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Abstract We consider parity games, a special form of two-player infinite-duration games
on numerically labeled graphs, whose winning condition requires that the maximal value of
a label occurring infinitely often during a play be of some specific parity. The problem of
identifying the corresponding winning regions has a rather intriguing status from a complex-
ity theoretic viewpoint, since it belongs to the class UPTime ∩ CoUPTime, and still open
is the question whether it can be solved in polynomial time. Parity games also have great
practical interest, as they arise in many fields of theoretical computer science, most notably
logic, automata theory, and formal verification. In this paper, we propose a new algorithm
for the solution of this decision problem, based on the idea of promoting vertexes to higher
priorities during the search for winning regions. The proposed approach has nice computa-
tional properties, exhibiting the best space complexity among the currently known solutions.
Experimental results on both random games and benchmark families show that the technique
is also very effective in practice.

Keywords Parity games · Infinite-duration games on graphs · Algorithmic complexity ·
Formal methods

1 Introduction

Parity games [49] are perfect-information two-player turn-based games of infinite duration,
usually played on finite directed graphs. Their vertices, labeled by natural numbers called
priorities, are called positions and assigned to one of two players, named Even and Odd or,
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simply, 0 and 1, respectively. The game starts at an arbitrary position and, during its evolution,
each player can take a move only at its own positions, which consists in choosing one of
the edges outgoing from the current position. The moves selected by the players induce an
infinite sequence of positions, called play. If the maximal priority of the positions occurring
infinitely often in the play is even, then the play is winning for player 0, otherwise, player 1
takes it all.

Parity games have been extensively studied in the attempt to find efficient solutions to the
problem of determining the winner. From a complexity theoretic perspective, this decision
problem lies in NPTime ∩ CoNPTime [20,21], since these games are memoryless deter-
mined [19,41,42,49]. It has been even proved to belong to UPTime ∩ CoUPTime [34], a
status shared with the factorization problem [1,27,28]. They are the simplest class of games
in a wider family with similar complexities and containing, e.g.,mean payoff games [18,33],
discounted payoff games [59], and simple stochastic games [17]. In fact, polynomial time
reductions exist from parity games to the latter ones. However, despite being the most likely
class among those games to admit a polynomial-time solution, the answer to the question
whether such a solution exists still eludes the research community.

The effort devoted to provide efficient solutions stems primarily form the fact that many
problems in formal verification and synthesis can be reformulated in terms of solving parity
games. Emerson et al. [20,21] have shown that computing winning strategies for these games
is linear-time equivalent to solving the modal μCalculus model checking problem [22].
Parity games also play a crucial role in automata theory [19,40,48], where, for instance, they
can be applied to solve the complementation problem for alternating automata [32] and the
emptiness of the corresponding nondeterministic tree automata [40]. These automata, in turn,
can be used to solve the satisfiability andmodel checking problems for expressive logics, such
as the modal [57] and alternating [2,55] μCalculus, ATL� [2,54], Strategy Logic [16,44,
45,47], Substructure Temporal Logic [5,6], and fixed-point extensions of guarded first-order
logics [8,9].

Previous solutions mainly divide into two families: those that solve a game by first decom-
posing it into smaller subgames, and those that proceed in a global fashion and approach the
game in its entirety. To the first family belongs the divide et impera solution originally pro-
posed by McNaughton [43] for Muller games and adapted to parity games by Zielonka [58].
More recent improvements to that recursive algorithm have been proposed by Jurdziński
et al. [37,38] and by Schewe [52]. Both approaches rely on finding suitably closed domin-
ions, which can then be removed from a game to reduce the size of the subgames to be
recursively solved. To the second family belongs the procedure proposed by Jurdziński [35],
which exploits the connection between the notions of progress measures [39] and winning
strategies. In this approach, an initial measure function on the entire game is iteratively
updated until a fixpoint is reached. At that point, a progress measure is obtained that induces
a winning strategy for one of the two players. An alternative approach was proposed by
Jurdziński and Vöge [56], which directly builds a winning strategy for one of the two players,
by iteratively improving an initial non-winning strategy. This technique was later optimized
by Schewe [53]. A recent breakthrough [11] by Calude et al. proposes a succinct reduction
from parity to reachability games based on a clever encoding of the sequences of priorities a
player finds along a play. This allows for a mere quasi-polynomial blow up in the size of the
underlying graph and sets the basis of the fixed-parameter tractability w.r.t. the number of
priorities. The approach has been then considerably refined in [24], where these encodings
are modeled as progress measures. A similar technique is also used in [36]. Despite the the-
oretical relevance of this new idea, preliminary experiments conducted in this paper suggest
that the practical impact of the result may not match the theoretical one. Indeed, most of
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the exponential algorithms mentioned above outperform, often by orders of magnitude, the
current implementations of the quasi-polynomial ones, which do not scale beyond a few hun-
dred positions. This evaluation is consistent with the fact that the new techniques essentially
amount to clever and succinct encodings embedded within a brute force search, which makes
matching quasi-polynomial worst cases quite easy to find. As far as space consumption is
concerned, we have different and, in some cases, incomparable behaviors. The small progress
measure procedure of [35] requires O(k · n · log n) space, with n the number of positions in
the game and k the number of its priorities. On the other hand, it is O

(
n2

)
for the optimized

strategy improvement method of [53]. Due to their inherent recursive nature, the algorithms
of the first family require O(m · n) memory, where m denotes the number of edges of the
underlying graph. This bound could, in principle, be reduced to O

(
n2

)
, by representing sub-

games implicitly through their sets of positions. The lowest space requirements, however, are
those of the more recent quasi-polynomial algorithm described in [36], which only requires
O(n · log n · log k) additional space. All these bounds do not seem to be amenable to fur-
ther improvements, as they appear to be intrinsic to the corresponding solution techniques.
Polynomial time solutions are only known for restricted versions of the problem, where one
among tree-width [25,26,50], dag-width [7], clique-width [51] and entanglement [10] of the
underlying graph is bounded.

The main contribution of the paper is a new algorithm for solving parity games, based
on the notions of quasi dominion and priority promotion. A quasi dominion Q for player
α ∈ {0, 1}, called a quasi α-dominion, is a set of positions from each of which player α

can enforce a winning play that never leaves the region, unless one of the following two
conditions holds: (i) the opponent α can escape from Q or (ii) the only choice for player α

itself is to exit fromQ (i.e., no move from a position of α remains in Q). Quasi dominions can
be ordered by assigning to each of them a priority corresponding to an under-approximation
of the best value the opponent can be forced to visit along any play exiting from it. A crucial
property is that, under suitable and easy to check assumptions, a higher priority quasi α-
dominion Q1 and a lower priority one Q2, can be merged into a single quasi α-dominion
of the higher priority, thus improving the approximation for Q2. For this reason we call this
merging operation a priority promotion of Q2–Q1. The underlying idea of our approach is
to iteratively enlarge quasi α-dominions, by performing sequences of promotions, until an
α-dominion is obtained.

We prove soundness and completeness of the algorithm. Moreover, we provide an upper

bound O

(
kn

(
en
k−1

)k−1
)
on the time complexity, where e is Euler’s number, and a bound

O(n · log k) on the memory requirements. Experimental results, comparing our algorithm
with the state of the art solvers, also show that the proposed approach performs very well
in practice, most often significantly better than existing ones, on both random games and
benchmark families proposed in the literature.

2 Preliminaries

Let us briefly recall the notation and basic definitions concerning parity games that an expert
reader can simply skip. We refer to [3,58] for a comprehensive presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we indicate the
domain and range of f, respectively. In addition,� denotes the completion operator that, taken
f and another partial function g : A ⇀ B, returns the partial function f�g � (f\dom(g))∪g :
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A ⇀ B, which is equal to g on its domain and assumes the same values of f on the remaining
part of A.

A two-player turn-based arena is a tuple A = 〈Ps0,Ps1,Mv〉, with Ps0 ∩ Ps1 = ∅ and
Ps � Ps0 ∪ Ps1, such that〈Ps,Mv〉 is a finite directed graph without sinks. Ps0 (resp., Ps1) is
the set of positions of player 0 (resp., 1) andMv ⊆ Ps×Ps is a left-total relation describing all
possible moves. A path in V ⊆ Ps is a finite or infinite sequence π ∈ Pth(V) of positions in V
compatible with the move relation, i.e., (πi , πi+1) ∈ Mv, for all i ∈ [0, |π | − 1[. For a finite
pathπ , with lst(π)we denote the last position ofπ . A positional strategy for playerα ∈ {0, 1}
on V ⊆ Ps is a partial function σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each α-position
v ∈ dom(σα) to position σα(v) compatible with themove relation, i.e., (v, σα(v)) ∈ Mv.With
Strα(V) we denote the set of all α-strategies on V. A play in V ⊆ Ps from a position v ∈ V
w.r.t. a pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), called ((σ0, σ1), v)-play, is a path
π ∈ Pth(V) such that π0 = v and, for all i ∈ [0, |π | − 1[, if πi ∈ Ps0 then πi+1 = σ 0(πi )

else πi+1 = σ 1(πi ). The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns,
for each position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), the maximal
((σ0, σ1), v)-play play((σ 0, σ 1), v).

A parity game is a tuple � = 〈A,Pr,pr〉 ∈ P , where A is an arena, Pr ⊂ N is a
finite set of priorities, and pr : Ps → Pr is a priority function assigning a priority to each
position. The priority function can be naturally extended to games and paths as follows:
pr(�) � maxv∈Ps pr(v); for a path π ∈ Pth, we set pr(π) � maxi∈[0,|π |[ pr(πi ), if π

is finite, and pr(π) � lim supi∈N pr(πi ), otherwise. A set of positions V ⊆ Ps is an α-
dominion, with α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(V) such that, for all
α-strategies σα ∈ Strα(V) and positions v ∈ V, the induced play π = play((σ0, σ1), v) is
infinite and pr(π) ≡2 α. In other words, σα only induces on V infinite plays whose maximal
priority visited infinitely often has parity α. By �\V we denote the maximal subgame of �

with set of positions Ps′ contained in Ps\V and move relationMv′ equal to the restriction of
Mv to Ps′.

The α-predecessor of V, in symbols preα(V) � {v ∈ Psα : Mv(v) ∩ V �= ∅} ∪ {v ∈
Psα : Mv(v) ⊆ V}, collects the positions from which player α can force the game to reach
some position in V with a single move. The α-attractor atrα(V) generalizes the notion of α-
predecessor preα(V) to an arbitrary number of moves, and corresponds to the least fix-point
of that operator.WhenV = atrα(V), we say that V is α-maximal. Intuitively, V is α-maximal
if playerα cannot force any position outsideV to enter the set. For such aV, the set of positions
of the subgame �\V is precisely Ps\V. Finally, the set escα(V) � preα(Ps\V)∩V, called
the α-escape of V, contains the positions in V from which α can leave V in one move. The
dual notion of α-interior, defined as intα(V) � (V ∩ Psα) \ escα(V), contains, instead, the
α-positions from which α cannot escape with a single move. Observe that all the operators
and sets described above actually depend on the specific game � they are applied in. In the
rest of the paper, we shall only add � as subscript of an operator, e.g., escα

�
(V), when the

game is not clear from the context.

3 A new idea

A solution for a parity game � = 〈A,Pr,pr〉 ∈ P over an arena A = 〈Ps0,Ps1,Mv〉 can
trivially be obtained by iteratively computing dominions of some player, namely sets of
positions from which that player has a strategy to win the game. Once an α-dominion D for
playerα ∈ {0, 1} is found, itsα-attractoratrα

�
(D)gives anα-maximal dominion containingD.
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Fig. 1 A simple game �

a/0 b/2

c/0 d/1

e/3

a/0 b/2

c/0 d/1

e/3

In otherwords,α cannot force anypositionoutsideD to enter this set. The subgame�\atrα
�
(D)

can then be solved by iterating the process. This procedure is reported in Algorithm 1. The
crucial problem to address, therefore, consists in computing a dominion for some player in
the game. The difficulty here is that, in general, no unique priority exists that satisfies the
winning condition for a player along all the plays inside the dominion we are looking for. In
fact, that value depends on the strategy chosen by the opponent. Our solution to this problem
is to proceed in a bottom-up fashion, starting from a weaker notion of α-dominion, called
quasi α-dominion. Then, we compose quasi α-dominions until we obtain an α-dominion.
Intuitively, a quasi α-dominion is a set of positions on which player α has a strategy whose
induced plays either remain in the set forever and are winning for α, or can exit from it
passing through a specific set of positions, i.e., the escapes of the set itself. This notion is
formalized by the following definition.

