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Abstract A novel algorithm for the control synthesis for nonlinear switched systems is
presented in this paper. Based on an existing procedure of state-space bisection and made
available for nonlinear systems with the help of guaranteed integration, the algorithm has
been improved to be able to consider longer patterns ofmodeswith a better pruning approach.
Moreover, the use of guaranteed integration also permits to take bounded perturbations and
varying parameters into account. It is particularly interesting for safety critical applications,
such as in aeronautical, military or medical fields. The whole approach is entirely guaranteed
and the induced controllers are correct-by-design. Some experimentations are performed to
show the important gain of the new algorithm.
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1 Introduction

In this paper, we present a control synthesis method for a special form of hybrid systems [1]
named switched systems. Such systems have been recently used in various domains such
as automotive industry and, with noteworthy success, power electronics (e.g., power con-
verters). They are continuous-time systems with discrete switching events. More precisely,
these systems are described by piecewise continuous dynamics called modes; the change of
modes takes place instantaneously at so-called switching instants. In this paper, we suppose
that switching instants occur periodically at constant sampling period τ (sampled switched
systems). The control synthesis problem consists in finding a switching rule σ in order to
satisfy a given specification. At each sampling time τ , 2τ , …, according to the state of the
system, the rule σ selects an appropriate mode to fulfill the specification [2,3]. A schematic
view of switched systems is given in Fig. 1.

Modes are characterized by nonlinearOrdinaryDifferential Equations (ODEs). In general,
the exact solution of differential equations cannot be obtained, and a numerical integration
scheme is used to approximate the state of the system. With the objective of computing
a sound control, our approach uses guaranteed numerical integration methods, also called
“sound reachability” methods. A guaranteed method is a numerical method which provides
a formal proof of its result.

Guaranteed numerical integration methods have to consider two kinds of problems. First,
the way of representating sets of states (boxes, zonotopes [4,5], Taylor models [6], Support
functions [7], etc.). Second, the scheme of the numerical integration (Taylor series [8–11],
Runge-Kutta methods [12–15], etc.) which propagate sets of states through the dynamics
of the system. In this paper we follow [15] in which sets are represented by zonotopes and
propagation of sets is based on the Runge-Kutta numerical scheme.

This work is along the line of the seminal paper [16] on hybrid systems, and can be seen
as an optimized application in the context of sampled switched systems. Other guaranteed
approaches for control synthesis of switched systems include the construction of a discrete
abstraction of the original system on a grid of the state space: e.g., approximately bisim-
ilar models [17], approximately alternatingly similar models [18], or feedback refinement
relations [19].

Fig. 1 Sampled switched systems (with u the input and y the state of the system)
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In [20], we proposed an algorithm based on guaranteed integration for the synthesis of
nonlinear switched system controllers. The specification to fulfill is to reach a target zone R
from an initial zone then return iteratively to R while always staying in a safe neighbourhood
S of R while avoiding bad states B. This is done be covering R with a set of tiles for which a
sequence of modes (pattern) satisfying the specification has to be found. A similar objective
has been treated in [21], but the authors use a proof certificate in the form of a robust control
Lyapunov-like function instead.

In this paper, we present an improved version of the branch and prune algorithm of [20]
which permits to considermoremodes and longer patterns, using a suitable pruning approach.
This leads to a strong decrease in computation time. The new algorithm allows us to handle
harder problems.

The paper is divided as follows. In Sect. 2, we introduce some preliminaries on switched
systems and some notation used in the following. In Sect. 3, the guaranteed integration of
nonlinearODEs is presented. InSect. 4,wepresent themain algorithmof state-space bisection
used for control synthesis. In Sect. 5, the whole approach is tested on four examples of the
literature.We give some performance tests and compare our approachwith the state-of-the-art
tools in Sect. 6. We conclude in Sect. 7.

2 Switched systems

Let us consider nonlinear switched systems such that

ẋ(t) = fσ(t)(x(t), d(t)) (1)

defined for all t ≥ 0, where x(t) ∈ R
n is the state of the system, σ(·)R+ −→ U is the

switching rule, and d(t) ∈ R
m is a bounded perturbation. The finite set U = {1, . . . , N } is

the set of switching modes of the system. We focus on sampled switched systems: given a
sampling period τ > 0, switchings will occur at times τ , 2τ , …. Switchings depend only on
time, and not on states: this is the main difference with hybrid systems.

We work in the synchronous setting for discrete events. This means that all the discrete
events are supposed to occur at periodic instants: τ , 2τ , 3τ , . . . The switching rule σ(·) is thus
piecewise constant, we will consider that σ(·) is constant on the time interval [(k − 1)τ, kτ)

for k ≥ 1. We call “pattern” a finite sequence of modes π = (i1, i2, . . . , ik) ∈ Uk . With
such a control input, and under a given perturbation d , we will denote by x(t; t0, x0, d, π)

the solution at time t of the system

ẋ(t) = fσ(t)(x(t), d(t)),

x(t0) = x0,

∀ j ∈ {1, . . . , k}, σ (t) = i j ∈ U for t ∈ [( j − 1)τ, jτ [.
(2)

We address the problem of synthesizing a state-dependent switching rule σ(·) for Eq. (2) in
order to verify some properties. This important problem is formalized as follows:

Problem 1 (Control Synthesis Problem) Let us consider a sampled switched system as
defined in Eq. (2). Given three sets R, S, and B, with R ∪ B ⊂ S and R ∩ B = ∅, find
a rule σ(·) such that, for any x(0) ∈ R
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– τ − stabili t y1 x(t) returns in R infinitely often, at some multiples of sampling time τ .
– safety x(t) always stays in S\B.

