previous mappingL → N� from program locations to a stock numeric abstract domain
N�. We assume thatN� has a concretization function γN� ∈ N� → ℘(E), transfer functions
S

�

N � . � ∈ N� → N� of numeric statements and a filtering function filter�N(e) ∈ N� → N�

that keeps numeric environments that satisfies the condition expression e.
Let us now describe transfer functions S

� � . � ∈ Ω� → Ω� shown in Fig. 14 formalizing
the impact of probability distributions on an abstract scenario. To over-approximate the effect
of an assignment x = bernoullil() on an abstract scenario ω�, we process each possible
outcome of the distribution separately. Let us illustrate with the case of bl . We extend the
input abstract automaton ω� with a new outgoing transition annotated with the state transfer
function φTRUE that computes the new final states of ω�. In each numeric environment ρ�

of the current final states, φTRUE sets variable x to value TRUE and increments the Parikh
counter κbl associated to the outcome bl . The same process is applied for the outcome bl .
The final result is obtained by joining the obtained pair of abstract automata.

Let us now consider the assignment x = uniforml(e1, e2). For the case of an outcome
uil , we update the variable x with the evaluation of min(e1 + i − 1, e2), which is done by
first performing the assignment x = e1 + i − 1 in the environment of a final state of ω�, and

123

Formal Methods in System Design (2019) 54:64–109 85

Fig. 14 Some abstract transfer functions

then apply the filter x ≤ e2 on the result. The Parikh counter κuil
is also incremented. The

aggregate outcome u✩
l is handled by assigning to x the evaluation of the interval [e1 +U , e2]

and incrementing the counter κu✩
l
.

3.3 Abstract Markov chains

To provide a computable abstraction of the concrete semantics domainD = ℘(TΣ
Ω ×E×Ω)

we proceed in two steps. We start by abstracting the set of observable traces ℘(TΣ
Ω) with an

abstract automaton T� def= A (Ω�,Σ�) defined over the alphabet of abstract scenariosΩ� and
the abstract state space Σ�. To approximate the partial scenarios starting from the last wait
statement, we may use the domain of abstract scenarios Ω�. Since the states of an abstract
scenario already embed an abstraction of the program environments E, the product T� × Ω�

constitutes an abstraction of D having the following concretization function:

γ (τ �, ω�)
def= { (τ, ρ, ω) | τ ∈ γ T

A (τ �) ∧ ∃(l1, ρ
�
1)

ξ
�
1→ . . .

ξ
�
n−1→ (ln, ρ

�
n) ∈ T(ω�) :

ρ ∈ γN� (ρ
�
n) ∧ ω ∈ γ L

A (ξ
�
1 . . . ξ

�
n−1) }

This abstraction is sound but may lead to coarse results. Indeed, by choosing a product
abstraction T� × Ω�, we decouple environments from traces: all reachable environments are
merged together regardless of the taken trace. We can enhance the precision of the analysis
by maintaining some relationships through partitioning: we simply separate environments
depending on the final states of the observable traces automaton T�. More formally, we define
our abstract semantics domain as follows:

D� def= T� × (Σ� → Ω�)

LetF ∈ A (A�,S�) → ℘(S�) be a function returning the set of final states of an abstract
automaton and A ↓ s� the projection of an abstract automaton A on a final state s� (obtained
by restricting the final states of A to the singleton {s�}). The concretization function ofD� is
given by:

123

86 Formal Methods in System Design (2019) 54:64–109

γ (τ �, fΩ�)
def= { (τ, ρ, ω) | ∃s� ∈ F(τ �) : ∃(l1, ρ

�
1)

ξ
�
1→ . . .

ξ
�
n−1→ (ln, ρ

�
n) ∈ T(fΩ�(s�)) :

τ ∈ γ T
A (τ � ↓ s�) ∧ ρ ∈ γN� (ρ

�
n) ∧ ω ∈ γ L

A (ξ
�
1 . . . ξ

�
n−1) }

For the abstract transfer functions S
� � . � ∈ D� → D� of D�, we focus on the case

waitl e since it is the only one that modifies the structure of the abstract Markov chain. The
definition is shown in Fig. 14. Given a current abstract element (τ �, fΩ�) ∈ D�, the function
iterates over every observable final state s� ∈ F(τ �) to add a new transition labeled with the
associated partial scenario fΩ�(s�) that points to a new observable state with a sojourn time
equal to the current evaluation of e. Finally, since the chain is in a new time tick, all entries of
the output scenario map are set to ε� representing the empty scenario word where all Parikh
counters are reset to 0.

We can show that the following soundness condition is preserved:

Theorem 1 (Soundness)

(S � s � ◦ γ) (τ �, ω�) ⊆ (
γ ◦ S

� � s �
)
(τ �, ω�),∀s ∈ stmt,∀(τ �, ω�) ∈ D�

Example 8 Let us go back to our first motivating example in order to illustrate the inference
process of the resulting abstract Markov chain shown in Fig. 2b. The intermediate abstract
chains of the most important steps are depicted in Fig. 15.

The sense statement at line 4 generates a first abstract chain with a single state repre-
senting a one-tick time duration for retrieving data from the sensing device. After that, two
new transitions are added to over-approximate the unbounded number of outcomes of the
uniform distribution at line 6. The abstract event u16 represent the case of choosing a back-
off window of length 1, and the abstract event u✩

6 over-approximates the remaining cases of
lengths in [2, B]. Note that it is important to employ relational numerical domains, such as
octagons or polyhedra, in order to represent such conditions. Nevertheless, an analysis using
a non-relational domains, such as intervals, is still sound but less precise.

When the backoff mechanism terminates, the packet is sent by calling the function
unicast. The transmission step is translated by our domain as a transition to a one-tick
state, since we defined TX_DELAY = 1. The transition is annotated with the empty abstract
scenario ε� because no event occurred since the last time tick at line 7. The Bernoulli model
of packet loss is represented as two transitions with the events b23 and b23 generated by the
statement bernoulli() at line 23. These transitions point to two new abstract states with
a one-tick sojourn time modeling the time consumed by the reception operation at line 24.

After the unicast function returns, the energy saving sleep statement at line 13 is
represented by a single state with a sojourn time ν = S. As we iterate the while again,
the size of the abstract automaton grows but after applying the widening operator �A a
fixed point is reached that over-approximates the family of concrete Markov chains shown
in Fig. 2a. 	

4 Stationary distributions

In this section, we present a method for extracting safe bounds of the stationary distribution
of an abstract Markov chain. We do so by deriving a distribution invariant that establishes a
system of parametric linear inequalities over the abstract states. Using the Fourier–Motzkin
elimination algorithm, we can find guaranteed bounds of time proportion spent in a given
abstract state.

123

Formal Methods in System Design (2019) 54:64–109 87

Fig. 15 Analysis iterations of the motivating example

4.1 Distribution invariants

We begin with some preliminary definitions. For each statement uniforml(e1, e2), we
denote by

←
u l

def= e1 and
→
u l

def= e2 the bounds expressions of the distribution. Also, we
define the functions min� � e �,max� � e � ∈ Σ� → expr giving respectively the evaluation
of the maximal and minimal values of an expression e in a given abstract state, which is
generally provided for free by the underlying numerical domain. In the case of relational
domains, the returned bounds can be symbolic. For the sake of simplicity, we write also
min�

� � e �,max�
� � e � ∈ expr to denote respectively the minimal and maximal evaluations

over the set of all reachable abstract states. The abstract Markov chain obtained after the
analysis of P is given by:

M
� � P �R� def= λR�. let (τ �,−) = S

� � P � R� in τ �

123

88 Formal Methods in System Design (2019) 54:64–109

The following definition gives a means to compute the probability of given abstract sce-
nario:

Definition 12 (Abstract scenario probability) The symbolic probability Pr�
�

ω�
� ∈ expr

of abstract scenarios ω� ∈ Ω� is defined by structural induction on its regular expression:

Pr�
�

ω�
�

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ω� = ε�

pl if ω� = bl
1 − pl if ω� = bl

1

min��
� →
u l

�
−max��

� ←
u l

�
+1

if ω� = uil

max

(
0,

max��
� →
u l

�
−min��

� ←
u l

�
+2−U

min��
� →
u l

�
−max��

� ←
u l

�
+1

)
if ω� = u✩

l

Pr�
�

ω
�
0

�
× Pr�

�
ξ�

�
if ω� = ω

�
0ξ

�

Pr�
�

ω
�
1

�
+ Pr�

�
ω

�
2

�
if ω� = ω

�
1 + ω

�
2

By combining the sojourn and probability invariants embedded in the abstract chain, we
construct an abstract transition matrix that characterizes completely the stochastic properties
of the program inside one finite data structure:

Definition 13 (Abstract transition matrix) The abstract transition matrix P
� � P � ∈ D� →

Σ� × Σ� → expr is a square symbolic matrix defined as:

P
� � P �

def= λR�. λ(s�
i , s

�
j).

max� � ν �s�
j

min� � ν �s�
i

∑

s�i
ω�→s�j∈M�� P �R�

Pr�
�

ω�
�

Example 9 Let P be our first motivating example shown in Fig. 1a and let I � be the initial
empty abstract state. Let S = 〈ss,bk1,bk✩, tx, ack, ack, sl〉 be the vector of abstract states
of the resulting chain shown in Fig. 2b. To obtain the matrix Pr� � P �I �, we iterate over all the

transitions of the abstract chain. Consider for example the case of the transition ss
u✩
5→ bk✩.

