Form Methods Syst Des (2017) 51:308-331 @ CrossMark
DOI 10.1007/510703-017-0300-0

On compiling Boolean circuits optimized for secure
multi-party computation

Niklas Biischer!® - Martin Franz! -
Andreas Holzer? - Helmut Veith? - Stefan Katzenbeisser!

Published online: 14 September 2017
© Springer Science+Business Media, LLC 2017

Abstract Secure multi-party computation (MPC) allows two or more distrusting parties to
jointly evaluate a function over private inputs. For a long time considered to be a purely
theoretical concept, MPC transitioned into a practical and powerful tool to build privacy-
enhancing technologies. However, the practicality of MPC is hindered by the difficulty to
implement applications on top of the underlying cryptographic protocols. This is because the
manual construction of efficient applications, which need to be represented as Boolean or
arithmetic circuits, is acomplex, error-prone, and time-consuming task. To facilitate the devel-
opment of further privacy-enhancing technology, multiple compilers have been proposed that
create circuits for MPC. Yet, almost all presented compilers only support domain specific
languages or provide very limited optimization methods. In this work (this is an extended
and revised version of the paper ‘Secure Two-party Computations in ANSI C’ (Holzer et
al., in: ACM CCS, 2012) that reflects the progress in secure computation and describes the
current optimization tool chain of CBMC-GC) we describe our compiler CBMC-GC that
implements a complete tool chain from ANSI C to circuit. Moreover, we give a comprehen-
sive overview of circuit minimization techniques, which we have identified and adapted for
the creation of efficient circuits for MPC. With the help of these techniques, our compilation
approach allows for a high level of abstraction from the cryptographic primitives used in
MPC protocols, as well as the complex design of digital circuits. By using the model checker
CBMC as a compiler frontend, we illustrate the link between MPC, formal methods, and
digital logic design. Our experimental results illustrate the effectiveness of the implemented
optimizations techniques for various example applications. In particular, compared with other
state-of-the-art compilers, we show that CBMC-GC compiles circuits from the same source
code that are up to four times smaller.

BJ Niklas Biischer
buescher @seceng.informatik.tu-darmstadt.de

Bd Stefan Katzenbeisser
katzenbeisser @seceng.informatik.tu-darmstadt.de

Technische Universitdt Darmstadt, Darmstadt, Germany

Technische Universitit Wien, Vienna, Austria

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0300-0&domain=pdf
http://orcid.org/0000-0002-0146-7142

Form Methods Syst Des (2017) 51:308-331 309

Keywords Secure multi-party computation - Compiler - Logic synthesis

1 Introduction

In secure multi-party computation (MPC), two or more distrusting parties jointly evaluate a
function over their inputs in such a way that each party keeps its input unknown to the other
parties. MPC can be visualized by imagining a trusted third party (TTP), which receives the
inputs of all parties, computes the desired functionality, and returns the result back to the input
parties. Yet, instead of actually invoking a physical TTP, a cryptographic secure computation
protocol is run that simulates such a TTP, while guaranteeing correctness and privacy. As
such, MPC provides a generic approach for privacy-enhancing technologies by protecting
sensitive data during computation steps on potentially untrusted platforms. For a long time
seen only as a theoretical construction, many protocols and optimizations made MPC prac-
tical for various real world applications, e.g., electronic auctions [6] or privacy-preserving
face recognition [18].

MPC protocols require an application (i.e., a functionality f) to be described in the form
of Boolean (e.g., Yao’s Garbled Circuits protocol [46], GMW [20]) or Arithmetic circuits
(e.g., Sharemind [5], SPDZ [14]), quite similar to classic hardware design. During protocol
runtime, each gate in the circuit is evaluated in software using different cryptographic instruc-
tions and communication patterns depending on the gate types. Hence, a circuit description
can be seen as the assembly language of MPC protocols. In this work, we only focus on the
creation of Boolean circuits.

