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Abstract A compiler optimization may be correct and yet be insecure. This work focuses on
the common optimization that removes dead (i.e., useless) store instructions from a program.
This operation may introduce new information leaks, weakening security while preserving
functional equivalence. This work presents a polynomial-time algorithm for securely remov-
ing dead stores. The algorithm is necessarily approximate, as it is shown that determining
whether new leaks have been introduced by dead store removal is undecidable in general.
The algorithm uses taint and control-flow information to determine whether a dead store may
be removed without introducing a new information leak. A notion of secure refinement is
used to establish the security preservation properties of other compiler transformations. The
important static single assignment optimization is, however, shown to be inherently insecure.

Keywords Security · Compiler correctness · Verification

1 Introduction

An optimizing compiler translates programs expressed in high-level programming languages
into executable machine code. This is typically done through a series of program trans-
formations, many of which are aimed at improving performance. It is essential that each
transformation preserve functional behavior, so that the resulting executable has the same
input–output functionality as the original program. It is difficult to formally establish the
preservation property, given the complexity and the size of a typical compiler; this is a
long-standing verification research challenge.
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Fig. 1 C programs illustrating the insecurity of dead-store elimination

Along with functional preservation, one would like to ensure the preservation of security
properties. I.e., the final executable should be at least as secure against attack as the original
program. At first glance, it may seem that a functionally correct compiler should also be
secure, but this is not so. A well-known example is dead store elimination [10,13]. Consider
the program on the left hand side of Fig. 1. A secret password is read into a local variable
and used. After the use, the memory containing password data is erased, so that the password
does not remain in the clear any longer than is necessary. To a compiler, however, the erasure
instruction appears useless, as the new value is not subsequently used. The dead-store elimi-
nation optimization targets such useless instructions, as removing them speeds up execution.
Applied to this program, the optimization removes the instruction erasingx. The input–output
behavior of the two programs is identical, hence the transformation is correct. In the resulting
program, however, the password may remain in the clear in the stack memory beyond the
local procedure scope, as a procedure return is typically implemented by moving the stack
pointer to point to a new frame, without erasing the current one. As a consequence, an attack
that gains access to the program stack in the untrusted procedure may be able to read the
password from the stack memory, as might attacks that gain access after the procedure foo
has terminated.

There are workarounds for this problem, but those are specific to a language and a com-
piler. For instance, if x is declared volatile in C, the compiler will not remove any
assignments to x. Compiler-specific pragmas could also be applied to force the compiler to
retain the assignment tox. But suchworkarounds are unsatisfactory, inmany respects. First, a
workaround can be applied only when a programmer is aware of the potential problem, which
may not be the case. Next, a programmer must understand enough of the compiler’s internal
workings to implement the correct fix, which need not be the case either—compilation is a
complex, opaque process. Furthermore, the solution need not be portable, as studied in [21].
Finally, the fixmay be too severe: for instance,markingx as volatile blocks the removal of any
dead assignments to x, although an assignment x := 5 immediately following x := 0
can be removed safely, without leaking information. Inserting instructions to clear potentially
tainted data before untrusted calls is also inefficient; as taint analysis is approximate, such
instructions may domore work than is necessary. For these reasons, we believe it is necessary
to find a fundamental solution to this problem.

One possible solution is to develop an analysis which, given an instance of a correct
transformation, checks whether it is secure. This would constitute a Translation Validation
mechanism for security, similar to those developed for correctness in e.g., [15,18,22]. We
show, however, that translation validation for security of dead store elimination is undecidable
for general programs and PSPACE-hard for finite-state programs. On the other hand, trans-
lation validation for the correctness of dead store elimination is easily decided in polynomial
time.

123



168 Form Methods Syst Des (2018) 53:166–188

Faced with this difficulty, we turn to provably secure dead-store removal methods. Our
algorithm takes as input a program P and a list of dead assignments. It prunes that list to
those assignments whose removal does not introduce a new information leak, and removes
them from P , obtaining the result program Q. The analysis of each assignment relies on taint
and control-flow information from P . We formalize a notion of secure transformation and
establish that this algorithm is secure. Although the algorithm relies on taint information, it
is independent of the specific analysis method used to obtain this information, as it relies
only on the results of such a method, presented as a taint proof outline for P .

Three important points should be noted. First, the algorithm is necessarily sub-optimal
given the hardness results; it may retain more stores than is strictly necessary. Second, the
algorithm enforces relative rather than absolute security. I.e., it does not eliminate information
leaks from P , it only ensures that no new leaks are introduced in the transformation from P
to Q. Finally, the guarantee is for information leakage, which is but one aspect of program
security. Other aspects, such as protection against side-channel attacks, must be checked
separately.

The difference between correctness and security is fundamentally due to the fact that
correctness can be defined by considering individual executions, while the definition of
informationflowrequires the considerationof pairs of executions.The standardproofmethod-
ology, based on refinement relations, that is used to show the correctness of transformations,
does not, therefore, always preserve security properties. We develop a stronger notion of
refinement which preserves information flow, and use it to show that several common com-
piler optimizations do preserve information flow properties. Unfortunately, an optimization
that is key to modern compilers, the SSA (static single assignment) transformation, does not
satisfy this stronger notion and will, in fact, leak information. In follow-up work [7], we
present a method to restore the security level of a program after a series of SSA-dependent
transformations.

To summarize, the main contributions of this work are a formulation of the security
of a transformation; results showing that a posteriori verification of the security of dead
store elimination is undecidable in general and difficult for finite-state programs; a new
dead-store elimination procedure which is provably correct and secure; and a general proof
method, secure refinement, which helps establish security preservation for several standard
compiler transformations. These are first steps towards the construction of a fully secure
compiler.

2 Preliminaries

We formulate the correctness and security of program transformations for a basic program-
ming language. The language is deliberately kept simple to clearly illustrate the issues and
the proof arguments.

2.1 Program syntax

Programs are structuredWhile programs with syntax given below. (Illustrative examples are,
however, written in C.) All variables have Integer type. Variables are partitioned into input
and state variables and, on a different axis, into sets H (high security) and L (low security).
All state variables are low security while input variables may be of either level.
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x ∈ X variables
e ∈ E ::= c | x | f (e1, . . . , en) expressions: f is a function, c a constant
g ∈ G Boolean conditions on X

S ∈ S ::= skip | out(e) | x := e | S1; S2 | if g then S1 else S2 fi |
while g do S od statements

A program can be represented by its control flow graph (CFG). (We omit a description
of the conversion process, which is standard.) Each node of the CFG represents a program
location, and each edge is labeled with a guarded command, of the form “g → x := e” or
“g → skip” or “g → out(e)”, where g is a Boolean predicate and e is an expression over
the program variables. A special node, entry, with no incoming edges, defines the initial
program location, while a special node, exit, defines the final program location. Values for
input variables are specified at the beginning of the program and remain constant throughout
execution.