First, we apply Definition 12 to compute the transitions probability Pr�
�
u✩
5

�
= B−1

B .

Afterwards, we extract the sojourn time bounds max� � ν �(bk✩) = B and min� � ν �(ss) = 1
from the embedded numeric environments. Finally, we apply Definition (13) to obtain the
matrix cell P

� � P �(I �)(ss,bk✩) = B(B−1)
B = B − 1. By iterating the same process for all

transitions we obtain:

P
� � P � I � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
B B − 1 0 0 0 0

0 0 0 1 0 0 0
0 0 0 1

2 0 0 0
0 0 0 0 p23 1 − p23 0
0 0 0 0 0 0 S
0 0 0 0 0 0 S
1
S 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

	

123

Formal Methods in System Design (2019) 54:64–109 89

Let us now introduce the concept of abstract stationary distribution that gives the propor-
tion of time spent in every abstract state. In the sequel, we denote I � ∈ D� an abstraction of
the initial states.

Definition 14 (Abstract stationary distribution) The abstract stationary distribution of an
abstract chain M

� � P �I � is defined as the symbolic vector π� � P �I � ∈ Σ� → expr verify-
ing:

∀ρ ∈ { ρ | (−, ρ,−) ∈ γ (I �) },∀s� ∈ Σ� :
EE

�
π� � P �(I �)(s�)

�
ρ = ∑

s∈γΣ(s�)
π � P �(ρ)(s)

where EE � . � ∈ E → V is the classic evaluation of numeric expressions.

It is important to note that since spurious concrete states s ∈ γΣ(s�) have a null concrete
stationary probability π � P �(ρ)(s), the abstract stationary probability π� � P �(I �)(s�) rep-
resents the exact sum of the stationary probabilities of the real concrete states abstracted by
s�. Therefore, any lower and/or upper bounds that can be found about π� � P �(I �)(s�) are
also valid for the concrete states abstracted by s�. To compute such bounds, we use P

� � P �I �

with the following result:

Theorem 2 (Distribution invariant)

∀ρ ∈ { ρ | (−, ρ,−) ∈ γ (I �) } :⎧⎪⎪⎨
⎪⎪⎩

∀s�
i ∈ Σ� : EE

�
π� � P �(I �)(s�

i)
�
ρ ≤ ∑

s�j∈Σ�

EE
�

π� � P �(I �)(s�
j) × P

� � P �(I �)(s�
j , s

�
i)

�
ρ

∑
s�∈Σ�

EE
�

π� � P �(I �)(s�)
�
ρ = 1

Proof See “Appendix A”.

Simply stated, this theorem allows us to establish two important invariants. The first one
is a weak form of the Markov property and can be informally written in vector algebra as
π� � . � ≤ π� � . �P� � . �, which means that the probability of being at some abstract state is
always upper-bounded by the sum of the probabilities of moving from previous states. The
upper-bound is guaranteed by the sound over-approximation of abstract scenarios and sojourn
times. The second invariant is the normalization condition that stipulates that the abstract
states cover the entire space of concrete states, and therefore, the sum of the probabilities
of abstract states in a given parameter valuation should be equal to 1 (since spurious states
introduced by concretization have a null concrete probability).

Example 10 By applying Theorem 2 on the abstract stochastic matrix (3), we obtain the
following parametric system of linear inequalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
�
ss ≤ 1

Sπ
�

sl
π

�

bk1
≤ 1

Bπ
�
ss

π
�

bk✩
≤ (B − 1)π�

ss

π
�
tx ≤ π

�

bk1
+ 1

2π
�

bk✩

π
�

ack ≤ pπ�
tx

π
�

ack
≤ (1 − p)π�

tx

π
�

sl ≤ Sπ
�

ack + Sπ
�

ack
π

�
ss + π

�

bk1
+ π

�

bk✩
+ π

�
tx + π

�

ack + π
�

ack
+ π

�

sl = 1

123

90 Formal Methods in System Design (2019) 54:64–109

where the vector 〈π�
ss, π

�

bk1
, π

�

bk✩
, π

�
tx, π

�

ack, π
�

ack
, π

�

sl〉 is the vector of unknown limiting prob-
abilities. 	

The obtained system of parametric linear inequalities can be used to find safe bounds
of the property of interest. Without loss of generality, assume that the time proportion of
this property is associated with the stationary probability of some state s�. To compute a
safe symbolic range of π� � P �(I �)(s�), we just have to perform a projection of the linear
system that keeps only π� � P �(I �)(s�) and removes the other unknowns while preserving
all constraints. Many off-the-shelf symbolic environments, such as Sage and Mathematica,
can solve such problems symbolically. However, in practice we have experienced very low
performances even for small scale inequality systems. To overcome this problem, we have
implemented a parametric Fourier–Motzkin projection algorithm [24,46] that performs better
than tested symbolic environments.

4.2 Parametric Fourier–Motzkin algorithm

Wegive in Fig. 16 the algorithmof the Fourier–Motzkin elimination.Wehave as inputs a set I0
ofm parametric inequalities of the form {c j+∑

1≤i≤n ai, j xi ≤ 0 | 1 ≤ j ≤ m}where each xi
is an unknown and each c j and ai, j are parametric coefficients of arbitrary form.Additionally,
we also provide a (possibly empty) set of constraints C0 that gives initial information about
the parameters (for example, a parameter pl of a Bernoulli distribution is always in the range
[0, 1]). The aim of the algorithm is to return a set of constraints equivalent to I0 where all
variables were eliminated except a single one (assume xn). To do so, the algorithm eliminates
the other variables sequentially. At each iteration, a variable is eliminated and we obtain a
set of parametric solutions {〈C, I 〉} where I are a set of linear constraints on the remaining
unknowns and C are the conditions on the parameters for obtaining the solution I .

For the sake of clarity, let us first describe the classical non-parametric version of the
algorithm. To eliminate a variable xi , we examine its coefficients ai, j in I and we partition
the inequalities depending on the sign of these coefficients (lines 5 – 8). The idea is that
when having two inequalities 〈c j1 + ∑

i≤k≤n ak, j1xk ≤ 0〉 and 〈c j2 + ∑
i≤k≤n ak, j2 xk ≤

0〉 where the signs of the target coefficients ai, j1 and ai, j2 are different and not null (let
say ai, j1 > 0 and ai, j2 < 0), we can generate a new inequality 〈ai, j1c j2 − ai, j2c j1 +∑

i≤k≤n (ai, j1ak, j2 − ai, j2ak, j1)xk ≤ 0〉 that is implied by the previous inequalities and
where the coefficient of xi is null. So, if we perform the same merging operation on every
couple of sign-opposite inequalities, while keeping the inequalities that have already a null
coefficient on xi , we obtain a set of inequalities equivalent to the previous ones and where
xi has been eliminated (lines 14–19).

When the coefficients of the unknowns are not constant, we cannot always determine
their signs. Consequently, we collect the set of undetermined inequalities I ? (line 9) and
we eliminate the ambiguity by pushing the sign conditions into the parameters constraints
C . In other words, we fork the inequalities I into a set of new inequalities: one for every
possible sign combination of the undertermined coefficients. For each case, the conditions
of the sign combination are accumulated with the current parameters conditions C , and the
undetermined inequalities are classified depending on these sign conditions (line 12). To
improve precision, the function check is used to test the satisfiability of the conjunction of C
with the sign condition; cases with invalid formula are rejected. After resolving all coefficient
signs, the classic Fourier–Motzkin elimination can be applied.

123

Formal Methods in System Design (2019) 54:64–109 91

Fig. 16 Algorithm of the parametric Fourier–Motzkin elimination

5 Non-deterministic Semantics

In this section, we explain how we can extend our previous analysis to handle pure non-
determinism. We enrich the previous syntax of PSimpl shown in Fig. 6 with a boolean non-
deterministic choice operator ? , and we show that previous concrete and abstract semantics
can be easily adapted to preserve the correctness of the inferred distribution invariants.