1.1 Compilation for MPC

The manual construction of efficient Boolean circuits from a high-level functionality descrip-
tion is a complex, error-prone, and time-consuming task. Early MPC protocols (or the circuits
used in early MPC protocols) were designed by hand. Clearly this approach is infeasible for
any larger application. In this work, we describe our compiler CBMC-GC, the first com-
piler of ANSI C programs for MPC. CBMC-GC is a high-level synthesis tool that allows
a programmer to write the function f to be computed by MPC in the form of a C pro-
gram. Consequently, the programmer can view MPC as a dedicated hardware platform, and
compile standard C programs, which are only required to have bounded loops to achieve
obliviousness of the computation, to this platform. For this purpose, the CBMC-GC com-
piler transforms the C source code into a Boolean circuit optimized for MPC preserving the
bit-precise semantics of C.

Technically, CBMC-GC is based on the software architecture of the model checker CBMC
by Clarke et al. [11], which was designed to verify ANSI C source code. CBMC transforms
an input C program f, including assertions that encode properties to be verified, into a
Boolean formula B ¢, which is then analyzed by a SAT solver. The formula B is constructed
in such a way that the Boolean variables correspond to the memory bits manipulated by
the program and to the assertions in the program. CBMC is an example of a bit-precise
model checker, i.e., the formula By encodes the real life memory footprint of the analyzed
program on a specific hardware platform under ANSI C semantics. (CBMC allows the user
to configure the hardware platform, e.g., the word size.) The construction of the formula B ¢
moreover ensures that satisfying assignments found by the SAT solver are program traces
that violate assertions in the program. Thus, CBMC is essentially a compiler that translates
C source code into Boolean formulas. Our tool CBMC-GC (CBMC for Garbled Circuits)

@ Springer

310 Form Methods Syst Des (2017) 51:308-331

C Program ——=—] CBMC-GC [~ Circuit

Party A

MPC
Protocol
(Network
Transfer)

Party B

MPC Framework

Intermediate H Loop HSingle Static}_)

Representation Unrolling Assignment

Circuit In- Circuit
stantiation | | Minimization

Fig. 1 Tool chain of CBMC-GC from C to circuits, ready for their use in secure computation, illustrated for
the two party case. The compilation steps are discussed in Sect. 4.1

builds on the core engine of CBMC. We modify CBMC to transform a C program into a
Boolean circuit rather than a formula. While CBMC optimizes the resulting formulas for easy
solvability using a SAT solver, we changed the CBMC engine such that it outputs circuits
suiting the requirements of Boolean circuit based MPC (described in Sect. 2.1). CBMC-GC'’s
tool chain is illustrated in Fig. 1. The input source passes multiple compilation steps, such as
parsing and transformation into an intermediate representation, discussed in detail in the next
sections, before being converted into a Boolean circuit. This Boolean circuit can then be used
in any MPC protocol (illustrated is a two-party secure computation protocol) as application
description. Thus, compilation of circuits is separated from the actual MPC protocol and the
circuit obtained by CBMC-GC is subsequently ready for use in any MPC framework.

1.2 Optimization

For almost all deployment scenarios of MPC protocols, the circuit has to be generated once,
whereas the MPC protocol, evaluating the circuit, will be run multiple times. Hence, due
to the high computational costs of MPC protocols compared to generic computation, it is
very worthwhile to minimize the size of circuits used in MPC protocols. However, during
compilation an efficient high-level description of a functionality does not necessarily translate
to an efficient representation as a circuit. For example, in Sect. 5, we compare the circuit sizes
when compiling a merge and a bubble sort algorithm. Merge sort has a commonly superior
efficiency when computed on a RAM based architecture, whereas bubble sort compiles to a
significantly smaller circuit representation. To provide another example, when writing source
code for RAM based architectures, developers commonly rely on a few data types that are
available, e.g., unsigned int or long. This leads to unused bits in a circuit, where
arbitrarily bit-widths can be used. However, it is a tedious programming task to specify
precise bit-widths for every variable to achieve minimal circuits.

To offer a level of abstraction from logic synthesis and to facilitate the use of MPC,
compilers that allow the compilation of generic code into efficient circuits, henceforth called
optimizing compilers, are of high interest. Thus, optimizing compilers should for example
identify overly allocated bit-widths on the source code level and adjust them on the gate circuit
level accordingly. Without advanced optimization techniques, the developer is required to be
very familiar with logic synthesis for MPC and compiler internals to write code that compiles
into an efficient circuit and thus, efficient application.