Algorithm 1: Parity game solver

signature solΓ : P→�(2Ps�×2Ps�)

function solΓ (�)

1 if Ps� = ∅ then
2 return (∅,∅)

else
3 (R, α) ← srcΓ (�)

4 R� ← atrα
�
(R)

5 (W0
′,W1

′) ← solΓ (� \ R�)

6 (Wα,Wα) ← (Wα
′ ∪ R�,Wα

′)
7 return (W0,W1)

Definition 1 (Quasi Dominion) Let � ∈ P be a game and α ∈ {0, 1} a player. A non-
empty set of positions Q ⊆ Ps� is a quasi α-dominion in � if there exists an α-strategy
σα ∈ Strα

�
(Q) such that, for all α-strategies σα ∈ Strα

�
(Q), with intα

�
(Q) ⊆ dom(σα), and

positions v ∈ Q, the induced play π = play�((σ0, σ1), v) satisfies pr�(π) ≡2 α, if π is
infinite, and lst(π) ∈ escα

�
(Q), otherwise.

It is important to observe that the additional requirement that the opponent strategies be
defined on all interior positions, formally intα

�
(Q) ⊆ dom(σα), discards those strategies in

which the opponent deliberately chooses to forfeit the play, by declining to take any move at
some of its positions.
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We say that a quasi α-dominion Q is α-open (resp., α-closed) if escα
�
(Q) �= ∅ (resp.,

escα
�
(Q) = ∅). In other words, in a closed quasi α-dominion, player α has a strategy whose

induced plays are all infinite and winning. Hence, when closed, a quasi α-dominion is a
dominion for α in �. The set of pairs (Q, α) ∈ 2Ps� ×{0, 1}, where Q is a quasi α-dominion,
is denoted by QD�, and is partitioned into the sets QD

−
�
and QD+

�
of open and closed quasi

α-dominion pairs, respectively. As an example, consider Fig. 1. It is easy to see that the sets
of positions {a} and {b, c, d} form two open quasi 0-dominion in the game �. Similarly, the
sets of positions {c, d} and {e} are open quasi 1-dominion. Finally, the entire game � is a
closed quasi 0-dominion, or simply a 0-dominion, where the 0-strategy corresponds to the
bold arrows.

An expert reader might note that quasi α-dominions are loosely related with the concept
of snares, introduced in [23] and used there for completely different purposes, namely to
speed up the convergence of standard strategy improvement algorithms.

During the search for a dominion, we explore a suitable partial order, whose elements,
called states, record information about the open quasi dominions computed so far. The search
starts from the top element, where the quasi dominions are initialized to the sets of nodes
with the same priority. At each step, a query is performed on the current state to extract a new
quasi dominion, which is then used to compute a successor state, if it is open. If, on the other
hand, it is closed, the search is over. Different query and successor operations can in principle
be defined, even on the same partial order. However, such operations cannot be completely
independent. To account for this intrinsic dependence, we introduce a compatibility relation
between states and quasi dominions that can be extracted by the query operation. The pairs
in such a relation also form the domain of the successor function. The partial order together
with the query and successor operations and the compatibility relation forms what we call a
dominion space.

Definition 2 (Dominion Space) A dominion space for a game � ∈ P is a tuple D � 〈�,

S, �,�,↓〉, where (1) S � 〈S,�,≺〉 is a well-founded partial order w.r.t. ≺ ⊂ S × S
with distinguished element � ∈ S, (2) � ⊆ S × QD−

�
is the compatibility relation, (3)

� : S → QD� is the query function mapping each element s ∈ S to a quasi dominion pair
(Q, α) � �(s) ∈ QD� such that, if (Q, α) ∈ QD−

�
then s �(Q, α), and (4) ↓ : � → S is

the successor function mapping each pair (s, (Q, α)) ∈ � to the element s� � s ↓(Q, α) ∈ S
with s�≺s.

The depth of a dominion space D is the length of the longest chain in the underlying
partial order S starting from �. Instead, by execution depth of D we mean the length of the
longest chain induced by the successor function ↓. Obviously, the execution depth is always
bounded by the depth.

Different dominion spaces can be associated with the same game. Therefore, in the rest
of this section, we shall simply assume a function Γ mapping every game � to a dominion
space Γ (�). Given the top element of D = Γ (�), Algorithm 2 searches for a dominion
of either one of the two players by querying the current state s for a region pair (Q, α). If
this is closed in �, it is returned as an α-dominion. Otherwise, a successor state s ↓D (Q, α)

is computed and the search proceeds recursively from it. Clearly, since the partial order is
well-founded, termination of the srcD procedure is guaranteed. The total number of recursive
calls is, therefore, the execution depth dD(n,m, k) of the dominion space D, where n, m,
and k are the number of positions, moves, and priorities, respectively. Hence, srcD runs
in time O

(
dD(n,m, k) · (T�(n,m) + T↓(n,m)

)
, where T�(n,m) and T↓(n,m) denote the

time needed by the query and successor functions, respectively. Thus, the total time to solve
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a game is O
(
m + n · dD(n,m, k) · (T�(n,m) + T↓(n,m))

)
. Since the query and successor

functions of the dominion space considered in the rest of the paper can be computed in linear
timew.r.t. bothn andm, thewhole procedure terminates in timeO(n · (n + m) · dD(n,m, k)).
As to the space requirements, observe that srcD is a tail recursive algorithm. Hence, the upper
bound onmemory only depends on the space needed to encode the states of a dominion space,
namely O(log ‖D‖), where ‖D‖ is the size of the partial order S associated with D.

Algorithm 2: The searcher

signature srcΓ : P →� QD+
�

function srcΓ (�)

1 return srcΓ (�)

(�Γ (�)

)

signature srcD : SD → QD+
�D

function srcD(s)
1 (Q, α) ← �D(s)
2 if (Q, α) ∈ QD+

�D then
3 return (Q, α)

else
4 return srcD

(
s ↓D(Q, α)

)

Soundness of the approach follows from the observation that quasi α-dominions closed in
the entire game are winning for player α and so are their α-attractors. Completeness, instead,
is ensured by the nature of dominion spaces. Indeed, algorithm srcD always terminates by
well-foundedness of the underlying partial order and, when it eventually does, a dominion
for some player is returned. Therefore, the correctness of the algorithm reduces to proving
the existence of a suitable dominion space, which is the subject of the next section.

4 Priority promotion

In order to compute dominions, we shall consider a restricted form of quasi dominions that
constrains the escape set to have the maximal priority in the game. Such quasi dominions are
called regions.

Definition 3 (Region) A quasi α-dominion R is an α-region if pr(�) ≡2 α and all the
positions in escα

�
(R) have priority pr(�), i.e.escα

�
(R) ⊆ pr−1

�
(pr(�)).

As a consequence of the above definition, if the opponent α can escape from an α-region,
it must visit a position with the highest priority in the region, which is of parity α. Similarly
to the case of quasi dominions, we shall denote with Rg� the set of region pairs in � and with
Rg−

�
and Rg+

�
the sets of open and closed region pairs, respectively. A closed α-region is

clearly an α-dominion. As an example, consider again Fig. 1. The singleton {e} is the unique
1-region in the entire game �, which is also open, while {b} is a non-maximal 0-region in the
subgame � \ {e} where e is removed. Finally, the set {b, c, d} is a maximal open 0-region in
the same subgame.

At this point, we have all the tools to explain the crucial steps underlying the search
procedure. Open regions are not winning, as the opponent can force plays exiting from them.
Therefore, in order to build a dominion starting from open regions, we look for a suitable
sequence of regions that can be merged together until a closed one is found. Obviously, the
merging operation needs to be applied only to regions belonging to the same player, in such a
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way that the resulting set of position is still a region of that player. To this end, a mechanism
is proposed, where an α-region R in some game � and an α-dominion D in a subgame of
� not containing R itself are merged together, if the only moves exiting from α-positions of
D in the entire game lead to higher priority α-regions and R has the lowest priority among
them. As we shall see, this ensures that the new region R� � R ∪D has the same associated
priority as R. This merging operation, based on the following proposition, is called promotion
of the lower region to the higher one.

Proposition 1 (Region Merging) Let � ∈ P be a game, R ⊆ Ps� an α-region, and D ⊆
Ps�\R an α-dominion in the subgame �\R. Then,R� � R∪D is an α-region in �. Moreover,
if both R and D are α-maximal in � and � \ R, respectively, then R� is α-maximal in � as
well.

Proof Since R is an α-region, there is an α-strategy σR such that, for all α-strategies σα ∈
Strα

�
(R), with intα

�
(R) ⊆ dom(σα), and positions v ∈ R, the play induced by the two

strategies is either winning for α or exits from R passing through a position of the escape set
escα

�
(R), which must be one of the position of maximal priority in � and of parity α. Set D

is, instead, an α-dominion in the game � \R, therefore an α-strategy σD ∈ Str�\R exists that
is winning for α from every position in D, regardless of the strategy σ ′

α ∈ Strα
�\R(D), with

intα
�\R(D) ⊆ dom

(
σ ′

α

)
, chosen by the opponent α. To show that R� is an α-region, it suffices

to show that the following three conditions hold: (i) it is a quasi α-dominion; (ii) the maximal
priority of � is of parity α; (iii) the escape set escα

�
(R�) is contained in pr−1

�
(pr(�)).

Condition (ii) immediately follows from the assumption that R is anα-region in�. To show
that also Condition (iii) holds, we observe that, since D is an α-dominion in � \ R, the only
possible moves exiting from α-positions of D in game � must lead to R, i.e., escα

�
(D) ⊆ R.

Hence, the only escaping positions of R�, if any,must belong to R, i.e. escα
�
(R�) ⊆ escα

�
(R).

SinceR is anα-region in�, it hods thatescα
�
(R) ⊆ pr−1

�
(pr(�)). By transitivity, we conclude

that escα
�
(R�) ⊆ pr−1

�
(pr(�)).

Let us now consider Condition (i) and let the α-strategy σR� � σR ∪ σD be defined as the
union of the two strategies above. Note that, being D and R disjoint sets of positions, σR� is
a well-defined strategy. We have to show that every path π compatible with σR� and starting
from a position in R� is either winning for α or ends in a position of the escape set escα

�
(R�).

First, observe that escα
�
(R�) contains only those positions in the escaping set of R from

which α cannot force to move into D, i.e. escα
�
(R�) = escα

�
(R) \ preα

�
(D).

Let now π be a play compatible with σR� . If π is an infinite play, then it remains forever
in R� and we have three possible cases. If π eventually remains forever in D, then it is
clearly winning for α, since σR� coincides with σD on all the positions in D. Similarly, if π

eventually remains forever in R, then it is also winning for α, as σR� coincides with σR on
all the positions in R. If, on the other hand, π passes infinitely often through both R and D,
it necessarily visits infinitely often an escaping position in escα

�
(R) ⊆ pr−1

�
(pr(�)), which

has the maximal priority in � and is of parity α. Hence, the parity of the maximal priority
visited infinitely often along π is α and π is winning for player α. Finally, if π is a finite
play, then it must end at some escaping position of R from where α cannot force to move to a
position still in R�, i.e., it must end in a position of the set escα

�
(R) \preα

�
(D) = escα

�
(R�).

Therefore, lst(π) ∈ escα
�
(R�). We can then conclude that R� also satisfies Condition (i).

Let us now assume, by contradiction, that R� is not α-maximal. Then, there must be at
least one position v belonging to atrα

�
(R�) \ R�, from which α can force entering R� in one

move. Assume first that v is an α-position. Then there is a move from v leading either to R
or to D. But this means that v belongs to either atrα

�
(R) \ R or atrα

�\R(D) \D, contradicting
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α-maximality of those sets. If v is a α-position, instead, all its outgoing moves must lead to
R ∪ D. If all those moves lead to R, then v ∈ atrα

�
(R) \ R, contradicting α-maximality of R

in �. If not, then in the subgame � \ R, the remaining moves from v must all lead to D. But
then, v ∈ atrα

�\R(D) \ D, contradicting α-maximality of D in � \ R. ��
During the search, we keep track of the computed regions bymeans of an auxiliary priority

function r ∈ P� � Ps� → Pr�, called region function, which formalizes the intuitive
notion of priority of a region described above. Initially, the region function coincides with
the priority function pr� of the entire game �. Priorities are considered starting from the
highest one. A region of the same parity α ∈ {0, 1} of the priority p under consideration
is extracted from the region function, by collecting the set of positions r−1(p). Then, its
attractor R � atrα

��

(
r−1(p)

)
is computed w.r.t. the subgame ��, which is derived from � by

removing the regions with priority higher than p. The resulting set forms an α-maximal set
of positions from which the corresponding player can force a visit to positions with priority
p. This first phase is called region extension. If the α-region R is open in ��, we proceed and
process the next priority. In this case, we set the priority of the newly computed region to p.
Otherwise, one of two situations may arise. Either R is closed in the whole game � or the
only α-moves exiting from R lead to higher regions of the same parity. In the former case,
R is a α-dominion in the entire game and the search stops. In the latter case, R is only an
α-dominion in the subgame��, and a promotion of R to a higher region R� can be performed,
according to Proposition 1. The search, then, restarts from the priority of R�, after resetting
to the original priorities in pr� all the positions of the lower priority regions. The region R�

resulting from the union of R� and R will then be reprocessed and, possibly, extended in
order to make it α-maximal. If R can be promoted to more than one region, the one with the
lowest priority is chosen, so as to ensure the correctness of the merging operation. Due to
the property of maximality, no α-moves from R to higher priority α-regions exist. Therefore,
only regions of the same parity are considered in the promotion step. The correctness of
region extension operation above, the remaining fundamental step in the proposed approach,
is formalized by the following proposition.