Under the above-mentioned notation, we propose the main procedure of our approach
which solves this problem by constructing a law σ(·), such that for all x0 ∈ R, and under the
unknown bounded perturbation d , there exists π = σ(·) ∈ Uk for some k such that:

⎧
⎨

⎩

x(t0 + kτ ; t0, x0, d, π) ∈ R
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) ∈ S
∀t ∈ [t0, t0 + kτ ], x(t; t0, x0, d, π) /∈ B.

Such a law permits to perform an infinite-time state-dependent control. The synthesis algo-
rithm is described in Sect. 4 and involves guaranteed set-based integration presented in the
next section, the main underlying tool is interval analysis [8]. To tackle this problem, we
introduce some definitions.

In the following, we will often use the notation [x] ∈ IR (the set of intervals with real
bounds) where

[x] = [x, x] = {x ∈ R | x � x � x}
denotes an interval. By an abuse of notation [x] will also denote a vector of intervals, i.e., a
Cartesian product of intervals, a.k.a. a box. In the following, the sets R, S and B are given in
the form of boxes. With interval values, it comes with an associated interval arithmetic.

Interval arithmetic extends to IR elementary functions over R. For instance, the interval
sum, i.e., [x1] + [x2] = [x1 + x2, x1 + x2], encloses the image of the sum function over its
arguments. The enclosing property basically defines what is called an interval extension or
an inclusion function.

Definition 1 (Inclusion Function) Consider a function f : R
n → R

m , then [ f ] : IR
n →

IR
m is said to be an extension of f to intervals if

∀[x] ∈ IR
n, [ f ]([x]) ⊇ { f (x), x ∈ [x]}.

It is possible to define inclusion functions for all elementary functions such as ×, ÷, sin,
cos, exp, and so on. The natural inclusion function is the simplest to obtain: all occurrences
of the real variables are replaced by their interval counterpart and all arithmetic operations
are evaluated using interval arithmetic. More sophisticated inclusion functions such as the
centered form, or the Taylor inclusion function may also be used (see [22] for more details).

We now introduce the Initial Value Problem, which is one of main ingredients of our
approach.

Definition 2 [Initial Value Problem (IVP)] Consider an ODE with a given initial condition

ẋ(t) = f (t, x(t), d(t)) with x(0) ∈ X0, d(t) ∈ [d], (3)

with f : R
+×R

n×R
m → R

n assumed to be continuous in t andd and globallyLipschitz in x .
We assume that parameters d are bounded (used to represent a perturbation, a modeling error,
an uncertainty on measurement, …). An IVP consists in finding a function x(t) described by
Eq. (3) for all d(t) lying in [d] and for all the initial conditions in X0.

1 This definition of stability is different from the stability in the Lyapunov sense.
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Definition 3 Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈ Uk . The

successor set of X via π , denoted by Postπ (X), is the (over-approximation of the) image of
X induced by application of the pattern π , i.e., the solution at time t = kτ of

ẋ(t) = fσ(t)(x(t), d(t)),

x(0) = x0 ∈ X,

∀t ≥ 0, d(t) ∈ [d],
∀ j ∈ {1, . . . , k}, σ (t) = i j ∈ U for t ∈ [( j − 1)τ, jτ).

(4)

Definition 4 Let X ⊂ R
n be a box of the state space. Let π = (i1, i2, . . . , ik) ∈ Uk .

We denote by Tubeπ (X) the union of boxes covering the trajectories of IVP (4), whose
construction is detailed in Sect. 3.

Remark 1 Postπ (X) is an over-approximation at time t = kτ of the set of states originated
from the set X at time t = 0, while Tubeπ (X) is an over-approximation of the whole set of
states between t = 0 and t = kτ originated from the set X at time t = 0.

3 Guaranteed integration

In this section, we describe our approach for guaranteed integration based on Runge-Kutta
methods [14,15]. The goal being obviously to obtain a solution of the differential equations
describing the modes of the nonlinear switched systems.

A numerical integration method computes a sequence of values (tn, xn) approximating
the solution x(t; t0, x0, d) of the IVP defined in Eq. (3) such that xn ≈ x(tn; xn−1). The
simplest method is Euler’s method in which tn+1 = tn + h for some step size h and xn+1 =
xn+h× f (tn, xn, d); so the derivative of x at time tn , f (tn, xn, d), is used as an approximation
of the derivative on the whole time interval to perform a linear interpolation. This method
is very simple and fast, but requires small step sizes. More advanced methods, coming from
the Runge-Kutta family, use a few intermediate computations to improve the approximation
of the derivative. The general form of an explicit s-stage Runge-Kutta formula, that is using
s evaluations of f , is

xn+1 = xn + h
s∑

i=1

bi ki ,

k1 = f (tn, xn, d) ,

ki = f

⎛

⎝tn + ci h, xn + h
i−1∑

j=1

ai j k j , d

⎞

⎠ , i = 2, 3, . . . , s.