2.2 Program semantics

The semantics of a program is defined in the standard manner. A program state s is a pair
(m, p), where m is a CFG node (referred to as the location of s) and p is a function mapping
each variable to a value from its type. The function p can be extended to evaluate an expression
in the standard way (omitted). We suppose that a program has a fixed initial valuation for
its state variables. An initial state is one located at the entry node, where the state variables
have this fixed valuation. The transition relation is defined as follows: a pair of states,
(s = (m, p), t = (n, q)) is in the relation if there is an edge f = (m, n) of the CFG
which connects the locations associated with s and t , and for the guarded command on that
edge, either i) the command is of the form g → x := e, the guard g evaluates to true at p,
and the function q(y) is identical to p(y) for all variables y other than x , while q(x) equals
p(e); ii) the command is of the form g → skip or g → out(e), the guard g evaluates to true
at p, and q is identical to p. The predicates guarding the outgoing edges of a node partition
the state space, so that a program is deterministic and deadlock-free. A execution trace of the
program (referred to in short as a trace) from state s is a sequence of states s0 = s, s1, . . .
such that adjacent states are connected by the transition relation. A computation is a trace
from the initial state. A computation is terminating if it is finite and the last state has the exit
node as its location.

2.3 Post-domination in CFG

A set of nodes N post-dominates a node m if each path in the CFG from m to exit passes
through at least one node from N .

2.4 Information leakage

Information leakage is defined in a standard manner [3,9]. A program P is said to leak
information if there is a pair of H -input values {a, b}, with a �= b, and an L-input c such
that the computations of P on inputs (H = a, L = c) and (H = b, L = c) either (a) differ
in the sequence of output values produced by the out actions, or (b) both terminate but differ
in the value of one of the L-variables at their final states. We call (a, b, c) a leaky triple for
program P .
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2.5 Correct transformation

Program transformations are assumed not to alter the set of input variables. A transforma-
tion from program P to program Q may alter the code of P or the set of state variables.
The transformation is correct if, for every input value a, the sequence of output values for
executions of P and Q from a is identical.

2.6 Secure transformation

Acorrect transformation supplies the relative correctness guarantee that Q is at least as correct
as P; it does not assure the correctness of either program with respect to a specification.
Similarly, a secure transformation ensures relative security, i.e., that Q is not more leaky than
P; it does not ensure the absolute security of either P or Q. We define a transformation from
P to Q to be secure if the set of leaky triples for Q is a subset of the leaky triples for P .

Suppose that the transformation from P to Q is correct. Consider a leaky triple (a, b, c) for
Q. If the computations of Q from inputs (H = a, L = c) and (H = b, L = c) differ in their
output, from correctness, this difference must also appear in the corresponding computations
in P . Hence, the only way in which Q can be less secure than P is if both computations
terminate in Q with different values for low-variables, while the corresponding computations
in P terminate with identical values for low-variables.

2.7 Quantifying leakage

This definition of a secure transformation does not distinguish between the amount of infor-
mation that is leaked by the two programs. Consider, for instance, a program P which leaks
the last four digits of a credit card number, and a (hypothetical) transformation of P to a
program Q where the entire card number is made visible. This transformation would be
considered secure by the formulation above, as both programs leak information about the
credit card number. From a practical standpoint, though, one might consider Q to have a
more serious leak than P , as the last four digits are commonly printed on credit card state-
ments and can be considered to be non-secret data. For this example, it is possible to make
the required distinction by partitioning the credit card number into a secure portion and a
“don’t care” final four digits. More generally, a formulation of secure transformation should
take the “amount of leaked information” into account; however, there is as yet no standard
definition of this intuitive concept, cf. [19] for a survey. We conjecture, however, that the
secure dead-store elimination procedure presented here does not allow a greater amount of
information leakage than the original program. A justification for this claim is presented in
Sect. 5.

3 The hardness of secure translation validation

The Translation Validation approach to correctness [15,18,22] determines, given input pro-
gram P , output program Q, and (possibly) additional hints from the compiler, whether the
functional behavior of P is preserved in Q. We show, however, that translation validation for
secure information flow is substantially more difficult than validation for correctness. The
precise setting is as follows. The input to the checker is a triple (P, Q, D), where P is an
input program, Q is the output program produced after dead store elimination, and D is a list
of store instructions, known to be dead (i.e., useless) through a standard, imprecise liveness
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analysis on P . The question is to determine whether Q is at most as leaky as P . To begin
with, we establish that correctness can be checked in polynomial time. We then establish
that checking security is undecidable in general. It is also hard for programs with finite-
state domains: PSPACE-complete for general finite-state programs, and co-NP-complete for
loop-free, finite-state programs (proofs in the Appendix).

Theorem 1 The correctness of a dead store elimination instance (P, Q, D) can be checked
in PTIME.

Proof The check proceeds as follows. First, check that every store in D is dead in P , by
re-doing the liveness analysis on P . Then check that P and Q are identical programs, except
at the location of stores in D, which are replaced with skip. These checks are in polynomial
time in the size of the programs. ��
Theorem 2 Checking the security of a dead store elimination given as a triple (P, Q, D) is
undecidable for general programs.

Proof We use a simple reduction from the Halting problem. Consider a program Y with
no input and no output. Let h be a fresh High security input variable, and let l be a fresh
Low security state variable. Define program P(h) as Y ; l := h; l := 0, program Q(h) as
Y ; l := h, and let D = {“l := 0′′}.

If Y terminates, then P has no leaks, while Q leaks the value of h. If Y does not terminate,
then by the definition of leakage, neither P nor Q have an information leak. Thus, the
transformation is insecure if, and only if, Y terminates. ��

4 A taint proof system

Taint analysis is a static program analysis method aimed at tracking the influence of input
variables on program state. The taint proof system introduced here records the results of
such an analysis. It is similar to the proof systems of [9,20] but explicitly considers per-
variable, per-location taints. It is inspired by the taint proof system of [4], which is the basis
of the STAC taint analysis plugin of the Frama-C compiler. There are small differences in the
treatment of IF-statements with a tainted condition: in that system, every variable assigned
in the scope of the condition must be tainted; in ours, the taint may be delayed to a point
immediately after the statement.

The Appendix includes a proof of soundness for this system. Although the focus here is
on structured programs, the properties of the taint system and the overall results carry over
to arbitrary CFGs.

4.1 Preliminaries

A taint environment is a function E : Variables → Bool which maps each program variable
to a Boolean value. For a taint environment E , we say that x is tainted if E(x) is true, and
untainted otherwise. The taint environment E can be formally extended to apply to terms as
follows:

Ẽ(c) is false, if c is a constant
Ẽ(x) is E(x), if x is a variable
Ẽ( f (t1, . . . , tN )) is true if, and only if, Ẽ(ti ) is true for some i

123



172 Form Methods Syst Des (2018) 53:166–188

To simplify notation, in the rest of the paper, we silently extend E to terms without using
the formally correct notation Ẽ . A pair of states (s = (m, p), t = (n, q)) satisfies a taint
environment E , denoted by (s, t) |� E , if m = n and for every variable x , if E(x) is false,
then s(x) = t (x). I.e., (s, t) satisfy E if s and t are at the same program location, and s and
t have identical values for every variable x that is not tainted in E .

