
Form Methods Syst Des (2018) 53:83–112
https://doi.org/10.1007/s10703-018-0319-x

Quantitative monitoring of STL with edit distance

Stefan Jakšić1,2 · Ezio Bartocci2 · Radu Grosu2 ·
Thang Nguyen3 · Dejan Ničković1

Published online: 27 March 2018
© The Author(s) 2018

Abstract In cyber-physical systems (CPS), physical behaviors are typically controlled by
digital hardware. As a consequence, continuous behaviors are discretized by sampling and
quantization prior to their processing. Quantifying the similarity between CPS behaviors and
their specification is an important ingredient in evaluating correctness and quality of such
systems. We propose a novel procedure for measuring robustness between digitized CPS
signals and signal temporal logic (STL) specifications. We first equip STL with quantitative
semantics based on the weighted edit distance, a metric that quantifies both space and time
mismatches between digitized CPS behaviors. We then develop a dynamic programming
algorithm for computing the robustness degree between digitized signals and STL speci-
fications. In order to promote hardware-based monitors we implemented our approach in
FPGA. We evaluated it on automotive benchmarks defined by research community, and also
on realistic data obtained from magnetic sensor used in modern cars.

Keywords Weighted edit distance ·Robustness ·Hardware monitors ·Runtime verification ·
Dynamic programming

B Stefan Jakšić
Stefan.Jaksic@ait.ac.at

Ezio Bartocci
ezio.bartocci@tuwien.ac.at

Radu Grosu
radu.grosu@tuwien.ac.at

Thang Nguyen
Thang.Nguyen@infineon.com

Dejan Ničković
dejan.nickovic@ait.ac.at

1 Austrian Institute of Technology, Donau-City-Straße 1, Vienna, Austria

2 Faculty of Informatics, TU Wien, Treitlstraße 3, Vienna, Austria

3 Infineon Technologies AG, Siemensstraße 2, 9500 Villach, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-018-0319-x&domain=pdf
http://orcid.org/0000-0002-3203-9415

84 Form Methods Syst Des (2018) 53:83–112

1 Introduction

Cyber-physical systems (CPS) integrate heterogeneous collaborative components that are
interconnected between themselves and their physical environment. They exhibit complex
behaviors that often combine discrete and continuous dynamics. The sophistication, com-
plexity and heterogeneity ofCPSmakes their verification a difficult task. Runtimemonitoring
addresses this problem by providing a formal, yet scalable, verification method. It achieves
both rigor and efficiency by enabling evaluation of systems according to the properties of
their individual behaviors.

In the recent past, property-based runtime monitoring of CPS centered around signal
temporal logic (STL) [29] and its variants have received considerable attention [2,6,7,14,
15,18,31]. STL is a formal specification language for describing properties of continuous
and hybrid behaviors. In its original form, STL allows to distinguish correct from incorrect
behaviors. However, the binary true/false classification may not be sufficient for real-valued
behaviors. The classical satisfaction relation can be replaced by amore quantitative robustness
degree [14,15,18] of a behavior with respect to a temporal specification. The robustness
degree provides a finer measure of how far is the behavior from satisfying or violating of the
specification.

Here we propose a novel quantitative semantics for STL that measures the behavior mis-
matches in both space and time.We consider applications inwhich continuousCPS behaviors
are observed by a digital device. In this scenario, continuous behaviors are typically dis-
cretized, both in time and space, by an analog-to-digital converter (ADC). As a consequence,
we interpret STL over discrete-time digitized behaviors.

We first propose the weighted edit distance as an appropriate metric for measuring sim-
ilarity between CPS behaviors. The weighted edit distance has the following desirable
characteristics:

1. It is cumulative, hence it can differentiate between a single and multiple deviations from
a reference behavior;

2. It combines spatial and temporal aspects, which are both important when reasoning about
CPS behaviors; and

3. It is defined in discrete time, which is an important aspect for the applications that we
consider.

We then provide the quantitative semantics for STL based on this distance and discuss the
effects of sampling and quantization on the distance value. We develop an efficient online
algorithm for computing the robustness degree between a behavior and an STL formula. The
algorithm can be directly implemented both in software and hardware. In the former case,
the implemented procedure can be connected to the simulation engine of the CPS design and
used to monitor its correctness and quality. In the latter case, the resulting implementation
can be deployed on the Field Programmable Gate Array (FPGA) and used to monitor real
systems or design emulations. We implement the above procedure in Verilog and evaluate it
on an automotive benchmark.

We now discuss the main contributions of this work. In contrast to the previous research
on STL robustness, we adopt a sampled-time automata-based approach. This choice has
several important consequences. First, it allows direct and uniform implementation of STL
robustness monitors in both software and hardware and naturally enables monitoring in real-
time. We implement the algorithms in Verilog and deploy them on FPGAs, thus providing
an effective bridge from design-time (e.g. Simulink) to deployment-time (e.g. autonomous
vehicles) quantitative monitoring. Second, the automata-based approach is capable of cap-

123

Form Methods Syst Des (2018) 53:83–112 85

turing contradictions and tautologies (by checking automata emptiness and universality) and
it guarantees that two semantically-equivalent but syntactically-different specifications have
the same robustness degree with respect to all behaviors. Finally, we use the weighted edit
distance (WED) to reason about the similarity between behaviors and specifications that is
novel in the context of STL robustness. This paper is an extended version of [25]. In this
paper we extend our preliminary work with new results:

– we provide extensive proofs of the theoretical results in [25]
– we test our approach on an industrial case study with data taken from a real magnetic

sensor and verify timing requirements of Single EdgeNibble Transmission Protocol [24],
which are crucial for the integrity of information transferred

– we further benchmark our approach with fault-tolerant fuel control system [5] model,
taken from the automotive domain

Organisation of the paper In Sect. 2 we present the related workwhile Sect. 3 provides all the
necessary formal background. In Sect. 4 we introduce the notion of weighted edit distance.
In Sect. 5 we propose a novel approach for computing, using the weighted edit distance, the
robustness degree of a discrete signal with respect to an STL property. In Sect. 6 we describe
the implementation of our quantitative monitors and we demonstrate our approach on two
case studies. Finally, we draw our conclusions in Sect. 7.

2 Related work

The Levenshtein (edit) distance [28] has been extensively used in information theory,
computer science and bioinformatics for many applications, including approximate string
matching, spell checking and fuzzy string searching. Levenshtein automata [37] were intro-
duced to reason about the edit distance from a reference string. A Levenshtein automaton of
degree n for a string w recognizes the set of all words whose edit distance from w is at most
n. A dynamic programming procedure for computing the edit distance between a string and
a regular language has been proposed in [42]. The problem of computing the smallest edit
distance between any pair of distinct strings in a regular language has been studied in [26]. In
contrast to our work, these classical approaches to edit distance consider only operations with
simple weights on unordered alphabets and are not applied to dynamic reactive behaviors.

The edit distance for weighted automata was studied in [30], where the authors propose a
procedure for computing the edit distance between weighted transducers. A space efficient
algorithm for computing the edit distance between a string and a weighted automaton over
a tropical semiring was developed in [3]. The resulting approach is generic and allows for
instance to assign an arbitrary cost to each substitution pair. However, all substitution pairs
must be enumerated by separate transitions. In contrast, we consider signals with naturally
ordered alphabets as input strings and hence can efficiently handle substitution over large
alphabets by treating allowed input values with symbolic constraints. In addition, we use the
edit distance to define the semantics of a temporal specification formalism.

The weighted Hamming and edit distances between behaviors are also proposed in [36],
where the authors use it to develop procedures for reasoning about the Lipshitz-robustness
of Mealy machines and string transducers. The notion of robustness is different from ours,
and in contrast to our work it is not computed against a specification.

The quantitative semantics for temporal logics were first proposed in [18,35], with the
focus on the spatial similarity of behaviors, given by their point-wise comparison. The spatial
quantitative semantics is sensitive to phase shifts and temporal inaccuracies in behaviors—a

123

86 Form Methods Syst Des (2018) 53:83–112

small temporal shift in the behavior may result in a large robustness degree change. This
problem was addressed in [15], in which STLwith spatial quantitative semantics is extended
with time robustness. In [2], the authors propose another approach of combining space and
time robustness, by extending STL with averaged temporal operators. Another approach to
determining robustness of hybrid systems using self-validated arithmetics is shown in [19].
Monitoring of different quantitative semantics is implemented in tools such as S-TaLiRo [4]
and Breach [13].

The problem of online monitoring robustness was studied more recently in [9,12]. The
authors of [12] propose an online monitoring approach that uses a predictor, which requires
for the future fragment of the logic the access to a model of the system. This is in contrast
to our black-box view of monitoring. In [9], the authors propose an interval-based approach
of online evaluation that allows estimating the minimum and the maximum robustness with
respect to both the observed prefix and unobserved suffix of the trace. In our work, we do not
provide such estimation about the future. Instead, our robustness value at every point in time
gives the distance of the observed prefix from the satisfaction/violation of the specification.

The recent results on using Skorokhod metric [39] to compute the distance between
piecewise-linear or piecewise-constant continuous behaviors [10] partially inspired ourwork.
Skorokhod metric quantifies both space and time mismatches between continuous behaviors
by allowing application of time distortions in behaviors in order to minimize their point-wise
distance. The distortion of the timeline is achieved by applying a retiming function—a contin-
uous bijective strictly increasing function from time domain to time domain. Given a behavior
x(t), the resulting retimed behavior r(x(t)) preserves the values and their order but not the
duration between two values. This information-preserving distance relies on continuous time
and is not applicable to the discrete time domain—stretching and compressing the discrete
time axis results inevitably in an information loss. Finally, the computation of the Skorokhod
distance was extended to the flow-pipes in [11] and to the epsilon-tubes in [8],where the
authors consider computing the distance between hybrid (continuous and discrete-time) sig-
nals. We are not aware of any work addressing the problem of computing the Skorokhod
distance between a behavior and a temporal specification.