(5)

The coefficients ci , ai j and bi fully characterize the method. To make Runge-Kutta validated,
the challenging question is how to compute guaranteed bounds of the distance between the
true solution and the numerical solution, defined by x(tn; tn−1, xn−1, d) − xn . This distance
is associated to the local truncation error (LTE) of the numerical method.

To bound the LTE, we rely on order condition [23] respected by all Runge-Kutta methods.
This condition states that a method of this family is of order p if and only if the p + 1 first
coefficients of the Taylor expansion of the solution and the Taylor expansion of the numerical
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methods are equal. In consequence, LTE is proportional to the Lagrange remainders of Taylor
expansions. Formally, LTE is defined by (see [14]):

x(tn; xn−1) − xn

= h p+1

(p + 1)!
(

f (p) (ξ, x(ξ ; xn−1), d) − d p+1φ

dt p+1 (η)

)

ξ ∈]tn, tn+1[ and η ∈]tn, tn+1[. (6)

The function f (n) stands for the n-th derivative of function f with respect to time t that is
dn f
dtn and h = tn+1 − tn is the step size. The function φ : R → R

n is defined by φ(t) =
xn + h

∑s
i=1 bi ki where ki are defined as Eq. (5).

The challenge to make Runge-Kutta integration schemes safe with respect to the true
solution of IVP is then to compute a bound (or also an over-approximation) of the result of
Eq. (6). In other words, we do have to bound the value of f (p) (ξ, x(ξ ; tn−1, xn−1, d)), d)

and the value of d p+1φ

dt p+1 (η) with numerical guarantee. The latter expression is straightforward
to bound because the function φ only depends on the value of the step size h, and so does its
(p + 1)-th derivative. The bound is then obtained using the affine arithmetic [24,25].

However, the expression f (p) (ξ, x(ξ ; xn−1), d) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution x(ξ ; tn−1, xn−1, d) at an unknown
time ξ ∈]tn−1, tn[. The solution used is the same as the one found in [9,12] and it requires to
bound the solution of IVP on the interval [tn−1, tn]. This bound is usually computed using the
Banach’s fixpoint theorem applied with the Picard-Lindelöf operator, see [9]. This operator
is used to compute an enclosure of the solution [x̃] of IVP over a time interval [tn−1, tn], that
is for all t ∈ [tn−1, tn], x(t; tn−1, xn−1, d) ∈ [x̃]. In its simple interval form, Picard-Lindelöf
operator is defined by

[p f ]([r ]) def= [xn] + [0, h] f ([tn−1, tn], [r ], [d]), (7)

with h the integration step size. This is usually implemented by an iterative process and if [r]
is found such that [p f ]([r ]) ⊆ [r ] then [x̃] ⊆ [r ] by the Banach fixed-point theorem. More
sophisticated versions of the Picard-Lindelöf operator exist, we refer to [9] for more details.
We can hence bound f (p) substituting x(ξ ; tn−1, xn−1, d) by [x̃]. This general approach used
to solve IVPs in a validated way is called the Lohner two step approach [26].

Remark 2 Note that to apply guaranteed numerical intergation aglorithms, we restrict pertur-
bation d inDefinition 2 to be constant over the integration step size h. Indeed, the computation
of the truncation error implies high order time derivatives of f which is defined as a com-
bination of time derivatives of x and d . As time derivatives of d are usually unkown, a
simplification has been made to be able to compute a bound of Eq. (6). Note however that in
the framework of differential inclusion [27], a time varying disturbance d can be taken into
account and such adaptations could be used straightforwardly in our proposed algorithms.

With guaranteed numerical integration methods and for a given pattern of switched modes
π = (i1, . . . , ik) ∈ Uk of length k, we are able to compute, for j ∈ {1, .., k}, the enclosures:
– [x j ] 
 x( jτ);
– [x̃ j ] 
 x(t), for t ∈ [( j − 1)τ, jτ ]
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Fig. 2 Illustration of functions Postπ (X) and Tubeπ (X) from the Example 5.2, for the initial box X =
x1 × x2 = [− 0.69,− 0.64] × [1, 1.06], with a pattern π = (1, 3, 0)

with respect to the system of IVPs:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = fσ(t)(t, x(t), d(t)),

x(t0 = 0) ∈ [x0], d(t) ∈ [d],
σ (t) = i1,∀t ∈ [0, t1], t1 = τ

...

ẋ(t) = fσ(t)(t, x(t), d(t)),

x(tk−1) ∈ [xk−1], d(t) ∈ [d],
σ (t) = ik,∀t ∈ [tk−1, tk], tk = kτ.

(8)

Thereby, the enclosure Postπ ([x0]) is included in [xk] and Tubeπ ([x0]) is included in
⋃

j=1,..,k[x̃ j ]. This applies for all initial states in [x0] and all disturbances d(t) ∈ [d]. A
view of enclosures computed by guaranteed integration for one solution obtained for Exam-
ple 5.2 is shown in Fig. 2.