Proposition 2 (Region Extension) Let � ∈ P be a game and R� ⊆ Ps� an α-region in �.
Then, R � atrα

�
(R�) is an α-maximal α-region in �.

Proof Since R� is an α-region in �, then the maximal priority in � is of parity α and
escα

�
(R�) ⊆ pr−1

�
(pr(�)). Hence, any position v in � must have priority pr�(v) ≤ pr(�).

Player α can force entering R� from every position in atrα
�
(R�) \R�, with a finite number of

moves. Moreover, R� is a quasi α-dominion and the priorities of the positions in Ps� \ R�

are lower than or equal to pr(�) ≡2 α. Hence, every play that remains in R forever either
eventually remains forever in R� and is winning for α, or passes infinitely often through
R� and atrα

�
(R�) \ R�. In the latter case, that path must visit infinitely often a position in

escα
�
(R�) that has the maximal priority in � and has parity α. Hence, the play is winning

for α. If, on the other hand, α can force a play to exit from R, it can do so only by visiting
some position in escα

�
(R�). In other words, escα

�
(R) ⊆ escα

�
(R�) ⊆ pr−1

�
(pr(�)). In either

case, we conclude that R is an α-region in �. Finally, being R the result of an α-attractor, it
is clearly α-maximal. ��

Figure 2 and Table 1 illustrate the search procedure on an example game, where diamond
shaped positions belong to player 0 and square shaped ones to the opponent 1. Player 0 wins
from every position, hence the 0-region containing all the positions is a 0-dominion in this
case. Each cell of the table contains a computed region. A downward arrow denotes a region
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Fig. 2 Running example
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c/4

a/6

i/0

d/3

b/5

g/1

h/1 f/2

e/2

c/4
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b/5

g/1

h/1 f/2

Table 1 PP simulation

1 2 3 4 5 6 7

6 a↓ · · · · · · · · · · · · a,b,d,g,i↓ · · ·
5 b,f,h↓ · · · · · · b,d,f,g,h↓ · · ·
4 c↓ c,e↓ · · · c↓ c,e↓ c↓ c,e,f,h↑6

3 d↓ d↓ d,g↑5

2 e↑4 e↑4 e,f,h↑4

1 g↑3

0 i↑6

that is open in the subgame where it is computed, while an upward arrow means that the
region gets to be promoted to the priority in the subscript. The index of each row corresponds
to the priority of the region. Following the idea sketched above, the first region obtained is the
single-position 0-region {a}, which is open because of the two moves leading to d and e. At
priority 5, the open 1-region {b,f,h} is formed by attracting both f and h to b, which is open
in the subgamewhere {a} is removed. Similarly, the 0-region {c} at priority 4 and the 1-region
{d} at priority 3 are open, once removed {a,b,f,h} and {a,b,c,f,h}, respectively, from
the game. At priority 2, the 0-region {e} is closed in the corresponding subgame. However, it
is not closed in the whole game, since it has a move leading to c, i.e., to region 4. A promotion
of {e} to 4 is then performed, resulting in the new 0-region {c,e}. The search resumes at the
corresponding priority and, after computing the extension of such a region via the attractor,
we obtain that it is still open in the corresponding subgame. Consequently, the 1-region of
priority 3 is recomputed and, then, priority 1 is processed to build the 1-region {g}. The latter
is closed in the associated subgame, but not in the original game, because of a move leading
to position d. Hence, another promotion is performed, leading to closed region in Row 3 and
Column 3, which in turn triggers a promotion to 5. Observe that every time a promotion to
a higher region is performed, all positions of the regions at lower priorities are reset to their
original priorities. The iteration of the region forming and promotion steps proceeds until the
configuration in Column 7 is reached. Here only two 0-regions are present: the open region
6 containing {a,b,d,g,i} and the closed region 4 containing {c,e,f,h}. The second one
has a move leading to the first one, hence, it is promoted to its priority. This last operation
forms a 0-region containing all the positions of the game. It is obviously closed in the whole
game and is, therefore, a 0-dominion.

Note that, the positions in 0-region {c,e} are reset to their initial priorities, when 1-region
{d,g} in Column 3 is promoted to 5. Similarly, when 0-region {i} in Column 5 is promoted
to 6, the priorities of the positions in both regions {b,d,f,g,h} and {c,e}, highlighted by
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the gray areas, are reset. This is actually necessary for correctness, at least in general. In fact,
if region {b,d,f,g,h} were not reset, the promotion of {i} to 6, which also attracts b, d,
and g, would leave {f,h} as a 1-region of priority 5. However, according to Definition 3,
this is not a 1-region. Even worse, it would also be considered a closed 1-region in the entire
game, without being a 1-dominion, since it is actually an open 0-region. This shows that,
in principle, promotions to an higher priority require the reset of previously built regions of
lower priorities.

In the rest of this section, we shall formalize the intuitive idea described above. The
necessary conditions underwhichpromotionoperations canbe applied are also stated. Finally,
query and successor algorithms are provided, which ensure that the necessary conditions are
easy to check and always met when promotions are performed.

4.1 The PP dominion space

In order to define the dominion space induced by the priority-promotion mechanism (PP, for
short), we need to introduce some additional notation. Given a priority function r ∈ P� and a
priority p ∈ Pr,we denote by r(≥p) (resp., r(>p) and r(<p)) the function obtained by restricting
the domain of r to the positions with priority greater than or equal to p (resp., greater than and
lower than p). Formally, r(≥p) � r�{v ∈ dom(r) : r(v) ≥ p} (resp., r(>p) � r�{v ∈ dom(r)
: r(v) > p} and r(<p) � r�{v ∈ dom(r) : r(v) < p}). By �

≤p
r we denote the largest subgame

contained in the structure � \ dom
(
r(>p)

)
, which is obtained by removing from � all the

positions in the domain of r(>p). A priority function r ∈ R� ⊆ P� in � is a region function
iff, for all priorities q ∈ rng(r)with α � q mod 2, it holds that r−1(q)∩Ps

�
≤q
r

is an α-region

in the subgame �
≤q
r , if non-empty. In addition, we say that r is maximal above p ∈ Pr iff,

for all q ∈ rng(r) with q > p, we have that r−1(q) is α-maximal in �
≤q
r with α � q mod 2.

To account for the current status of the search of a dominion, the states s of the correspond-
ing dominion space need to contain the current region function r and the current priority p
reached by the search in �. To each of such states s � (r, p), we then associate the subgame
at s defined as �s � �

≤p
r , representing the portion of the original game that still has to be

processed. For instance, the state s corresponding to Row 4 Column 4 in Table 1 is (r, 4),
where the region function r is such that r(a) = 6, r(x) = 5, for x ∈ {b,d,f,g,h}, and
r(x) = pr(x), for x ∈ {c,e,i}. In addition, the subgame �s of s only contains the positions
c, e, and i.

We can now formally define the Priority Promotion dominion space, by characterizing
the corresponding state space and compatibility relation. Moreover, algorithms for the query
and successor functions of that space are provided.

Definition 4 (State Space) A state space is a tuple S� � 〈S�,��,≺�〉, where its compo-
nents are defined as prescribed in the following:

1. S� ⊆ R� × Pr� is the set of all pairs s � (r, p), called states, composed of a region
function r ∈ R� and a priority p ∈ Pr� such that (a) r ismaximal above p, (b) p ∈ rng(r),
and (c) r(<p) ⊆ pr�

(<p);
2. �� � (pr�,pr(�));
3. for any two states s1 � (r1, p1), s2 � (r2, p2) ∈ S�, it holds that s1≺�s2 iff either

(a) there exists a priority q ∈ rng(r1) with q ≥ p1 such that (a.i) r1(>q) = r2(>q) and
(a.ii) r−1

2 (q) ⊂ r−1
1 (q), or (b) both (b.i) r1 = r2 and (b.ii) p1 < p2 hold.

The state space specifies the configurations in which the priority promotion procedure can
reside and the relative order that the successor function must satisfy. In particular, for a given
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state s � (r, p), every region r−1(q), with priority q > p, recorded in the region function
r has to be α-maximal, where α = q mod 2. This implies that r−1(q) ⊆ Ps

�
≤q
r
. Moreover,

the current priority p of the state must be the priority of an actual region in r. Finally, all the
regions recorded in r at any priority q lower than p must contain positions that have the same
priority q in the original priority function pr� of the game. As far as the order is concerned,
a state s1 is strictly smaller than another state s2 if either there is a region recorded in s1 at
some higher priority q that strictly contains the corresponding one in s2 and all regions above
q are equal in the two states, or state s1 is currently processing a lower priority than the one
of s2.

At this point, we can determine the regions that are compatible with a given state. They
are the only ones that the query function is allowed to return and that can then be used
by the successor function to make the search progress in the dominion space. Intuitively, a
region pair (R, α) is compatible with a state s � (r, p) if it is an α-region in the current
subgame �s . Moreover, if such region is α-open in that game, it has to be α-maximal, and it
has to necessarily contain the current region r−1(p) of priority p in r. These three accessory
properties ensure that the successor function is always able to cast R inside the current region
function r and obtain a new state.

Definition 5 (Compatibility Relation) An open quasi-dominion pair (R, α) ∈ QD−
�
is com-

patible with a state s � (r, p) ∈ S�, in symbols s ��(R, α), iff (1) (R, α) ∈ Rg�s
and (2) if

R is α-open in �s then (2.a) R is α-maximal in �s and (2.b) r−1(p) ⊆ R.

Algorithm 3: Query function

signature �� : S� → (2Ps� ×{0, 1})
function ��(s)

let (r, p) = s in
1 α ← p mod 2
2 R ← atrα

�s

(
r−1(p)

)

3 return (R, α)

Algorithm3provides a possible implementation for the query function compatiblewith the
priority-promotion mechanism. Let s � (r, p) be the current state. Line 1 simply computes
the parity α of the priority to process in that state. Line 2, instead, computes in game �s the
attractor w.r.t. player α of the region contained in r at the current priority p. The resulting set
R is, according to Proposition 2, an α-maximal α-region in �s containing r−1(p).

Before continuing with the description of the implementation of the successor function,
we need to introduce the notion of best escape priority for player α w.r.t. an α-region R
of the subgame �s and a region function r in the whole game �. Informally, such a value
represents the best priority associated with an α-region contained in r and reachable by α

when escaping fromR. To formalize this concept, let I � Mv� ∩ ((R∩Psα
�
)× (dom(r)\R))

be the interface relation between R and r, i.e., the set of α-moves exiting fromR and reaching
some position within a region recorded in r. Then, bepα

�
(R, r) is set to the minimal priority

among those regions containing positions reachable by a move in I. Formally, bepα
�
(R, r) �

min(rng(r�rng(I))). Note that, if R is a closed α-region in �s , then bepα
�
(R, r) is necessarily

of parity α and greater than the priority p of R. This property immediately follows from
the maximality of r above p in any state of the dominion space. Indeed, no move of an α-
position can lead to a α-maximal α-region. For instance, in the example of Fig. 2, for 0-region
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R = {e,f,h} with priority equal to 2 in column 6, we have that I = {(e,c), (h,b)} and
r�rng(I) = {(c, 4), (b, 6)}. Hence, bep1

�
(R, r) = 4.

In order to perform a reset of the priority of some positions in the game after a promotion,
we use the completing operator �. Taken two partial function f,g : A ⇀ B, the operator
returns the partial function f�g : A ⇀ B, which is equal to g on its domain and assumes the
same values as g on the remaining part of the set A.

Algorithm 4: Successor function

signature ↓� : �� → Δ� × Pr�
function s ↓� (R, α)

let (r, p) = s in
1 if (R, α) ∈ Rg−

�s
then

2 r� ← r[R �→ p]
3 p� ← max(rng

(
r�(<p)

)
)

else
4 p� ← bepα

�
(R, r)

5 r� ← pr� � r(≥p�)[R �→ p�]
6 return (r�, p�)

Algorithm 4 implements the successor function informally described at the beginning of
the section. Given the current state s and a compatible region pair (R, α) open in the whole
game as inputs, it produces a successor state s� � (r�, p�) in the dominion space. It first
checks whether R is open also in the subgame �s (Line 1). If this is the case, it assigns
priority p to region R and stores it in the new region function r� (Line 2). The new current
priority p� is, then, computed as the highest priority lower than p in r� (Line 3). If, on the
other hand, R is closed in �s , a promotion merging R with some other α-region contained
in r is required. The next priority p� is set to the bep of R for player α in the entire game �

w.r.t. r (Line 4). Region R is, then, promoted to priority p� and all the priorities below p� in
the current region function r are reset (Line 5). The correctness of this last operation follows
from Proposition 1.