Our work is also related with the notions of (ε, τ)-closeness in [1] and (ε, τ)-similarity
(requires the retiming to be order-preserving) introduced in [34] to compare two mixed-
analog signals and in conformance testing [1]. The parameters τ and ε are used to specify
how much it is allowed to wiggle in both time and space in order to transform one trace
into another. The main difference with this work is that our distance provides a cumulative
measure, while the other notions try to find the max possible discrepancy.

Recently published industrial case study [38] shows an application of STL monitoring
for verifying the sensor which uses SENT [24] protocol. We regard that work as completely
orthogonal to this paper. The case study focuses on qualitative monitors able to recover
upon violation detection and that are able to detect and collect multiple violations in one go.
The framework in that paper is limited to a particular class of asynchronous communication
protocols. In contrast, this paper is about quantitativemonitoring for arbitrary STL properties.

3 Preliminaries

In this section, we provide the necessary definitions to develop the algorithm presented in
subsequent sections of the paper. We first shortly recall the notion of metric spaces and

123

Form Methods Syst Des (2018) 53:83–112 87

distances. We then define signals and signal temporal logic. Finally, we introduce a variant
of symbolic and weighted symbolic automata.

3.1 Metric spaces and distances

A metric space is a set for which distances between all elements in the set are defined.

Definition 1 (Metric space and distance) Suppose thatM is a set and d : M ×M → R is
a function that maps pairs of elements inM into the real numbers. ThenM is ametric space
with the distance measure d , if (1) d(m1,m2) ≥ 0 for allm1,m2 inM ; (2) d(m1,m2) = 0 if
and only ifm1 = m2; (3) d(m1,m2) = d(m2,m1) for allm1,m2 inM ; and (4) d(m1,m2) ≤
d(m1,m) + d(m,m2) for all m,m1,m2 inM .

Given m ∈ M and M ⊆ M , we can lift the above definition to reason about the distance
between an element m ofM and the subset M ofM as follows

d(m, M) = inf
m′∈M

d(m,m′)

We define the robustness degree ρ(m, M) of m with respect to the set M as follows

ρ(m, M) =
{
d(m,M \M) if m ∈ M
−d(m, M) otherwise

3.2 Signals

Let X be a finite set of variables defined over some domain D. Then, a signal s is a function
s : T× X → D, where T is the time domain1. We distinguish between analog, discrete and
digital signals. Analog signals have continuous value and time domains. The time domain
of discrete signals is the set of integers, while digital signals have in addition their value
domain restricted to a finite set. Digital signals can be obtained by sampling and quantization
of analog signals. The conversion of analog to digital signals is at the core of the signal
processing field and is in practice done by an analog-to-digital converter (ADC).

Sampling is the process of reducing the continuous time in analog signals to the discrete
time in the resulting discrete signal. The ideal theoretical sampling function periodically
measures the value of the analog signal every T time units, where T denotes the sampling
interval. Similarly, we denote by f the sampling frequency, that is the average number of
measurements obtained by sampling in one second, where f = 1/T . Given an analog signal
sa : R≥0 × X → R

n and a sampling interval T , applying the ideal sampling function to sa
results in a discrete signal sdisc : N× X → R such that sdisc(i, x) = sa(iT, x) for all i ≥ 0
and x ∈ X .

When sampling real-valued signals, it is impossible to maintain the arbitrary precision
of its values, which consequently must be restricted to a finite set. Quantization consists
of converting real values to their discrete numerical approximations, and thus allows to
map discrete to digital signals. We consider the basic uniform quantization function with a
quantization step Q which is defined as follows

Q(r) = Q · �|r |/Q + 0.5	,
where r ∈ R. We note that the quantization can be decomposed into two stages, classification
and reconstruction. The classification function c maps the real input value into an integer

1 We use s(t) to denote the valuation vector of the variables in X at time t .

123

88 Form Methods Syst Des (2018) 53:83–112

index k, and the reconstruction function y converts k into the actual discrete approximation
of the input. Hence, we have that Q(r) = y(c(r)) where

c(r) = �|r |/Q + 0.5	
y(k) = Q · k

The decomposition of the quantization into two independent stages has a practical
advantage—without loss of generality, we can from now directly work with digital sig-
nals obtained after the classification stage with their value domain being a finite subset of
N. We also restrict ourselves to signals that have finite-length and hence are of the form
sdig : [0, l) × X → [vmin, vmax], where [0, l) and [vmin, vmax] are intervals in N, and X is
now the set of variables defined over the domain [vmin, vmax]. We extend the signal notation
s(i, X) to denote the vector D|X | of all variable values in X at time i . From now on, we refer
to digital signals of finite length simply as signals and denote them by s.

3.3 Signal temporal logic

In this paper, we study signal temporal logic (STL) with both past and future operators
interpreted over digital signals of finite length.2

Let X be afinite set of variables definedover afinite interval domainD = [vmin, vmax] ⊆ N.
We assume that X is a metric space equippedwith a distance d . The syntax of an STL formula
ϕ over X is defined by the grammar

ϕ := x ∼ u | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U Iϕ2 | ϕ1 S Iϕ2

where x ∈ X , ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N and
0 ≤ a ≤ b. The other standard operators are derived as follows: true = p ∨ ¬p, false =
¬true, ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), �Iϕ = trueU Iϕ,�Iϕ = ¬ �I¬ϕ, –�Iϕ = true S Iϕ,
–�Iϕ = ¬ –�I¬ϕ, ©ϕ = falseU [1,1]ϕ and �ϕ = false S [1,1]ϕ.
The semantics of an STL formula with respect to a signal s of length l is described via

the satisfiability relation (s, i) |� ϕ, indicating that the signal s satisfies ϕ at the time index
i , according to the following definition where T = [0, l).

(s, i) |� x ∼ u ↔ s(i, x) ∼ u
(s, i) |� ¬ϕ ↔ (s, i) �|� ϕ

(s, i) |� ϕ1 ∨ ϕ2 ↔ (s, i) |� ϕ1 or (s, i) |� ϕ2

(s, i) |� ϕ1U Iϕ2 ↔ ∃ j ∈ (i + I) ∩ T : (s, j) |� ϕ2 and ∀i < k < j, (s, k) |� ϕ1

(s, i) |� ϕ1 S Iϕ2 ↔ ∃ j ∈ (i − I) ∩ T : (s, j) |� ϕ2 and ∀ j < k < i, (s, k) |� ϕ1

We note that we use the semantics for S I and U I that is strict in both arguments and that
we allow punctual modalities due to the discrete time semantics. Given an STL formula ϕ,
we denote by L(ϕ) the language of ϕ, which is the set of all signals s such that (s, 0) |� ϕ.

3.4 Automata and weighted automata

In this section, we define a variant of symbolic automata [41] and also present its weighted
extension. The notion of weighted automata and its well-established theory is provided in
[16] while symbolic weighted automata accepting input string over not necessarily finite set
have been investigated in [21].

2 Although this segment of STL is expressively equivalent to LTL, use the STL name to highlight the explicit
notions of real-time and quantitative values in the language.

123

Form Methods Syst Des (2018) 53:83–112 89

Similarly to the definition of STL, we consider D = [vmin, vmax] to be the finite interval
of integers equipped with the distance d and let X to be a finite set of variables defined over
D. The variable valuation v(x) is a function v : X → D, which we naturally extend to the
valuation v(X) of the set X . A variable constraint γ over X is defined by the grammar in
negation normal form γ := x ≤ c | ¬(x ≤ c) | γ1 ∨ γ2 | γ1 ∧ γ2, where x ∈ X and c ∈ D.
We denote by �(X) the set of all constraints definable over X . Given the valuation v(X) and
a constraint γ over X , we write v(X) |� γ when v(X) satisfies γ.

Definition 2 (Symbolic automata) We define a symbolic automaton A as the tuple A =
(D, X, Q, I, F,�), where D is the finite alphabet, X is a finite set of variables over D, Q is
a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states and
� = �X ∪�ε is the transition relation, where�X ⊆ Q×�(X)×Q and�ε ⊆ Q×{ε}×Q
are sets of transitions that consume an input letter and silent transitions, respectively.

Given a q ∈ Q, letE(q) denote the set of states reachable from q by following ε-transitions
in � only. Formally, we say that p ∈ E(q) iff there exists a sequence of states q1, . . . , qk
such that q = q1, (qi , ε, qi+1) ∈ � for all 0 ≤ i < k, and p = qk . Let s : [0, l) × X → D

be a signal. We say that s is a trace of A if there exists a sequence of states q0, . . . , ql in Q
such that q0 ∈ E(q) for some q ∈ I , for all 0 ≤ i < l, there exists (qi , γ, qi+1) ∈ � for
some γ such that s(i, X) |� γ and qi+1 ∈ E(q) and ql ∈ F . We denote by L(A) the set of all
traces of A . A path π in A is a sequence π = q0 · δ0 ·q1 · · · δn−1 ·qn such that q0 ∈ I and for
all 0 ≤ i < n, δi is either of the form (qi , γ, qi+1) or (qi , ε, qi+1). We say that π is accepting
if qn ∈ F . Given a trace s : [0, l) × X → D and a path π = q0 · δ0 · q1 · δ1 · · · δn−1 · qn ,
we say that s induces π in A if π is an accepting path in A and its projection to observable
alphabet letters gives s. We denote by �(A, s) = {π | s induces π in A} the set of all paths
in A induced by s.

We now introduce weighted symbolic automata, by adding a weight function to the tran-
sitions of the symbolic automaton, relative to the consumed input letter.

Definition 3 (Weighted symbolic automata) A weighted symbolic automatonW is the tuple
W = (D, X, Q, I, F,�,λ), where A = (D, X, Q, I, F,�) is a symbolic automaton and
λ : � × (D|X | ∪ {ε}) → Q

+ is the weight function.

Let s be a signal of size l andπ = q0 ·δ0 · · · δn−1 ·qn a path inW induced by s. The value of
π inW subject to s, denoted by vπ(s,W), is the sum of weights associated to the transitions
in the path π and subject to the signal s. We define the value v(s,W) of s as the minimum
value from all the paths inW induced by s, i.e. v(s,W) = minπ∈�(W ,s) vπ(s,W).