4 The state space bisection algorithm

4.1 Principle of the algorithm

We describe the algorithm solving the control synthesis problem for nonlinear switched
systems (see Problem 1, Sect. 2).
Given the input boxes R, S, B, and given two positive integers K and D, the algorithm pro-
vides, when it succeeds, a decompositionΔ of R of the form {Vi , πi }i∈I , with the properties:
–

⋃
i∈I Vi = R,

– ∀i ∈ I, Postπi (Vi ) ⊆ R,
– ∀i ∈ I, Tubeπi (Vi ) ⊆ S,
– ∀i ∈ I, Tubeπi (Vi )

⋂
B = ∅.
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(a) (b)

Fig. 3 Principle of the bisection method

The sub-boxes {Vi }i∈I are obtainedby repeatedbisection.Atfirst, functionDecomposition
calls sub-function Find_Pattern which looks for a pattern π of length at most K such that
Postπ (R) ⊆ R, Tubeπ (R) ⊆ S and Tubeπ (R)

⋂
B = ∅. If such a pattern π is found,

then a uniform control over R is found (see Fig. 3a). Otherwise, R is divided into two sub-
boxes V1, V2, by bisecting R with respect to its longest dimension. Patterns are then searched
to control these sub-boxes (see Fig. 3b). If for each Vi , function Find_Pattern manages
to get a pattern πi of length at most K verifying Postπi (Vi ) ⊆ R, Tubeπi (Vi ) ⊆ S and
Tubeπi (Vi )

⋂
B = ∅, then it is a success and algorithm stops. If, for some Vj , no such

pattern is found, the procedure is recursively applied to Vj . It ends with success when every
sub-box of R has a pattern verifying the latter conditions, or fails when the maximal degree
of decomposition D is reached. The algorithmic form of functions Decomposition and
Find_Pattern are given in Algorithms 1 and 2 respectively. Note that a special form of
Algorithm 2 for linear ODEs can be found in [2].

Algorithm 1 Decomposition.
Function: Decomposition(W, R, S, B, D, K )

3: Input: A box W , a box R, a box S, a box B, a degree D of bisection, a length K of input pattern
Output:〈{(Vi , πi )}i , True〉 or 〈_, False〉

6: (π, b) := Find_Pattern(W, R, S, B, K )

if b = True then
return 〈{(W, Pat)}, True〉

9: else
if D = 0 then

return 〈_, False〉
12: else

Divide equally W into (W1,W2)
for i = 1, 2 do

15: (Δi , bi ) := Decomposition(Wi , R, S, B, D − 1, K )

end for
return (

⋃
i=1,2 Δi ,

∧
i=1,2 bi )

18: end if
end if
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Our control synthesis method being well defined, we introduce the main result of this
paper, stated as follows:

Proposition 1 Algorithm 1 with input (R, R, S, B, D, K ) returns, when it successfully ter-
minates, a decomposition {Vi , πi }i∈I of R which solves Problem 1.

Proof Let x0 = x(t0 = 0) be an initial condition belonging to R. If the decomposition has
terminated successfully, we have

⋃
i∈I Vi = R, and x0 thus belongs to Vi0 for some i0 ∈ I .

We can thus apply the pattern πi0 associated to Vi0 . Let us denote by k0 the length of πi0 . We
have:

– x(k0τ ; 0, x0, d, πi0) ∈ R
– ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) ∈ S
– ∀t ∈ [0, k0τ ], x(t; 0, x0, d, πi0) /∈ B.

Let x1 = x(k0τ ; 0, x0, d, πi0) ∈ R be the state reached after application of πi0 and let
t1 = k0τ . State x1 belongs to R, it thus belongs to Vi1 for some i1 ∈ I , and we can apply the
associated pattern πi1 of length k1, leading to:

– x(t1 + k1τ ; t1, x1, d, πi1) ∈ R
– ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) ∈ S
– ∀t ∈ [t1, t1 + k1τ ], x(t; t1, x1, d, πi1) /∈ B.

We can then iterate this procedure from the new state

x2 = x(t1 + k1τ ; t1, x1, d, πi1) ∈ R.

This can be repeated infinitely, yielding a sequence of points belonging to R x0, x1, x2, . . .
attained at times t0, t1, t2, . . . , when the patterns πi0 , πi1 , πi2 , . . . are applied.

We furthermore have that all the trajectories stay in S and never cross B:

∀t ∈ R
+, ∃k ≥ 0, t ∈ [tk, tk+1]

and

∀t ∈ [tk, tk+1], x(t; tk, xk, d, πik ) ∈ S, x(t; tk, xk, d, πik ) /∈ B.

The trajectories thus return infinitely often in R, while always staying in S and never crossing
B. ��

Remark 3 Note that it is possible to perform reachability from a set R1 to another set R2 by
computing Decomposition(R1, R2, S, B, D, K ). The set R1 is thus decomposed with the
objective to send its sub-boxes into R2, i.e., for a sub-box V of R1, patterns π are searched
with the objective Postπ (V ) ⊆ R2 (see Example 5.2).