Taint environments are ordered by component-wise implication: E 	 F (read as “E better
than F”) is defined as (∀x : E(x) ⇒ F(x)). If E is better than F , then F taints all variables
tainted by E and maybe more. These definitions induce some basic properties, shown below.

Proposition 1 (Monotonicity) If (s, t) |� E and E 	 F , then (s, t) |� F .

For a statement S and states s = (m, p) and s′ = (n, q), we write s
S−→ s′ (read as s′

is the successor of s after S) to mean that there is an execution trace from s to s′ such that
m denotes the program location immediately before S and n denotes the program location
immediately after S.

In addition, for taint environments E and F , we write {E} S {F} to mean that for any pair
of states satisfying E , their successors after S satisfy F . Formally, {E} S {F} holds if for all
s, t such that (s, t) |� E , s S−→ s′, and t S−→ t ′, it is the case that (s′, t ′) |� F .

Proposition 2 If {E} S {F}, E ′ 	 E and F 	 F ′, then {E ′} S {F ′}.
4.2 Proof system

We present a taint proof system for inferring {E} S {F} for a structured program S. The
soundness proof, given in the Appendix, is by induction on program structure, following the
pattern of the proof in [20].

S is skip: {E} skip {E}

S is out(e): {E}out(e) {E}

S is x := e:
F(x) = E(e) ∀y �= x : F(y) = E(y)

{E} x := e {F}

Sequence:
{E} S1 {G} {G} S2 {F}

{E} S1; S2 {F}
Conditional: For a statement S, we use Assign(S) to represent a set of variables which
over-approximates those variables assigned to in S. There are two cases, based on whether
the condition is tainted in E :

Case A:
E(c) = false {E} S1 {F} {E} S2 {F}

{E} if c then S1 else S2 fi {F}

Case B:

E(c) = true {E} S1 {F} {E} S2 {F}
∀x ∈ Assign(S1) ∪ Assign(S2) : F(x)

{E} if c then S1 else S2 fi {F}

While Loop:
E 	 I {I} if c then S else skip fi {I} I 	 F

{E} while c do S od {F}
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Theorem 3 (Soundness) Consider a structured program P with a proof of {E} P {F}. For
all initial states (s, t) such that (s, t) |� E: if s P−→ s′ and t

P−→ t ′, then (s′, t ′) |� F .

The proof system can be turned into an algorithm for calculating taints. The proof rule
for each statement other than the while loop can be read as a monotone forward environment
transformer. For while loops, the proof rule requires the construction of an inductive envi-
ronment, I . This can be done through a straightforward least fixpoint calculation for I based
on the transformer for the body of the loop. Let I k denote the value at the k-th stage. The
fixpoint step from I n to I n+1 must change the taint status of least one variable from untainted
in I n to tainted in I n+1, while leaving all tainted variables in I n tainted in I n+1. Thus, the
fixpoint is reached in a number of stages that is bounded by the number of variables. The
entire process is thus in polynomial time.

5 A secure dead store elimination transformation

The results of Sect. 3 show that translation validation for security is computationally difficult.
The alternative is to build security into each program transformation. In this section, we
describe a dead store elimination procedure built around taint analysis, and prove that it is
secure.

The algorithm is shown in Fig. 2. It obtains the set of dead assignments and processes them
using taint and control-flow information to determine which ones are secure to remove. The
program is in structured form, with taint information represented as in the proof system of the
previous section. The control-flow graph is assumed to be in a normalized form where each
edge either has a guarded command with a skip action, or a trivial guard with an assignment

Fig. 2 Secure Dead Store Elimination Algorithm
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Fig. 3 C programs illustrating Case 1 of the algorithm

or output. I.e., g → skip, true → x := e, or true → out(e). The “removal” of dead
stores is done by replacing the store with a skip, so the CFG structure is unchanged.

Removal of dead stores can cause previously live stores to become dead, so the algorithm
should be repeated until no dead store can be removed. In Case 1 of the algorithm, removal
could cause the taint proof to change, so the taint analysis is repeated. For cases 2 and 3, we
establish and use the fact that removal does not alter the taint proof.

As the algorithm removes a subset of the known dead stores, the transformation is correct.
In the following, we prove that it is also secure. We separately discuss each of the (indepen-
dent) cases in the algorithm. For each case, we give an illustrative example followed by a
proof that the store removal is secure.

5.1 Post-domination (case 1)

The example in Fig. 3 illustrates this case. In the programon the left, the two dead assignments
to x are redundant from the viewpoint of correctness. Every path to the exit from the first
assignment, x = 0, passes through the second assignment to x. This is a simple example of
the situation to which Case 1 applies. The algorithm will remove the first dead assignment,
resulting in the program to the right. The result is secure as the remaining assignment blocks
the password from being leaked outside the function. The correctness of this approach in
general is proved in the following lemmas.

Lemma 1 (Trace Correspondence) Suppose that T is obtained from S by eliminating a dead
store, x := e. For any starting state s = (H = a, L = c), there is a trace in T from s if, and
only if, there is a trace in S from s. The corresponding traces have identical control flow and,
at corresponding points, have identical values for all variables other than x, and identical
values for x if the last assignment to x is not removed.

Proof (Sketch) This follows from the correctness of dead store elimination, which can be
established by showing that the following relation is a bisimulation. To set up the relation, it
is easier to suppose that dead store x := e is removed by replacing it with x := ⊥, where⊥
is an “undefined” value, rather than by replacement with skip. The ⊥ value serves to record
that the value of x is not important. Note that the CFG is unaltered in the transformation. The
relation connects states (m, s) of the source and (n, t) of the target if (1) m = n (i.e., same
CFG nodes); (2) s(y) = t (y) for all y other than x ; and (3) s(x) = t (x) if t (x) �= ⊥. This is
a bisimulation (cf. [14], where a slightly weaker relation is shown to be a bisimulation). The
fact that corresponding traces have identical control-flow follows immediately, and the data
relations follow from conditions (2) and (3) of the bisimulation. ��
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Fig. 4 C programs illustrating Case 2 of the algorithm

Lemma 2 If α is a dead assignment to variable x in program S that is post-dominated by
other assignments to x, it is secure to remove it from S.

Proof Let T be the program obtained from S by removing α. We show that any leaky triple
for the transformed program T is already present in the source program S. Let (a, b, c)
be a leaky triple for T . Let τa (resp. σa) be the trace in T (resp. S) from the initial state
(H = a, L = c). Similarly, let τb (resp. σb) be the trace in T (resp. S) from (H = b, L = c).
By trace correspondence (Lemma1),σa andσb must also reach the exit point and are therefore
terminating.