In this work, we also highlight optimization techniques implemented in CBMC-GC since
its initial release that allow to compile efficient circuits for MPC from standard ANSI-C code.
For the creation of optimized circuits, a fixed-point algorithm is employed that combines
techniques from classic logic synthesis, such as constant propagation, SAT sweeping, and
rewrite patterns to compile circuits that are significantly smaller than those generated by recent
related work. For the exemplary computation of the Hamming distance we report circuit sizes

@ Springer

Form Methods Syst Des (2017) 51:308-331 311

that are two times smaller, whereas for the compilation of a software implementation of [IEEE
compliant floating point addition, we report circuit sizes that are even four times smaller. The
created circuits are comparable in size when adapting state-of-the-art commercial tool chain
from a hardware description language (HDL) to circuits for MPC [43]. However, the authors
of [43] also observed that when extending their tool chain towards high-level synthesis,
which is comparable to the functionality of CBMC-GC, the resulting circuits are three to
nine times larger than the circuits created from an HDL description. Consequently, our non-
standard compilation approach represents a promising alternative for the creation of efficient
circuits.As the complexity of most MPC protocols scales linearly with the circuit size, an
improvement in circuit size directly translates into a similar improvement in computation
and communication costs when evaluating the circuit in MPC.

1.3 Outline

In the remaining part of this paper, we first discuss how secure computation can be realized
over Boolean circuits in Sect. 2 and illustrate the need for optimizing compilers. Then, we
present a survey on existing compilers for MPC and compare these compilers regarding
their optimization techniques in Sect. 3. We introduce CBMC-GC’s compilation chain and
describe its optimization techniques in Sect. 4. Finally, we present an evaluation for various
example applications in Sect. 5 before concluding our work in Sect. 6.

2 Preliminaries

In this section we give an introduction into Boolean circuit based MPC, before illustrating
the need for optimizing compilers that create circuits for MPC based on high-level language
descriptions (high-level synthesis).

2.1 Secure computation over Boolean circuits

Yao’s garbled circuits [45,46], Goldreich—-Micali-Wigderson (GMW) [20] and many other
secure computation protocols, such as [30,38], have in common that they operate on func-
tionality descriptions in form of Boolean circuits. Similar to digital circuits, a Boolean circuit
for MPC is a directed acyclic graph (DAG) consisting of Boolean gates (Boolean functions).
For each gate in the circuit the protocols execute cryptographic instructions, depending on
the particular gate type.

A circuit for MPC has two sets of input wires, representing the input of each party, and one
or more sets of output wires, representing the output of the computation. In most protocols,
the output wires can be shared between all parties, or used as individual outputs for each party.
Commonly, circuits in MPC consist of two-input (binary) gates, e.g., AND, XOR, and (unary)
inverters, whose output can be used as input to multiple subsequent gates. Circuits with binary
gates allow a very generic use, as they can be evaluated in almost all MPC protocols.

2.2 Cost model

In MPC protocols different gates have different evaluation costs. Typically, the evaluation of
non-linear gates (i.e., gates that cannot be represented by a Boolean function that computes
a linear combination of its inputs, e.g., AND, NAND and OR) is costly in the number of
cryptographic operations and communication effort, while the evaluation of linear gates (e.g.,
XOR) is essentially free [20,26]. This distinction between linear and non-linear gates holds

@ Springer

312 Form Methods Syst Des (2017) 51:308-331

for most known MPC protocols, independent of the underlying cryptographic paradigm, such
as circuit garbling, linear or Boolean secret sharing. Therefore, to achieve efficiency when
creating circuits for MPC, the main optimization goal is to produce circuits with a minimal
number of non-linear gates.