4 Weighted edit distance

Measuring the similarity of sequences is important in many application areas, such as infor-
mation theory, spell checking and bioinformatics. TheHamming distance dH is themost basic
and common string measure arising from the information theory. It measures the minimum
number of substitution operations needed to match equal length sequences. The edit distance
dE extends the Hamming distance with two additional operations, insertion and deletion
and is defined as the minimum accumulation of edit operation costs used to transform one
sequence into the other.

Neither of these metrics provide satisfactory solution for comparing digitized signals.
They are defined over unordered alphabets and associate fixed costs to different kinds of

123

90 Form Methods Syst Des (2018) 53:83–112

operations. In contrast, the value domain of digital signals admits a natural notion of a
distance representing the difference between two signal valuations. In addition, the Hamming
distance provides only point-wise comparisons between sequences and consequently does
not account for potential timing discrepancies in the sampled signals. Two discrete signals
that differ only in a constant time delay will typically have a large Hamming distance. The
edit distance addresses this problem by allowing us to bridge the time shifts using insertion
and deletion operations.

Inspired by [30,36], we propose the weighted edit distance as the measure for comparing
the similarity of two discrete signals. It adopts the insertion and deletion operations from
the edit distance and adapts the substitution operation to the ordered alphabets. Since we
consider multi-dimensional signals, we extend the cost of the substitution operation to take
into account different variable valuations.

Let X be afinite set of variables definedover some interval domainD = [vmin, vmax]. Given
two valuation vectors a, b ∈ D

|X | of X , we denote by dM (a, b) theManhattan distance [27]
between a and b, where dM (a, b) = �

|X |−1
i=0 |ai −bi |. Letwi , wd ∈ Q be weight constants for

the insertion and deletion operations. We then define the costs of the substitution cs , insertion
ci and deletion cd operations as follows: (1)cs(a, b) = dM (a, b); (2)ci = wi ; (3)cd = wd .
The definition of theWED adapts the classical edit distance recursive definition with the new
costs.

Definition 4 (Weighted edit distance) Let s1 : [0, l) × X → D and s2 : [0, l) × X → D

be discrete-time signals. The weighted edit distance dW (s1, s2) equals to dl,l(s1, s2) :

d−1,−1(s1, s2) = 0
di,−1(s1, s2) = di−1,−1(s1, s2) + ci
d−1, j (s1, s2) = d−1, j−1(s1, s2) + cd

di, j (s1, s2) = min

⎧⎨
⎩

di−1, j−1(s1, s2) + cs(s1(i, X), s2(j, X))

di−1, j (s1, s2) + ci
di, j−1(s1, s2) + cd

Proposition 1 The weighted edit distance is a distance.

Remark We chose the Manhattan distance for the substitution cost because it combines the
absolute difference of several signal components.

We now further motivate the use of the weighted edit distance and discuss in more depth
its characteristics. We do this by comparing the weighted edit distance (dW) to the Hamming
distance (dH) and to the distance based on the infinity norm (dmax). In order to compare these
three distances,we record the data froma device implementing an automotive communication
protocol. We manually manipulate the data to illustrate specific distance properties. We note
that we normalize the two cumulative distances with the total number of data samples, in
order to have comparable results.

We first study the cumulative property of WED. Figure 1a, b depict two scenarios, both
consisting of a reference (sr) and a measured (sr) behavior. In the first scenario, the two
behaviors are equivalent, except for a short spike that happens during each pulse. In the
second scenario, the spikes are continuously repeated. Figure 1c, d show the evolution of
the three distances over time, where the distance value at time t corresponds to the distance
between the reference and measured behavior prefixes of size t . We can observe that dmax
measures the maximum deviation between sr and sm and hence does not distinguish between
a single and multiple deviations. On the other hand, both dH and dW are cumulative, and

123

Form Methods Syst Des (2018) 53:83–112 91

Fig. 1 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—single versus
multiple deviations

the distance between the reference and the measured behavior increases with the number of
deviations.

Figure 2a–c show three scenarios with the measured signal being equivalent to the refer-
ence signal shifted by an increasing amount, respectively. Figure 2d–f show the evolution of
dW , dH and dmax over time. We first note that dmax does not make the distinction between
the three scenarios. Second, we can observe that dW grows slower than dH over time. This
happens because dW counts a small number of insertion and deletion operations, while dH
accumulates all the pointwise differences between sr and sm over time. Finally, we notice
that dH does not make a distinction between the second and the third scenario, despite the
different time shifts. This happens because in both scenarios the pulses from the measured
signal are superimposed over the the non-pulse segments of the reference behavior. In con-
trast, dW makes a distinction between the two situations and assigns a higher distance to the
third scenario.

Finally, we illustrate the difference between the weighted edit distance and the classical
edit distance (dE). Figure 3a, b show two scenarios consisting of a reference and a measured
behavior, that are in both cases the same, except for a short spike in each pulse. In the first
scenario, the magnitude of the spike is smaller than in the second scenario. Figure 3c, d
depict the evolution of dW and dE over time. We can see that in contrast to dW , dE cannot
distinguish between the two scenarios because its substitution operation has a fixed cost.

123

92 Form Methods Syst Des (2018) 53:83–112

Fig. 2 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—phase shifts

4.1 Sampling, quantization and weighted edit distance

We compute the WED between digital signals resulting from physical behavior observa-
tions after sampling and quantization. In this section, we discuss the effect of inaccuracies
introduced by these operations on the WED.

Let s be an analog signal, T a sampling period andQ a quantization step. We assume that
s has a band limit fM and T ≤ 1/(2 fM). We denote by s[T] the discrete signal obtained
from s by sampling with the period T , and by s[T][Q] the digital signal obtained from s[T]
by quantization with the step Q.

We cannot directly relate the WED to the analog signals, because it is not defined in
continuous time. However, this distance allows tackling phase shifts in the sampled signals.
Consider two analog signals s1(t) and s2(t − τ) such that τ = iT for some i ≥ 0 and
their sampled variants s1[T](t) and s2[T](t). It is clear that with 2 · i insertion and deletion
operations, s2[T] can be transformed into s1[T] such that their remaining substitution cost
equals to 0. This situation is illustrated in Fig. 4 (see signals s1 and s2). We see that the
distance between the two signals initially grows due to the insertion and deletion operations,
but that eventually it becomes perfectly stable.

Now consider another signal s3(t) = s1(t − τ) such that τ is not a multiple of T . In this
case, the sampled signal s3[T](t) cannot be perfectly transformed into s1[T](t) by using
insertion and deletion operations because of the mismatch between the sampling period and
the phase shift. As a consequence, the distance between s1[T](t) and s3[T](t)will accumulate
substitution costs due to this mismatch. This scenario is also depicted in Fig. 4 (see signals s1
and s3). The figure shows that after an initial steep increase of the distance due to the insertion
and deletion operations, its value does not converge, but continues slowly increasing due to
the accumulation of remaining substitution costs.

It is obvious that the actual distance between two behaviors is affected by the sampling
frequency. We refer to [40] for the survey on the sampling theory, a field that studies the
effects of sampling continuous behaviors.

123

Form Methods Syst Des (2018) 53:83–112 93

Fig. 3 Measuring similarity di,i (s1, s2) between a reference s1 and a measured s2 behavior—magnitude of
deviations

Fig. 4 Weighted edit distances dW (s1, s2) and dW (s1, s3), where s1(t) = sin(2π f t), s2(t) = sin(2π f (t −
0.1)), s3(t) = sin(2π f (t − τ)), T = 0.01, f = 1Hz and τ = π/15

4.2 Normalized weighted edit distance

The weighted edit distance is an accumulative distance. It follows that the distance between
two behaviors depends on several factors, including: 1) the size of the value domains; 2)
the frequency at which the two signals are sampled; and 3) the total duration of the trace.

123

94 Form Methods Syst Des (2018) 53:83–112

(a) (b)

Fig. 5 Computation of a dW (s, ϕ) and ρ(s, ϕ)

For instance, the comparison of two analog behaviors sampled at two different frequencies
can result in completely different absolute distance values. In order to have a more uniform
robustness valuation that is less affected by the above factors, we propose normalizing the
robustness values as follows.

Given signals s1, s2 of length l defined over X , the value domain D = [vmin, vmax], we
define the normalized weighted edit distance, which is always bounded by [0, 1] as follows:

d#W (s1, s2) = dW (s1, s2)

l|X |(vmax − vmin)
.

5 Weighted edit robustness for signal temporal logic

In this section, we propose a novel procedure for computing the robustness degree of a
discrete signal with respect to an STL property. In our approach, we set ci and cd to be equal
to |X |(vmax − vmin). In other words, the deletion and insertion costs are equal to the largest
substitution cost. The rationale behind this choice is that by inserting/deleting a data point,
we can add/remove the maximum value from the domain in the worst case.

5.1 From STL to weighted edit automata

Our procedure relies on computing theWED between a signal and a set of signals, defined by
the specification. It consists of several steps, illustrated in Fig. 5. We first translate the STL
formula ϕ into a symbolic automaton Aϕ that accepts the same language as the specifica-
tion. The automaton Aϕ treats timing constraints from the formula enumeratively, but keeps
symbolic guards on data variables3. We then transform Aϕ into a weighted edit automa-
ton Wϕ, a weighted symbolic automaton that accepts all the signals but with the value
that corresponds to the WED between the signal and the specification (Fig. 5a). We pro-
pose an algorithm for computing this distance. Computing the robustness degree between
a signal and an STL specification follows from the calculation of their WED, as shown in
Fig. 5b.

Let X be a set of finite variables defined over the domain D = [vmin, vmax] ⊆ N. We
consider an STL formula ϕ defined over X . Let s : [0, l) × X → D be a digital signal.

3 The time in Aϕ cannot be treated symbolically with digital clocks since every pair of states and clock
valuation may behave differently with respect to the WED.