4.2 The search of patterns

We propose in this paper an improvement of the function Find_Pattern given in [2,20],
which is a naive testing of all the patterns of growing length (up to K ).

The improved function, denoted here by Find_Pattern2, exploits heuristics to prune the
search tree of patterns. The algorithmic form of Find_Pattern2 is given in Algorithm 3.
It relies on a new data structure consisting of a list of triplets containing:
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Algorithm 2 Find_Pattern.
Function: Find_Pattern(W, R, S, B, K )

3: Input:A box W , a box R, a box S, a box B, a length K of input pattern
Output:〈π, True〉 or 〈_, False〉

6: for i = 1 . . . K do
Π := set of input patterns of length i
while Π is non empty do

9: Select π in Π

Π := Π \ {π}
if Postπ (W ) ⊆ R and Tubeπ (W ) ⊆ S and Tubeπ (W )

⋂
B = ∅ then

12: return 〈π, True〉
end if

end while
15: end for

return 〈_, False〉

Algorithm 3 Find_Pattern2.
Function: Find_Pattern2(W, R, S, B, K )

3: Input:A box W , a box R, a box S, a box B, a length K of input pattern
Output:〈π, True〉 or 〈_, False〉

6: S = {∅}
L = {(W,W, ∅)}
while L �= ∅ do

9: ecurrent = takeHead(L)
for i ∈ U do

if Posti (ecurrent.Ycurrent) ⊆ R and Tubei (ecurrent.Ycurrent)
⋂

B = ∅and Tubei (ecurrent.Ycurrent) ⊆
S then

12: putTail(S, ecurrent.Π + i) /* or also “return 〈ecurrent.Π + i, True〉” */
else

if Tubei (ecurrent.Ycurrent)
⋂

B �= ∅ or Tubei (ecurrent.Ycurrent) � S then
15: discard ecurrent

end if
else

18: if Tubei (ecurrent.Ycurrent)
⋂

B = ∅ and Tubei (ecurrent.Ycurrent) ⊆ S then

if Length(Π) + 1 < K then
21: putTail(L, (ecurrent.Yinit, Posti (ecurrent.Ycurrent), ecurrent.Π + i))

end if
end if

24: end if
end for

end while
27: return 〈_, False〉 if no solution is found, or 〈π, True〉, π being any pattern validated in

Solution.

– An initial box V ⊂ R
n ,

– A current box Postπ (V ), image of V by the pattern π ,
– The associated pattern π .

For any element e of a list of this type, we denote by e.Yinit the initial box, e.Ycurrent the
current box, and by e.Π the associated pattern. We denote by ecurrent = takeHead(L) the
element on top of a list L (this element is removed from list L). The function putT ail(·,L)

adds an element at the end of the list L.
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Let us suppose one wants to control a box X ⊆ R. The list L of Algorithm 3 is used
to store the intermediate computations leading to possible solutions (patterns sending X in
R while never crossing B or R

n \ S). It is initialized as L = {(X, X,∅)}. First, a testing
of all the control modes is performed (a set simulation starting from X during time τ is
computed for all the modes in U ). The first level of branches is thus tested exhaustively.
If a branch leads to crossing B or R

n \ S, the branch is cut. Indeed, no following branch
can be accepted if a previous one crosses B. It is one of the improvements presented in
this paper. Otherwise, either a solution is found or an intermediate state is added to L. The
next level of branches (patterns of length 2) is then explored from branches that are not
cut. This process continues iteratively. At the end, either the tree is explored up to level K
(avoiding the cut branches), or all the branches have been cut at lower levels. List L is thus
of the form {(X, Postπi (X), πi )i∈IX }, where for each i ∈ IX we have Postπi (X) ⊆ S and
Tubeπi (X)

⋂
B = ∅. Here, IX is the set of indexes associated to the stored intermediate

solutions, |IX | is thus the number of stored intermediate solutions for the initial box X . The
number of stored intermediate solutions grows as the search tree of patterns is explored, then
decreases as solutions are validated, branches are cut, or the maximal level K is reached.

The storage of the intermediate solutions Postπi (X) allows us to reuse the computations
already performed. Even if the search tree of patterns is visited exhaustively, it already allows
us to obtain much better computation times than with Function Find_Pattern.

A second list, denoted byS inAlgorithm3, is used to store the validated patterns associated
to X , i.e., a list of patterns of the form {π j } j∈I ′

X
, where for each j ∈ I ′

X we have Postπ j (X) ⊆
R, Tubeπ j (X)

⋂
B = ∅ and Tubeπ j (X) ⊆ S. Here, I ′

X is the set of indexes associated the
the stored validated solutions, |I ′

X | is thus the number of stored validated solutions for the
initial box X . The number of stored validated solutions can only increase, and we hope that
at least one solution is found, otherwise, the initial box X is split in two sub-boxes.

Remark 4 Several solutions can be returned by Find_Pattern2, so further optimizations
could be performed, such as returning the pattern minimizing a given cost function. In prac-
tice, and in the examples given below, we return the first validated pattern and stop the
computation as soon as it is obtained (see commented line 12 in Algorithm 3).