As already observed in Sect. 3, a dominion space, together with Algorithm 2, provides
a sound and complete solution procedure. The following theorem states that the priority-
promotionmechanismpresented above is indeed a dominion space. For the sake of readability,
the proof is provided in the “Appendix”.

Theorem 1 (Dominion Space) For a game �, the structure D� � 〈�,S�, ��,��,↓�〉,
where S� is given in Definition 4, �� is the relation of Definition 5, and �� and ↓� are the
functions computed by Algorithms 3 and 4 is a dominion space.

4.2 Complexity of PP dominion space

To assess the complexity of the PP approach, we produce an estimate of the size and depth of
the dominion spaceR�. This provides upper bounds for both the time and space complexities
needed by the search procedure srcR�

that computes dominions. By looking at the definition
of state space S�, it is immediate to see that, for a game�with n positions and k priorities, the
number of states is bounded by kn+1. Indeed, there are at most kn functions r : Ps� → Pr�
from positions to priorities that can be used as region function of a state. Moreover, every
such function can be associated with at most k current priorities.
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Fig. 3 The �
PP
2,4 game
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Measuring the depth is a little trickier. A relatively coarse bound can be obtained by
observing that there is an homomorphism from S� to the well-founded partial order, in
which the region function r of a state is replaced by a partial function f : Pr� ⇀ [1, n]
with the following properties: it assigns to each priority p ∈ rng(r) the size f(p) of the
associated region r−1(p). The order (f1, p1)≺(f2, p2) between two pairs is derived from the
one on the states, by replacing r−1

2 (q) ⊂ r−1
1 (q) with f2(q) < f1(q). This homomorphism

ensures that every chain in S� corresponds to a chain in the new partial order. Moreover,
there are exactly

(n+k
k

)
partial functions f such that

∑
p∈dom(f) f(p) ≤ n. Consequently,

thanks to Stirling’s approximation of the factorial function, every chain cannot be longer
than k

(n+k
k

) = (n+k)
(n+k−1

k−1

) ≤ (n+k) (e(n/(k − 1) + 1))k−1, where e is Euler’s number.

Theorem 2 (Size and Depth Upper Bounds) The size and depth of a PP dominion
space R with n ∈ N+ positions and k ∈ [1, n] priorities are bounded by kn+1 and

(n + k) (e(n/(k − 1) + 1))k−1 = O

(
kn

(
en
k−1

)k−1
)
, respectively.

Unfortunately, due to the reset operations performed after each promotion, an exponential
worst-case can actually be built. Indeed, consider the game �l,h having all positions ruled
by player 0 and containing h chains of length 2l + 1 that converge into a single position of
priority 0 with a self loop. The i-th chain has a head of priority 2(2h − i) + 1 and a body
composed of l blocks of two positions with priority 2i − 1 and 2i , respectively. The first
position in each block also has a self loop. An instance of this game with l = 2 and h = 4 is
depicted in Fig. 3. The labels of the positions, deprived of the possible apexes, correspond to
the associated priorities and the highlighted area at the bottom of the figure groups together
the last blocks of the chains. Intuitively, the execution depth of the PP dominion space for this
game is exponential, since the consecutive promotion operations performed on each chain
can simulate the increments of a counter up to l. Also, the priorities are chosen in such a
way that, when the i-th counter is incremented, all the j-th counters with j ∈ ]i, h] are reset.
Therefore, the whole game simulates a counter with h digits taking values from 0 to l. Hence,
the overall number of performed promotions is (l + 1)h . The search procedure on �2,4 starts
by building the four open 1-regions {15}, {13}, {11}, and {9} and the open 0-region {8, 7′, 8′},
where we use apexes to distinguish different positions with the same priority. This state
represents the configuration of the counter, where all four digits are set to 0. The closed 1-
region {7} is then found and promoted to 9. Consequently, the previously computed 0-region
with priority 8 is reset and the new region is maximized to obtain the open 1-region {9, 7, 8}.
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Now, the counter is set to 0001. After that, the open 0-region {8′} and the closed 1-region
{7′} are computed. The latter one is promoted to 9 and maximized to attract position 8′. This
completes the 1-region containing the entire chain ending in 9. The value of the counter is
now 0002. At this point, immediately after the construction of the open 0-region {6, 5′, 6′},
the closed 1-region {5} is found, promoted to 11, and maximized to absorb position 6. Due to
the promotion, the positions in the 1-region with priority 9 are reset to their original priority
and all the work done to build it gets lost. This last operation represents the reset of the least
significant digit of the counter, caused by the increment of the second one, i.e., the counter
displays 0010. Following similar steps, the process carries on until each chain is grouped in
a single region. The corresponding state represents the configuration of the counter in which
all digits are set to l. Thus, after an exponential number promotions, the closed 0-region {0}
is eventually obtained as solution.

Theorem 3 (Execution-Depth Lower Bounds) For all numbers h ∈ N, there exists a PP
dominion space DPP

h with k = 2h + 1 positions and priorities, whose execution depth is
3 · 2h − 2 = 


(
2k/2

)
. Moreover, for all numbers l ∈ N+, there exists a PP dominion space

DPP
l,h with n = (2l + 1) · h + 1 positions and k = 3h + 1 priorities, whose execution depth

is ((3l + 1) · (l + 1)h − 1)/ l − 2 = O
(
(3n/(2(k − 1)))k/3

)
.

Proof The single-player game �
PP
h , with k = 2h + 1 positions and priorities, contains a

position with priority 0 plus 2h positions spanning all the odd priorities from 1 to 4h − 1.
Moreover, the associated moves are those depicted in the highlighted top section of Fig. 3.
Intuitively, this game encodes a binary counter, where each one of the h chains, composed
of two positions of odd priorities connected to position 0, represents a digit. The promotion
operation of region 2i−1 to region 2(2h−i)+1 corresponds to the increment of the i-th digit.
As a consequence, the number of promotions for the PP algorithm is equal to the number of
configurations of the counter, except for the initial one. Now, to provide a lower bound for the
depth of the associated dominion space DPP

h , consider the recursive functionQ(h) with base
case Q(0) = 1 and inductive case Q(h) = 2Q(h − 1) + 2. This function counts the number
of queries executed by the the PP algorithm on game �

PP
h . The correctness of the base case is

trivial. Indeed, when h is equal to 0, there are no chains and the only possible region is the one
containing position 0. Let us now consider the inductive case h > 0. A first query is required
to obtain region {4h−1}. Then, before reaching the promotion of region {1} to region {4h−1},
i.e., to set the most-significant digit, all the other digits must be set. To do this, the number of
necessary queries is equal to those required on the game instance with h−1 chains minus the
query that computes region {0}, i.e., Q(h − 1) − 1. At this point, two additional queries are
counted, when region {1} is obtained and then merged to region {4h−1}. As described above
in the execution of the game depicted in Fig. 3, this promotion unnecessarily resets all lesser-
significant digits. Therefore,Q(h−1)−1 counts exactly the queries needed to set again to 1
all the digits reset after this promotion. Finally, a query for the 0-closed region {0} is required.
Summing up, we haveQ(h) = 1+(Q(h−1)−1)+2+(Q(h−1)−1)+1 = 2Q(h−1)+2,
as claimed above. A trivial proof by induction shows that Q(h) = 3 · 2h − 2 = 


(
2k/2

)
.

We can now turn to the more complex single-player game �
PP
l,h , with n = (2l + 1) · h + 1

positions and k = 3h+1 priorities, which contains a position with priority 0 plus (2l +1) ·h
positions, spanning all the priorities from 1 to 2h and all odd priorities from 2h+1 to 4h−1
as depicted in the entire Fig. 3. To provide a lower bound for the depth of the associated
dominion space DPP

l,h , consider the recursive function Q(h) with base case Q(l, 0) = 1 and
inductive caseQ(l, h) = (1+ l)Q(l, h− 1)+ 2l + 1. Also in this case, the correctness of the
base cases is trivial. Indeed, when h is equal to 0, there are no chains, independently of the
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parameter l. Hence, the only possible region is the one containing position 0. For the inductive
case h > 0, a first query is required to compute region {4h − 1}. Then, before reaching the
promotion to region {4h − 1} of the adjacent region {1}, i.e., to set the most-significant digit
to 1, all the other digits must be set to l − 1. This requires the same number of queries
required to process the game with h − 1 chains minus the query collecting region {0}, i.e.,
Q(l, h − 1) − 1. At this point, three additional queries are counted: region {2, 1′, 2′, . . .} is
computed first, followed by region {1}; the latter is then merged to region {4h−1} absorbing
position 2 from the first region. Note that the region of priority 2 contains all positions in
the first chain, except for positions 1 and 4h − 1. As in the previous game, such a promotion
unnecessarily resets all lesser-significant digits. Therefore,Q(l, h−1)−1 counts exactly the
queries needed to set again to l−1 all digits reset after this promotion. After that, and similarly
to what is described above, we need to set the most-significant digit to 2, by performing other
three queries: {2′, . . .} is computed first, followed by region {1′}; the latter is then merged
to region {4h − 1, 1, 2}, absorbing position 2′ from the first region. Again, this promotion
resets all lesser-significant digits, which requires Q(l, h − 1) − 1 steps to be set to l − 1.
This behavior is repeated l − 2 more times, until the first chain is completely absorbed by
the region of highest priority 4h − 1. Finally, a query for the 0-closed region {0} is required.
Summing up, we have Q(n, h) = 1 + (Q(h − 1) − 1) + (3 + (Q(l, h − 1) − 1)) · l + 1 =
(1 + l)Q(l, h − 1) + 2l + 1, as claimed above. Also in this case, an easy induction shows
that Q(l, h) = ((3l + 1) · (l + 1)h − 1)/ l − 2 = O

(
(3n/(2(k − 1)))k/3

)
. ��

Observe that, in the above theorem, we provide two different exponential lower bounds.
The general one, with k/3 as exponent and a parametric base, is the result of the game
�l,h described in the previous paragraph, where k = 3h + 1. The other bound, instead,
has a base fixed to 2, but a larger exponent k/2. We conjecture that the given upper bound
could be improved to match the exponent k/2 of this lower bound. In this way, we would
obtain an algorithm with an asymptotic behavior comparable with the one exhibited by the
small-progress measure procedure [35].

5 Subgame decomposition

Asdescribed in the previous section, the search procedure for the basicPP approach, displayed
in Algorithm 2, consists in finding quasi dominions that, whenever closed in the current
subgame, are suitably merged with previously computed regions until a dominion in the
original game� is found. In particular, when the current quasi dominion is open, the algorithm
searches for the next one in a subgame�′ of �. By Algorithm 3 and Lines 2-3 of Algorithm 4,
such a subgame corresponds to �s \R, where �s and R are, respectively, the current subgame
w.r.t. to state s and the region extracted by the query function on s itself. Due to this design
choice and the fact that the regions are created in decreasing order of priority, the sequence of
subgames follows the sameorder and, in particular, the current priority p contained in the state
s = (r, p) also corresponds to the maximal priority in the part of game yet to be analyzed.
This is a very simple and efficient way to compute subgames, but it does not necessarily
translate into an efficient way to obtain a solution in terms of the number of promotions
required. In fact, the lesser the moves between �′ and the positions outside �′, the easier it
is to find a dominion in the subsequent iterations, as the probability that a promotion occurs
reduces. In this section we propose a generalization of the PP algorithm that does not commit
to a specific way of computing the next subgame to process during its dominion search phase.
The result is a parametric version of the priority promotion approach that, by exploiting the
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topology of the underlying game, can be instantiated with different game decomposition
techniques.

To this end, we first need to address the crucial issue that the correctness of promotion
mechanism relies, according to Proposition 1, on the fact that the positions contained in a
dominion to be promoted can only reach some previously computer region. To ensure that
this property is preserved, we need to require that, after computing region R in game �s ,
whatever the subgame �′ of �s \R we chose to consider next, it cannot contain positions that
reach portions of the game yet to be analyzed, namely positions in the set Ps�s \ (R ∪ Ps�′).
Since there is no unique way to choose a suitable subgame, the new algorithm we propose
in the following is parametric on a function F that, given a game �, computes the positions
of the subgame �′ on which the search for quasi dominions needs to proceed. The standard
PP algorithm can be obtained by simply setting F(�) = Ps�. A sharper heuristic, instead,
instantiatesFwith a procedure that collects the positions in someminimal StronglyConnected
Component (SCC) of the graph underlying the game �. An alternative coarser possibility,
which, however, incurs in less overhead, simply computes all the positions reachable from
an arbitrary initial position in the game. It is immediate to see that all these instantiations
satisfy the above requirement on the subgames.