5.1 Concrete semantics

Markov decision processes are a well-known formalism for enriching the model of discrete
time Markov chains with non-determinism [37]. Essentially, they represent stochastic pro-
cesses that perform a non-deterministic choice at each state to select the transition probability
distribution to employ.We can view such a system as if it were some adversary, called a policy
scheduler, that tries to control its behavior [41]. Therefore, for a given policy scheduler that
fixes all non-deterministic choices that will be made by the process, the system becomes a
discrete time Markov chain.

123

92 Formal Methods in System Design (2019) 54:64–109

Let B
∞ denote infinite sequences of boolean values and :: the append operator on

sequences. We define the set of policy schedulers as Ψ
def= L → B

∞ mapping control loca-
tions of the operator ? to a sequence of resolved boolean choices. We lift our previous pure
probabilistic domainD to a non-deterministic probabilistic semantics domain D̂ def= Ψ → D
by resolving a priori all non-deterministic choices depending on a given policy scheduler.

The concrete semantics of the operator ? is given by the following transfer function:

Ŝ � l : x = ? ; �R̂
def=

let pred = λψ. λb. ψ[l ′ �→ ((l = l ′)?(b :: ψ(l)) : (ψ(l ′)))] in
λψ.

⊔
b∈B

S � l : x = b; �R̂(pred(ψ)(b))

Essentially, the utility function pred(ψ)(b) creates the predecessor policy scheduler of ψ

that extends ψ with the boolean choice b at location l. The deterministic assignment is then
applied on the Markov chains associated to the input schedulers that are predecessors of
the output schedulers (used for the next resolution of ?). For the remaining statements, the
corresponding transfer functions are obtained by a straightforward pointwise extension of
their deterministic counterpart:

Ŝ � s �R̂
def= λψ. S � s � (R̂(ψ))

A similar lifting is employed to obtain the concrete stationary distribution π̂ � . � from π � . �.

5.2 Policy encoding

Since the set of sequences of natural numbers N → N has the same cardinality as R, we
can encode each policy scheduler as a distinct real number in [0, 1]. By considering this
number as a parameter of the program and by a specific syntactical transformation of the
operator ? , we can build a deterministic probabilistic program equivalent to the original
non-deterministic one.

Formally, let l ∈ L be the program location of some non-deterministic choice expression
? .Weassumewithout loss of generality that every expression contains atmost oneoccurrence
of the ? operator, and that this operator can appear only in the right-hand-side part of
assignments. We attach to every occurrence three fresh auxiliary variables βl ∈ B, μl ∈ R

and μl,0 ∈ R. The boolean variable βl stores the result of the non-deterministic choice.
The real variable μl , initialized by the parameter value μl,0 ∈ [0, 1], is used to encode the
sequence of values of βl . We replace every occurrence of ? with the variable βl , and we add
before this occurrence the following code that extracts a new random bit from μl , stores it
into βl , and shifts μl by one bit:

l : x = ? ; →

if (μl >= 0.5) {
βl = TRUE;

} else {
βl = FALSE;

}
μl = 2 * fmod(μl, 0.5)
;
x = βl;

123

Formal Methods in System Design (2019) 54:64–109 93

where fmod(a, b) is the floating-point remainder of the division a/b. By doing so, each
initial value μl,0 generates an infinite and unique sequence of boolean values. Since we
encoded a non-deterministic program into an parametric deterministic one that is equivalent,
all our previous analysis can be applied. Safe bounds for the original program can be obtained
by extracting the worst case values when varying the policy-encoding parameter in [0, 1],
i.e., by projecting out this parameter.

Abstraction We use a naive abstraction that allows simple and efficient computations while
keeping the analysis sound. Instead of maintaining precise information about the encoding
of boolean choices and the auxiliary variables βl and μl , we simply forget their values and
we join the results of both non-deterministic branches to cover all possible policies of the
process. For instance, we can abstract non-deterministic assignments as follows:

S
� �x = ? ; �(τ �, ω�)

def=
⊔
b∈B

S
� �x = b; �(τ �, ω�)

which is similar to the classic abstraction of non-determinism in non-probabilistic programs.
Since the auxiliary variables are not referenced in the abstract semantics, no special processing
is required to eliminate them and we are guaranteed to cover all possible sequences of non-
deterministic choices. Therefore, we can apply the previous extraction/resolution method in
order to compute the bounds of the stationary distribution.

6 Experiments

The proposed approach has been implemented in a prototype analyzer called Marchal
(MARkov CHains AnaLyzer) composed of two parts. The first one is an abstract interpreter
implemented in the OCaml language and based on the CIL frontend [38] and the Apron
library [26]; it operates by structural induction on an input C-like probabilistic program in
order to infer its abstractMarkov chain. The second part is an implementation inMathematica
[51] of the parametric Fourier–Motzkin elimination algorithm that finds symbolic bounds of
the stationary distribution of the abstract Markov chain of interest.

We have considered a wireless transmission scenario over lossy links characterized by a
drop probability p. Five well-known backoff mechanisms have been considered, that will be
denoted by C1 , C∞, Cn , Ln and Lt∞. The first mechanism C1 is our motivating example
of Fig. 1a that uses a single constant backoff window of length B and does not retransmit
the packet in case of loss. The mechanism C∞ uses also a constant backoff window to avoid
collisions but improves reliability by trying to send the packet until an acknowledgement is
received. The mechanism Cn denotes a constant backoff window with a limited number of
retransmissions fixed by a parameter n. Additionally, we have tested two backoffmechanisms
with a dynamic window that increases linearly at each failed transmission. The mechanism
Ln bounds the number of transmissions by a parameter n, while the mechanism Lt∞ uses
a truncated policy in which the number of attempts is unbounded but the maximal window
length is limited by a parameter t . For all mechanisms, a sleep period of duration S follows
every transmission phase. The programs of thesemechanisms are presented in “Appendix B”.

Our prototype Marchal has been compared to the state-of-the-art probabilistic model
checker Prism [29]. More specifically, we used its parametric engine based on Param [25]
that can produce closed-form stationary distributions when the transition probabilities are
symbolic. For Marchal, we have varied the partitioning parameter U of uniform distribu-
tions and we have performed a non-relational analysis using the interval domain Box and

123

94 Formal Methods in System Design (2019) 54:64–109

a relational analysis using the polyhedra domain Poly. In order to highlight the differences
betweenMarchal and Prism, we have selected four deterministic scenarios for each back-
off mechanismwith various ranges of parameters: fixed small values, fixed large values, large
ranges and open ranges. In addition, one non-determinisitic case with large ranges has been
analyzed using the same non-perfect clock model as presented earlier in Fig. 4. Note that the
cases of open ranges and non-determinism are not supported by Prism.

6.1 Efficiency

The efficiency of both tools is measured in terms of analysis time. The obtained results are
summarized in Table 1 and are reported in seconds. For Marchal, we have also divided the
overall analysis time into two parts: the abstract Markov chain (AMC) extraction phase and
the parametric Fourier–Motzkin (PFM) resolution phase. A timeout of 30 mins is used as a
limit for the overall analysis time.

Prism It is important to note that Prism performs a precise analysis in all cases. On the
one hand, this allows fast analysis times of simple cases such as configurations with fixed
small values. However for the other cases, the models increase in size and complexity, and
the scalability of Prism is affected due to the absence of approximation mechanisms. More
specifically, Prism has to perform a separate analysis for every possible value of the param-
eters, resulting in systematic timeouts for the range cases. Also, as an obvious consequence,
open range cases are not supported. Another limitation of Prism is its partial support for
non-determinism that was not useful for the analysis of our benchmark protocols. More
precisely, despite the fact that Prism does support non-determinism modeled as Markov
decision processes, the extraction of the stationary distribution is available only for discrete
and continuous time Markov chains, not for Markov decision processes.

Marchal For fixed values scenarios, Prism performs better than Marchal in most cases.
The strength of our approach becomes more clear for the cases of ranges, where Marchal
was able to return an answer before the timeout in all cases, at least using the Box domain.
Some timeouts occurred, however, with the relational domain Poly. As we can notice from
the convergent cases, the PFM proportion is always predominant in the overall analysis time.
Most of these computations are performedwhen checking the signs of parametric coefficients
during the resolution process (lines 5, 6 and 7 in Fig. 16), for which we use the Mathematica
API.