Compared to [2], this new function highly improves the computation times, even though
the complexity of the two functions is theoretically the same, atmost inO(NK ).A comparison
between functions Find_Pattern and Find_Pattern2 is given in Sect. 6.

5 Experimentations

In this section, we apply our approach to different case studies taken from the literature. Our
solver prototype is written in C++ and based on DynIBEX [28]. The computations times
given in the following have been performed on a 2.80GHz Intel Core i7-4810MQCPUwith 8
GBofmemory. Note that our algorithm ismono-threaded so all the experimentation only uses
one core to perform the computations. The results given in this section havebeenobtainedwith
Function Find_Pattern2 with regards to our previous algorithm Find_Pattern [20]. We
compare our approach with two tools in the state of the art of control synthesis: PESSOA [29]
andSCOTS [30].Note that such a comparison is necessarily somehowunfair: in our approach,
we allow the trajectories starting at R to temporarily exit R (as far as they staywithin S) before
reentering R; in contrast, in PESSOA and SCOTS, the trajectories are strictly forbidden to
exit R, even temporarily. This explains why, in the examples below, our approach may be
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able to control the whole region R while PESSOA and SCOTS can only control subregions
of R.

5.1 A linear example: boost DC–DC converter

This linear example (without disturbance) is taken from [31] and has already been treated
with the state space bisection method in a linear framework in [2]. This running example is
used to verify that our approach is still valid for a simple linear case without disturbance, and
also to show the strong improvement in term of computation time.

The system is a boost DC–DC converter with one switching cell. There are two switching
modes depending on the position of the switching cell. The dynamics is given by the equation
ẋ(t) = Aσ(t)x(t)+ Bσ(t) with σ(t) ∈ U = {1, 2}. The two modes are given by the matrices:

A1 =
(

− rl
xl

0
0 − 1

xc
1

r0+rc

)

, B1 =
( vs

xl
0

)

,

A2 =
(

− 1
xl

(
rl + r0.rc

r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

r0
r0+rc

)

, B2 =
( vs

xl
0

)

.

with xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period is
τ = 0.5. The parameters are exact and there is no perturbation. We want the state to return
infinitely often to the region R, set here to [1.55, 2.15] × [1.0, 1.4], while never going out of
the safety set S = [1.54, 2.16] × [0.99, 1.41]. The goal of this example is then to synthesize
a controller with intrinsic stability.

The decomposition was obtained in less than 1 s with a maximum length of pattern set to
K = 6 and a maximum bisection depth of D = 3. A simulation is given in Fig. 4.

5.2 A polynomial example

We consider the polynomial system taken from [32], presented as a difficult example:
[
ẋ1
ẋ2

]

=
[−x2 − 1.5x1 − 0.5x31 + u1 + d1

x1 + u2 + d2

]

. (9)

The control inputs are given by u = (u1, u2) = Kσ(t)(x1, x2),σ(t) ∈ U = {1, 2, 3, 4}, which
correspond to four different state feedback controllers K1(x) = (0,− x22 + 2), K2(x) =
(0,− x2), K3(x) = (2, 10), K4(x) = (− 1.5, 10). We thus have four switching modes. The
disturbance d = (d1, d2) lies in [− 0.005, 0.005]×[− 0.005, 0.005]. The objective is to visit
infinitely often two zones R1 and R2, without going out of a safety zone S, and while never
crossing a forbidden zone B. Two decompositions are performed:

– a decomposition of R1 which returns {(Vi , πi )}i∈I1 with:
–

⋃
i∈I1 Vi = R1,

– ∀i ∈ I1, Postπi (Vi ) ⊆ R2,
– ∀i ∈ I1, Tubeπi (Vi ) ⊆ S,
– ∀i ∈ I1, Tubeπi (Vi )

⋂
B = ∅.

– a decomposition of R2 which returns {(Vi , πi )}i∈I2 with:
–

⋃
i∈I2 Vi = R2,

– ∀i ∈ I2, Postπi (Vi ) ⊆ R1,
– ∀i ∈ I2, Tubeπi (Vi ) ⊆ S,
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Fig. 4 Example 5.1: simulation from the initial condition (1.55, 1.4). The box R is in plain black. The
trajectory is plotted within time for the two state variables on the left, and in the state space plane on the right

– ∀i ∈ I2, Tubeπi (Vi )
⋂

B = ∅.
The input boxes are the following:

R1 = [− 0.5, 0.5] × [− 0.75, 0.0],
R2 = [− 1.0, 0.65] × [0.75, 1.75],
S = [− 2.0, 2.0] × [− 1.5, 3.0],
B = [0.1, 1.0] × [0.15, 0.5].

The sampling period is set to τ = 0.15. The decompositions were obtained in 2 min and
30 s with a maximum length of pattern set to K = 12 and a maximum bisection depth of
D = 5. A simulation is given in Fig. 5 in which the disturbance d is chosen randomly in
[− 0.005, 0.005] × [− 0.005, 0.005] at every time step.