By the hypothesis, the last assignment to x before the exit point in σa and σb is not
removed. By Lemma 1, τa and σa agree on the value of all variables at the exit point; thus,
they agree on the value of x . Similarly, τb and σb agree on the values of all variables at the
exit point. As (a, b, c) is a leaky triple for T , the L-values are different at the final states of
τa and τb. It follows that the L-values are different at the final states for σa and σb, hence
(a, b, c) is a leaky triple for S. ��
5.2 Stable untainted assignment (case 2)

An example of this case is given by the programs in Fig. 4. Assume that the user identity
is public and the password is private, hence read_password returns an H-input value
while read_user_id returns an L-input value. There are two dead assignments to x in the
program on the left, and the algorithm will remove the first one, as x is untainted before that
assignment and untainted at the final location as well. This is secure as in the program on the
right x remains untainted at the final location; hence, it does not leak information about the
password. The general correctness proof is given below.

Lemma 3 Let x := e be a dead store in program S. Suppose that there is a taint proof for S
where x is untainted at the location immediately before the dead store. The taint assertions
form a valid taint proof for the program T obtained by replacing the store with skip.

Proof The proof outline for S is also valid for the program T obtained by replacing the dead
store “x := e with “skip”. Let {E} x := e {F} be the annotation for the dead store in the
proof outline. By the inference rule of assignment, we know that F(x) = E(e) and that, for
all other variables y, F(y) = E(y).
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Fig. 5 C programs illustrating Case 3 of the algorithm

Now we show that E 	 F is true. Consider any variable z. If z differs from x , then
E(z) ⇒ F(z), as E(z) = F(z). If z is x then, by hypothesis (2), E(z) ⇒ F(z) is trivially
true, as E(z) = E(x) is false.

The annotation {E} skip {E} is valid by definition, therefore {E} skip {F} is also valid
by E 	 F and Proposition 2. Hence, the replacement of an assignment by skip does not
invalidate the local proof assertions. The only other aspect of the proof which may depend
on the eliminated assignment is the proof rule for a conditional statement: Case B depends
on the set of assigned variables within the scope of the condition, and the elimination of the
assignment to x may remove it from that set. However, the proof assertions will remain valid,
as the considered set of assigned variables can be an over-approximation of the actual set of
assigned variables. ��
Lemma 4 Let x := e be a dead store in program S. Suppose that there is a taint proof for S
where (1) x is untainted at the final location and (2) x is untainted at the location immediately
before the dead store. It is then secure to eliminate the dead store.

Proof By Lemma 3, the taint proof for S remains valid for T . By hypothesis (1), as x is
untainted at the final location in S, it is also untainted at the final location in T . By the
soundness of taint analysis, there is no leak in T from variable x . Hence, any leak in T must
come from variable y different from x . By trace correspondence (Lemma 1), the values of
variables other than x are preserved by corresponding traces; therefore, so is any leak. ��
5.3 Final assignment (case 3)

The example in Fig. 5 illustrates this case. Assume the credit card number to be private, so
that credit_card_no returns an H-input value. In the program on the left, there are two
dead assignments to x. The first one is post-dominated by the second one, while the second
one is always the final assignment to x in every terminating computation, and x is untainted
before it. By Case 1, the algorithm would remove the first one and keep the second one.
Such a transformation is secure, as the source program and result program leaks same private
information. But Case 3 of the algorithmwould do a better job: it will remove the second dead
assignment instead, resulting in the program on the right. We show that the result program is
at least as secure as the source program (in this very example, it is actually more secure than
the source program), as x becomes untainted at the final location and no private information
can be leaked outside the function via x. The following lemma proves the correctness of this
approach.
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Lemma 5 Let x := e be a dead store in program S. Suppose that there is a taint proof
for S where (1) x is untainted at the location immediately before a dead store, (2) no other
assignment to x is reachable from the dead store, and (3) the store post-dominates the entry
node. It is then secure to eliminate the dead store.

Proof By Lemma 3, the taint proof for S is also valid for T . By hypothesis (1), x is still
untainted at the same location in T .

By hypothesis (3), the dead store “x := e” is a top-level statement; thus, the dead store
(resp. the corresponding skip) occurs only once in every terminating computation of S (resp.
T ). Let ta, . . . , t ′a, . . . , t ′′a be the terminating trace in T from the initial state (H = a, L = c),
and tb, . . . , t ′b, . . . , t ′′b be the terminating trace in T from the initial state (H = b, L = c)
where t ′a and t ′b are at the location immediately before the eliminated assignment. By the
soundness of taint analysis, x must have identical values in t ′a and t ′b.

By hypothesis (2), the value of x is not modified in the trace between t ′a and t ′′a (or between
t ′b and t ′′b ). Thus, the values of x in t ′′a and t ′′b are identical, and there is no leak in T from
x . Hence, any leak in T must come from a variable y different from x . By trace correspon-
dence (Lemma 1), the values of variables other than x are preserved in corresponding traces;
therefore, so is any leak. ��
Theorem 4 The algorithm for dead store elimination is secure.

Proof The claim follows immediately from the secure transformation properties shown in
Lemmas 2, 4 and 5. ��

Although the dead store elimination algorithm is secure, it is sub-optimal in that it may
retain more dead stores than necessary. Consider the program

x = read_password(); use(x); x = read_password(); return;

The second store to x is dead and could be securely removed, but it will be retained by our
heuristic procedure.

The case discussed at the end of Sect. 2, in which the transformed program reveals the
entire credit card number, cannot happen with dead store elimination. More generally, we
conjecture that this algorithm preserves the amount of leaked information. Although there
is not a single accepted definition of quantitative leakage, it appears natural to suppose that
if two programs have identical computations with identical leaked values (if any) then the
leakage amount should also be identical. This is the case in our procedure. By Lemma 1, all
variables other than x have identical values at the final location in the corresponding traces
of S and T . From the proofs of Theorem 4, we know that at the final location of T , variable
x has either the same value as in S (Case 1) or an untainted value (Cases 2 and 3) that leaks
no information, thus T cannot leak more information than S.

6 Discussion

In this section, we discuss variations on the program and security model and consider the
security of other compiler transformations.

6.1 Unstructured while programs

If the while program model is extended with goto statements, programs are no longer
block-structured and the control-flow graph may be arbitrary. The secure algorithm works
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with CFGs and is therefore unchanged. An algorithm for taint analysis of arbitrary CFGs
appears in [8,9]. This propagates taint from tainted conditionals to blocks that are solely under
the influence of that conditional; such blocks can be determined using a graph dominator-
based analysis. The Appendix contains a taint proof system for CFGs that is based on these
ideas. It retains the key properties of the simpler system given here; hence, the algorithms
and their correctness proofs apply unchanged to arbitrary CFGs.

6.2 Procedural programs

An orthogonal direction is to enhance the programmingmodel with procedures. This requires
an extension of the taint proof system to procedures, but that is relatively straightforward: the
effect of a procedure is summarized on a generic taint environment for the formal parameters
and the summary is applied at each call site. A taint analysis algorithm which provides such
a proof must perform a whole-program analysis.

6.3 Other attack models

The attackmodel in this paper is one where the attacker knows the program code, can observe
outputs, and inspect the values of local variables at termination.