However, since it is always sound to remove constraints from a system of inequalities,
a simple optimization consists in ignoring inequalities for which the sign check procedure
consumes an excessive amount of time. This is done by constraining the duration of the
evaluation of constraints ai, j > 0, ai, j < 0 and ai, j = 0 in lines 5, 6 and 7 respectively
in Fig. 16. In our experiments, this duration guard was fixed to 5 seconds; when this guard
is reached, the constraint is not added to the system P , and the algorithm continues the
elimination process with the other constraints. In most cases, this ensured that the overall
analysis does not reach the global 30 mins time limit; however, a few timeouts remained.

Another issue of our approach is its inefficiency in the presence of a bounding parameter
that limits the number of transmissions, such as parameter n for cases Cn and Ln , and
parameter t for Lt∞. In most experiments, a timeout occurred using the relational domain
Poly. The main reason behind this problem is that our abstract domain is not able to reflect
the impact of such parameters on the stationary distribution invariants.When analyzing a loop
while (e) s where statement s contains a sequence of observable states, we are not able to

123

Formal Methods in System Design (2019) 54:64–109 95

Table 1 Analysis time, reported in seconds

Protocol Prism U Marchal

Box Poly

AMC PFM Total AMC PFM Total

C1: Constant single backoff

B = 3, S = 102 1.72 2 0.71 2.59 3.3 1.46 2.87 4.3

3 0.99 2.62 3.6 2.38 2.70 5.1

B = 20, S = 103 10.80 2 0.68 2.60 3.3 1.47 2.71 4.2

3 0.82 2.94 3.8 2.39 2.82 5.2

B ∈ [3, 20], S ∈ [102, 103] ∞ 2 0.77 2.53 3.3 2.04 2.50 4.5

3 1.06 2.68 3.7 3.29 2.74 6.0

B ∈ [3, 20], S ∈ [102, 103] ✱ ✘ 2 0.85 2.61 3.5 2.79 2.80 5.6

3 1.05 2.60 3.7 4.87 3.00 7.9

B ≥ 3, S ≥ 102 ✘ 2 0.68 2.41 3.1 1.66 2.63 4.3

3 0.87 2.56 3.4 3.12 2.78 5.9

C∞: Constant unbounded backoffs

B = 3, S = 102 1.59 2 0.95 3.16 4.1 2.54 3.38 5.9

3 1.79 4.82 6.6 4.85 3.31 8.2

B = 20, S = 103 10.32 2 1.07 3.33 4.4 2.70 3.36 6.1

3 1.84 5.09 6.9 4.92 4.47 9.4

B ∈ [3, 20], S ∈ [102, 103] ∞ 2 1.16 3.20 4.4 3.49 5.02 8.5

3 1.92 3.39 5.3 6.61 5.50 12.1

B ∈ [3, 20], S ∈ [102, 103] ✱ ✘ 2 1.07 4.79 5.9 5.08 8.97 14.1

3 2.03 5.26 7.3 10.28 21.13 31.4

B ≥ 3, S ≥ 102 ✘ 2 1.06 2.50 3.6 2.81 5.21 8.0

3 1.81 2.52 4.3 5.98 5.68 11.7

Cn : Constant bounded backoffs

B = 3, S = 102, n = 2 1.74 2 2.49 10.77 13.3 8.10 10.30 18.4

3 4.21 14.63 18.8 14.75 15.12 29.9

B = 20, S = 103, n = 6 38.07 2 5.96 13.72 19.7 23.08 13.55 36.6

3 11.22 25.22 36.4 48.46 24.75 73.2

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] ∞ 2 5.39 10.37 15.8 39.90 180.84 220.7

3 10.40 14.36 24.8 74.55 1136.72 1211.3

B ∈ [3, 20], S ∈ [102, 103], n = 2 ∞ 2 2.60 10.47 13.1 11.14 168.97 180.1

3 4.42 15.67 20.1 22.72 809.66 832.4

B ∈ [3, 20], S ∈ [102, 103], n = 2 ✱ ✘ 2 2.96 10.42 13.4 16.44 95.43 111.9

3 4.99 9.55 14.5 29.03 397.72 426.8

B ≥ 3, S ≥ 102, n ≥ 2 ✘ 2 5.08 2.73 7.8 26.58 167.51 194.1

3 9.46 2.86 12.3 50.18 991.01 1041.2

Ln : Linear bounded backoffs

B = 3, S = 102, n = 2 1.74 2 2.33 10.69 13.0 8.15 10.60 18.8

3 4.20 15.51 19.7 15.01 15.77 30.8

123

96 Formal Methods in System Design (2019) 54:64–109

Table 1 continued

Protocol Prism U Marchal

Box Poly

AMC PFM Total AMC PFM Total

B = 20, S = 103, n = 6 13.36 2 5.99 5.09 11.1 22.84 28.88 51.7

3 11.11 7.25 18.4 45.63 51.17 96.8

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] ∞ 2 5.60 3.26 8.9 ∞
3 10.19 7.56 17.8 ∞

B ∈ [3, 20], S ∈ [102, 103], n = 2 ∞ 2 2.65 11.06 13.7 11.34 135.54 146.9

3 4.24 15.51 19.8 20.92 669.55 690.5

B ∈ [3, 20], S ∈ [102, 103], n = 2 ✱ ✘ 2 2.95 8.86 11.8 16.48 58.10 74.6

3 4.93 10.32 15.2 30.94 395.34 426.3

B ≥ 3, S ≥ 102, n ≥ 2 ✘ 2 5.22 2.80 8.0 ∞
3 9.75 3.01 12.8 ∞

Lt∞: Linear truncated backoffs

B = 3, S = 102, t = 2 1.74 2 2.01 13.60 15.6 5.85 13.34 19.2

3 3.64 19.96 23.6 11.73 19.14 30.9

B = 20, S = 103, t = 6 9.74 2 7.06 5.48 12.5 29.57 5.57 35.1

3 13.27 6.31 19.6 61.76 7.05 68.8

B ∈ [3, 20], S ∈ [102, 103], t ∈ [2, 6] ∞ 2 3.54 3.39 6.9 ∞
3 6.40 5.44 11.8 ∞

B ∈ [3, 20], S ∈ [102, 103], t = 2 ∞ 2 2.12 11.96 14.1 8.28 160.09 168.4

3 3.76 12.81 16.6 16.23 268.40 284.6

B ∈ [3, 20], S ∈ [102, 103], t = 2 ✱ ✘ 2 2.27 10.19 12.5 11.85 122.16 134.0

3 4.12 11.65 15.8 23.96 1682.07 1706.0

B ≥ 3, S ≥ 102, t ≥ 2 ✘ 2 3.28 2.90 6.2 ∞
3 6.08 3.04 9.1 29.52 1054.99 1084.5

AMC: abstract Markov chain extraction, PFM: parametric Fourier-Motzik resolution, ✱: presence of non-
determinism, ∞: timeout of 30 mins, ✘: unsupported analysis case

reflect the impact of the exit condition e on the aggregate sojourn time of those states, because
sojourn times are attached to observable states individually. Consequently, the bounded loop
is approximated with an unbounded one and the information of the bounding parameter is
ignored. This results in complex stationary distribution invariants that are not well adapted
for the resolution algorithm. For this reason, we have added an additional scenario for Cn ,
Ln and Lt∞ in which the bounding parameter has a small fixed value of 2. This allows us
to perform an unrolling of the transmission loop. As a consequence, the analysis time of
Marchal was improved and all timeouts disappeared, while Prism was not able to analyze
these scenarios.