A second issue concerns the way in which the processed subgames are kept track of. In the
originalPP algorithm,where�′ = �s\R, the current subgame�s coincideswith�

≤p
r . Hence,

the region function r, together with the priority p, suffices to identify the current subgame
�s . On the other hand, if �′ is chosen as a strict subgame of �

≤p
r , we need to introduce

an auxiliary function to keep track of the computed subgames and identify the current one.
This role is played by a second priority function g : Ps → Pr, called subgame function. At
the beginning of the procedure, g maps every position to pr(�) in order to ensure that the
current subgame is the entire game. Every time a new subgame �′ of �s is computed, the
subgame function g is updated by setting all positions contained in �′ to the maximal priority
p′ of �′ itself. Essentially, g induces a sequence of subgames ordered by game inclusion and
indexed by the maximal priorities in each subgame. Consequently, g maps each position to
the priority identifying the minimal subgame in the sequence that contains that position. As a
result, we have that Ps�′ = g−1(p′) and Ps�s = dom

(
g(≤p)

)
. In this new setting, the current

priority p of each state can be recovered as the minimal priority in the range of g, while
the current subgame corresponds to �

≤p
g � � � dom

(
g(≤p)

)
. Formally, a priority function

g ∈ G� ⊆ Ps� → Pr� is a subgame function iff (i) rng(g) ⊆ rng
(
pr�

)
and (ii), for all

p ∈ rng(g), it holds that (ii.a) �
≤p
g � � � dom

(
g(≤p)

)
is a game and (ii.b) g(≤p) ⊂ g(≤p′),

for all p′ ∈ rng(g) with p < p′.
A final issue involves the way we keep track of the computed regions. In the PP procedure,

we use region function r, which is initialized to pr� and directly stores the stratification
of the regions computed in decreasing order of priority. Therefore, for every priority p,
the set r−1(p) exactly corresponds to a region R in �s = �

≤p
r , where s � (r, p). If the

subgame �s is computed via the subgame function g, instead, a problem with the original
definition of the region function r arises: r might contain positions associated with priorities
that may not exist in g. Note that this problem is a direct consequence of the strict inclusion
�′ ⊂ �s \ R. For this reason, we generalize the notion of region function r to a quasi-
dominion function q. The regions computed so far can still be recovered by restricting q to
the current subgame, identified by g, in symbols r � q ∩ g. Formally, given a game �, a
priority function q ∈ Q� ⊆ Ps� → Pr� is a quasi-dominion function iff, for all p ∈ rng(q),
it holds that q−1(p) is an α-quasi dominion in �, with α � p mod 2. We say that the
function r � q∩ g is a g-stratified region function if (i) r−1(p) is an α-region in �

≤p
g , for all
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p ∈ rng(r), and (ii) escα
�
(Q) ∩ preα

�
(X) = ∅, for each p ∈ rng(g) and quasi dominion pair

(Q, α) ∈ QD
�

≤p
g
, where X = Ps� \ (dom

(
g(≤p)

)∪dom(r)). Moreover, r ismaximalw.r.t. g

if r−1(p) is α-maximal in �
≤p
g , for all p ∈ rng(r) with p > min(rng(g)) and α = p mod 2.

Intuitively, Items (i) of the g-stratified property and the maximality of r w.r.t. g state the
same two requirements that a classic PP region function must satisfy. In addition, Item (ii)
of the former property precisely formalizes the above described requirement on the quasi
dominions: every quasi dominion in a subgame identified by the function g cannot have
positions with moves that lead outside the domain of the function r.

In the following, we adapt the PP dominion space to support the new subgame decom-
position approach. A state is now defined as a pair s = (q,g), where q is a quasi dominion
function and g is a subgame function. In addition, the game induced by s is defined as
�s � �

≤p
g , with p = min(rng(g)).

Definition 6 (State Space) A state space is a tuple S� � 〈S�,��,≺�〉, where its compo-
nents are defined as prescribed in the following:

1. S� ⊆ Q� × G� is the set of all pairs s � (q,g), called states, composed of a quasi
dominion function q ∈ Q� and a subgame function g ∈ G� such that (a) r � q ∩ g is
maximal w.r.t. g, (b) r is a g-stratified region function, and (c) q = pr� � r;

2. �� � (pr�, ∅[Ps� �→ pr(�)]);
3. for any two states s1 � (q1,g1), s2 � (q2,g2) ∈ S�, with p1 � min(rng(g1)) and

p2 � min(rng(g2)), it holds that s1≺�s2 iff either (a) there exists a priority p ∈ rng(q1)
with p ≥ p1 such that (a.i) q1(>p) = q2(>p) and (a.ii) q−1

2 (p) ⊂ q−1
1 (p) or (b) both

(b.i) q1 = q2 and (b.ii) p1 < p2 hold.
As one would expect, the state space defined above is slightly different from the one in
Sect. 4. Indeed, a state (q,g) does not explicitly record the regions anymore. Instead, it
records the quasi dominions from which the computed regions can be extracted. In more
detail, an α-maximal region is obtained from the derived set r−1(q) = q−1(q) ∩ g−1(q),
where q ≥ min(rng(g)), α = q mod 2, and r � q ∩ g. Obviously, the current priority
p � min(rng(g)) of the state must be a priority of an actual region in r. Moreover, the quasi
dominion function q, at any priority p′ lower than p, must contain positions with the same
priority p′ in the original priority function pr�, i.e., q

−1(p′) ⊆ pr−1
�

(p′). At any p′ grater
that p, instead, q needs to store part of the priority function together with the regions, that is
q−1(p′) = (pr� � r)−1(p′). All these requirement are ensured by Points (a)–(c) of Item 1.
Finally, the order follows exactly the same rules as in the original algorithm, where the pair
(q ∩ g,min(rng(g)) plays the role of the PP state (r, p).

The compatibility relation is very similar to the one for the PP procedure. Indeed, we only
need to specify how to extract the function r from the state s.

Definition 7 (Compatibility Relation) An open quasi dominion pair (R, α) ∈ QD−
�
is com-

patible with a state s � (q,g) ∈ S�, in symbols s ��(R, α), iff (1) (R, α) ∈ Rg�s
and (2) if

R is α-open in �s then (2.a) R is α-maximal in �s and (2.b) r−1(p) ⊆ R, where r � q ∩ g.
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Algorithm 5: New query function

signature �� : S� → (2Ps� ×{0, 1})
function ��(s)

let (q,g) = s in
1 p ← min(rng(g))

2 α ← p mod 2
3 R ← atrα

�s

(
q−1(p) ∩ Ps�s

)

4 return (R, α)

Algorithm 5 provides the implementation for the query function compatible with the
generalized priority-promotionmechanism.Let s � (q,g)be the current state. Line 1 extracts
from s the priority p to process, while Line 2 simply computes the associated parityα. Finally,
Line 3 computes the attractor w.r.t. player α of the quasi dominion contained in q at p that
belongs to the subgame �s , i.e., the α-region q−1(p) ∩ Ps�s = q−1(p) ∩ g−1(p) = r−1(p).
The resulting set R is, according to Proposition 2, an α-maximal α-region in �s that contains
r−1(p).

Unlike for the classic PP algorithm, the notion of best escape priority for player α w.r.t.
an α-region R of the subgame �s is defined w.r.t. the quasi dominion function q. Indeed,
we do not need to consider the g-stratified region function r, since, due to the property of
the subgame function g, the escape positions in every quasi dominion in �s can only reach
positions in r. Thismeans that the range of the interface relation I is included in r itself. At this
point, the successor function can be defined parametrically on the function F that identifies
a subgame �′ ⊆ � \R such that, for each player α and quasi α-dominion Q ∈ QD�′ , the set
escα

�′(Q) has no positions that reach �\ (R∪Ps�′). More formally, the set A � F(�) ⊆ Ps�
must be such that the subgame ��A satisfies escα

�
(Q)∩preα

�
(Ps� \A) = ∅, for every quasi

dominion pair (Q, α) ∈ QD��A. Observe that this requirement exactly mirrors Item (ii)
in the definition of the g-stratified region function r. As already said before, we propose
two instances of such a function. The first one computes the reachability set of an arbitrary
position. The second one, instead, simply returns the positions of a minimal SCC. Clearly the
escape of every quasi dominion in both the above subgames cannot reach positions outside
those subgames.

Algorithm 6 implements the new successor function. Given the current state s and a
compatible region pair (R, α) open in the whole input game, it produces a successor state
s� � (q�,g�) in the dominion space. In particular, it first checks whether R is open also in
the subgame �s (Line 1). If this is the case, it assigns priority p = min(rng(g)) to region R
and stores it in the new quasi dominion function q� (Line 2). The set A of positions of the
new subgame is computed via the auxiliary function F (Line 3) and stored in the subgame
function g� at priority max(rng(q� � A)) (Line 4). If, on the other hand, R is closed in �s ,
a promotion is performed. The next priority p� is set to the bep of R w.r.t. q for player
α in the entire game � (Line 5). Region R is, then, promoted to priority p� and all the
positions with priorities smaller than p� in the current quasi dominion function q are reset
(Line 6). Similarly, in the new subgame function g�, the priorities of the same positions
are set to p� (Line 7). Also in this case, the correctness of this last operation follows from
Proposition 1.
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Algorithm 6: New successor function

signature ↓ : � → Δ × Pr
function s ↓ (R, α)

let (q,g) = s in
1 if (R, α) ∈ Rg−

�s
then

2 q� ← q[R �→ min(rng(g))]
3 A ← F(�s \ R)

4 g� ← g[A �→ max(rng(q� � A))]
else

5 p� ← bepα
�
(R,q)

6 q� ← pr� � q(≥p�)[R �→ p�]
7 g� ← g[dom

(
g(<p�)

)
�→ p�]

8 return (q�,g�)

In conclusion, the priority-promotion mechanism extended with subgame decomposition
forms a dominion space, as stated in the following theorem, whose proof is provided in the
“Appendix”.

Theorem 4 (Dominion Space) For a game �, the structure D� � 〈�,S�, ��,��,↓�〉,
where S� is given in Definition 6, �� is the relation of Definition 7, and �� and ↓� are the
functions computed by Algorithms 5 and 6 is a dominion space.

6 Experimental evaluation

In this section we shall try to assess the effectiveness of the proposed approach. To this
end, the priority promotion technique has been implemented in the tool PGSolver [31].
The tool, written in OCaml, collects implementations of several parity game solvers pro-
posed in the literature and provides benchmarking tools, which can generate different forms
of parity games. The available benchmarks divide into concrete and synthetic problems.
The concrete benchmarks encode validity and verification problems for temporal logics.
They consist in parity games resulting from encodings of the language inclusion problem
between automata, specifically a non-deterministic Büchi automaton and a deterministic
one, simple reachability problems, the Tower of Hanoi problems, and a fairness verifica-
tion problem, the Elevator problem (see [31] for more details on this benchmarks). The
synthetic benchmarks divide into randomly generated games and various families, corre-
sponding to difficult cases, such as clique and ladder-like games, and worst cases for the
solvers implemented in PGSolver. To fairly compare the different solution techniques used
by the underlying algorithms, the solvers involved in the experiments have been isolated
from the generic solver implemented in PGSolver, which exploits few game transforma-
tion and decomposition techniques in the attempt to speed up the solution process. Indeed,
those optimizations can, in some cases, solve the game without even calling the selected
algorithm, and, in other cases, the resulting overhead can even outweigh the solver time,
making the comparison among solvers virtually worthless [31]. Experiments were also con-
ducted with different optimizations enabled and the results exhibit patterns similar to the
ones emerging in the following experimental evaluation, even though solution times and the
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Table 2 Execution times (in seconds) on several benchmark families. Time out (†) is set to 600 s and memory
out (‡) to 7.5Gb

Benchmark Positions Dom Big Str Rec SmPr PP

Hanoi 7 × 105 1.4 1.4 † 1.8 † 0.7

Hanoi 2.1 × 106 4.4 4.4 † 5.7 † 2.3

Hanoi 6.3 × 106 21.4 21.4 ‡ 17.4 † 7.0

Elevator 1 × 105 1.0 1.0 † 0.8 12.8 0.2

Elevator 8.6 × 105 10.86 10.86 † 7.0 155.5 2.0

Elevator 7.7 × 106 † ‡ ‡ ‡ † 19.8

Lang. Incl. 3.7 × 105 6.6 6.6 † 3.0 78.4 0.6

Lang. Incl. 1.6 × 106 51.0 51.3 † 26.3 † 3.6

Lang. Incl. 5 × 106 † ‡ ‡ 145.5 ‡ 16.5

Ladder 4 × 106 † ‡ ‡ 35.0 130.5 7.9

Str. Imp. 4.5 × 106 81.0 82.8 † 71.0 ‡ 57.0

Clique 8 × 103 † ‡ † † † 10.8

MC. Lad. 7.5 × 106 † ‡ ‡ 4.3 ‡ 4.3

Rec. Lad. 5 × 104 † ‡ † ‡ ‡ 62.8

Jurdziński 4 × 104 † † 188.2 † 93.2 69.6

gap among solvers may reduce considerably in some cases, depending on the benchmarks
considered.