123

Form Methods Syst Des (2018) 53:83–112 95

(a) (b)

Fig. 6 a Aϕ accepting L(ϕ)—all states are accepting and b Wϕ

5.1.1 From ϕ to Aϕ

In the first step, we translate the STL specification ϕ into the automaton Aϕ such that
L(ϕ) = L(Aϕ). The translation from STL interpreted over discrete time and finite valued
domains to finite automata is standard, and can be achieved by using for instance on-the-fly
tableau construction [20] or the temporal testers approach [33]. We note that we need to
accommodate these classic constructions to the finitary semantics of the temporal logic by
adapting accordingly the acceptance conditions (see for instance [17] for the interpretation
of LTL over finite traces).

Example 1 Consider the past STL formula ϕ = �(x = 4 → –�(x < 3)), where x is defined
over the domain [0, 5]. The resulting automaton Aϕ is shown in Fig. 6a.

5.1.2 From Aϕ toWϕ

In this step, we translate the automaton Aϕ to the weighted edit automatonWϕ. The automa-
ton Wϕ reads an input signal and mimics the weighted edit operations. In essence, Wϕ

accepts every signal along multiple paths. Each accepting path induced by the signal corre-
sponds to a sequence of weighted edit operations needed to transform the input signal into
another one allowed by the specification. The value of the least expensive path corresponds
to the weighted edit distance between the input signal and the specification. The weighted
automatonWϕ explicitly treats substitution, insertion and deletion operations, by augment-
ing Aϕ with additional transitions and associating to them the appropriate weight function.
We now provide details of the translation and describe the handling of weighted edit oper-
ations. Let Aϕ = (D, X, Q, I, F,�) be the symbolic automaton accepting the language of
the specification ϕ.

Substitution In order to address substitutions in the automaton, we define a new set of substi-
tution transitions�s and associate to them theweight functionλs as follows.Givenq, q ′ ∈ Q,
let γ(q, q ′) = ∨

(q,γ,q ′)∈� γ. Then, we have:

123

96 Form Methods Syst Des (2018) 53:83–112

– (q, true, q ′) ∈ �s if there exists (q, γ, q ′) ∈ � for some γ; and
– λs((q, true, q ′), v) = dM (v, γ(q, q ′)), for all v ∈ D

|X |.
We define the Manhattan distance of valuation v from a γ(q, q ′) as the minimum of

Manhattan distances of the valuation v from all the possible valuations that satisfy γ(q, q ′):
dM (v, γ(q, q ′)) = min{dM (v,w)},∀w ∈ W where W = {w | w |� γ(q, q ′)}.

Intuitively, we replace all the transitions in Aϕ with new ones that have the same source
and target states. We relax the guards in the new transitions and make them enabled for any
input. On the other hand, we control the cost of making a transition with the weight function
λs , which computes the substitution cost needed to take the transition with a specific input.
This cost is the Manhattan distance between the input value and the guard associated to the
original transition.

Deletion Addressing deletion operations consists in adding self-loop transitions that consume
all the input letters to all the states with the deletion cost cd = |X |(vmax − vmin), thus
mimicking deletion operations. We skip adding a self-loop transition to states that already
have the same substitution self-loop transition—according to our definition cd ≥ cs(a, X)

for all a, hence taking the deletion transition instead of the substitution one can never improve
the value of a path and is therefore redundant. We define the set of deletion transitions �d

and the associated weight function λd as follows:

– (q, true, q) ∈ �d if (q, true, q) /∈ �s ; and
– λd(δ, v) = cd for all δ ∈ �d and v ∈ D

|X |.

Insertion In order to mimic the insertion operations, we augment the transitions relation of
Wϕ with silent transitions. For every original transition in �, we associate another transition
with the same source and target states, but labeled with ε and having the insertion cost
ci = |X |(vmax − vmin). Formally, we define the set of insertion transitions �i and the
associated weight function λi as follows:

– (q, ε, q ′) ∈ �i if (q, γ, q ′) ∈ � for some γ; and
– λi (δ, {ε}) = ci for all δ ∈ �i .

Given the symbolic automaton Aϕ = (D, X, Q, I, F,�) accepting the language is the
tuple (D, X, Q, I, F,�′,λ′), where �′ = �s ∪ �d ∪ �i and λ′(δ, v) = λs(δ, v) if δ ∈ �s ,
λ′(δ, v) = λd(δ, v) if δ ∈ �d and λ′(δ, ε) = λi (δ, ε) if δ ∈ �i .

Example 2 The weighted edit automaton Wϕ obtained from Aϕ is illustrated in Fig. 6b.
Both automatons from Fig. 6b use the same input alphabet D = {0, 1, 2, 3, 4, 5}. The blue
transitions, such as (A, 0, A) with weight 5, correspond to the deletion transitions. The red
transitions, such as (A, ε, B), correspond to the insertion transitions.

The resulting weighted automaton Wϕ allows determining the weighted edit distance
between a signal w and the formula ϕ, by computing the value of s inWϕ.

Theorem 1 dW (s,ϕ) = v(s,Wϕ).

The consequence of thisTheorem is that two symbolic automata that accept the same language
will always give the same distance from the same input.

5.2 Computing the value of a signal in a weighted edit automaton

Wenowpresent an on-the-fly algorithmVal, shown inAlgorithm1, that computes the value of
a signal s in a weighted automatonW . In every step i , the algorithm computes the minimum

123

Form Methods Syst Des (2018) 53:83–112 97

cost of reaching the state q with the prefix of s consisting of its first i values. After reading
a prefix of s, we may reach a state q ∈ Q in different ways with different costs. Note that
it is sufficient to keep the state with the minimum value in each iteration. It follows that the
algorithm requires book keeping |Q| state value fields in every iteration. We now explain the
details of the algorithm. The procedure first initializes the costs of all the states in W (see
Algorithm 2). The initial states are set to 0 and the non-initial ones to ∞. Then, we compute
the effect of taking the ε transitions without reading any signal value. It is sufficient to iterate
this step |Q| times, since within |Q| iterations, one is guaranteed to reach a state q that was
already visited with a smaller value v. In every subsequent iteration i , we first update the state
values by applying the cost of taking all transitions labeled by s(i, X) and then update the
effect of taking ε transitions |Q| times. The weight function of a substitution cost is computed
as follows: λ(v, x ≤ k) gives 0 if v ≤ k, and v − k otherwise; λ(v,¬(x ≤ k)) is symmetric;
λ(v,ϕ1 ∧ ϕ2) = max(λ(v,ϕ1),λ(v,ϕ2)) and λ(v,ϕ1 ∨ ϕ2) = min(λ(v,ϕ1),λ(v,ϕ2)).

Upon termination, the algorithm returns the minimum cost of reaching an accepting state
in the automaton.

Theorem 2 Val(s,W) = v(s,W).

Theorem 3 Given a signal s of length l defined over X and a weighted automatonW with
n states and m transitions, Val(s,W) takes in the order of O(lnm)) iterations to compute
the value of s inW , and requires in the order of O(n(�log(l(vmax − vmin))�)) memory.

Algorithm 1 Val(s,W)

Input: s andWψ

Output: v

InitVal(W)

for all i ∈ [0, l) do
for all δ = (q, γ, q ′) ∈ � do

v′(q ′) ← min(v′(q ′), v(q) + λ(s(i, X), δ))

end for
for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q ′) ∈ � do
v′(q ′) ← min(v′(q ′), v(q) + λ(δ, ε))

end for
for all q ∈ Q do

v(q) ← v′(q)

v′(q) ← ∞
end for

end for
end for
v ← minq∈F v(q)

return v

Algorithm 2 InitVal(W)

for all q ∈ Q do
v(q) ← (q ∈ I) ? 0 : ∞; v′(q) ← ∞

end for
for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q ′) ∈ � do
v′(q ′) ← min(v′(q ′), v(q) + λ(δ, ε))

end for
for all q ∈ Q do

v(q) ← v′(q)

v′(q) ← ∞
end for

end for

Example 3 Consider the STL property ϕ from Example 1, the associated weighted edit
automatonWϕ from Fig. 1 and the signal4 s : [0, 2] → [0, 5] such that s(0) = 5, s(1) = 5
and s(2) = 4. It is clear that (s, 0) �|� ϕ, since s(2) = 4, while there was not a single
0 ≤ i < 2 where s(i) < 3. We illustrate in Fig. 7 the computation of v(s,Wϕ). We can see
that with the signal s, we can reach one of the accepting states (B or C) with the value 1.
This value corresponds to one substitution operation, replacing the value of 4 in s(2) by 5,
which allows vacuous satisfaction of the property ϕ.

4 Since s has only one component, we skip the variable name.

123

98 Form Methods Syst Des (2018) 53:83–112

Fig. 7 Example—computation of v(s,Wϕ)

6 Implementation and case study

We now describe our implementation of quantitative monitors for STL. In order to evaluate
our approach, we conducted two case studies. The first case study takes specification from
automotive benchmarks published in [5]. In second case study we applied our quantitative
monitors on Single Edge Nibble Transmission (SENT) protocol, a standard for sensor to
controller communication in the automotive industry [24].

In both cases, parser for STL formulas is developed in Java using ANTLR [32]. In order
to translate STL properties into temporal testers, we take basic temporal testers for STL
operators and create their product. Then, we convert such top level temporal tester into an
acceptor automaton.We use JAutomata [22] library to represent the testers and the acceptors.
We then generate quantitative monitor code in Verilog HDL. The resulting monitor is a hard-
ware implementation of the weighted automata and the underlying algorithm for computing
the weighted edit distance. The monitor operates at the frequency limited by the maximum
achievable frequency of the FPGA.

6.1 Benchmarks for automotive systems

For the evaluation of our approach, we apply it to two benchmarks implemented in Mat-
lab/Simulink and published in [5].