6.2 Precision

In this section, we quantify the loss of precision induced by the approximations of our
analysis. Note that the outcome of Marchal is a symbolic expression of the stationary

123

Formal Methods in System Design (2019) 54:64–109 97

Table 2 Analysis error, computed as the average gap between the upper and lower bounds of the stationary
distribution

Protocol U Box Poly Box ⊕ Poly

Error Speedup Error Speedup Error Speedup

C1: Constant single backoff

B = 3, S = 102 2 0.003 −1.6s 0.003 −2.6s 0.003 −5.9s

3 0.000 −1.9s 0.000 −3.4s 0.000 −7.0s

B = 20, S = 103 2 0.008 +7.5s 0.008 +6.6s 0.008 +3.3s

3 0.005 +7.0s 0.005 +5.6s 0.005 +1.8s

B ∈ [3, 20], S ∈ [102, 103] 2 0.218 ++ 0.010 ++ 0.010 ++
3 0.154 ++ 0.006 ++ 0.006 ++

B ∈ [3, 20], S ∈ [102, 103] ✱ 2 0.222 ++ 0.012 ++ 0.012 ++
3 0.158 ++ 0.007 ++ 0.007 ++

C∞: Constant unbounded backoffs

B = 3, S = 102 2 0.236 −2.5s 0.237 −4.3s 0.237 −8.4s

3 0.000 −5.0s 0.000 −6.6s 0.000 −13.2s

B = 20, S = 103 2 0.894 +5.9s 0.894 +4.3s 0.894 −0.1s

3 0.834 +3.4s 0.834 +0.9s 0.834 −6.0s

B ∈ [3, 20], S ∈ [102, 103] 2 0.978 ++ 0.739 ++ 0.740 ++
3 0.963 ++ 0.600 ++ 0.600 ++

B ∈ [3, 20], S ∈ [102, 103] ✱ 2 0.978 ++ 0.792 ++ 0.792 ++
3 0.967 ++ 0.680 ++ 0.680 ++

Cn : Constant bounded backoffs

B = 3, S = 102, n = 2 2 0.007 −11.5s 0.007 −16.7s 0.007 −29.9s

3 0.000 −17.1s 0.000 −28.1s 0.000 −47.0s

B = 20, S = 103, n = 6 2 0.898 +18.4s 0.898 +1.4s 0.898 −18.2s

3 0.838 +1.6s 0.838 −35.1s 0.838 −71.6s

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] 2 0.982 ++ 0.749 ++ 0.749 ++
3 0.961 ++ 0.667 ++ 0.667 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2 2 0.321 ++ 0.039 ++ 0.039 ++
3 0.237 ++ 0.950 ++ 0.223 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2 ✱ 2 0.323 ++ 0.044 ++ 0.044 ++
3 0.240 ++ 0.022 ++ 0.022 ++

distribution that is always in the range [0, 1]. Measuring the imprecision of such expressions
is not obvious because it varies depending on the value of the parameters. Therefore, we
compute numerically the average gap between the obtained upper and lower bounds over the
entire ranges of the parameters for each configuration. The smaller is the gap, the better is
the precision: 0 means finding the exact solution, while 1 means that no interesting one was
found. Obviously, by doing so, the precision of open range scenarios cannot be computed,
so we omit them in this study.

The obtained results are shown in Table 2. Note that we do not present the results of
Prism because it produces always precise results with no errors. Instead, we show the relative
performance speedup of Marchal over Prism to illustrate the precision/efficiency tradeoff
of the analysis (positive numbers indicating that Marchal was faster).

123

98 Formal Methods in System Design (2019) 54:64–109

Table 2 continued

Protocol U Box Poly Box ⊕ Poly

Error Speedup Error Speedup Error Speedup

Ln : Linear bounded backoffs

B = 3, S = 102, n = 2 2 0.009 −11.3s 0.010 −17.0s 0.010 −30.0s

3 0.001 −18.0s 0.001 −29.0s 0.001 −48.8s

B = 20, S = 103, n = 6 2 1.000 +2.3s 0.935 −38.4s 0.935 −49.4s

3 1.000 −5.0s 0.893 −83.4s 0.893 −101.8s

B ∈ [3, 20], S ∈ [102, 103], n ∈ [2, 6] 2 1.000 ++ ∞ ∞
3 1.000 ++ ∞ ∞

B ∈ [3, 20], S ∈ [102, 103], n = 2 2 0.322 ++ 0.041 ++ 0.041 ++
3 0.238 ++ 0.237 ++ 0.068 ++

B ∈ [3, 20], S ∈ [102, 103], n = 2 ✱ 2 0.323 ++ 0.046 ++ 0.046 ++
3 0.240 ++ 0.023 ++ 0.023 ++

Lt∞: Linear truncated backoffs

B = 3, S = 102, t = 2 2 0.414 −13.9s 0.414 −17.4s 0.414 −33.1s

3 0.124 −21.9s 0.124 −29.1s 0.124 −52.7s

B = 20, S = 103, t = 6 2 1.000 −2.8s 1.000 −25.4s 1.000 −37.9s

3 1.000 −9.8s 1.000 −59.1s 1.000 −78.7s

B ∈ [3, 20], S ∈ [102, 103], t ∈ [2, 6] 2 1.000 ++ ∞ ∞
3 1.000 ++ ∞ ∞

B ∈ [3, 20], S ∈ [102, 103], t = 2 2 0.970 ++ 0.782 ++ 0.782 ++
3 0.942 ++ 0.653 ++ 0.653 ++

B ∈ [3, 20], S ∈ [102, 103], t = 2 ✱ 2 0.962 ++ 0.815 ++ 0.814 ++
3 0.944 ++ 0.712 ++ ∞

The speedup column gives the improvement in time when comparing with Prism. The column Box ⊕ Poly
reports the result of combining both domains
Bold: minimal error per case, ✱: presence of non-determinism, ∞:Marchal timeout, ++: Prism timeout

In 12 of the 23 cases, Marchal produced small error gaps (< 0.2): Prism was faster in
5 of these cases; while in 6 of them, Prism was not able to find a solution. In the remaining
11 of the 23 cases, the results obtained by Marchal were too coarse. This is due to (i) the
naive partitioning abstraction of the uniform distribution, and (ii) the presence of bounded
loops that are not handled properly by our semantics as discussed earlier in the efficiency
study. Nevertheless, in 7 of these 11 cases, Prismwas not able to return an answer within the
fixed timeout. In summary, we can conclude that the approaches of Marchal and Prism
are complementary: Marchal is not always the most optimal, but can compute interesting
results that are out-of-the scope of Prism’s approach.

These preliminary results show the importance of tunable approximations that allowMar-
chal to tradeoff precision and efficiency, contrary toPrism that returns always precise results.
Three factors influenced the tradeoff of Marchal:

– Even though the partitioning approach of the uniform distribution is a naive abstraction,
many cases were improved by adjusting properly its parameter U .

– The relational invariants provided by the Poly impacted considerably the precision, but
at the cost of efficiency.

123

Formal Methods in System Design (2019) 54:64–109 99

– The number of unrollings of while loops was also an important tuning parameter of
the analysis.

Some few particular cases violate the monotony of this tradeoff. For instance, consider
the Cn protocol and the case B ∈ [3, 20], S ∈ [102, 103], n = 2. The precision decreased
from 0.321 usingBox/U = 2 to 0.950 using Poly/U = 3, which is counter-intuitive. Essen-
tially, by increasing the precision of the domain, the distribution invariants can become more
complex and difficult to handle by Mathematica. Therefore, some constraints are ignored to
ensure convergence, which leads to partial solutions not covering all the range of the parame-
ters. For the uncovered region, the trivial bound [0, 1] is assumed so that we are nevertheless
sound, albeit we decrease the precision of the overall result. Nevertheless, the invariants of
both cases can be merged by considering the most precise bounds. The result of this combi-
nation is reported in the column Box ⊕ Poly in Table 2 and shows an improvement of the
precision in these particular cases.

7 Related work

The analysis of probabilistic programs has gained great interest over the last years. Many
techniques have been proposed with varying precision/scalability tradeoffs. Overall, two
kinds of quantitative properties have been considered:

Distribution inference Most existing tools aim at inferring the probability of reaching
particular program states. This kind of analysis extends the classic (qualitative) notion of
state reachability to provide more refined (quantitative) answers about the program safety,
e.g. the likelihood of violating an assertion. In the literature, this is designated as distribution
inference, bayesian inference or probabilistic reachability.

Expectation invariants Other works focus on finding invariants about the expectation of
someprogramvariable or expression.An expectation gives themeanvalue of an expression by
considering all scenarios weighted with their probabilities. Note that a distribution inference
analysis can be used to obtain expectation invariants. However, a tailored expectation analysis
can be more efficient.

It is worth noting that the kind of properties investigated in our work is different from those
two notions. We are interested in computing rates at which performance indicators change
during time (e.g. rates of packet transmission, energy consumption, etc.). Computing such
rates is based on finding the stationary distribution of the process, which is different than
computing reachability probabilities or expectations. For this reason, existing verification
techniques are not adequate to infer the kind of properties we are interested in, except Prism
as we will discuss later.

In the following, we give an overview of the most representative solutions in the literature:

7.1 Model checking

Daws [14] presented a theoretic-language approach to find exact symbolic probabilities of
events expressed in PCTL. The analysis is limited to parametric discrete time Markov chains
with finite state spaces unlike our approach. By considering a chain as an automaton over
the alphabet of probability events, symbolic reachability probabilities can be encoded as
regular expressions using a state elimination algorithm. The obtained regular expressions are

123

100 Formal Methods in System Design (2019) 54:64–109

evaluated symbolically by structural induction to extract rational functions giving the desired
parametric reachability probability. Several enhancements of this approach were proposed
to support non-determinism [25] and conditional probabilities [16].