5.3 Building ventilation

We consider a building ventilation application adapted from [33]. The system is a four room
apartment subject to heat transfer between the rooms, with the external environment, with
the underfloor, and with human beings. The dynamics of the system is given by the following
equation:

dTi
dt

=
∑

j∈N *\{i}
ai j (Tj − Ti ) + δsi bi (T

4
si − T 4

i ) + ci max

(

0,
Vi − V *

i

V̄i − V *
i

)

(Tu − Ti ).
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Fig. 5 Example 5.2: simulation from the initial condition (0.5, − 0.75). The trajectory is plotted within time
on the left, and in the state space plane on the right. In the sate space plane, the set R1 is in plain green, R2 in
plain blue, and B in plain black. (Color figure online)

The state of the system is given by the temperatures in the rooms Ti , for i ∈ N = {1, . . . , 4}.
Room i is subject to heat exchange with different entities stated by the indexes N * =
{1, 2, 3, 4, u, o, c}.

The heat transfer between the rooms is given by the coefficients ai j for i, j ∈ N 2, and
the different perturbations are the following:

– The external environment: it has an effect on room i with the coefficient aio and the
outside temperature To, varying between 27 and 30 ◦C.

– The heat transfer through the ceiling: it has an effect on room i with the coefficient aic
and the ceiling temperature Tc, varying between 27 and 30 ◦C.

– The heat transfer with the underfloor: it is given by the coefficient aiu and the underfloor
temperature Tu , set to 17 ◦C (Tu is constant, regulated by a PID controller).

– The perturbation induced by the presence of humans: it is given in room i by the term
δsi bi (T

4
si − T 4

i ), the parameter δsi is equal to 1 when someone is present in room i , 0
otherwise, and Tsi is a given identified parameter.

The control Vi , i ∈ N , is applied through the term ci max(0,
Vi−V *

i
V̄i−V *

i
)(Tu−Ti ). A voltage Vi

is applied to force ventilation from the underfloor to room i , and the commandof an underfloor
fan is subject to a dry friction. Because we work in a switched control framework, Vi can take
only discrete values, which removes the problem of dealing with a “max” function in interval
analysis. In the experiment, V1 and V4 can take the values 0 or 3.5 V, and V2 and V3 can take
the values 0 or 3 V. This leads to a system of the form of Eq. (1) with σ(t) ∈ U = {1, . . . , 16},
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Fig. 6 Example 5.3: perturbation (presence of humans) imposed within time in the different rooms

Fig. 7 Example 5.3: simulation from the initial condition (22, 22, 22, 22). The objective set R is in plain
black and the safety set S is in dotted black
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the 16 switching modes corresponding to the different possible combinations of voltages Vi .
The sampling period is τ = 10s.

The parameters Tsi , V
*
i , V̄i , ai j , bi , ci are given in [33] and have been identified with a

proper identification procedure detailed in [34]. Note that here we have neglected the term
∑

j∈N δdi j ci, j ∗ h(Tj − Ti ) of [33], representing the perturbation induced by the open or
closed state of the doors between the rooms. Taking a “max” function into account with
interval analysis is actually still a difficult task. However, this term could have been taken
into account with a proper regularization (smoothing).

The main difficulty of this example is the large number of modes in the switched system,
which induces a combinatorial issue.

The decomposition was obtained in 4 min with a maximum length of pattern set to K = 2
and a maximum bisection depth of D = 4. The perturbation due to human beings has
been taken into account by setting the parameters δsi equal to the whole interval [0, 1] for
the decomposition, and the imposed perturbation for the simulation is given Fig. 6. The
temperatures To and Tc have been set to the interval [27, 30] for the decomposition, and
are set to 30 ◦C for the simulation. A simulation of the controller obtained with the state-
space bisection procedure is given in Fig. 7, where the control objective is to stabilize the
temperature in [20, 22]4 while never going out of [19, 23]4.
5.4 A path planning problem

This last case study is based on a model of a vehicle initially introduced in [35] and success-
fully controlled in [18,19] with the tools PESSOA and SCOTS. In this model, the motion of
the front and rear pairs of wheels are approximated by a single front wheel and a single rear
wheel. The dynamics if the vehicle is given by:

ẋ = v0
cos(α + θ)

cos(α)
, ẏ = v0

sin(α + θ)

cos(α)
, θ̇ = v0

b
tan(δ), (10)

where α = arctan(a tan(δ)/b). The system is thus of dimension 3, (x, y) is the position
of the vehicle, while θ is the orientation of the vehicle. The control inputs are v0, an input
velocity, and δ, the steering angle of the rear wheel. The parameters are: a = 0.5, b = 1.
Just as in [18,19], we suppose that the control inputs are piecewise constant, which leads to
a switched system of the form of Eq. (1) with no perturbation. The objective is to send the
vehicle into an objective region R2 = [9, 9.5]× [0, 0.5]×]−∞,+∞[ from an initial region
R1 = [0, 0.5]×[0, 0.5]×[0, 0]. The safety set is S = [0, 10]×[0, 10]×]−∞,+∞[. There
is in fact no particular constraint on the orientation of the vehicle, but multiple obstacles are
imposed for the two first dimensions, they are represented in Fig. 8. The input velocity v0
can take the values in {− 0.5, 0.5, 1.0}. The rear wheel orientation δ can take the values in
{0.9, 0.6, 0.5, 0.3, 0.0,− 0.3,− 0.5,− 0.6,− 0.9}. The sampling period is τ = 0.3.