6.1.1 Automatic transmission system

We first consider the slightly modified automatic transmission deterministic Simulink demo
provided by Mathworks as our system-under-test (SUT). It is a model of an automatic trans-
mission controller that exhibits both continuous and discrete behavior. The system has two
inputs—the throttle ut and the break ub. The break allows the user to model variable load
on the engine. The system has two continuous-time state variables—the speed of the engine
ω (RPM), the speed of the vehicle v (mph) and the active gear gi . The system is initialized
with zero vehicle and engine speed. It follows that the output trajectories depend only on
the input signals ut and ub, which can take any value between 0 and 100 at any point in
time. The Simulink model contains 69 blocks including 2 integrators, 3 look-up tables, 2
two-dimensional look-up tables and a Stateflow chart with 2 concurrently executing finite
state machines with 4 and 3 states, respectively. The benchmark defines 8 STL formalized
requirements that the system shall satisfy, shown in Table 1.

123

Form Methods Syst Des (2018) 53:83–112 99

Table 1 Automatic transmission properties [5]

ϕ

ϕ1 �(ω < 4500)

ϕ2 �((ω < 4500) ∧ (v < 120))

ϕ3 �((g2 ∧ ©g1) → �(0,2.5]¬g2)

ϕ4 �((¬g1 ∧ ©g1) → �(0,2.5]g1)
ϕ5

∧4
i=1 �((¬gi ∧ ©gi) → �(0,2.5]gi)

ϕ6 ¬(�[0,4](v > 120) ∧ �(ω < 4500))

ϕ7 �[0,4]((v > 120) ∧ �(ω < 4500))

ϕ8 ((g1 Ug2 Ug3 Ug4) ∧ �[0,10](g4 ∧ �[0,2](ω > 4500))) →
�[0,10](g4 → ©(g4 U [0,1](v ≥ 120)))

Fig. 8 A simulation trace s from the automatic transmission model and dW (s, ¬ϕ6)

We now describe the evaluation setup. We simulated the Simulink model with fixed-step
sampling and recorded the results. The obtained traces, as the one shown in Fig. 8, were then
further discretized with the uniform quantization. We have obtained 751 samples from the
Simulink model and normalized all variables’ value domain to the interval [0, 5000] which
is the range of RPM variable, thus achieving fair reasoning about their substitution cost.
We designed a testbench in Verilog to stimulate the monitor with generated values from the
Simulink model. We used Xilinx Vivado to perform monitor simulation and synthesis.

Figure 8 illustrates the monitoring results for ϕ6 on a specific gear input. In the depicted
scenario, the speed does not reach 120 mph in 4 s, a sufficient condition for the satisfaction
of the formula. In order to violate the formula, we need to alter both v and ω signals such
that 1) v reaches 120 mph at any moment within the first 4 s; and (2) ω remains continuously
below 4500 rpm. These alterations result in (1) a single substitution happening within the

123

100 Form Methods Syst Des (2018) 53:83–112

Table 2 Evaluation results for automatic transmission benchmark

ρ Wϕ W¬ϕ

|Q| |�| #FF #LUT |Q| |�| #FF #LUT

ϕ1 −2528 2 2 62 260 4 8 94 657

ϕ2 −11,423 2 2 75 306 4 11 107 799

ϕ3 1000 496 1374 4106 53,033 992 2878 8127 106,937

ϕ4 1000 496 692 3061 22,777 992 1445 6025 44,968

ϕ5 n/a n/a n/a n/a n/a n/a n/a n/a n/a

ϕ6 5337 405 813 6540 66,085 409 903 6504 73,657

ϕ7 −5336 403 903 6504 73,766 405 813 6545 66,116

ϕ8 n/a n/a n/a n/a n/a n/a n/a n/a n/a

first 4 s which is necessary to bring v to 120 mph; and (2) the accumulation of substitution
costs in the interval between 7 and 8 s of the simulation where ω actually exceeds 4500 rpm.
Note that the robustness degree decreases in the first 4 s. This happens because the actual
v increases and the substitution cost needed for v to reach 120 mph is continuously being
improved.

The evaluation results are shown in Table 2. We tested the correctness of STL to automata
translation by generating both acceptors for ϕ and ¬ϕ. The presented robustness degrees are
not normalized, which can be statically computed using the formula from Sect. 4. It is clear
from our table that either the distance from ϕ or from its negation is always 0. The dominant
type of resources when implementing our monitors on FPGA hardware are LUTs. This is not
surprising, due to the large combinatorial and arithmetic requirements of the computation.
We can also note that the size of our monitors is sensitive to the timing bounds in the formulas
and the sampling period of the input signals. Our monitor automata enumerate clock ticks
instead of using a symbolic representation. The enumeration is necessary because state—
clock valuation pairs can have different values associated and thus cannot be grouped. We
were not able to generate monitors for ϕ5 and ϕ8 due to the state explosion. However, ϕ5 can
be decomposed into 4 independent sub-properties. We can see several ways to handle large
properties such asϕ8 that wewill investigate in the future—by reformulating the specification
using both past and future operators, by using larger sampling periods (smaller time bounds
in the formula) and by using more powerful FPGA.

6.1.2 Fault-tolerant fuel control system

The second automotive benchmark is basedon fault-tolerant fuel control systemmodel [5,23].
This system ensures proper air-to-fuel ratio in modern car engines. It must be adaptive to any
kind of external failures, such as sensor failures. Since the occurrence of failures is modeled
by Poisson stochastic processes, this benchmark will evaluate our quantitative monitors with
a model of a Stochastic Cyber Physical System.

The system has throttle as an inputwhich affect failure arrival rates. The change in detected
fuel level can be caused either by throttle or a sensor failure. Such change directly affects
air-to-fuel ratio λ which is the output of the model. We sample this variable over time in
order to create stimulus for our monitors. We collected 10,000 samples from the model
output. We rounded double precision output to 2 decimals, and multiplied it by 100 for easier
representation in hardware testbench.

123

Form Methods Syst Des (2018) 53:83–112 101

Fig. 9 Calculated positive and negative robustness for obtained air-to-fuel λ

The requirement for air-to-fuel ratio λ specifies that no matter what kind of disturbance
in system occurs, the value of λ must stabilize within certain value limit in specified time
window. We call this a bounded stabilization property and formalize it in STL with the
following formula:

ϕ9 = �(λ > Vlimit → �[0,1s]�[0,1s](λ < Vlimit))

As suggested by the authors of [5], we use Vlimit = 1.1 · Vid , where Vid corresponds to
ideal air-to-fuel ratio when no throttle change or a sensor failure occurs.

In Fig. 9 we can observe change of λ and robustness values w.r.t. the formula. We see
severalλ pulses caused by the disturbance in the system.Due to the initial conditions, negative
robustness is greater than zero. The first pulse is satisfying the requirement since it stabilizes
to required Vlimit within 1 second time window. Since it satisfies the bounded stabilization
property and does not add any WED cost, the negative robustness value remains the same
before and after the pulse.

The next disturbance in the system generates more impact on air-to-fuel ratio. In this case
the signal does not stabilize fast enough. Therefore theWED algorithm suggests to substitute
problematic parts of the trace with correct values. Since the substitution costs accumulate,
the negative robustness keeps increasing. Positive robustness equals zero throughout the
simulation due to the fact that the trace is violating the formula from the start.

We report on monitor size and FPGA resource consumption in Table 3. The large negative
robustness value is due to several bounded stability violations and significantly larger num-
ber of samples compared to automatic transmission system testbench. Increased resource
consumption is consequence of the fact that the formula uses future time STL operators over
bounded time intervals.

123

102 Form Methods Syst Des (2018) 53:83–112

Table 3 Evaluation results for fault-tolerant fuel control system properties [5]

ρ Wϕ W¬ϕ

|Q| |�| #FF #LUT |Q| |�| #FF #LUT

ϕ9 −43,878 882 1493 13,203 119,989 1574 2648 23,624 212,341

Fig. 10 A SENT frame starts with a mandatory synchronization pulse (SYNC), followed by a status nibble
(ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2), bit inverse of D1 (ND1), cyclic redundancy
check (CRC), and finishes with an optional pause

6.2 SENT protocol case study

Single Edge Nibble Transmission Protocol (SENT) protocol is an industry standard SAE
J2716 [24] that specifies unidirectional data encoding scheme from transmitting device (typ-
ically a sensor) to a controller. It is usually found in automotive applications such as the
Electronic Power Steering (EPS), or the Electronic Braking System (EBS) where sensors
continuously send data to the Engine Control Unit (ECU). SENT information is encoded
into frames and transmitted over a single line in serial fashion. A SENT frame consists of
several consecutive components, eachdefinedby adedicated pulse. Presence of certain pulses,
such as the pause pulse, may vary depending on the system configuration. Data is always
transmitted in nibbles and encoded in data nibble pulse length (Pulse Width Modulation),
regardless of the configuration. Figure 10 shows an example of a SENT frame.

6.2.1 Formalized SENT requirements

In order to communicate without errors, SENT transmitter must comply to timing and elec-
trical requirements specified by the standard. We focus on monitoring timing requirements
of the rising and falling edges of a pulse. If these timing constraints are not met, it is not
guaranteed that the controller will be able to decode the data from the pulse. A correct SENT
pulse with timing requirements is shown in Fig. 11.

The timing requirements of interest can be stated in natural language as follows: the
fall/rise time from V1 to V2 must be no longer than T f all /Trise μs. Before applying our
approach we formalize the requirements with following STL formulas:

ϕ10 = �(↓ high → midU [0,T f all] ↑ low)

ϕ11 = �(↓ low → midU [0,Trise] ↑ high)

where start and end operators are defined by ↑ p = �(¬p) ∧ p and ↓ p = �(p) ∧ ¬p,
respectively. The SENT standard allows the following values: T f all ≤ 6.5 μs and Trise ≤
18 μs. Voltage levels are also specified in the standard, however in our experiments they are
scaled to the Analog-to-Digital converter output range.

123

Form Methods Syst Des (2018) 53:83–112 103

Fig. 11 SENT nibble pulse: a pulse starts (Nstart) with a falling edge f, followed by a low region l, followed
by a rising edge r, followed by a high region h

6.2.2 Evaluation results

In order to test themonitorswith realistic data,we recorded output froma realmagnetic sensor
which implements the SENT protocol. We used the Hall-effect sensor with SENT interface
from Infineon Technologies. The Hall-effect cell in this sensor measures the magnetic flux.
Such information can be used for linear and angular position sensing. In the automotive
domain, this sensor is used to sense steering torque and pedal and throttle position.