2.3 Notation

We notate the non-linear size of a circuit with s, i.e., the total number of non-linear (non-
XOR) gates of a circuit. Furthermore, we denote bit strings in lower-case letters, e.g., x.
We refer to individual bits in capital letters X and denote their negation with X. We refer
to a single bit at position i within a bit string as X;. The least-significant bit (LSB) is Xg.
Moreover, we denote the Boolean XOR gate with @, AND with - and OR with +. When
useful, we abbreviate the AND gate A - B with AB.

We remark, that some MPC protocols only provide protocols for AND and XOR gates.
Yet, circuit descriptions with more extensive gate types can be emulated by a combination
of AND, XOR, and the constant wire ‘1’. Moreover, with the practically free evaluation of
linear gates, other gate types can be substituted with no additional evaluation costs when not
available. For example, the unary inverter can be expressed as X = 1 @ X or the binary OR
operation can be substituted by two XOR and one AND A + B = (A ® B) & (AB).

2.4 Two’s complement

The two’s complement is the common representation of signed binary numbers in hardware.
This representation has the advantage that arithmetic operations for unsigned binary numbers
such as addition, subtraction, and multiplication can be reused. In the two’s complement, neg-
ative numbers are represented by flipping all bits and adding one: —x = X+ 1. In the following
sections, we assume a two’s complement representation, when referring to negative numbers.

2.5 The need for optimization in compilation for MPC

To illustrate the need for optimization in circuit compilation from high-level code, we make
use of a simple example code snippet given in Listing 1. The example begins in Line 7, where
an input variable is declared that is only instantiated during protocol evaluation. Hence, its
actual value is unknown during compile time. Next, a variable t is declared and initialized
with a constant value of 43,210. Then, a helper function, which is declared in Line 1, is called
that checks whether the given argument is an odd number. Depending on the result of the
helper function, t will be incremented by one in Line 10.

Listing 1 Code example to illustrate the need for optimization on the gate level.

1 int is_odd (int wval) {

2 return ((val & 1) == 1);
3}

4

5 dint main () {

6 [...]

7 int INPUT_A_x;

8 int t = 43210;

9 if (is_odd (INPUT_A_x) {
10 t = t + 1;

11 }

12 [...]

13}

@ Springer

Form Methods Syst Des (2017) 51:308-331 313

int t

AND ADD

EQUAL

0x00000001
'T'I

int INPUT A X 0x00000001

0x00000001
int t

X

Fig. 2 Circuit after naive translation from source code, consisting of four building blocks, namely a logical
AND, an equivalence comparison (EQUAL), a binary adder (ADD), and a multiplexer (IF)

A naive translation of this code into a Boolean circuit would lead to a circuit consisting of
four building blocks, namely, a logical AND operator, an integer equality check, an integer
addition as well as a conditional integer assignment. Figure 2 illustrates the result of such a
direct translation into a circuit. When using the best known building blocks (see Sect. 4.2)
and assuming a standard integer bit-width of 32 bits, 31 or 32 non-linear gates are required
for each building block. This results in a total circuit size of s =2 - 31 + 2 - 32 = 126.

However, an optimizing compiler could detect that the comparison is only a single bit
comparison, whose result is equal to the least significant bit of INPUT_A_x. Hence, no
gate is required for the comparison. Moreover, because variable t is initialized by an even
constant, the addition in Line 10 can be folded into an assignment of a constant, which leads
to a circuit that consists only of a single wire and that does not even contain a single gate,
namely:

t@0 = INPUT_A_x@0

there we use the notation @n to symbolize the accesses to the n-th bit, with @0 being the
least significant bit. We observe a significant difference in this simple example between
naive translation and optimized compilation. Such a size reduction directly relates to an
improvement in the protocol’s runtime, as the (amortized) computational cost of an evaluating
MPC protocol scales linear with the circuit size.

To gain an optimized circuit from generic source code, compilers can follow two strate-
gies. First, the compiler can use symbolic execution and abstract interpretation to compute
constants as well as the actual used bit sizes. Second, the unoptimized circuit can be optimized
on the gate level, by using various gate-level optimization techniques. Both approaches are
applied by CBMC-GC.