Prism [29] is a famous model checker that has been successfully applied for analyz-
ing many probabilistic systems. It supports several stochastic models, such as discrete and
continous Markov chains, Markov decision processes and probabilistic timed automata. In
addition to a numeric resolution engine, Prism integrated the parametric reachability analy-
sis of Param [25] which allows computing symbolic stationary distribution of discrete time
Markov chains, but it is limited to finite state spaces.

7.2 Symbolic execution

Geldenhuys et al. [22] extended the Symbolic PathFinder engine [2] to compute exact reach-
ability probabilities. The analysis targets (non-probabilistic) functions with symbolic input
parameters drawn from finite uniform distributions. Symbolic execution traces are enriched
with path probabilities computed by dividing the number of reaching paths by the total
space of values of the inputs. To do so, volume counting techniques [15] are required, which
limits the scalability of the approach. Several other techniques extend this approach to sup-
port multi-threaded programs [20], to handle non-determinism [32], or to use Monte Carlo
sampling for better efficiency [21].

Sankaranarayanan et al. [43] proposed another symbolic approach that can infer formally
guaranteed bounds of reachability probabilities. It targets infinite state probabilistic programs
with various discrete and continous distributions. Also, the authors propose a branch-and-
bound technique to perform sound and approximate volume counting.

More recently, Barthe et al. [3] described a symbolic execution based on martingales in
order to derive post-loop expectations of program variables. Informally, a martingale is an
expression having an expectation that does not change. The proposed technique uses Doob’s
decomposition in order to infer martingale expressions automatically. After that, post-loop
expectations are computed by applying the optional stopping theorem.

7.3 Static analysis

Abstract interpretation of probabilistic programs was introduced by Monniaux [35] to
compute upper-bounds of reachability probabilities. The analysis lifts standard concrete
non-probabilistic semantics to probabilistic semantics by extending the measure-based for-
malization of Kozen [28] in order to handle non-determinism. Later, Monniaux extended this
work to support backward reachabilty analysis [36] and LTL properties on Markov decision
processes [37].

In the same line, Bouissou et al. [4] developed a probabilistic abstract interpretation of
numeric programs. The aim of the analysis is to quantify rounding errors during numeric
computations by propagating noise-related uncertainties as probabilities. The analysis is
based on p-boxes [19] and Dempster–Shafer structures [44], but lacks a widening operator.
An enhancement of this approach was proposed in [5] that employs concentration of measure
inequalities [17].

In [11], Cousot et al. proposed a systematic framework for formalizing probabilistic
abstract interpretations by introducing the concept of law abstraction as a means to approx-
imate probability distributions on program states. This formalism provides general theoretic

123

Formal Methods in System Design (2019) 54:64–109 101

guidelines to build sound probabilistic abstract interpretations, but does not provide practical
solutions for widening loop iterations.

Chakarov et al. [7] presented a static analysis that extends the weakest pre-expectation
calculus of McIver and Morgan [33] to compute reachability probabilities and to prove
almost sure termination. In [8], Chakarov et al. proposed another pre-expectation based anal-
ysis using abstract interpretation for discovering expectation invariants through the abstract
domain of polyhedra with an appropriate widening operator.

Wang et al. [50] proposed another systematic framework for backward data flow analy-
sis of probabilistic programs. Domains are formalized as measurable spaces over program
states, and transfer functions correspond to kernels giving the probability that execution of a
statement will hit some target environment. The analysis is intra-procedural and modular by
computing function summaries that maintain sound input-output relations. The framework
makes distinction between three kinds of widenings, depending on the exit condition of the
loop: (classic) conditional, non-deterministic or probabilistic. Two instances of the frame-
work are presented: a bayesian inference computing lower-bounds of probability reachability
distributions, and a linear expectation invariant analysis over polyhedra.

7.4 Minimization of Markov chains

In addition to verification approaches, conservative minimization techniques for Markov
chains have been extensively investigated. Chain lumping [27] consists in downsizing a
Markov chain by constructing a quotient Markov chain over some equivalence relation. By
imposing particular constraints on this relation, one can relate the stationary distribution of
the lumped chain to the original concrete one. In our approach, no constraint is imposed on
the equivalence relation, albeit the obtained stationary distribution bounds may be too coarse
if the relation is not carefully designed. In addition, the construction of the lumped chain is
performed dynamically by structural induction on the program syntax, which is not the case
for classic lumping techniques that require a prior knowledge of the entire concrete chain.

Abate et al. [1] proposed another conservative minimization technique for discrete time
Markov process with general (uncountable) state spaces. The basic idea is to derive a finite
stateMarkov chain that enjoys particular approximation guarantees. Using classic probabilis-
tic model checkers, such as Prism, the approximate chain is analyzed to derive the desired
reachability probability. The result is combined with the approximation guarantees to pro-
vide a guaranteed error bound w.r.t. the reachability probability of the same property on the
original Markov process. Soudjani et al. [45] extended this approach to approximate the state
probability as a function of time. However, it not clear how these results can be adapted to
bound the stationary distribution of the original process.

8 Conclusion

We have presented a novel approach for obtaining guaranteed bounds of performancemetrics
of communication protocols. Themethod is based on the framework of abstract interpretation
and proposes an abstract Markov chain domain for approximating the semantics of programs
with probabilistic and non-deterministic choices. We have also explained how to exploit the
information encapsulated within this domain in order to infer a sound approximation of the
stationary distribution of the protocol, which is the key ingredient for computing a large range
of performance metrics such as the throughput and the energy consumption. A prototype of
the analysis has been presented along with some preliminary results.

123

102 Formal Methods in System Design (2019) 54:64–109

Many problems about enhancing the proposed approach are still open. As reported by our
benchmarks results, the efficiency and the precision of the prototype analyzer are significantly
affected in caseswhere the programuses a bounding parameter to limit transmission attempts.
To overcome this limitation, we can enrich our abstraction by inferring invariants aboutmacro
sojourn time that reflect the relations between the overall sojourn time in particular sequences
of states (e.g. within a while loop). Another problem is related to the parametric resolution
step of our analysis. In general, the required time to perform the projection is predominant
in the overall analysis time, and we believe that the efficiency of the resolution algorithm
can still be improved by introducing approximations. Also, the presented analysis targeted
a simple C-like language and we would like to extend it to support real-world programs in
full-fledgedC andmore complex probability distributions. Finally, our work supports a single
process model and we are interested in extending it to communicating concurrent programs.

A Proof of Theorem 2

Let ρ ∈ { ρ | (−, ρ,−) ∈ γ (I �) } be a concrete initial environment. We divide the proof into
two parts.

A.1 Proof of the weakMarkov property

First, we want to prove that:

∀s�
i ∈ Σ� : EE

�
π� � P �(I �)(s�

i)
�
ρ

≤
∑

s�j∈Σ�

EE
�

π� � P �(I �)(s�
j) × P

� � P �(I �)(s�
j , s

�
i)

�
ρ

Let s�
i ∈ Σ� be an abstract state of the final abstract Markov chain M

� � P �I �. We start by

linking the evaluation of the abstract distribution π� � P �(I �)(s�
i) to the value of the concrete

one π � P �ρ(si):

EE
�

π� � P �(I �)(s�
i)

�
ρ

=
∑

si∈γΣ(s�i)

π � P �(ρ)(si) 	Defintion 14

=
∑

s�j∈Σ�

si∈γΣ(s�i)

s j∈γΣ(s�j)

π � P �(ρ)(s j) × P � P �(ρ)(s j , si) 	Using (2)

=
∑

s�j∈Σ�

si∈γΣ(s�i)

s j∈γΣ(s�j)

νi

ν j
π � P � (ρ)(s j) ×

∑

s j
ω→si∈M� P �ρ

Pr � ω �ρ 	Definition 6

where νi and ν j are the sojourn times at states si and s j respectively.