According to the SENT standard, devices are configured prior to operation. Therefore, we
are allowed to assume that the configuration of SENT frame is static and its structure cannot
change during runtime.

In Fig. 12 we can see the first SENT requirement monitored on a trace which represents
a correct SENT pulse falling edge. For this pulse we compute both positive and negative
robustness degree. In the beginning of the trace, the left hand side of the implication is
not satisfied, therefore the entire formula is trivially satisfied and the negative robustness is
zero. In contrast, the positive robustness is equal to the WED cost of creating a violating
trace—which can be done simply by substituting high sample with mid, thus making ↓ high
condition true and the entire formula false. We note that the positive robustness decreases
in the course of the execution—this happens because the robustness algorithm dynamically
discovers a cheaper way to transform the trace into a violating one.

We now analyze these results in more detail. At the moment when the left hand side of
the implication becomes satisfied (dashed yellowmarker in Fig. 12, the right hand side of the
formula is not yet satisfied. This results in an increase of the negative robustness that comes
from the accumulated WED substitution costs needed to disarm the ↓ high condition. After
observing a sufficient number of trace samples, the robustness algorithm realizes that it is
cheaper to perform substitutions at the low value end of the falling edge in order to make
the right hand side of the formula hold. As a consequence, the negative robustness starts
also decreasing. Finally, the monitor starts observing the samples that satisfy the right hand
side of the implication, thus also satisfying the entire formula. This results in the negative
robustness dropping to zero, but also in an increase of the positive robustness (see the trace
segment after the yellow mark in Fig. 12). The small positive robustness degree conveys two

123

104 Form Methods Syst Des (2018) 53:83–112

Fig. 12 Calculated positive and negative robustness for SENT pulse falling edgewhich satisfies T f all require-
ment

Fig. 13 Calculated positive and negative robustness for SENT pulse rising edge which violates Trise require-
ment

important messages: (1) the observed execution satisfies the timing requirements; and (2) a
small change of the trace could violate the requirement.

In Fig. 13 we can see the rising edge timing requirement monitored on a trace which
represents a violating SENT pulse. The violating pulse was artificially created from a correct
trace which was recorded from the actual sensor. The violation was created by replaying the
correct recorded values at a slower speed, which prolonged the rising edge length.

123

Form Methods Syst Des (2018) 53:83–112 105

Table 4 Evaluation results for SENT protocol properties

ρ Wϕ W¬ϕ SAT

|Q| |�| #FF #LUT |Q| |�| #FF #LUT trace

ϕ10 11 208 627 3272 50,046 498 1945 7745 148,852 Yes

ϕ11 − 41 558 1677 8865 136,321 1338 5224 21, 191 405,604 No

In this case the evolution of positive and negative robustness degree over time is converse
to the previous case. The obvious difference is that the final value of the positive robustness
is zero and the negative robustness degree is non-negative. This is valid result because the
trace is violating the rising edge timing requirement Trise ≤ 18 μs. The negative robustness
is larger than the positive robustness degree of the previous example in Fig. 12, due to the
larger cost of compensating for timing violation of the rising edge.

In Table 4 we report on FPGA resource consumption of the generated monitors. Flip-flops
(FF) represent memory elements which are used to implement automaton states. Lookup
tables (LUT) implement dynamic programming calculations on taking the minimum cost in
every step for every state. The linear dependency between increase in number of transitions
of automaton and amount of LUTs used can be observed in Table 4. The same conclusion
can be drawn for the number of states and the number of FFs consumed.

7 Conclusions and future work

In this paper, we proposed a new procedure for measuring robustness of STL properties
based on the weighted edit distance. The distance is cumulative by definition which allows
robustness degree to be sensitive on the number of violations of the formula. It is also sensitive
to the length of the signal, but also to the sampling rate and the number of components in the
signal. Distance normalization would help to obtain a uniform measure of “goodness” of a
behavior. Although in this paper we focus on the quantitative semantics of STL, the weighted
edit distance can be applied to other specification languages over finite signals.

Our FPGA implementation provides the possibility to quantify the distance to the violation
of safety requirements in real-time on actual or emulated hardware. We have successfully
demonstrated our approach to check relevant safety properties in the automotive domain,
i.e. by monitoring the behavior of the engine through the observation of essential signals
such as air-to-fuel ratio. Furthermore, we show that our method is also suitable to verify
well-established industrial standard such as the SENT protocol.

Future work Treating the value domain symbolically is natural and we exploit this fact
in the paper. On the other hand, combining quantitative semantics with symbolic time is
not straightforward. In the qualitative case, representing the time symbolically can be done
because there is a certain equivalence between states that have the same discrete location
and different clock valuations, and such states can be grouped together. In the quantitative
setting, this is not the case—two states with the same discrete location and different clock
valuations will in general have different values and hence cannot be grouped together. Such
a symbolic representation of quantitative states might be possible if some accuracy can be
dropped. We will consider extending our algorithm to automata with discrete clocks.

123

106 Form Methods Syst Des (2018) 53:83–112

We plan to exploit the quantitative robustness degree of our framework to gain predictive
ability and extend our monitors for the system health and fail-aware applications.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Theorem Proofs

Proposition 1 The weighted edit distance is a distance.

Proof The proof is similar to the proof that edit distance is a distance, and is given for
completeness reason.

1. dW (s, s) = 0 : in order to transform s to itself, no insertions or deletions are needed, and
all substitutions have cost 0.

2. dW (s1, s2) = dW (s2, s1) : insertions and deletions are inverses of each other, while
substitution is symmetric.

3. dW (s1, s2) ≥ 0 : by definition, all costs are greater or equal to 0.
4. dW (s1, s2) ≤ dW (s1, s)+dW (s, s2) :bydefinition,dW (s1, s2) is theminimumsummation

of insertion, deletion and substitution costs needed to transform s1 to s2. Transforming
s1 to s, and then s to s2 is one way of transforming s1 to s2, and hence cannot be cheaper
than dW (s1, s2).

��
For the next two theorems, we first prove an auxiliary lemma.

Lemma 1 Let s be a signal, W a weighted symbolic automaton and π1 and π2 two paths
inW induced by s such that both paths terminate in the same state q ∈ Q and vπ1(s,W) <

vπ2(s,W). Then, for all continuations s′ of s and all paths π1 · π and π2 · π induced by
s · s′, vπ1·π(s · s′,W) < vπ2·π(s · s′,W).

Proof The proof follows directly from the definition of path and the definition of path value
in weighted automatonW . Each continuation path of eitherπ1 orπ2 must start from the state
q . Since both π1 and π2 terminates at state q it means that all symbols from s are consumed
once a state q ′ is reached. For this reason, it is clear that only s′ affects transition weights in
π. As a consequence, and by the definition of vπ(s,W) the following holds:

vπi ·π(s · s′,W) = vπi (s,W) + vπ(s′,W).

By definition, vπ(s,W) is a sum of non-negative transition weights. Consequently, the
following holds:

vπ1(s,W) + vπ(s′,W) < vπ2(s,W) + vπ(s′,W .

��
Theorem 1 dW (s,ϕ) = v(s,Wϕ).

Due to the length of the proof, it is presented in separate appendix below.

123

http://creativecommons.org/licenses/by/4.0/

Form Methods Syst Des (2018) 53:83–112 107

Theorem 2 Val(s,W) = v(s,W).

Proof The algorithm iteratively explores the paths in W induced by s and computes their
values after reading the current prefix. Although the number of paths grows with the number
of iterations, by Lemma 1 it is sufficient to keep in every iteration only the minimum value
of reaching each state in Q after reading the current prefix. We also bound the number of
consecutive silent transitions (insertion operations) to |Q| in every iteration—it is guaranteed
that if a state q ′ is reachable from state q , it can be reached within |Q| steps. When the main
loop of the algorithm terminates, the values associated to each state clearly correspond to
the minimal values of reaching them with the signal s—the minimum value of an accepting
state hence corresponds to v(s,W). ��
Theorem 3 Given a signal s of length l defined over X and a weighted automatonW with
n states and m transitions, Val(s,W) takes in the order of O(l(nm)) iterations to compute
the value of s inW , and requires in the order of O(n(�log(l(vmax − vmin))�)) memory.
Proof In Algorithm 1, there are l main iterations, and in each iterations one needs to do m
updates due to substitutions/deletions andmn updates due to ε-transition propagation. For the
space complexity, we need to keep for each state a value, that can be at most l(vmax − vmin)

and can be encoded in binary. ��

B Proof of Theorem 1

In this section, we provide the proof that d(s,ϕ) = v(s,Wϕ). In order to achieve this goal,
we decompose the problem into the following smaller instances:

dW (s,ϕ) = v(s,Wϕ) ⇔
(1) dW (s, L(ϕ)) = v(s,

⋃
s′∈L(ϕ)

W s′
ϕ) ⇔

(2) min
s′∈L(ϕ)

dW (s, s′) = min
s′∈L(ϕ)

v(s,Ws′) ⇔
(3) dW (s, s′) = v(s,Ws′)

where s′ represents an arbitrary word from the language of formula ϕ.
In (1), we first decompose Wϕ into a (possibly infinite) union of weighted symbolic

automata W s′ , where each W s′ models all possible edit operations that are applicable to
transform an arbitrary signal s into another signal s′ ∈ L(ϕ). In (2), we then show that
finding s′ ∈ L(ϕ) that minimizes the distance dW (s, s′) is equivalent to finding the s′ ∈ L(ϕ)

thatminimizes the value v(s,W s′). Finally, in (3)we show that for an arbitrary s′, the distance
dW (s, s′) equals to the value of the value v(s,W s′). We proceed in the bottom up fashion, by
proving first (3), i.e. d(s, s′) = v(s,W s′), whereW s′ is a weighted edit automaton obtained
by applying the procedure from Sect. 5.1.2 to the automaton As′ that accepts only the trace
s′.