An extension is to consider an attacker that can observe the local variables at intermediate
program points, such as calls to procedures. This would model situations such as those shown
in Fig. 1, where a leak may occur inside an untrusted procedure. The location of an untrusted
procedure call can be considered as a leakage point, in addition to the leakage point at the
end of the current procedure (foo in the example). One may also insert other leakage points
as desired. The analysis and algorithms developed here are easily adapted to handle multiple
leakage points.

As discussed previously, the security guarantee is only with respect to information flow.
It does not guarantee that side-channel attacks, such as those based on timing, will not be
successful; ensuring that requires different forms of analysis, cf. [2].

7 The security of other compiler transformations

A natural question that arises is that of the security of other compiler optimizations. In the
following, we present a general proof technique to show that an optimization is secure. The
technique is a strengthening of the standard refinement notion used to establish correctness.
Using this technique, we show that some common optimizations are secure. On the other
hand, we show that the important SSA optimization is insecure.

The correctness of a transformation from program S to program T is shown using a
refinement relation, R. For the discussion below, the exact form of the refinement relation
(i.e., whether it relates single steps, or allows stuttering) is not important. We only require the
property that if T is related by refinement to S, then any computation of T has a corresponding
computation in S with identical output.

However, to fix a particular notion, we present the definition of a single step refinement
R from T to S. This is a relation from the state-space of T to the state-space of S, such that

– For every initial state t of T , there is an initial state s of S such that R(t, s), and
– If R(t, s) holds and t ′ is a T -successor of t , there is an S-successor s′ of s such that

R(t ′, s′) and the output (if any) is identical on the transitions (t, t ′) and (s, s′)
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An easy induction shows the desired property that every computation of T has an R-related
computation in S, with identical outputs.

For states u, v of a program P , define u ≡P v (u and v are “low-equivalent in P”) to
mean that u and v agree on the values of all Low-variables in program P .

We say that R is a secure refinement if R is a refinement relation from T to S and satisfies
the additional conditions below. (This was referred to as a ‘strict’ refinement in [6]).

(a) A final state of T is related by R only to a final state of S, and
(b1) If R(t0, s0) and R(t1, s1) hold, t0 and t1 are initial states of T , and t0 ≡T t1 holds, then

s0 ≡S s1 holds as well, and
(b2) If R(t0, s0) and R(t1, s1) hold, t0 and t1 are final states, and t0 ≡T t1 does not hold,

then s0 ≡S s1 does not hold.

Theorem 5 Consider a transformation from program S to program T which does not change
the set of high variables and has an associated secure refinement relation R. Such a trans-
formation is both correct and secure.

Proof Correctness follows from R being a refinement relation. We now establish security.
Consider a leaky triple (a, b, c) for T . As the transformation is correct, one needs to

consider only the case of a leak through the lowvariables at the final states of the computations
τa (from (H = a, LT = c)) and τb (from (H = b, LT = c)). Let ta, tb be the final states
of τa, τb, respectively. As the triple is leaky, ta ≡T tb is false. We show that there is a
corresponding leak in S.

Let σa be the computation of S which corresponds to τa through R, such a computation
exists as R is a refinement relation. Similarly let σb correspond to τb through R. By condition
(a) of secure refinement, the state of σa (σb) that is related to the final state of τa (τb) must
be final for S, hence, σa and σb are terminating computations. Apply condition (b1) to the
initial states of the corresponding computations (τa, σa) and (τb, σb). As the initial τ -states
are low-equivalent in T , condition (b1) implies that the initial σ -states are low-equivalent in
S. Apply condition (b2) to the final states of the corresponding computations. As ta ≡T tb
does not hold, the final σ -states are also not low-equivalent. Hence, (a, b, c) is a leaky triple
for S, witnessed by the computations σa and σb. ��

For several transformations, the refinement relation associated with the transformation
has a simple functional nature. We show that any such relation has properties (b1) and (b2).
Precisely, we say that a refinement relation R is functional if:

(a) Every low state variable x of S has an associated 1–1 function fx (Yx ), where Yx =
(y1, . . . , yk) is a vector of low state variables of T . We say that each yi in Yx influences
x .

(b) Every low state variable of T influences some low-state variable of S
(c) For every pair of states (t, s) related by R, s(x) equals fx (t (y1), . . . , t (yk))

Lemma 6 A functional refinement relation satisfies conditions (b1) and (b2) of secure refine-
ment.

Proof Suppose that R(t0, s0) and R(t1, s1) hold. By conditions (a) and (c) of the functionality
assumption, for every low state variable x of S, s0(x) equals fx (t0(Yx )) and s1(x) equals
fx (t1(Yx )).
First, suppose that t0 ≡T t1. As t0 and t1 agree on the values of all low variables in Yx ,

s0(x) and s1(x) are equal. This holds for all x , so that s0 ≡S s1. Next, suppose that t0 ≡T t1

123



180 Form Methods Syst Des (2018) 53:166–188

Fig. 6 C programs illustrating the insecurity of SSA transformation

does not hold. Hence, t0(y) �= t1(y) for some low state variable y of T . By condition (b) of
the assumption, y influences some low-state variable of S, say x . I.e., y is a component of
the vector Yx in the function fx (Yx ). Hence, t0(Yx ) and t1(Yx ) are unequal vectors. Since fx
is 1–1, it follows that s0(x) = fx (t0(Yx )) and s1(x) = fx (t1(Yx )) differ, so that s0 ≡S s1
does not hold.

This establishes that t0 ≡T t1 if, and only if, s0 ≡S s1 at all related states, regardless of
whether the states are initial or final, ensuring (b1) and (b2). ��

The standard constant propagation and folding transformation does not alter the set of
program variables. The refinement relation used to show correctness equates the values of
each variable x in corresponding states of S and T . Hence, the relation meets the conditions
of Lemma 6 and, therefore, conditions (b1–b2) of secure refinement. These relations also
satisfy condition (a), as the transformations do not change the termination behavior of the
source program. Certain control-flow simplifications, such as the merge of successive basic
blocks into one, or the removal of an unsatisfiable branch of a conditional statement, can be
similarly shown to be secure. The refinement relations for loop peeling and loop unrolling
are also secure, as the relations imply that the value of each variable is identical in states
related by the refinement relation.

7.1 Insecurity of SSA

An important transformation whose refinement relation is not secure is the static single
assignment (SSA) transformation. Indeed, the transformation leaks information, as shown
by the example in Fig. 6. In the program on the right-hand side, the assignments to x have
been replaced with single assignments to x1 and to x2. The value of the password is leaked
via x2.

Modern compilers make extensive use of the SSA format, relying on it to simplify the
implementation of optimizations. Thus, the possibility of leakage via conversion to SSA form
is particularly troubling. The question of securing SSA was left open in the initial version of
this paper [6]. Recent work [7] designs a mechanism to track and block the leaks introduced
by a SSA transformation.