123

Formal Methods in System Design (2019) 54:64–109 103

By exploiting the over-approximation of these sojourn times provided by the abstract
numeric domain, we can infer the following:

EE
�

π� � P �(I �)(s�
i)

�
ρ ≤

∑

s�j∈Σ�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s j∈γΣ(s�j)

π � P �(ρ)(s j) ×
∑

si∈γΣ(s�i)

s j
ω→si∈M� P �ρ

Pr � ω �ρ

Using the soundness condition guaranteed by Theorem 1 we can derive:

EE
�

π� � P �(I �)(s�
i)

�
ρ ≤

∑

s�j∈Σ�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s�j
ω�→s�j∈M�� P �I �

s j∈γΣ(s�j)

π � P �(ρ)(s j) ×
∑

si∈γΣ(s�i)

ω∈γ L
A (ω�)

s j
ω→si∈M� P �ρ

Pr � ω �ρ
(4)

For the next step, we need to over-approximate the concrete transition probabilities
Pr � ω �ρ, which is done using the following lemma:

Lemma 1 Let s j ∈ Σ a concrete state and ω� ∈ Ω� an abstract scenario. We have:
∑

si∈γΣ(s�i)

ω∈γ L
A (ω�)

s j
ω→si∈M� P �ρ

Pr � ω �ρ ≤ EE
�
Pr�

�
ω�

� �
ρ

Proof We proceed by induction on the structure of ω� using Definition 12 of abstract scenar-
ios probabilities. An important notice that allows building this proof is that, starting from a
concrete state s j , outgoing transitions could be labeled only by outcomes of the same distri-
bution. Indeed, because we are dealing with transitions from only one discrete time Markov
chain M � P �ρ, we can have only a pure probabilistic behavior with no non-determinism and
with a single distribution at each state. So, we have the following cases:

– Case ω� = ε�:∑

si∈γΣ(s�i)

ω∈γ L
A (ε�)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

s j
ε→si∈M� P �ρ

Pr � ε �ρ

≤ Pr � ε �ρ 	Since ε is the only possible outcome

= 1 	Definition 5

= EE � 1 �ρ

= EE
�
Pr�

�
ε�

� �
ρ 	Defintion 12

– Case ω� = bl : ∑

si∈γΣ(s�i)

ω∈γ L
A (bl)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

s j
bl→si∈M� P �ρ

Pr � bl �

123

104 Formal Methods in System Design (2019) 54:64–109

≤ Pr � bl �ρ

= ρ[pl]
= EE � pl �ρ

= EE
�
Pr� � bl �

�
ρ

– Case ω� = bl :
∑

si∈γΣ(s�i)

ω∈γ L
A (bl)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

s j
bl→si∈M� P �ρ

Pr
�
bl

�
ρ

≤ Pr
�
bl

�
ρ

= 1 − ρ[pl]
= EE � 1 − pl �ρ

= EE
�
Pr�

�
bl

� �
ρ

– Case ω� = uil :

∑

si∈γΣ(s�i)

ω∈γ L
A (uil)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

s j
ui,a,b
l−→ si∈M� P �ρ

Pr
�
ui,a,b
l

�
ρ

≤ Pr
�
ui,a,b
l

�
ρ

= 1

b − a + 1

≤ EE

�

�
1

min�
�

� →
u l

�
− max�

�

� ←
u

�
+ 1

�ρ

= EE
�
Pr�

�
uil

� �
ρ

– Case ω� = u✩
l :

∑

si∈γΣ(s�i)

ω∈γ L
A (u✩

l)

s j
ω→si∈M� P �ρ

Pr � ψ �(ω) =
∑

si∈γΣ(s�i)
i∈[U ,b−a+1]

s j
ui,a,b
l−→ si∈M� P �ρ

Pr
�
ui,a,b
l

�
ρ

≤
∑

i∈[U ,b−a+1]

1

b − a + 1

= max

(
0,

b − a + 1 −U + 1

b − a + 1

)

= max

(
0,

b − a + 2 −U

b − a + 1

)

123

Formal Methods in System Design (2019) 54:64–109 105

≤ EE

�

�max

⎛
⎝0,

max�
�

� →
u l

�
− min�

�

� ←
u l

�
+ 2 −U

min�
�

� →
u l

�
− max�

�

� ←
u l

�
+ 1

⎞
⎠

�ρ

= EE
�
Pr�

�
u✩
l

� �
ρ

– Case ω� = ω
�
0ξ

�:

∑

si∈γΣ(s�i)

ω∈γ L
A (ω

�
0ξ

�)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

ω0∈γ L
A (ω

�
0)

ξ∈γ L
A (ξ�)

s j
ω0ξ→ si∈M� P �ρ

Pr � ω0 �ρ Pr � ξ � ρ

≤
∑

sk∈γΣ(s�k)

ω0∈γ L
A (ω

�
0)

s j
ω0→sk∈M� P �ρ

Pr � ω0 �ρ
∑

si∈γΣ(s�i)

ξ∈γ L
A (ξ�)

sk
ξ→si∈M� P �ρ

Pr � ξ �ρ

≤ EE
�
Pr�

�
ω

�
0

� �
ρ

× EE
�
Pr�

�
ξ�

� �
ρ 	Induction hypothesis

= EE
�
Pr�

�
ω

�
0

�
× Pr�

�
ξ�

� �
ρ

= EE
�
Pr�

�
ω

�
0ξ

�
� �

ρ

– Case ω� = ω�
1 + ω�

2:

∑

si∈γΣ(s�i)

ω∈γ L
A (ω

�
1+ω

�
2)

s j
ω→si∈M� P �ρ

Pr � ω �ρ =
∑

si∈γΣ(s�i)

ω∈γ L
A (ω

�
1)∪γ L

A (ω
�
2)

s j
ω→si∈M� P �ρ

Pr � ω �ρ

≤
∑

si∈γΣ(s�i)

ω1∈γ L
A (ω

�
1)

s j
ω1→si∈M� P �ρ

Pr � ω1 �ρ +
∑

si∈γΣ(s�i)

ω2∈γ L
A (ω

�
2)

s j
ω2→si∈M� P �ρ

Pr � ω2 �ρ

≤ EE
�
Pr�

�
ω

�
1

� �
ρ + EE

�
Pr�

�
ω

�
2

� �
ρ

= EE
�
Pr�

�
ω

�
1

�
+ Pr�

�
ω

�
2

� �
ρ

= EE
�
Pr�

�
ω

�
1 + ω

�
2

� �
ρ

��

123

106 Formal Methods in System Design (2019) 54:64–109

Finally, using this lemma as an over-approximation of concrete scenario probabilities, we
can derive from (4) the following:

EE
�

π� � P �(I �)(s�
i)

�
ρ ≤

∑

s�j∈Σ�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s�j
ω�→s�j∈M�� P �I �

s j∈γΣ(s�j)

π � P �(ρ)(s j)

×
∑

si∈γΣ(s�i)

ω∈γ L
A (ω�)

s j
ω→si∈M� P �ρ

Pr � ω �ρ

≤
∑

s�j∈Σ�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s�j
ω�→s�j∈M�� P �I �

EE
�
Pr�

�
ω�

� �
ρ

×
∑

s j∈γΣ(s�j)

π � P �(ρ)(s j)

	Definition 14

=
∑

s�j∈Σ�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s�j
ω�→s�j∈M�� P �I �

EE
�
Pr�

�
ω�

� �
ρ × EE

�
π� � P �(I �)(s�

j)
�
ρ

=
∑

s�j∈Σ�

EE
�

π� � P �(I �)(s�
j)

�
ρ × EE

�

�
�
�
�

max� � ν �(s�
i)

min� � ν �(s�
j)

∑

s�j
ω�→s�j∈M�� P �I �

Pr�
�

ω�
�

�
�
�
�

ρ

	Defintion 13

=
∑

s�j∈Σ�

EE
�

π� � P �(I �)(s�
j)

�
ρ × EE

�
P

� � P �(I �)(s�
j , s

�
i)

�
ρ

=
∑

s�j∈Σ�

EE
�

π� � P �(I �)(s�
j) × P

� � P �(I �)(s�
j , s

�
i)

�
ρ

��

A.2 Normalization constraint

The second part of the theorem is the normalization constraint:

∑

s�∈Σs

EE
�

π� � P �(I �)(s�)
�
ρ = 1

We have:
∑

s�∈Σs

EE
�

π� � P �(I �)(s�)
�
ρ

123

Formal Methods in System Design (2019) 54:64–109 107

=
∑

s�∈Σ�

s∈γΣ(s�)

π � P �(ρ)(s) 	Defintion (14)

=
∑
s∈Σ

π � P �(ρ)(s) 	Spurious states have null probability

= 1

��

B Benchmarks programs

See Fig. 17.