Definition 5 Given a signal s, we define a single word acceptor (SWA) for s, As , as the
minimal automaton such that L(As) = {s} holds.We denote byW s the single word weighted
acceptor (SWWA) that is constructed from As by applying the procedure from Sect. 5.1.2.

We note that for every s of size n, both As and W s consist of a sequence of locations
q0, . . . , qn , where q0 is the only initial location, qn is the only final location, and for all

123

108 Form Methods Syst Des (2018) 53:83–112

Fig. 14 An array of SWWAs W s[0, j) that model all possible edit operations on each prefix s[0, j) ∈ P(s)
of s ∈ L(ϕ)

0 < i ≤ n, the incoming transitions to qi have a source either in qi−1 or in qi . We define
by P(s) the set of all prefixes of a signal s, where s[0, i) denotes the prefix of s of size i ,
where 0 ≤ i ≤ |s|. In Fig. 14, we illustrate the array of weighted edit automata W s[0,i) for
the prefixes of the signal s of size 4.

Lemma 1 Let s and s′ be two arbitrary signals of size m and n, respectively. Then, for all
0 ≤ i ≤ m and 0 ≤ j ≤ n, we have that dW (s[0, i), s′[0, j)) = v(s[0, i),W s′[0, j)).

Proof We prove this lemma by induction.
Base case: We first prove that (1) dW (ε, s′[0, j)) = v(ε,W s′[0, j)) for all 0 ≤ j ≤ n and
(2) dW (s[0, i), ε) = v(s[0, i),W ε) for all 0 ≤ i ≤ m. In the case (1), by the definition of
the weighted edit distance dW (ε, s′[0, j)) = jci . The cheapest path from the initial to the
finite location inW s′[0, j) induced by an empty word is by taking j consecutive ε (insertion)
transition, each inducing a cost of ci . In the case (2), by the definition of the weighted edit
distance dW (s[0, i), ε) = icd . The cheapest path from the initial to the accepting state inW ε

induced by s[0, i) is to consume the i letters by consecutive self-loop (deletion) transition,
each inducing a cost of cd .
Inductive step: By inductive hypothesis, we assume that d(s[0, i − 1), s′[0, j − 1)) =
v(s[0, i − 1),W s′[0, j−1)), d(s[0, i − 1), s′[0, j)) = v(s[0, i − 1),W s′[0, j)) and d(s[0, i),
s′[0, j − 1)) = v(s[0, i),W s′[0, j−1)). We now prove that d(s[0, i), s′[0, j)) = v(s[0, i),
W s′[0, j)). By definition of the weighted edit distance, we have that

dW (s[0, i), s′[0, j)) = min

⎧⎨
⎩

dW (s[0, i − 1), s′[0, j − 1)) +cs(s(i), s′(j))
dW (s[0, i), s′[0, j − 1)) +ci
dW (s[0, i − 1), s′[0, j)) +cd

123

Form Methods Syst Des (2018) 53:83–112 109

We now prove that

v(s[0, i),W s′[0, j)) = min

⎧⎨
⎩

v(s[0, i − 1),W s′[0, j−1)) +cs(s(i), s′(j))
v(s[0, i),W s′[0, j−1)) +ci
v(s[0, i − 1),W s′[0, j)) +cd

We first observe that W s′[0, j) has only one final location q j . By the definition of the
weighted symbolic automata, path values are non-negative and additive, and by the definition
of W s′[0, j), any location q j ′ , where 0 < j ′ ≤ j can be reached in one step only from q j ′
or q j ′−1. It follows that it is sufficient to consider s[0, i) and s[0, i − 1) and q j and q j−1

in order to prove d(s[0, i), s′[0, j)) = v(s[0, i),W s′[0, j)). Let π = π′ · δ · q j be the path
with minimum value induced by s[0, i) in W s′[0, j). By the the definition of W s′[0, j), q j

has 3 incoming transitions: (1) a substitution transition from q j−1 to q j ; (2) an ε (insertion)
transition from q j−1 to q j ; and (3) a self-loop (deletion) transition in from q j to q j .

By the definition of the value in aweighted symbolic automaton, the value ofπ corresponds
to the value of π′ to which the cost of the last transition δ is added, which is the minimum of
the above three cases. In the case (1), π′ reaches q j−1 with s[0, i − 1) consumed. The value
accumulated by π′ corresponds to the value of π′ induced by s[0, i − 1) in W s′[0, j−1), i.e.
v(s[0, i−1),W s′[0, j−1)). The added cost of the last transition corresponds to cs(s(i), s′(j)).
In the case (2), π′ reaches q j−1 with s[0, i) consumed. The value accumulated by π′ cor-
responds to the value of π′ induced by s[0, i) inW s′[0, j−1), i.e. v(s[0, i),W s′[0, j−1)). The
added cost of the last transition corresponds to the cost ci of an insertion. In the case (3), π′
reaches q j with s[0, i −1) consumed. The value accumulated by π′ corresponds to the value
of π′ induced by s[0, i − 1) in W s′[0, j), i.e. v(s[0, i − 1),W s′[0, j)). The added cost of the
last transition corresponds to the cost cd of a deletion. ��

Corollary 1 dW (s, s′) = v(s,W s′)

Corollary 1 is a special case of Lemma 1, where i = m and j = n. We can now generalize
Corollary 1 with the following lemma, in order to take into account all the (possibly infinite
number of) signals that are in a language of an STL formula ϕ.

Lemma 2 mins′∈L(ϕ) dW (s, s′) = mins′∈L(ϕ) v(s,W s′).

Proof Follows directly from Corollary 1 and the definition of a minimum. ��

Corollary 2 dW (s,ϕ) = v(s,
⋃

s′∈L(ϕ) W
s′)

The above corollary follows from the definition of the weighted edit distance, and the fact that
min distributes over the union. We finally need to show that the decomposition of Wϕ into⋃

s′∈L(ϕ) W
s′ preserves the value induced by s. We first show that the above decomposition

preserves paths, that is all possible sequences of edit operations that transform s into any
s′ ∈ L(ϕ) and the values of these paths.

Lemma 3 Consider an arbitrary trace s and an STL formula ϕ. For every path π in
Wϕ induced by s, there exists π′ in

⋃
s′∈L(ϕ) W

s′ induced by s, and for every path π′

in
⋃

s′∈L(ϕ) W
s′ induced by s, there exists a path π in Wϕ induced by s, such that

v(s,π,Wϕ) = vπ′(s,
⋃

s′∈L(ϕ) W
s′).

123

110 Form Methods Syst Des (2018) 53:83–112

Proof We create a SWWA W s′ for every trace s′ ∈ L(ϕ). It follows that
⋃

s′∈L(ϕ) W
s′

contains the paths that model all the edit operations that transform an arbitrary s into an
arbitrary s′ ∈ L(ϕ). By the construction in Sect. 5.1.2,Wϕ also models all the edit operations
that transform an arbitrary s into an arbitrary s′ ∈ L(ϕ). The substitution operations are by
definition preserved in the decomposition ofWϕ into

⋃
s′∈L(ϕ) W

s′ , while the insertion and

deletion transitions are systematically added in both Wϕ and
⋃

s′∈L(ϕ) W
s′ with the same

costs. It follows that for an arbitrary s, both Wϕ and
⋃

s′∈L(ϕ) W
s′ contain paths π and π′

induced by s that model the same edit operations with the same value. ��
Lemma 4 v(s,Wϕ) = v(s,

⋃
s′∈L(ϕ) W

s′).

Proof Follows directly from the preservation of all paths and their values proved in Lemma 3
and the definition of a value in a weighted symbolic automata. ��

The combination of Lemma 4, Corollary 2, Lemma 2 and Corollary 1 constitutes the proof
of Theorem 1.

References

1. Abbas H, Mittelmann HD, Fainekos GE (2014) Formal property verification in a conformance testing
framework. In: Proceedings of MEMOCODE 2014: the twelfth ACM/IEEE international conference on
formal methods and models for codesign, pp 155–164. IEEE. https://doi.org/10.1109/MEMCOD.2014.
6961854

2. Akazaki T, Tasuo I (2015) Time robustness in MTL and expressivity in hybrid system falsification. In:
Proceedings of CAV 2015: the 27th international conference on computer aided verification, LNCS, vol
9207. Springer. https://doi.org/10.1007/978-3-319-21668-3

3. Allauzen C, Mohri M (2009) Linear-space computation of the edit-distance between a string and a finite
automaton. CoRR arXiv:0904.4686

4. Annpureddy Y, Liu C, Fainekos GE, Sankaranarayanan S (2011) S-TaLiRo: a tool for temporal logic
falsification for hybrid systems. In: Proceedings of TACAS 2011: the 17th international conference on
tools and algorithms for the construction and analysis of systems, LNCS, vol 6605, pp 254–257. Springer.
https://doi.org/10.1007/978-3-642-19835-9_21

5. Bardh Hoxha HA, Fainekos G (2015) Benchmarks for temporal logic requirements for automotive
systems. In: Proceedings of ARCH@CPSWeek 2014 and ARCH@CPSWeek 2015: the 1st and 2nd
international workshop on applied verification for continuous and hybrid systems, vol 34

6. Bartocci E,Bortolussi L, SanguinettiG (2014)Data-driven statistical learning of temporal logic properties.
In: Proceedings of FORMATS 2014: the 12th international conference on formal modeling and analysis
of timed systems, LNCS, vol 8711, pp 23–37. Springer. https://doi.org/10.1007/978-3-319-10512-3_3

7. Brim L, Dluhos P, Safránek D, Vejpustek T (2014) ST L∗: extending signal temporal logic with signal-
value freezing operator. Inf Comput 236:52–67. https://doi.org/10.1016/j.ic.2014.01.012

8. Davoren JM (2009) Epsilon-tubes and generalized Skorokhod metrics for hybrid paths spaces. In: Pro-
ceedings of HSCC 2009: the 12th international conference on hybrid systems: computation and control,
LNCS, vol 5469, pp 135–149. Springer. https://doi.org/10.1007/978-3-642-00602-9_10