2.6 Circuit minimization

Beside to the practical work on compilers for MPC, the isolated task of minimizing the non-
linear complexity of Boolean circuits has also been studied in different areas of cryptography.
In one of the first works on non-linear circuit complexity (also known as multiplicative
complexity) Schnorr [41] showed by a counting argument that the circuit complexity of
almost all Boolean functions on n variables is exponential in n. Interestingly, is has been
shown by Turan and Peralta [44] that only n — 1 non-linear gates are required for all functions
with less than 6 variables. To the best of our knowledge, there is no known explicit function
with super-linear circuit complexity. Furthermore, concrete circuits have been minimized for
cryptanalysis or to achieve side-channel resistance in various works, e.g., [13,22].

@ Springer

314 Form Methods Syst Des (2017) 51:308-331

3 Compilers for Boolean circuit based MPC

In this section, we survey existing compilers for Boolean circuit based MPC and illustrate
the relevance in related field of cryptography. We observe that the compilation of Boolean
circuits for MPC shares many similarities with classic hardware design. Yet, there are multiple
subtle differences. First, both differ in their application. Circuits for MPC have a very generic
use as interactive (end-user) applications, whereas classic hardware design mostly focuses on
processing or accelerating units. Thus, for a widespread use of privacy-enhancing technology
in form of MPC, high-level synthesis is desirable. Second, circuits for MPC protocols purely
rely on combinational logic rather than sequential logic, because building blocks for reusable
storage, such as Flip-flops, are not available.! Third, no physical properties of circuits have
to be considered, e.g., such as the fan-out degree of gates, as the circuits in MPC are only
evaluated virtually. Fourth, the costs for different types of gates differ significantly. In classic
logic synthesis, Boolean NAND gates are favored over XOR gates due to their placement
costs. However, as mentioned above, in most MPC protocols the evaluation of linear gates
is practically for free, whereas the evaluation of non-linear gates is costly. Therefore, the
main goal in circuit synthesis for MPC is to produce circuits with a minimal number of
non-linear gates. Finally, even though not targeted in this work, we note that MPC is on the
verge of handling circuits that are larger than those produced in classic hardware design. For
example, a very recent accelerator of NVIDIA, the Tesla P100 Computing Platform, has 15
Billion (B) transistors.> Garbling a circuit with 15B logical gates with a semi-honest Yao’s
Garbled Circuit implementation (e.g., [2]) requires less than 20 min using a single core on a
commodity CPU.

When introducing the first practical implementation of an MPC protocol, Malkhi et al [33]
realized the need for tool support and presented a first compiler alongside their protocol imple-
mentation. Since then, multiple compiler prototypes for use in MPC have been proposed, as
the size of realizable applications has grown. Since many of these compilers follow different
approaches, in this section, we give a classification of (recently) published compilers that
create circuits for Boolean circuit based MPC.

3.1 Compiler classification

Compilers for MPC can be categorized based on whether they compile from a (minimalistic)
domain-specific language (DSL) or from a widely used common programming language.
Moreover, compilers can be independent or integrated into an MPC framework. Integrated
compilers produce an intermediate representation, which is interpreted (instantiated by a
circuit) only during the execution of an MPC protocol. These interpreted circuit descriptions
commonly allow a more compact circuit representation. Independent compilers create cir-
cuits independent from the executing framework, and thus have the advantage that produced
circuits can be optimized to the full extent during compile time and are more versatile in their
use in MPC frameworks. Some integrated compilers support the compilation of mix-mode
secure computation. Mix-mode computation allows to write code that distinguishes between
oblivious (private) and public computation. This leads to an even tighter coupling between
compiler and execution framework, but allows to express a mix-mode program in a single lan-
guage. Moreover, some integrated compilers support the compilation of programs for hybrid

' We note that MPC protocols can be combined with protocols for oblivious storage, e.g., ORAM [21], under
various security and performance trade-offs. These constructions are beyond the scope of this work.

2 https://devblogs.nvidia.com/parallelforall/inside-pascal/.

@ Springer

https://devblogs.nvidia.com/parallelforall/inside-pascal/

Form Methods Syst Des (2017) 51:308-331 315

secure computation protocols, which combine different cryptographic approaches. The first
example is the TASTY [23] compiler, which creates descriptions that combine homomor-
phic encryption and Yao’s Garbled Circuits based computation. More recent compilers, e.g.,
ObliVM [32], combine Yao’s Garbled Circuits with protocols for oblivious data structures.