(a) (b)

(c) (d)

Fig. 17 Programs of the analyzed backoff mechanisms

123

108 Formal Methods in System Design (2019) 54:64–109

References

1. Abate A, Katoen J-P, Lygeros J, Prandini M (2010) Approximate model checking of stochastic hybrid
systems. Eur J Control 16(6):624–641

2. Anand S, Păsăreanu, CS, Visser W (2007) JPF-SE: a symbolic execution extension to Java Path Finder.
In: TACAS’07, volume 4424 of LNCS. Springer, pp 134–138

3. Barthe G, Espitau T, Ferrer Fioriti L, Hsu J (2016) Synthesizing probabilistic invariants via Doob’s
decomposition. In: CAV ’16, volume 9779 of LNCS. Springer, pp 43–61

4. Bouissou O, Goubault E, Goubault-Larrecq J, Putot S (2012) A generalization of p-boxes to affine
arithmetic. Computing 94(2):189–201

5. Bouissou, O, Goubault E, Putot S, Chakarov A, Sankaranarayanan S (2016) Uncertainty propagation
using probabilistic affine forms and concentration of measure inequalities. In: TACAS ’16, volume 9636
of LNCS. Springer, pp 225–243

6. Buchholz P (1994) Exact and ordinary lumpability in finite Markov chains. J Appl Probab 31(1):59–75
7. Chakarov A, Sankaranarayanan S (2013) Probabilistic program analysis with martingales. In: CAV ’13,

volume 8044 of LNCS. Springer, pp 511–526
8. Chakarov A, Sankaranarayanan S (2014) Expectation invariants for probabilistic program loops as fixed

points. In: SAS ’14, volume 8723 of LNCS. Springer, pp 85–100
9. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In: POPL ’77. ACM, pp 238–252
10. Cousot P, Halbwachs N (1978) Automatic discovery of linear restraints among variables of a program.

In: POPL ’78. ACM, pp 84–97
11. Cousot P, Monerau M (2012) Probabilistic abstract interpretation. In: ESOP ’12, volume 7211 of LNCS.

Springer, pp 169–193
12. Cousot R (1985) Fondements desméthodes de preuve d’invariance et de fatalité de programmes parallèles.

Thèse d’État ès sciences mathématiques, Institut National Polytechnique de Lorraine, Nancy, France
13. Dattatreya GR (2008) Performance analysis of queuing and computer networks. Chapman and Hall/CRC,

Boca Raton
14. Daws C (2004) Symbolic and parametric model checking of discrete-timeMarkov chains. In: ICTAC ’04,

volume 3407 of LNCS. Springer, pp 280–294
15. De Loera JA, Hemmecke R, Tauzer J, Yoshida R (2004) Effective lattice point counting in rational convex

polytopes. J Symb Comput 38(4):1273–1302
16. Dehnert C, Junges S, Jansen N, Corzilius F, VolkM, Bruintjes H, Katoen J.-P, Ábrahám E (2015) PROPh-

ESY: a PRObabilistic ParamEter SYnthesis tool. In: CAV ’15, volume 9206 of LNCS. Springer, pp
214–231

17. Dubhashi DP, Panconesi A (2009) Concentration of measure for the analysis of randomized algorithms.
Cambridge University Press, Cambridge

18. Feret J (2001) Abstract interpretation-based static analysis of mobile ambients. In: SAS ’01, volume 2126
of LNCS. Springer, pp 412–430

19. Ferson S, Kreinovick V, Ginzburg L, Sentz F (2003) Constructing probability boxes and Dempster-Shafer
structures. Technical report, SAND2002-4015

20. Filieri A, Păsăreanu CS, Visser W (2013) Reliability analysis in symbolic pathfinder. In: ICSE ’13. IEEE
Press, pp 622–631

21. Filieri A, Păsăreanu CS, Visser W, Geldenhuys J (2014) Statistical symbolic execution with informed
sampling. In: FSE ’14. ACM, pp 437–448

22. Geldenhuys J, Dwyer MB, Visser W (2012) Probabilistic symbolic execution. In: ISSTA ’12. ACM, pp
166–176

23. Grimmett G, Stirzaker D (2001) Probability and random processes. Oxford University Press, Oxford
24. Grïßlinger A (2003) Extending the polyhedron model to inequality systems with non-linear parameters

using quantifier elimination. Master thesis, University of Passau
25. Hahn E, Hermanns H, Zhang L (2011) Probabilistic reachability for parametric Markov models. Int J

Softw Tools Technol Transf 13(1):3–19
26. Jeannet B, Miné A (2009) Apron: a library of numerical abstract domains for static analysis. In: CAV

’09, volume 5643 of LNCS. Springer, pp 661–667
27. Kemeney JG, Snell JL (1976) Finite Markov chains. Springer, Berlin
28. Kozen D (1985) A probabilistic PDL. J Comput Syst Sci 30(2):162–178
29. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: verification of probabilistic real-time systems.

In: CAV ’11, volume 6806 of LNCS. Springer, pp 585–591
30. Le Gall T, Jeannet B (2007) Lattice automata: a representation for languages on infinite alphabets, and

some applications to verification. In: SAS ’07, volume 4634 of LNCS. Springer, pp 52–68

123

Formal Methods in System Design (2019) 54:64–109 109

31. Lesens D, Halbwachs N, Raymond P (2001) Automatic verification of parameterized networks of pro-
cesses. Theor Comput Sci 256(1–2):113–144

32. Luckow K, Păsăreanu CS, Dwyer MB, Filieri A, Visser W (2014) Exact and approximate probabilistic
symbolic execution for nondeterministic programs. In: ASE ’14. ACM, pp 575–586

33. McIver A, Morgan C (2004) Abstraction, refinement and proof for probabilistic systems. Monographs in
Computer Science. Springer, Berlin

34. Miné A (2006) The octagon abstract domain. Higher Ord Symb Comput (HOSC) 19(1):31–100
35. Monniaux D (2000) Abstract interpretation of probabilistic semantics. In: SAS ’00, volume 1824 of

LNCS. Springer, pp 322–339
36. Monniaux D (2001) Backwards abstract interpretation of probabilistic programs. In: ESOP ’01, volume

2028 of LNCS. Springer, pp 367–382
37. Monniaux D (2005) Abstract interpretation of programs as Markov decision processes. Sci Comput

Program 58:179–205
38. Necula G, McPeak S, Rahul S, Weimer W (2002) CIL: intermediate language and tools for analysis and

transformation of C programs. In: CC ’02, pp 213–228
39. Ouadjaout A, Miné A (2017) Quantitative static analysis of communication protocols using abstract

Markov chains. In: SAS ’17, volume 10422 of LNCS. Springer, pp 277–229
40. Parikh R (1966) On context-free languages. J ACM 13(4):570–581
41. PutermanML (1994)Markov decision processes: discrete stochastic dynamic programming.Wiley Series

in Probability and Statistics. Wiley, Hoboken
42. Ross S (1996) Stochastic processes. Wiley, Hoboken
43. Sankaranarayanan S, Chakarov A, Gulwani S (2013) Static analysis for probabilistic programs: inferring

whole program properties from finitely many paths. In: PLDI ’13. ACM, pp 447–458
44. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
45. Soudjani SEZ, Abate A (2014) Precise approximations of the probability distribution of aMarkov process

in time: an application to probabilistic invariance. In: TACAS ’14, volume 8413 of LNCS. Springer, pp
547–561 (2014)

46. Suriana P (2016) Fourier–Motzkin with non-linear symbolic constant coefficients. Master thesis, Mas-
sachusetts Institute of Technology

47. Van Hentenryck P, Cortesi A, Le Charlier B (1995) Type analysis of Prolog using type graphs. J Log
Program 22(3):179–209

48. Venet A (1999) Automatic analysis of pointer aliasing for untyped programs. Sci Comput Program
35(2):223–248

49. Villemot S (2002) Automates finis et intérpretation abstraite: application à l’analyse statique de protocoles
de communication. Rapport de DEA, École normale supérieure

50. Wang D, Hoffmann J, Reps T (2018) PMAF: an algebraic framework for static analysis of probabilistic
programs. In: PLDI ’18. ACM, pp 513–528

51. Wolfram Research, Inc. (2017) Mathematica, Version 11.2, Champaign, IL

123

	Quantitative static analysis of communication protocols using abstract Markov chains
	Abstract
	1 Introduction
	2 Concrete semantics
	2.1 Language syntax
	2.2 Markov chains
	2.3 Semantics domain
	2.4 Stationary distributions

	3 Abstract semantics
	3.1 Abstract automata
	3.1.1 Order
	3.1.2 Join
	3.1.3 Append
	3.1.4 Widening

	3.2 Abstract scenarios
	3.3 Abstract Markov chains

	4 Stationary distributions
	4.1 Distribution invariants
	4.2 Parametric Fourier–Motzkin algorithm

	5 Non-deterministic Semantics
	5.1 Concrete semantics
	5.2 Policy encoding

	6 Experiments
	6.1 Efficiency
	6.2 Precision

	7 Related work
	7.1 Model checking
	7.2 Symbolic execution
	7.3 Static analysis
	7.4 Minimization of Markov chains

	8 Conclusion
	A Proof of Theorem 2
	A.1 Proof of the weak Markov property
	A.2 Normalization constraint

	B Benchmarks programs
	References