8 Related work and conclusions

The fact that correctness preservation is not the same as security preservation has long been
known. Formally, the issue is that refinement in the standard sense, as applied for correctness,
does not preserve security properties. Specifically, a low-level machine model may break

123



Form Methods Syst Des (2018) 53:166–188 181

security guarantees that are provedon ahigher-level languagemodel. Full abstractionhas been
proposed as a mechanism for preserving security guarantees across machine models in [1]. A
transformation τ is fully abstract if programs P and Q are observationally indistinguishable
(to an attacker context) if and only if the transformed programs P ′ = τ(P) and Q′ = τ(Q)

are indistinguishable. Recent work on this topic [5,11,17] considers various mechanisms
for ensuring full abstraction. In our context, the observables are the values of variables at
the exit point—an attacker can observe the values of local variables on termination. For this
attack model, the standard DSE transformation is not fully abstract. For example, the original
program in Fig. 1 is observationally equivalent to program Q given by int x=0; where x
is initialized to 0, while the transformed programs P ′ = DSE(P) (the right-hand program
in Fig. 1) and Q′ = DSE(Q), which equals Q, are observationally distinguishable. The
proofs of the new secure transform, which we may denote SDSE, establish that programs
P and SDSE(P) are observationally equivalent, for all P; it follows immediately that the
transformation SDSE is fully abstract.

The earliest explicit reference to the insecurity of dead store elimination that we are
aware of is [13]; however, the issue has possibly been known for a longer period of time.
Nevertheless, we are not aware of other constructions of a secure dead store elimination
transformation. The complexity results in this paper on the difficulty of translation validation
for security, in particular for the apparently simple case of dead store elimination are also
new, to the best of our knowledge.

Theorem 5 in Sect. 6 on secure refinement relations is related to Theorem 10.5 in [5]
which has a similar conclusion, in a different formal setting. The application of Theorem 5
to establish the security of common compiler transformations appears to be new.

A recent paper [10] has an extensive study of possible ways in which compiler transfor-
mations can create information leaks. The authors point out that the “correctness-security
gap” (their term) can be understood in terms of observables: establishing security requires
more information about internal program state than that needed to establish correctness. (This
is related to the full abstraction property discussed above.) They describe several potential
approaches to detecting security violations. The inherent difficulty of security checking has
implications for translation validation and testing, two of the approaches considered in [10].
Our secure dead code elimination algorithm removes an important source of insecurity, while
Theorem 5 is used to establish the security of several other transformations. The insecurity of
SSA is tackled in our follow-on paper [7], which presents a method that restores the security
level of a program to its original level, after the program has been converted to SSA form
and transformed by SSA-dependent optimizations.

There is a considerable literature on type systems, static analyses and other methods for
establishing (or testing) the security of a single program, which we will not attempt to survey
here. In contrast, this paper treats the relative security question: is the program resulting from
a transformation at least as secure as the original? This has been less studied, and it has proved
to be an unexpectedly challenging question. Several new directions arise from these results.
An important question is to fully understand the security of other compiler optimizations
and register allocation methods. A witnessing structure for security, analogous to the one
for correctness in [14], might be a practical way to formally prove the security of compiler
implementations. A different direction is to consider transformations that enhance security,
rather than just preserve it; one such transformation is described in [12]. The ultimate goal
is a compilation process that is both correct and secure.
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Appendix

A.1 Hardness of security checking for finite-state programs

Theorem 6 Checking the security of a dead store elimination given as a triple (P, Q, D) is
PSPACE-complete for finite-state programs.

Proof Consider the complement problem of checking whether a transformation from P to Q
is insecure. By definition, this is so if there exists a triple (a, b, c)which is leaky for Q but not
for P . Determining whether (a, b, c) is leaky can be done in deterministic polynomial space,
by simulating the program on the input pairs (a, c) and (b, c). Non-termination is detected
in a standard way by adding an n-bit counter, where 2n is an upper bound on the size of the
search space: the number n is linear in the number of program variables. A non-deterministic
machine can guess the triple (a, b, c), then check that the triple is leaky for Q but not leaky
for P . Thus, checking insecurity is in non-deterministic PSPACE, which is in PSPACE by
Savitch’s theorem.

To show hardness, consider the problem of deciding whether a finite-state program with
no inputs or outputs terminates, which is PSPACE-complete by a simple reduction from the
IN-PLACE-ACCEPTANCE problem [16]. Given such a program R, let h be a fresh high
security input variable and l a fresh low-security state variable, bothBoolean,with l initialized
to false. Define program P as: “R; l := h; l := false”, and program Q as: “R; l := h”.
As the final assignment to l in P is dead, Q is a correct result of dead store elimination on P .
Consider the triple (h = true, h = false, _). If R terminates, then Q has distinct final values
for l for the two executions arising from inputs (h = true, _) and (h = false, _), while P
does not, so the transformation is insecure. If R does not terminate, there are no terminating
executions for Q, so Q has no leaky triples and the transformation is trivially secure. Hence,
R is non-terminating if, and only if, the transformation from P to Q is secure. ��
A.2 Hardness of security checking for loop-free finite-state programs

We consider the triple (P, Q, D) which defines a dead store elimination, and ask whether Q
is at least as secure as P . We show this is hard, even for the very simple program structure
where all variables are Boolean, and assignments are limited to the basic forms x := y or
x := c, where x, y are variables and c is a Boolean constant. Some of the variables will be
designated as high-security, depending on context.

To simplify exposition, we will use a general assignment of the form x := e where e
is a Boolean formula. This can be turned into a simple loop-free program of size O(|e|) by
introducing fresh variables for each sub-tree of e and turning Boolean operators into if-then-
else constructs. (E.g., x := ((y ∨ w) ∧ z) is first turned into t1 := y ∨ w; t2 :=
z; x := t1 ∧ t2, then the Boolean operators are expanded out, e.g., the first assignment
becomes if y then t1 := true else t1 := w fi ).
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Theorem 7 Checking the security of a dead store elimination given as a triple (P, Q, D) is
co-NP-complete for loop-free programs.

Proof Consider the complement problem of checking whether a transformation from P to
Q is insecure. Note that P and Q have the same set of low-security variables.

We first show that this problem is in NP. By definition, an insecurity exists if and only
if there is a leaky triple (a, b, c) for Q which is not leaky for P . Given a triple (a, b, c)
and a program, say P , a machine can deterministically test whether the triple is leaky for
P by simulating the pair of executions from (a, c) and (b, c), keeping track of the current
low-security state and the last output value for each execution. This simulation takes time
polynomial in the program length, as the program is loop-free. A non-deterministic machine
can guess a triple (a, b, c) in polynomial time (these are assignments of values to variables),
then use the simulation to check first that the triple is not leaky for P and then that it is leaky
for Q, and accept if both statements are true. Thus, checking insecurity is in NP.

To show NP-hardness, let φ be a propositional formula over N variables x1, . . . , xN . Let
y be a fresh Boolean variable. Let the x-variables be the low-security inputs, and let y be a
high security input. Let z be a low-security variable, which starts at false. Define Q(x, y)
as the program z := (φ ∧ y), and let P(x, y) be the program Q; z := false. As the final
assignment in P is dead, Q is a correct outcome of dead store elimination applied to P . (Note:
the programs P and Q may be turned into the simpler form by expanding out the assignment
to y as illustrated above, marking all freshly introduced variables as low-security.