9. Deshmukh JV, Donzé A, Ghosh S, Jin X, Juniwal G, Seshia SA (2017) Robust online monitoring of signal
temporal logic. Form Methods Syst Des 51(1):5–30. https://doi.org/10.1007/s10703-017-0286-7

10. Deshmukh JV, Majumdar R, Prabhu VS (2015) Quantifying conformance using the Skorokhod metric
(full version). CoRR arXiv:1505.05832

11. Deshmukh JV, Majumdar R, Prabhu VS (2017) Quantifying conformance using the Skorokhod metric.
Form Methods Syst Des 50(2–3):168–206. https://doi.org/10.1007/s10703-016-0261-8

12. Dokhanchi A, Hoxha B, Fainekos GE (2014) On-line monitoring for temporal logic robustness. In:
Proceedings RV 2014: the 5th international conference on runtime verification, LNCS, vol 8734, pp
231–246. Springer. https://doi.org/10.1007/978-3-319-11164-3_19

13. Donzé A (2010) Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Pro-
ceedings of CAV 2010: the 22nd international conference on computer aided verification, LNCS, vol
6174, pp 167–170. Springer. https://doi.org/10.1007/978-3-642-14295-6_17

123

https://doi.org/10.1109/MEMCOD.2014.6961854
https://doi.org/10.1109/MEMCOD.2014.6961854
https://doi.org/10.1007/978-3-319-21668-3
http://arxiv.org/abs/0904.4686
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1007/978-3-642-00602-9_10
https://doi.org/10.1007/s10703-017-0286-7
http://arxiv.org/abs/1505.05832
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17

Form Methods Syst Des (2018) 53:83–112 111

14. Donzé A, Ferrère T, Maler O (2013) Efficient robust monitoring for STL. In: Proceedings of CAV 2013:
the 25th international conference on computer aided verification, LNCS, vol 8044, pp 264–279. Springer.
https://doi.org/10.1007/978-3-642-39799-8

15. Donzé A, Maler O (2010) Robust satisfaction of temporal logic over real-valued signals. In: Proceedings
of FORMATS 2010: the 8th international conference on formal modeling and analysis of timed systems,
LNCS, vol 6246, pp 92–106. Springer. https://doi.org/10.1007/978-3-642-15297-9

16. Droste M, Kuich W, Vogler H (2009) Handbook of weighted automata. Springer, Berlin (2009). https://
doi.org/10.1007/978-3-642-01492-5

17. Eisner C, Fisman D, Havlicek J, Lustig Y, McIsaac A, Campenhout DV (2003) Reasoning with temporal
logic on truncated paths. In: Proceedings of the computer aided verification, 15th international conference,
CAV 2003, Boulder, CO, USA, July 8–12, 2003, pp 27–39

18. Fainekos GE, Pappas GJ (2009) Robustness of temporal logic specifications for continuous-time signals.
Theor Comput Sci 410(42):4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

19. Fainekos GE, Sankaranarayanan S, Ivancic F, Gupta A (2009) Robustness of model-based simulations. In:
Proceedings of RTSS 2009: the 30th IEEE real-time systems symposium, pp 345–354. IEEE Computer
Society. https://doi.org/10.1109/RTSS.2009.26

20. Gerth R, Peled D, Vardi MY, Wolper P (1996) Simple on-the-fly automatic verification of linear temporal
logic. In: Proceedings of the fifteenth IFIP WG6.1 international symposium on protocol specification,
testing and verification, IFIP conference proceedings, vol 38, pp 3–18. Chapman & Hall

21. Herrmann L, Vogler H (2016) Weighted symbolic automata with data storage. In: Proceedings of DLT
2016: the 20th international conference on developments in language theory, LNCS, vol 9840, pp 203–215.
Springer. https://doi.org/10.1007/978-3-662-53132-7

22. http://jautomata.sourceforge.net/. Accessed 28 March 2017
23. http://www.mathworks.com/products/demos/stateflow/fuelsys.html. Accessed 28 March 2017
24. International S (2016) SENT—single edge nibble transmission for automotive applications, J2716, Stan-

dard. http://standards.sae.org/j2716_201001/. Accessed 21 Jan 2017
25. Jaksic S, Bartocci E, Grosu R, Nickovic D (2016) Quantitative monitoring of STL with edit distance. In:

Proceedings of RV 2016: the 16th international conference on runtime verification, LNCS, vol 10012, pp
201–218. Springer. https://doi.org/10.1007/978-3-319-46982-9_13

26. Konstantinidis S (2007)Computing the edit distance of a regular language. InfComput 205(9):1307–1316.
https://doi.org/10.1016/j.ic.2007.06.001

27. Krause EF (2012) Taxicab geometry: an adventure in non-Euclidean geometry. Courier Corporation,
North Chelmsford

28. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys
Dokl 10:707

29. Maler O, Nickovic D (2013)Monitoring properties of analog andmixed-signal circuits. STTT 15(3):247–
268. https://doi.org/10.1007/s10009-012-0247-9

30. Mohri M (2003) Edit-distance of weighted automata: general definitions and algorithms. Int J Found
Comput Sci 14(6):957–982. https://doi.org/10.1142/S0129054103002114

31. Nguyen T, Nickovic D (2014) Assertion-based monitoring in practice—checking correctness of an auto-
motive sensor interface. In: Proceedings of FMICS 2014: the 19th international conference on formal
methods for industrial critical systems, LNCS, vol 8718, pp 16–32. Springer. https://doi.org/10.1007/
978-3-319-10702-8

32. Parr T (2013) The definitive ANTLR 4 reference, 2nd edn. Pragmatic Bookshelf, Dallas
33. Pnueli A, Zaks A (2008) On the merits of temporal testers. In: 25 years of model checking—history,

achievements, perspectives, LNCS, vol 5000, pp 172–195. Springer. https://doi.org/10.1007/978-3-540-
69850-0

34. Quesel J (2013) Similarity, logic, and games—bridging modeling layers of hybrid systems. Ph.D. thesis,
Universität Oldenburg

35. Rizk A, Batt G, Fages F, Soliman S (2008) On a continuous degree of satisfaction of temporal logic
formulae with applications to systems biology. In: Proceedings of CMSB 2008: the 6th international
conference on computational methods in systems biology, LNCS, vol 5307, pp 251–268. Springer. https://
doi.org/10.1007/978-3-540-88562-7

36. Samanta R, Deshmukh JV, Chaudhuri S (2013) Robustness analysis of string transducers. In: Proceedings
of ATVA 2013: the 11th international symposium on automated technology for verification and analysis,
LNCS, vol 8172, pp 427–441. Springer. https://doi.org/10.1007/978-3-319-02444-8_30

37. Schulz UK, Mihov S (2002) Fast string correction with Levenshtein automata. Int J Doc Anal Recognit
5(1):67–85. https://doi.org/10.1007/s10032-002-0082-8

38. Selyunin K, Jaksic S, Nguyen T, Reidl C, Hafner U, Bartocci E, Nickovic D, Grosu R (2017) Runtime
monitoring with recovery of the SENT communication protocol. In: Proceedings of CAV 2017: the 29th

123

https://doi.org/10.1007/978-3-642-39799-8
https://doi.org/10.1007/978-3-642-15297-9
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1109/RTSS.2009.26
https://doi.org/10.1007/978-3-662-53132-7
http://jautomata.sourceforge.net/
http://www.mathworks.com/products/demos/stateflow/fuelsys.html
http://standards.sae.org/j2716_201001/
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1016/j.ic.2007.06.001
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1142/S0129054103002114
https://doi.org/10.1007/978-3-319-10702-8
https://doi.org/10.1007/978-3-319-10702-8
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-88562-7
https://doi.org/10.1007/978-3-540-88562-7
https://doi.org/10.1007/978-3-319-02444-8_30
https://doi.org/10.1007/s10032-002-0082-8

112 Form Methods Syst Des (2018) 53:83–112

international conference on computer aided verification, LNCS, vol 10426, pp 336–355. Springer. https://
doi.org/10.1007/978-3-319-63387-9

39. Skorokhod AV (1956) Limit theorems for stochastic processes. Theory Probab Appl 1(3):261–290
40. Unser M (2000) Sampling 50 years after Shannon. Proc IEEE 88(4):569–587
41. Veanes M, Bjørner N, de Moura LM (2010) Symbolic automata constraint solving. In: Proceedings

of LPAR-17: the 17th international conference on logic for programming, artificial intelligence, and
reasoning, LNCS, vol 6397, pp 640–654. Springer. https://doi.org/10.1007/978-3-642-16242-8

42. Wagner RA (1974) Order-n correction for regular languages. Commun ACM 17(5):265–268. https://doi.
org/10.1145/360980.360995

123

https://doi.org/10.1007/978-3-319-63387-9
https://doi.org/10.1007/978-3-319-63387-9
https://doi.org/10.1007/978-3-642-16242-8
https://doi.org/10.1145/360980.360995
https://doi.org/10.1145/360980.360995

	Quantitative monitoring of STL with edit distance
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Metric spaces and distances
	3.2 Signals
	3.3 Signal temporal logic
	3.4 Automata and weighted automata

	4 Weighted edit distance
	4.1 Sampling, quantization and weighted edit distance
	4.2 Normalized weighted edit distance

	5 Weighted edit robustness for signal temporal logic
	5.1 From STL to weighted edit automata
	5.1.1 From to mathcalA
	5.1.2 From mathcalA to mathcalW

	5.2 Computing the value of a signal in a weighted edit automaton

	6 Implementation and case study
	6.1 Benchmarks for automotive systems
	6.1.1 Automatic transmission system
	6.1.2 Fault-tolerant fuel control system

	6.2 SENT protocol case study
	6.2.1 Formalized SENT requirements
	6.2.2 Evaluation results

	7 Conclusions and future work
	Acknowledgements
	A Appendix: Theorem Proofs
	B Proof of Theorem 1
	References