The algorithms considered in the experimentation are the Zielonka algorithm Rec [58], its
two dominion decomposition variants, Dom [37,38] and Big [52], the strategy improvement
algorithm Str [56],1 the small progress measure algorithm SmPr [35], and the one of this
article, PP (available at https://github.com/tcsprojects/pgsolver).2

6.1 Special families

Table 2 displays the results of all the solvers involved on the benchmark families available in
PGSolver. We only report on the biggest instances we could deal with, given the available
computational resources.3 The parameter Positions refers to the number of positions in the
games and the best results are emphasized in bold. The first three sections of the table, each
comprising three instances of increasing size for the same benchmark, consider the concrete
verification problems mentioned above. On all the instances of the Tower of Hanoi problem

1 Note that the version of small-progress measure used in the experiments, which is included in the official
release of PGSolver, is not the original one proposed by Jurdzinski, as it performs a progress interleaving
for both players at once, instead of focusing on a single player like the original algorithm. According to the
authors of PGSolver, this optimization allows for a non-trivial performance improvement.
2 Experiments were carried out on a 64-bit 3.1GHz Intel® quad-core machine, with i5-2400 processor and
8GB of RAM, runningUbuntu 12.04 with Linux kernel version 3.2.0. PGSolverwas compiled with OCaml
version 2.12.1.
3 The biggest instances in the table are generated by the following PGSolvercommands: towersofhanoi
13, elevatorgame 8, langincl 500 100, laddergame 4000000, stratimprgen
-pg friedmannsubexp 1000, modelcheckerladder 2500000, cliquegame 8000,
recursiveladder 10001, and jurdzinskigame 100 100.
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most of the solvers perform reasonably well, except for SmPr and for Str. The Elevator
problem, instead, proved to be very demanding, both in terms of time and memory, for all
the solvers, except for our new algorithm and for Dom, which, however, could not solve
the biggest instance within the time limit of 10min. Our solver performs extremely well on
both this benchmarks and on the instances of the Language Inclusion problem, whose biggest
instance could be solved only byRec among the other solvers. On the worst case benchmarks,
PP performs quite well also on Ladder, Strategy Improvement, Clique, and Jurdziński games,
all of which proved to be considerably difficult for all the other solvers. The Modelchecker
game is a tie with Rec. On the Recursive Ladder game PP is the only algorithm that could
solve the instance used in the experiments. However, the even instances of that game, unlike
the odd ones, turn out to be very easy to solve by Str, which requires less than a second even
for the instance with 5 × 105 positions. The reason is that those instances are completely
won by player odd and, in addition, since Str looks for a winning strategy of player even,
it immediately discovers that the initial even strategy cannot be improved further. On the
other hand, the odd instances are completely won by player even and the algorithm requires
a linear number of iterations to find the winning strategy.

The new solver exhibits the most consistent behavior overall on these benchmarks, signif-
icantly outperforming the other solvers considered in the experiments. Moreover, for all of
them the priority promotion algorithm requires no promotions regardless of the input param-
eters, except for the Elevator problem, on which it performs only two. As a consequence, PP
requires polynomial time on all the benchmarks reported in the table.

Table 3, instead, reports a comparisonwith the quasi-polynomial time algorithms proposed
in [24] and [36].We considered a preliminary C++ implementation of the former,QPT, made
available by the authors themselves (the iOS executable can be obtained at https://cgi.csc.liv.
ac.uk/~dominik/parity), and an OCaml implementation of the latter, SPM, recently included
in PGSolver.4 Despite the better worst case upper bound and the theoretical relevance of the
result, neither algorithm could solve the benchmark instances reported in Table 2. Hence, we
had to resort to much smaller instances. The comparison may not be particularly meaningful,
given the differences in implementation, neither fair towards the solvers implemented in
OCaml. It suggests, nonetheless, that the practical effectiveness of the two quasi-polynomial
solvers, at least of the versions available at the time of writing, is very far from that of the
exponential algorithms and, in particular, of PP. The table shows indeed a considerable gap,
often ofmany orders of magnitude, whichmay only to some extent be explained by a possible
lack of optimization.

6.2 Random games

Figure 4 compares the running times (left-hand side) and memory requirements (right-end
side) of the new algorithm PP against Rec and Str on 2000 random games of size ranging
from 5000 to 20,000 positions and 2 outgoingmoves per position. Interestingly, these random
games proved to be quite challenging for all the considered solvers.We set a time-out to 180s
(3min). BothDom and Big perform quite poorly on those games, hitting the time-out already
for very small instances, and we decided to leave them out of the picture. The behavior
of the solvers is typically highly variable even on games of the same size and priorities.
To summarize the results, the average running time on clusters of games seemed the most
appropriate choice in this case. Therefore, each point in the graph shows the average time
over a cluster of 100 different games of the same size: for each size value n, we chose a

4 At the time of writing, the SPM implementation is only provided in the development version of PGSolver,
currently available at https://github.com/tcsprojects/pgsolver/tree/develop.
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Table 3 Execution times (in seconds) on several benchmark families. Time out (†) is set to 600s

Benchmark Positions QPT SPM PP

Hanoi 1.9 × 104 7.7 † 0.0

Hanoi 5.9 × 104 72.5 † 0.0

Elevator 2.7 × 103 13.0 † 0.0

Elevator 1.5 × 104 342.3 † 0.0

Elevator 1 × 105 † † 0.2

Lang. Incl. 4.4 × 104 25.7 † 0.0

Lang. Incl. 7.8 × 104 71.8 † 0.0

Lang. Incl. 1.2 × 105 149.3 † 0.1

Ladder 1 × 104 121.1 † 0.0

Ladder 2 × 104 501.5 † 0.0

Str. Imp. 1.2 × 104 3.7 † 0.0

Str. Imp. 4.6 × 104 42.6 † 0.0

Str. Imp. 1 × 105 227.9 † 0.1

Clique 2 × 102 0.8 † 0.0

Clique 1 × 103 102.1 † 0.1

Clique 1.5 × 103 518.6 † 0.4

MC. Lad. 3 × 104 9.2 † 0.0

MC. Lad. 1.5 × 105 254.5 † 0.0

Rec. Lad. 5 × 103 13.1 † 0.5

Rec. Lad. 2.5 × 104 288.2 † 13.8

Jurdziński 7.5 × 103 54.6 † 3.4

Jurdziński 1.2 × 104 89.6 † 9.6

Jurdziński 1.9 × 104 320.4 † 25.41

number k = n · i/10 of priorities, with i ∈ [1, 10], and 10 random games were generated
for each pair of n and k. The new algorithm performs significantly better than the others
on those games. The right-hand side graph also shows that the theoretical improvement on
the auxiliary memory requirements of the new algorithm has a considerable practical impact
on memory consumption compared to the other solvers. In these particular benchmarks, the
additional memory required by PP amounts to 7Mb on average for the biggest instances,
while Str requires up to 83Mb and Rec up to 422Mb.

Table 4 reports on some experiments on random games with higher number of moves per
position. The resulting games turn out to be much easier to solve for most the solvers, in par-
ticular for Rec,Dom, and PP. The benchmarks here are divided into 5 cluster with increasing
number of positions from 104 to 105. Each cluster contains 120 games each, with number of
priorities linear on the number of positions and 10–100 moves per position. On each row, the
table reports the average time required for the solution over the 120 games of each cluster.
The last row, instead, details the percentage of games on which the corresponding solver
could not terminate before the timeout set to 60s. The higher number of moves significantly
increases the dimension of the regions computed by PP and, consequently, also the chances
for it to find a closed one. Indeed, the number of promotions required by the algorithm on all
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Fig. 4 Time and auxiliary memory on random games with 2 moves per position

Table 4 Average execution time (in seconds) on random games with 10 and 100 moves per position. Time
out is set to 60 s

Positions Dom Big Str Rec SmPr PP

1 × 104 0.66 60.00 24.57 0.43 51.35 0.12

3 × 104 3.29 60.00 55.06 1.54 60.00 0.46

5 × 104 7.43 60.00 59.70 3.00 60.00 0.97

7 × 104 12.85 60.00 60.00 4.54 60.00 1.50

1 × 105 19.56 60.00 60.00 7.62 60.00 2.28

Time/Mem-out (%) 1 100 74 0 92 0
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Table 5 Average execution time (in seconds) on random games with logarithmic number of priorities. Time
out is set to 60 s

Positions Dom Big Str Rec SmPr PP

1 × 104 60.00 15.22 55.24 0.65 60.00 0.14

3 × 104 60.00 35.31 59.37 2.94 60.00 0.40

5 × 104 60.00 45.04 60.00 5.79 60.00 1.39

7 × 104 60.00 50.67 60.00 5.12 59.70 0.79

1 × 105 60.00 58.43 60.00 8.89 60.00 1.83

Timeout (%) 100 49 95.4 1 99.67 0
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Fig. 5 Comparison between PP and PPscc on random games with 50,000 positions

those games is typically below half a dozen. The whole solution time is almost exclusively
due to a very limited number of attractors needed to compute the few regions contained in the
games. The only other solvers that can easily solve all these games within 60s are Rec, whose
performance is only slightly worse than that of PP, and Dom, which could solve almost all
of the games before the timeout.

Table 5 shows an experimental comparison on random games where the number of priori-
ties grows logarithmically w.r.t. the number of positions. The relevance of these benchmarks
stems from the fact that in practical applications, such as verification problems, the resulting
encodings into parity games produce games with low number of priorities w.r.t. the number
of positions. This number is usually connected to a measure of complexity of the temporal
formula to verify, e.g., the alternation depth the fixpoint operators of the μ-calculus. In many
cases, this number is bounded from above by a logarithmic function of the total number
of positions in the game. As in the previous table, these benchmarks are divided into five
clusters, according the number n of positions. Each cluster, in turn, contains 100 games with
two moves per position and with number of priorities varying from 5 log2 n to 20 log2 n. The
results show that PP perform much better than the other solvers, being able to solve all of the
benchmarks within the timeout, with Rec coming a close second.
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Fig. 6 Comparison between PPscc and PPrch on random games with 50,000 positions

6.3 PP with subgame decomposition

Finally, Fig. 5 compares the performance of the subgame decomposition version of PP with
the original algorithm. Here, the decomposition schema has been realized by instantiating
functionF inAlgorithm6with anSCCdecomposition procedure that computes someminimal
SCC in the current subgame. We refer to resulting procedure with PPscc. In order to assess its
effectiveness, we used a new pool of benchmarks that contains 740 games, each with 50,000
positions, 2 moves per positions and priorities varying from 8000 to 12,000. These games
are much harder than the ones reported in Fig. 4 and have been specifically selected among
random games whose solution requires PP more 30s and up to more than 10h to be solved.
The results, drawn on a logarithmic scale, show that the decomposition technique, described
in Sect. 6, does pay off significantly. It can run up to 128 times faster than the original version,
reducing the solution time from several hours to a few seconds in some cases.

Very similar results can be obtained by instantiating function F in Algorithm 6 with a
simpler reachability computation procedure that collects all the positions reachable from
some arbitrary position in the current game. The resulting technique, called PPrch , cannot,
in general, provide as deep a decomposition as does the SCC-based decomposition. The
additional overhead of the latter one is, however, usually higher. As shown in Fig. 6, the two
algorithm are not comparable, in the sense that there is no clear winner between the two:
on games with more structure the SCC decomposition usually performs better, being able
to compute smaller subgames; on games with less structure, the reachability decomposition
technique obtains sufficiently small subgames with less overhead.

7 Discussion

This article considers the problem of solvingParity Games, a special form of infinite-duration
games over graphs having relevant applications in various branches of Theoretical Computer
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Science. We propose a novel solution technique, based on a priority-promotion mechanism.
Following this approach, a new solution algorithm is presented and studied. We gave proofs
of its correctness and provided an accurate analysis of its time and space complexities.

As far as time complexity is concerned, an exponential upper bound in the number of
priorities is given. A lower bound for the worst-case is also presented in the form of a
family of parity games on which the new technique exhibits an exponential behavior. On the
bright side, the new solution exhibits the best space complexity among the currently known
algorithms for parity games. In fact, we showed that the maximal additional space needed
to solve a parity game is linear in the number of positions, logarithmic in the number of
priorities, and independent of the number of moves in the game. This is an important result,
in particular considering that in practical applications we often need to deal with games
having a very high number of positions, moves, and, in some cases, priorities. Therefore, low
space requirements are essential for practical scalability.