Suppose φ is satisfiable. Let m be a satisfying assignment for x . Define the inputs (x =
m, y = true) and (x = m, y = false). In Q, the final value of z from those inputs is true or
false depending on value of y, so the triple t = (y = true, y = false, x = m) is leaky for
Q. However, in P , the final value of z is always false, regardless of y, and t is not leaky for
P . Hence, the elimination of dead store from P is insecure. If φ is unsatisfiable then, in Q,
the final value of z is always false regardless of y, so the transformation is secure. I.e., the
transformation is insecure if, and only if, φ is satisfiable, which shows NP-hardness. ��
A.3 Soundness of the taint proof system

Proposition 2 If {E} S {F} and E ′ 	 E and F 	 F ′, then {E ′} S {F ′}.
Proof Consider s, t such that (s, t) |� E ′ and s

S−→ s′ and t S−→ t ′.

(s, t) |� E ′

⇒(s, t) |� E By E ′ 	 E and Proposition 1

⇒(s′, t ′) |� F By definition of {E} S {F}
⇒(s′, t ′) |� F ′ By F 	 F ′and Proposition 1

��
Lemma 7 If {E} S {F}, variable x is tainted in E and S does not modify x, then x is tainted
in F .

Proof (Sketch) Here we prove that E(x) impliesF(x) by induction on the structure of S. If S
is an assignment, this is clearly true by the assignment rule. For a sequence S1; S2 such that
{E} S1 {G} and {G} S2 {F}, this is true by the induction hypothesis: E(x) implies G(x) which
implies F(x). For a loop, by the inference rule, the loop invariant environment I must be
such that E 	 I, so I(x) holds. As I 	 F , F(x) holds. For a conditional, as E(x) holds by
assumption and {E} S1 {F} and {E} S2 {F} hold, by the induction hypothesis, F(x) holds. ��
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Theorem 3 Consider a structured program P with a proof of {E} P {F}. For all initial states
(s, t) such that (s, t) |� E: if s P−→ s′ and t P−→ t ′, then (s′, t ′) |� F .

Proof (0) S is skip or out(e):

{E} skip {E} and {E}out(e) {E}

Consider states s = (m, p), t = (n, q), s′ = (m′, p′) and t ′ = (n′, q ′) such that s
S−→ s′

and t
S−→ t ′ hold. By the semantics of skip and out(e), s′ = s and t ′ = t . Thus, if (s, t) |� E ,

then (s′, t ′) |� E .
(1) S is an assignment x := e:

F(x) = E(e) ∀y �= x : F(y) = E(y)

{E} x := e {F}

Consider states s = (m, p), t = (n, q), s′ = (m′, p′) and t ′ = (n′, q ′) such that s
S−→ s′

and t
S−→ t ′ hold. By the semantics of assignment, it is clear that p′ = p[x ← p(e)],

q ′ = q[x ← q(e)], and m′ = n′ denotes the program location immediately after the
assignment. Assume (s, t) |� E , we want to prove (s′, t ′) |� F , or more precisely, ∀v :
¬F(v) ⇒ p′(v) = q ′(v).

Consider variable y different from x . IfF(y) is false, so is E(y), hence p(y) = q(y) since
(s, t) |� E . As p′(y) = p(y) and q ′(y) = q(y), we get p′(y) = q ′(y) as desired.

Consider variable x . IfF(x) is false, so is E(e), hence only untainted variables in E appear
in e. As (s, t) |� E , those variables must have equal values in s and t , thus p(e) = q(e).
Since p′ = p[x ← p(e)], q ′ = q[x ← q(e)], we know p′(x) = q ′(x).

(2) Sequence:

{E} S1 {G} {G} S2 {F}
{E} S1; S2 {F}

Consider states s and t such that s
S1;S2−−−→ s′ and t S1;S2−−−→ t ′. There must exist intermediate

states s′′ and t ′′ such that s S1−→ s′′, t S1−→ t ′′, s′′ S2−→ s′ and t ′′ S2−→ t ′. Now suppose (s, t) |� E ,
we have:

(s, t) |� E
⇒(s′′, t ′′) |� G By definition of {E} S1 {G}
⇒(s′, t ′) |� F By definition of {G} S2 {F}

(3) Conditional: For a statement S, we use Assign(S) to represent the set of variables
assigned in S. The following two cases are used to infer {E} S {F} for a conditional:
Case A:

E(c) = false {E} S1 {F} {E} S2 {F}
{E} if c then S1 else S2 fi {F}

Case B:

E(c) = true {E} S1 {F} {E} S2 {F}
F 	 F ′ ∀x ∈ Assign(S1) ∪ Assign(S2) : F ′(x) = true

{E} if c then S1 else S2 fi {F ′}
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Let S = if c then S1 else S2 fi , states s = (m, p), t = (n, q), s′ = (m′, p′), t ′ =
(n′, q ′). Suppose (s, t) |� E , s S−→ s′, t S−→ t ′.

Case A: E(c) = false, hence by definition of (s, t) |� E , we know p(c) = q(c). Thus, both
successors s′ and t ′ result from the same branch, say S1. By the hypothesis that {E} S1 {F}
and (s, t) |� E , we have (s′, t ′) |� F .

Case B: E(c) = true, hence s′ and t ′ may result from different branches of S. To show
that (s′, t ′) |� F ′, let x be a variable untainted in F ′. By the definition of F ′, there must be
no assignment to x in either S1 or S2. Hence, p′(x) = p(x) and q ′(x) = q(x).

If p(x) = q(x), then p′(x) = q ′(x). Otherwise, consider p(x) �= q(x), and we show that
this cannot be the case. As (s, t) |� E , x must be tainted in E . As x is not modified in S1 and
{E} S1 {F} holds, by Lemma 7 (below), x is tainted in F . Since F 	 F ′, x is tainted in F ′,
which is a contradiction. Hence, we show that p′(x) = q ′(x) for any variable x untainted in
F ′. Clearly, m′ = n′, thus (s′, t ′) |� F ′.
(4) While Loop:

E 	 I {I} if c then S else skip fi {I} I 	 F
{E} while c do S od {F}

Let states s, t be such that (s, t) |� E , and s′, t ′ be the states reached from s, t at the end of
the while loop. By E 	 I, (s, t) |� I. We want to prove that (s′, t ′) |� I, so that by I 	 F ,
we can have (s′, t ′) |� F .

Let the trace from s to s′ be s = s0, s1, . . . , sn = s′ where si are states at the start of
successive loop iterations. Similarly, let the trace from t to t ′ be t = t0, t1, . . . , tm = t ′.
Without loss of generality, assume that n > m, then we can pad the t-trace with sufficiently
many skip actions (i.e., the same as “ if c then S else skip fi ” where the evaluation of c is
false) to make the two traces of the same length. The final state of padded t-trace is still t ′.
For the rest of proof, we assume that n = m and prove by induction on n that (si , ti ) |� I.