Note that for this case study we used an automated pre-tiling of the state space permitting
to decompose the reachability problem in a sequence of reachability problems. Using patterns
of length up to K = 10, we managed to successfully control the system in 3619 s. In this
case, the pattern is computed until almost the end without bisection as shown in Fig. 8. To
obtain the last steps, the box is bissected in four ones by Algorithm 1. After that, patterns are
found for the four boxes:

– [8.43, 8.69]; [2.52, 2.78] : {7000166}
– [8.43, 8.69]; [2.78, 3.03] : {7000256}
– [8.69, 8.94]; [2.52, 2.78] : {00055}
– [8.69, 8.94]; [2.78, 3.03] : {000265}
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Fig. 8 Example 5.4: set simulation of the path planning example. The green box is the initial region R1, the
blue box is the target region R2. The union of the red boxes is the reachability tube. In this case, the target
region is not attained without bisection. (Color figure online)

The four set simulations obtained for the last steps are given in Fig. 9.

6 Performance tests

We present a comparison of functions Find_Pattern, Find_Pattern2 w.r.t. the computa-
tion times obtained, and with the state-of-the-art tools PESSOA [29] and SCOTS [30].

Table 1 shows a comparison of functions Find_Pattern and Find_Pattern2, which
shows that the new version highly improves computation time. We can note that the new
version is all the more efficient as the length of the patterns increases, and as obstacles cut the
research tree of patterns. This is why we observe significant improvements on the examples
of the DC–DC converter and the polynomial example, and not on the building ventilation
example, which only requires patterns of length 2, and presents no obstacle.

Table 2 shows of comparison of function Find_Pattern2 with state-of-the-art tools
SCOTS and PESSOA. On the example of the DC–DC converter, our algorithm manages to
control the whole state space R = [1.55, 2.15] × [1.0, 1.4] in less than 1 s, while SCOTS
and PESSOA only control a part of R, and with greater computation times. Note that these
computation times vary with the number of discretization points used in both, but even
with a very fine discretization, we never managed to control the whole box R. For the
polynomial example, we manage to control the whole boxes R1 and R2, as with SCOTS and
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Fig. 9 Example 5.4: set simulation of the path planning example after bisection. The green boxes are the
initial regions obtained by bisection, the blue box is the target region R2. The union of the red boxes is the
reachability tube. (Color figure online)

Table 1 Comparison of Find_Pattern and Find_Pattern2

Example Computation time

Find_Pattern (s) Find_Pattern2 (s)

DC–DC converter 1609 < 1

Polynomial example Time out 150

Building ventilation 272 228

Path planning Time out 3619

in a comparable amount of time. However, PESSOA does not support natively this kind of
nonlinear systems. For the path planning case study, on which PESSOA and SCOTS perform
well, we have not obtained computations times as good as they have. This comes from the
fact that this example requires a high number of switched modes, long patterns, as well as
a high number of boxes to tile the state space. This is in fact the most difficult application
case of our method. This reveals that our method is more adapted when either the number
of switched modes of the length of patterns is not high (though it can be handled at the cost
of high computation times). Another advantage is that we do not require a homogeneous
discretization of the state space. We can thus tile large parts of the state space using only few
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Table 2 Comparison with
state-of-the-art tools

Example Computation time

FP2 (s) SCOTS (s) PESSOA (s)

DC–DC converter < 1 43 760

Polynomial example 150 131 –

Path planning 3619 492 516

boxes, and this often permits to consider much fewer states than with discretization methods,
especially in higher dimensions (see [36]).

7 Conclusion

Wepresented amethod of control synthesis for nonlinear switched systems, based on a simple
state-space bisection algorithm, and on guaranteed integration. The approach permits to deal
with stability, reachability, safety and forbidden region constraints. Varying parameters and
perturbations can be easily taken into account with interval analysis. The approach has been
numerically validated on several examples taken from the literature, a linear onewith constant
parameters, and two nonlinear ones with varying perturbations. Our approach compares well
with the state-of-the art tools SCOTS and PESSOA.

We would like to point out that the exponential complexity of the algorithms presented
here, which is inherent to guaranteed methods, is not prohibitive. Two approaches have
indeed been developed to overcome this exponential complexity. A first approach is the use
of compositionality, which permits to split the system in two (or more) sub-systems, and
to perform control synthesis on these sub-systems of lower dimensions. This approach has
been successfully applied in [36] to a system of dimension 11, and we are currently working
on applying this approach to the more general context of contract-based design [37]. A
second approach is the use of Model Order Reduction, which allows to approximate the full-
order system (1) with a reduced-order system, of lower dimension, on which it is possible to
performcontrol synthesis. The bounding of the trajectory errors between the full-order and the
reduced-order systems can be taken into account, so that the induced controller is guaranteed.
This approach, described in [38], has been successfully applied on (space-discretized) partial
differential equations, leading to systems of ODEs of dimension up to 100,000. The present
work is a potential ground for the application of such methods to control nonlinear partial
differential equations, with the use of proper nonlinear model order reduction techniques.
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