To assess the effectiveness of the new approach, experiments are conducted against con-
crete and synthetic problems.We compare the new algorithmwith the state-of-the-art solvers
implemented in PGSolver. The results are very promising, showing that the proposed
approach is extremely effective in practice, often substantially better than existing ones,
including the quasi-polynomial algorithms recently proposed in the literature.We also devise
a quite general priority-promotion-based schema that can be instantiated with various game
decomposition techniques, such as SCC-decomposition. Experiments comparing the original
PP algorithm with two such instantiations reveal that a deep coupling of PP with decompo-
sition techniques can be extremely helpful in cutting down solution time, often of several
orders of magnitude.

These results suggest that the new approach is worth pursuing further. Therefore, we are
currently investigating new and finer priority-promotion policies that try to minimize the
number of region resets after a priority promotion.

It would also be interesting to investigate the applicability of the priority promotion
approach to related problems, such as prompt-parity games [46] and similar condi-
tions [14,29,30], and even in wider contexts like mean-payoff games [15,18] and energy
games [12,13].

Appendix A: Proof of Theorem 1

To prove Theorem 1, we have to show that the three components S�, ��, and ↓� of the
structure D� satisfy the properties required by Definition 2 of dominion space. We do this
through the Lemmas 1, 2, and 3.

Lemma 1 (State Space) The PP state space S� = 〈S�,��,≺�〉 for a game � ∈ P is a
well-founded partial order w.r.t. ≺� with designated element �� ∈S�.

Proof Since S� is a finite set, to show that ≺� is a well-founded partial order on S�, it is
enough to prove that it is simply a strict partial order on the same set, i.e., an irreflexive and
transitive relation.

For the irreflexive property, by Item 3 of Definition 4, it is immediate to see that s �≺�s,
for all states s � (r, p) ∈ S�, since neither there exists a priority q ∈ rng(r) such that
r−1(q) ⊂ r−1(q) nor p < p.

For the transitive property, instead, consider three states s1 � (r1, p1), s2 � (r2, p2), s3 �
(r3, p3) ∈ S� for which s1≺�s2 and s2≺�s3 hold. Due to Items 3.a and 3.b of the same
definition, four cases may arise.
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– Item 3.a for both s1≺�s2 and s2≺�s3: there exist two priorities q1 ∈ rng(r1) and q2 ∈
rng(r2) with q1 ≥ p1 such that r1(>q1) = r2(>q1), r2(>q2) = r3(>q2), r−1

2 (q1) ⊂ r−1
1 (q1),

and r−1
3 (q2) ⊂ r−1

2 (q2). Let q � max{q1, q2} ≥ p1. If q = q1 = q2 then r1(>q) =
r2(>q) = r3(>q) and r−1

3 (q) ⊂ r−1
2 (q) ⊂ r−1

1 (q). If q = q1 > q2 then r1(>q) = r2(>q) =
(r2(>q2))(>q) = (r3(>q2))(>q) = r3(>q) and r−1

3 (q) = r−1
2 (q) ⊂ r−1

1 (q). Finally, if
q = q2 > q1 then r1(>q) = (r1(>q1))(>q) = (r2(>q1))(>q) = r2(>q) = r3(>q) and
r−1
3 (q) ⊂ r−1

2 (q) = r−1
1 (q). Moreover, q ∈ rng

(
r2(>q1)

) = rng
(
r1(>q1)

) ⊆ rng(r1).
Summing up, it holds that s1≺�s3.

– Item 3.a for s1≺�s2 and Item 3.b for s2≺�s3: there exists a priority q ∈ rng(r1) with
q ≥ p1 such that r1(>q) = r2(>q) and r−1

2 (q) ⊂ r−1
1 (q); moreover, r2 = r3. Thus,

r1(>q) = r2(>q) = r3(>q) and r−1
3 (q) = r−1

2 (q) ⊂ r−1
1 (q). Consequently, s1≺�s3.

– Item 3.a for s2≺�s3 and Item 3.b for s1≺�s2: there exists a priority q ∈ rng(r2) with
q ≥ p2 such that r2(>q) = r3(>q) and r−1

3 (q) ⊂ r−1
2 (q); moreover, r1 = r2 and p1 < p2.

Thus, r1(>q) = r2(>q) = r3(>q), r−1
3 (q) ⊂ r−1

2 (q) = r−1
1 (q), q ∈ rng(r1), and q > p1.

Consequently, s1≺�s3.
– Item 3.b for both s1≺�s2 and s2≺�s3: r1 = r2, r2 = r3, p1 < p2, and p2 < p3. Hence,

r1 = r3 and p1 < p3, which implies that s1≺�s3 also in this case.

To complete the proof, we need to show that �� � (pr�,pr(�)) belongs to S�. Indeed,
r is vacuously maximal above p, so Item 1.a holds. Item 1.c is trivially verified, since r =
pr�. Obviously, Item 1.b also follows from the fact that p = pr(�) = max(rng

(
pr�

)
) ∈

rng
(
pr�

) = rng(r). Finally, pr� is a region function as, for all priorities q ∈ rng
(
pr�

)
with

α � q mod 2, it holds that pr−1
�

(q) ∩ Ps
�

≤q
pr�

is an α-region in the subgame �
≤q
pr� , if non-

empty. Indeed, the set pr−1
�

(q) ∩ Ps
�

≤q
pr�

can only contain positions of priority p, which is

the maximal one in the corresponding subgame. Therefore, player α has an obvious strategy
that forces every infinite play inside this set to be winning for it. ��
Lemma 2 (Query Function) The function �� is a query function, i.e., for all states s ∈ S�,
it holds that (1) ��(s) ∈ QD� and (2) if ��(s) ∈ QD−

�
then s �� ��(s).

Proof Let s � (r, p) ∈ S� be a state and (R, α) � ��(s) the pair of a set of positions
R ⊆ Ps� and a player α ∈ {0, 1} obtained by computing the function �� on s. Due to
Line 1 of Algorithm 3, it follows that α ≡2 p. By Item 1.b, it holds that p ∈ rng(r). Thus,
by Item 1.a and the definition of region function, we have that r−1(p) is an α-region in
�

≤p
r , the latter being equal to �s . Now, by Line 2 of Algorithm 3 and Proposition 2, where

we assume R� � r−1(p) and � � �s , it follows that R ⊇ r−1(p) is an α-region in �s ,
i.e., (R, α) ∈ Rg�s

, and, so a quasi dominion in �, i.e., (R, α) ∈ QD�. In addition, R
is α-maximal in �s . Consequently, s �� (R, α), since all requirements of Definition 5 are
satisfied. ��
Lemma 3 (Successor Function) The function ↓� is an successor function, i.e., for all states
s ∈ S� and region pairs (R, α) ∈ Rg−

�
with s �� (R, α), it holds that (1) s ↓� (R, α) ∈ S�

and (2) s ↓� (R, α)≺�s.

Proof Let s � (r, p) ∈ S� be a state, (R, α) ∈ Rg−
�
an open region pair in � compatible

with s, and s� = (r�, p�) � s ↓� (R, α) the result obtained by computing the function ↓�

on s and (R, α). Due to Item 1 of Definition 4, we have that (1) r is maximal above p and (2)
r(<p) ⊆ pr�

(<p). Moreover, by Item 1 of Definition 5, it holds that R ⊆ Ps�s , which implies
(3) dom

(
r(>p)

) ∩ R = ∅.
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On the one hand, suppose that R is α-open in �s , i.e., (R, α) ∈ Rg−
�s
. By Lines 1–3 of

Algorithm 4, we have that (4) r� = r[R �→ p] and (5) p� = max(rng
(
r�(<p)

)
). In addition,

by Item 2 of Definition 5, it holds that (6) R is α-maximal in �s and (7) r−1(p) ⊆ R. Now,
by Point (5), it immediately follows that (8) p� ∈ rng(r�), (9) p� < p, and (10) there is no
priority q ∈ rng(r�) such that p� < q < p. Also, by Points (4), (3) and (7), we have that
r�(>p) = r(>p), r�−1(p) = R, and r�(<p) ⊆ r(<p). Thus, by Points (1), (6), (9), and (10), it
holds that (11) r� is maximal above p�. Moreover, by Points (2) and (9), we derive that (12)
r�(<p�) ⊆ pr�

(<p�). Finally, to prove that (13) r� is a region function, we need to show that
r�−1(q)∩Ps

�
≤q
r�
, if non-empty, is a β-region in the subgame�

≤q
r� , for all priorities q ∈ rng(r�)

withβ � q mod 2. Indeed, ifq > p, byPoint (1), it holds that r�−1(q)∩Ps
�

≤q
r�

= r−1(q) �= ∅.
Hence, the property follows directly from the fact that r is a region function. If q = p, again
by Point (1), we have that r�−1(q) ∩ Ps

�
≤q
r�

= R �= ∅. So, the property is ensured by the

hypothesis that R is an α-region. For the last case q < p, the property follows by Point (12)
and the observation that, if non-empty, the set r�−1(q) ∩ Ps

�
≤q
r�

⊆ pr−1
�

(q) only contains

positions of priority q that necessarily form a region of the corresponding parity. Summing
up, Points (13), (11), (8), and (12) ensure that (r�, p�) ∈ S�. At this point, it remains just
to show that (r�, p�)≺�(r, p). By Point (7), two cases may arise. If r−1(p) ⊂ R, the thesis
follows from Item 3.a of Definition 4, where the priority q is set to p. On the contrary, if
R = r−1(p), by Point (4), we have that r� = r. Therefore, due to Point (9), the thesis is
derived from Item 3.b of the same definition.

On the other hand, suppose thatR isα-closed in�s , i.e., (R, α) /∈ Rg−
�s
. ByLines 1, 4, and5

of Algorithm 4, we have that (14) p� = bepα
�
(R, r) and (15) r� = pr��r(≥p�)[R �→ p�]. It is

not hard to see that, by Points (14) and (7), the definition of bep and the fact that R is closed,
we have that (16) p� > p. Now, by Points (15) and (3), it follows that r�(>p�) = r(>p�),
r�−1(p�) = r−1(p�) ∪ R, and (18) r�(<p�) ⊆ pr�

(<p�). Consequently, (19) p� ∈ rng(r�).
Moreover, due to Points (1) and (16), we have that (20) r� is maximal above p�. Finally,
the proof that (21) r� is a region function easily follows by observing that r−1(p�) ∪ R is
an α-region, due to Proposition 1. Summing up, Points (21), (20), (19), and (18) ensure that
(r�, p�) ∈ S�. At this point, as for the previous case, it remains to show that (r�, p�)≺�(r, p).
This fact easily follows from Item 3.a of Definition 4, where the priority q is set to p�, since,
by Points (3) and (16), we have that r−1(p�)∩R = ∅, so r−1(p�) ⊂ r−1(p�)∪R = r�−1(p�).

��

Appendix B: Proof of Theorem 4

Similarly to the previous appendix, to prove Theorem 4, we have to show that the three
componentsS�,��, and↓� of the structureD� satisfy the properties required byDefinition 6
of dominion space. We do this through the Lemmas 4, 5, and 6.

Lemma 4 (State Space) The generalized PP state space S� = 〈S�,��,≺�〉 for a game
�∈P is a well-founded partial order w.r.t. ≺� with designated element �� ∈S�.

Proof To prove that ≺� is a strict partial order on S�, we can follow the same approach
used in the proof of Theorem 1, where the pair (q ∩ g,min(rng(g))) plays the same role
of the state (r, p) in the PP algorithm. Therefore, to complete the proof, we only need to
show that �� � (pr�, ∅[Ps� �→ pr(�)]) belongs to S�. The function q � pr� is trivially
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a quasi dominion function, since pr−1
�

(p) is an α-quasi dominion in the original game �

as it only contains positions of the same priority p of parity α, for all p ∈ rng
(
pr�

)
with

α � p mod 2. To prove that g � ∅[Ps� �→ pr(�)] is a subgame function, first observe that
Item (i) of the corresponding definition holds due to the fact that rng(g) = {pr(�)} and
pr(�) ∈ rng

(
pr�

)
. Moreover, dom

(
g(≤pr(�))

) = Ps�, so, �
≤pr(�)
g = � is clearly a game.

Consequently, Item (ii.a) holds as well. Finally, Item (ii.b) is vacuously verified, since there
is no priority p ∈ rng(g) with p > pr(�). We can now consider the three points in Item 1
of Definition 6. Point (a) vacuously holds, since, as already observed, there is no priority
in g greater than pr(�). Now, let r � q ∩ g. First notice that r−1(pr(�)) = pr−1

�
(pr(�))

is a region in ���
= �

≤pr(�)
g = �, since it is a quasi dominion whose escape positions

have the maximal priority in the game. Moreover, X = Ps� \ (dom
(
g(≤pr(�))

) ∪ dom(r)) =
Ps� \ Ps� = ∅. Consequence, Point (b) also holds. Finally, Point (c) is implied by the fact
that pr� � r = pr� � (q ∩ g) = pr� � q = pr� � pr� = pr� = q. ��
Lemma 5 (Query Function) The function �� is a query function, i.e., for all states s ∈ S�,
it holds that (1) ��(s) ∈ QD� and (2) if ��(s) ∈ QD−

�
then s �� ��(s).