The induction basis (s0 = s, t0 = t) |� I holds. Then, assume the claim that for k ≥ 0,
(sk, tk) |� I. From the hypothesis “{I} if c then S else skip fi {I}” of the inference rule,
we get (sk+1, tk+1) |� I as well. Hence, (s′ = sn, t ′ = tm) |� I holds. ��

B Taint analysis for control-flow graphs

In this section, we describe how to adjust the taint proof system to apply to control-flow
graphs (CFGs). We assume that a control-flow graph has a single entry node and a single exit
node. A program is defined by its control flow graph, which is a graph where each node is a
basic block and edges represent control flow. A basic block is a sequence of assignments to
program variables.

The entry and exit nodes are special. All other nodes fall into one of three classes. The
partitioning makes it easier to account for taint values and propagation.

– Amergenodehasmultiple incoming edges and aφ function x ←φ((x1, e1), . . . , (xn, en))
for every variable x , which (simultaneously over all variables) assigns x the value of x1
if control is transferred through edge e1, the value of x2 if control is transferred through
edge e2 and so forth,

– A basic node, which is a single assignment statement, and
– A branch node, which is either an unconditional branch to the following node, or a

conditional branch on condition c, through edge et if c is true, and through edge e f if c
is false.
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The edge relations are special. The entry node has a single merge node as a successor
and no incoming edge. The exit node has itself as the single successor, and behaves like a
skip. Every merge node has a single successor, which is a basic node. Every basic node has a
single successor, which is either a basic or a branch node. Every successor of a branch node
is either a merge node or the exit node.

A taint annotation for a control-flow graph is an assignment of environments to every
CFG edge. An annotation is valid if the following conditions hold:

– The assignment to the outgoing edge from the entry node has high-security input variables
set to H (true) and all other variables set to L (false),

– For a merge node with assignments x ← φ((x1, e1), . . . , (xn, en)), incoming edges
annotated with E1, . . . , En and outgoing edge annotated withF , for all i : {Ei }x ← xi {F}
holds. Note that here all φ assignments are gathered into one to keep the notation simple,

– For a basic node with assignment statement S, incoming edge annotated with E and
outgoing edge annotated with F , the assertion {E}S{F} holds,

– For an unconditional branch node with incoming edge annotated with E and outgoing
edge annotated with F , {E}skip{F} holds, and

– For an conditional branch node if c then et else e f fi , with incoming edge annotated
with E and outgoing edges annotated with Ft and F f , respectively:

– {E}skip{Ft } and {E}skip{F f } hold, and
– If E(c) is true (i.e., c is tainted in E), then let d be the the immediate post-dominator for

this branch node. Node d must be a merge node, say with incoming edges f1, . . . , fk .
Let F1, . . . ,Fk be the environments assigned, respectively, to those edges. Let
Assign(n, d) be an over-approximation of the set of variables assigned to on all
paths from the current branch node n to d . Then, for all x ∈ Assign(n, d), and for
all i : it must be the case that Fi (x) = true.

A structured program turns into a control flow graph with a special (reducible) structure.
It is straightforward to check that a valid structured proof annotation turns into a valid CFG
annotation for the graph obtained from the structured program.

B.1 Soundness

We have the following soundness theorem. Informally, the theorem states that if (the node
from) edge f post-dominates (the node from) edge e, then computations starting from states
consistent with e’s annotation to f result in states which are consistent with f ’s annotation.
It follows that terminating computations starting from states consistent with the entry edge

annotation result in states consistentwith the exit edge annotation.Wewrite (s, e)
p−→ (s′, f )

to indicate that there is a path (a sequence of edges e0 = e, e1, . . . , ek = f such that the
target of ei is the source of ei+1, for all i) from e to f , and that s′ at edge f is obtained from
state s at edge e by the actions along that path.

Theorem 8 For a given CFG: let e be an edge incident on node n, and let f be an outgoing
edge from node m which post-dominates n. Let E,F be the annotations for edges e and f ,
respectively. For states s, t such that (s, t) |� E and states u, v and paths p, q such that

(s, e)
p−→ (u, f ) and (t, e)

q−→ (v, f ), it is the case that (u, v) |� F .

Proof The proof is by induction on the sum of the lengths of paths p and q , where the length
is the number of edges on the path.
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The base case is when the sum is 2. Then m = n, and f is an outgoing edge of node n.
The validity conditions ensure that {E}S{F} hold, where S is the statement associated with
n. It follows that (u, v) |� F .

Assume inductively that the claim holds when the sum is at most k, for k ≥ 0. Now
suppose the sum is k + 1. The argument goes by cases on the type of node n.

(1) n is a merge node, a basic node, or an unconditional branch node. Then it has a single
successor node, say n′, via some edge e′. Let E ′ be the annotation on e′. By the conditions
on a valid annotation, {E}S{E ′} holds, where S is the statement associated with n.
Thus, for the immediate successors s′, t ′ of s, t along the paths p, q (respectively),
(s′, t ′) |� E ′. As n′ is the immediate post-dominator of n and all post-dominators of n
are linearly ordered, m is a post-dominator of n′. The suffixes p′, q ′ of the paths p, q
starting at e′ have smaller total length. By the induction hypothesis, as (s′, t ′) |� E ′, it
follows that (u, v) |� F .

(2) n is a conditional branch node with condition c and successor edges et , e f leading to
successor nodes nt , n f . There are two cases to consider.

(2a) The branch condition is tainted, i.e., E(c) = true. Let n′ be the immediate post-
dominator of n. This must be a merge node by the canonical structure of the CFG,
with a single outgoing edge, say g′. By the constraints on valid annotation, if G is the
annotation on g′, then G(x) = true if variable x is assigned to on a path from n to
n′. Hence, if G(x) = false, then x has no assignment on such a path, in particular, it
has no assignment on the segments p′ of p and q ′ of q from n to the first occurrence
of n′. Let s′, t ′ be the states after execution of p′ and q ′ (resp.). Then, s′(x) = s(x)
and t ′(x) = t (x). By the contrapositive of Lemma 7, E(x) = false. As (s, t) |� E , it
follows that s(x) = t (x) and, therefore, s′(x) = t ′(x). This shows that (s′, t ′) |� G.
As the suffixes p′′, q ′′ of the paths p, q after n′ have smaller total length, and m is a
post-dominator of n′ (recall that all post-dominators of n are linearly ordered and n′ is
the first), from the induction hypothesis, it follows that (u, v) |� F .

(2b) The branch condition is untainted, i.e., E(c) = false. Thus, s(c) = t (c), so the paths
p, q have a common successor, say nt , through edge et . The validity conditions imply
that {E}skip{Et } hold, where Et is the annotation for edge et . Hence, (s, t) |� Et . As m
is a post-dominator of n, it is also a post-dominator of nt . The suffixes p′, q ′ of p, q
from nt have smaller total length; hence, by the induction hypothesis, (u, v) |� F . ��
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