Proof Let s � (q,g) ∈ S� be a state and (R, α) � ��(s) the pair of a set of positions
R ⊆ Ps� and a player α ∈ {0, 1} obtained by computing the function �� on s. Moreover,
assume r � q ∩ g. First observe that Item 1.c implies rng(g) ⊆ rng(q). Indeed, suppose by
contradiction that there exists a priority p ∈ rng(g)\ rng(q). Clearly, p /∈ rng(r). Moreover,
p ∈ rng(g) ⊆ rng

(
pr�

)
, due to Item (i) of the definition of subgame function applied

to g. Therefore, p ∈ rng
(
pr� � r

) = rng(q), but this is obviously impossible. Now, by
Line 1 of Algorithm 5 and the definition of the subgame �s , we have that q−1(p) ∩ Ps�s =
q−1(p) ∩ dom

(
g(≤p)

) = q−1(p) ∩ g−1(p) = r−1(p) �= ∅. Thus, due to Line 2 of the same
algorithm and Item 1.b, it holds that r−1(p) is an α-region in �s . Finally, by Line 3 and
Proposition 2, R is α-maximal in �s . Consequently, both Point (1) and the requirements of
Definition 5 are satisfied. ��
Lemma 6 (Successor Function) The function ↓� is an successor function, i.e., for all
states s ∈ S� and quasi dominion pairs (R, α) ∈ QD−

�
with s �� (R, α), it holds that

(1) s ↓� (R, α) ∈ S� and (2) s ↓� (R, α)≺�s.

Proof Let s � (q,g) ∈ S� be a state, (R, α) ∈ QD−
�
an open quasi dominion pair in �

compatible with s, and s� = (q�,g�) � s ↓� (R, α) the result obtained by computing the
function ↓� on s and (R, α). Moreover, assume p = min(rng(g)) and r = q∩ g. Two cases
may be arises: R is either α-open or α-closed in �s , i.e., (R, α) ∈ Rg−

�s
or (R, α) /∈ Rg−

�s
,

respectively.
In the first case, by Lines 1-4 of Algorithm 6, we have that (1) q� = q[R �→ p], (2) A =

F(�s \R), and (3) g� = g[A �→ max(rng(q� � A))]. By Definition 7, it holds that R ⊆ Ps�s .
Thus, (4) R ⊆ g−1(p), i.e.R does not contain positions with priority higher than p. As
consequence of Points (1) and (4), we have that (5) q�(>p) = q�(>p), (6) q�(<p) ⊆ q(<p),
and (7) q�−1(p) = R ∪ q−1(p).

By Point (5) and the assumption on q, we have that q�−1(p′) is an α′-quasi dominion in
�, for all priorities p ∈ rng(q) with p′ > p and α′ � p′ mod 2. Moreover, by Item 1.c of
Definition 6, for every priority p ∈ rng(q) with p′ < p and α′ � p′ mod 2, it holds that
(8) q−1(p′) ⊆ pr−1

�
(p′), so, by Point (6), q�−1(p′) is an α′-quasi dominion in � as well.

Again by Item 1.c, we have that q−1(p) is the union of r−1(p) with a set P ⊆ pr−1
�

(p) \
g−1(p). Moreover, (9) r−1(p) ⊆ R, due to Definition 7. Thus, by Point (7), it holds that
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(10) q�−1(p) = R ∪ q−1(p) = R ∪ P ∪ r−1(p) = R ∪ P, i.e., q�−1(p) is the union of
an α-quasi dominion in � with some set of positions of priority p having the same parity.
Consequently, also q�−1(p) is a α-quasi dominion in �. In conclusion, we have that (11) q�

is a quasi-dominion function.
By Point (2) and the assumption on the function F, we know that (12) ∅ �= A ⊆ �s \R =

dom
(
g≤p

)\R induces a subgame��A of�s \R such that escα
�
(Q)∩preα

�
(Ps�\A) = ∅, for

every quasi dominion pair (Q, α) ∈ QD��A. In addition, it is easy to see thatpr
−1
�

(p)∩Ps�s ⊆
R. Indeed, if by contradiction this was not the case, by definition of the subgame �s and
Point (9), there would be a position v ∈ pr−1

�
(p) ∩ g−1(p) such that v /∈ r−1(p). Therefore,

due to Item 1.c of Definition 6, v ∈ q−1(p). However, r = q∩g, so, v ∈ q−1(p)∩q−1(p) =
r−1(p), which is impossible. As a consequence of this inclusion together with Point (12), we
have that (13) p� = max(rng(q� � A)) < p. Now, due to Points (3) and (13), it holds that

(14) g�(>p) = g(>p), (15) g�−1(p) = g−1(p)\A, (16) dom
(
g�(<p)

)
= g�−1(p�) = A, and

(17) dom
(
g�(<p�)

)
= ∅. Observe that, by Point (14), g and g� only differ on the priorities

p and p�. In particular, rng(g�) = rng(g) ∪ {p�}. Thus, by Item (i) of the definition of
subgame function and Points (8) and (13), we have that rng(g�) ⊆ rng

(
pr�

)
. By Points (15)

and (16), (18) �
≤p
g� = �

≤p
g is obviously a game. Moreover, due to Point (4), it holds that

(19) dom
(
g�(≤p�)

)
= A ⊂ dom

(
g�(≤p)

)
. Finally, �≤p�

g� is a game, by Point (12). Summing

up, it follows that (20) g� is a subgame function.
We can now prove the tree parts in which Item 1 of Definition 6 applied to (q�,g�) is split.

First notice that, since r = q∩g, we have that (21) r�(>p) = r(>p), due to Points (5) and (14).
Moreover, (22) r�−1(p�) ⊆ pr−1

�
(p�), by Point (8), and (23) r�(<p�) = ∅, by Point (17).

Finally, by Points (10), (13), and (15) and the observation that P ∩ g−1(p) = ∅, it holds
that (24) r�−1(p) = R. At this point, Item 1.a of the definition of state space follows from
Points (21) and (24), since R is α-maximal in �s due to Definition 7. By putting together
Points (18)–(23) with Point (12), also Item 1.b can be derived. To prove that Item 1.c, i.e.,
q� = pr� � r�, one can use Points (5) and (21) for the priorities greater than p, Points (10)
and (24) for the priority p, and Point (8) for the priorities smaller than p.

In the end, by Points (11) and (20), and the fact that Item 1 of Definition 6 holds on
(q�,g�), it follows that (q�,g�) ∈ S�.

To conclude this case of the proof, we need just to show that (q�,g�)≺�(q,g). If R ⊆
q−1(p), by Point (1) and (13), we have that q� = q and p� < p. Thus, the thesis is derived
from Item 3.b of Definition 6. If, on the other hand, R \q−1(p) �= ∅, due to Point (5) and (7),
the thesis follows from Item 3.a of the same definition.

Consider now the case inwhich the set R isα-closed in�s . By Lines 1, 5–7 ofAlgorithm 6,
we have that (25) p� = bepα

�
(R,q), (26) q� = pr� � q(≥p�)[R �→ p�], and (27) g� =

g[dom
(
g(<p�)

)
�→ p�]. Due to Point (25), the definition of best escape priority, and the fact

that R is α-closed in �s , it is not hard to see that (28) p� > p. Moreover, due to Item (ii) of
the definition of g stratified region function, it holds that (29) p� ∈ rng(r�), since the moves
escaping from R can only reach positions in dom

(
r(>p)

)
.

Now, by Point (27), it follows that (30) g�(>p�) = g(>p�), (31) g�(<p�) = ∅, and
(32) dom

(
g(≤p�)

)
= dom

(
g(≤p�)

)
. Therefore, it is immediate to see that (33) g� is a

subgame function.
Moreover, by Point (26), it holds that (34) q�(>p�) = q(>p�), (35) q�−1(p�) =

q−1(p�) ∪ R, and (36) q�(<p�) ⊆ pr�
(<p�). Consequently, (37) r�(>p�) = r(>p�), by
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Points (30) and (34), and (38) r�(<p�) = ∅, by Point (31). In addition, due to Points (32)
and (36), together with Item (ii.b) of the definition of subgame function and Proposition 1, we
have that (39) r�−1(p�) = q�−1(p�)∩g�−1(p�) = (q−1(p�)∪R)∩g�−1(p�) = r−1(p�)∪R
is an α-region in �s� . At this point, Item 1 of Definition 6 follows by simply verifying that
all requirements are satisfied.

Because of Points (34)–(36), to prove that (40)q� is a quasi-dominion function, it is enough
to observe that q�−1(p�) is the union of r�−1(p�)) with a set P ⊆ pr−1

�
(p�)) \ g�−1(p�)).

Indeed, q�−1(p�) is an α-quasi dominion in �, being the union of an α-region in �s� and a
set of positions having priority p�).

In the end, by Points (33) and (40), and the fact that Item 1 of Definition 6 holds on
(q�,g�), it follows that (q�,g�) ∈ S�.

To conclude, as for the previous case, it remains to show that (q�,g�)≺�(q,g). This fact
easily follows from Item 3.a of Definition 6, where the priority p is set to p�. Indeed, by
Definition 7, we have that ∅ �= R ⊆ Ps�s , so, q

−1(p�) ∩ R = ∅, since p� > p as stated in
Point (28). Therefore, by Point (31), it follows that q−1(p�) ⊂ q−1(p�) ∪ R = q�−1(p�). ��
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15. Chatterjee K, Henzinger TA, Jurdziński M (2005) Mean-payoff parity games. In: Logic in computer
science’05. IEEE Computer Society, pp 178–187

16. Chatterjee K, Henzinger TA, Piterman N (2010) Strategy logic. Inf Comput 208(6):677–693
17. Condon A (1992) The complexity of stochastic games. Inf Comput 96(2):203–224
18. Ehrenfeucht A, Mycielski J (1979) Positional strategies for mean payoff games. Int J Game Theory

8(2):109–113
19. Emerson EA, Jutla CS (1991) Tree automata, mu-calculus, and determinacy. In: Foundation of computer

science’91. IEEE Computer Society, pp 368–377
20. Emerson EA, Jutla CS, Sistla AP (1993) On model checking for the mu-calculus and its fragments. In:

Computer aided verification’93, LNCS 697. Springer, New York, pp 385–396
21. Emerson EA, Jutla CS, Sistla AP (2001) On model checking for the μ-calculus and its fragments. Theor

Comput Sci 258(1–2):491–522

123



Form Methods Syst Des (2018) 52:193–226 225

22. Emerson EA, Lei C-L (1986) Temporal reasoning under generalized fairness constraints. In: Symposium
on theoretical aspects of computer science’86, LNCS 210. Springer, New York, pp 267–278

23. Fearnley J (2010) Non-oblivious strategy improvement. In: Logic for programming artificial intelligence
and reasoning’10, LNCS 6355. Springer, New York, pp 212–230

24. Fearnley J, Jain S, Schewe S, Stephan F, Wojtczak D (2017) An ordered approach to solving parity
games in quasi polynomial time and quasi linear space. In: SPIN symposium on model checking of
software’2017. Association for Computing Machinery, pp 112–121

25. Fearnley J, Lachish O (2011) Parity games on graphs with medium tree-width. In: Mathematical founda-
tions of computer science’11, LNCS 6907. Springer, New York, pp 303–314

26. Fearnley J, Schewe S (2012) Time and parallelizability results for parity games with bounded treewidth.
In: International colloquium on automata, languages, and programming’12, LNCS 7392. Springer, pp
189–200

27. Fellows MR, Koblitz N (1992) Self-witnessing polynomial-time complexity and prime factorization. In:
Conference on structure in complexity theory’92. IEEE Computer Society, pp 107–110

28. FellowsMR, Koblitz N (1992) Self-witnessing polynomial-time complexity and prime factorization. Des
Codes Crypt 2(3):231–235

29. Fijalkow N, Zimmermann M (2012) Cost-parity and cost-streett games. In: Foundations of software
technology and theoretical computer science’12, LIPIcs 18. Leibniz-Zentrum fuer Informatik, pp 124–
135

30. FijalkowN,ZimmermannM(2014)Cost-parity and cost-streett games.LogMethodsComputSci 10(2):1–
29

31. FriedmannO, LangeM (2009) Solving parity games in practice. In: Automated technology for verification
and analysis’09, LNCS 5799. Springer, pp 182–196

32. Grädel E, Thomas W, Wilke T (2002) Automata, logics, and infinite games: a guide to current research.
LNCS 2500. Springer, New York

33. Gurvich VA, Karzanov AV, Khachivan LG (1990) Cyclic games and an algorithm to find minimax cycle
means in directed graphs. USSR Comput Math Math Phys 28(5):85–91
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