We begin by giving an overview on compilers that use a DSL as input language. The Fair-
play framework by Malkhi et al. [33] started research on practical MPC. Fairplay compiles a
domain specific hardware description language called SFDL into a gate list for use in Yao’s
Garbled Circuits. Following Fairplay, Henecka et al. [23] presented the TASTY compiler,
which compiles its own DSL, called TASTYL, into an interpreted hybrid protocol. The PAL
compiler by Mood et al. [37] aims at low-memory devices as the compilation target. PAL also
compiles Fairplay’s hardware description language. The KSS compiler by Kreuter et al. [28]
is the first compiler that shows scalability up to a billion gates and uses gate level optimiza-
tion methods, such as constant propagation and dead-gate elimination. KSS compiles a DSL
into a flat circuit format. TinyGarble by Songhori et al. [43] uses (commercial) hardware
synthesis tools to compile circuits from hardware description languages such as Verilog or
VHDL. On the one hand, this approach allows the use of a broad range of existing func-
tionality in hardware synthesis, but also shows the least degree of abstraction, by requiring
the developer to be experienced in hardware design. We remark, that high level synthesis
from C is possible, yet, as the authors note, this leads to significantly less efficient circuits.
Recently, Mood et al. [36] presented the Frigate compiler, which aims at very scalable and
extensively tested compilation of another DSL. Frigate and TinyGarble produce compact
circuit descriptions that compress sequential circuit structures.

Examples for mix-mode frameworks that compile from a DSL are L1, ObliVM, and
Obliv-C. Similar to TASTY, the L1 compiler by Schropfer et al. [42] compiles a DSL into a
mixed-mode protocol including homomorphic encryption. ObliVM by Liu et al. [32] extends
SCVM [31], which both compile a DSL that support the combination of oblivious data
structures with MPC. This approach allows the efficient development of oblivious algorithms.
Yet, both compilers provide only very limited gate and source code optimization methods.
Obliv-C by Zahur and Evans [47] also supports oblivious data structures, but follows a
different, yet elegant approach by compiling a modified variant of C into an executable
application that also supports mix-mode computations.

The CBMC-GC compiler is the first of two compilers that creates circuits for MPC from
a common programming language (ANSI-C). CBMC-GC follows the independent compi-
lation approach and produces a single circuit description. Moreover, CBMC-GC applies
source code optimization through symbolic execution and utilizes state of the art logic syn-
thesis minimization methods. CBMC-GC has also been extended to compile depth-minimal
circuits [8], required for multi-round MPC protocols, to compile parallel circuits for more
efficient parallelization of MPC protocols [10], and also to optimize large scale circuits [9].

The PCF compiler by Kreuter et al. [27] also compiles C, using the portable LCC compiler
as a frontend. PCF compiles an intermediate bytecode representation given in LCC into a
interpreted circuit format. PCF shows greater scalability than CBMC-GC, yet only supports
comparably limited optimization methods that are only applied locally for every function.

Mood et al. [36] provide a detailed experimental comparison of the aforementioned com-
pilers and pointed out that reliability, correctness and gate-level optimizations are very limited
for almost all compilers. In Table 1 we give a summary of the more recent compilers with a
special focus on the source and gate level optimization methods. We distinguish their input
language and their support for mix mode and interpreted languages. With the exception of
CBMC-GC and TinyGarble, we observe that the compilers (including [36]) only provide
limited gate level and source code optimization methods, in particular constant arguments

@ Springer

Form Methods Syst Des (2017) 51:308-331

316

Kem 10edwos e ur s)00[q Surp[ing [enuanbas saros 93] pue s[qrenAuly, ,
SIMOANYIIL PAseq NV Y 10§ 9pood a1Aq paziundo sareroudas yeq) 9T 19[1dwod pudjuoly & sasn 10d g

DD-DINED JO UOISIIA JUILIND Y} Ul PaXI Uadq dAey Jey) uonejou ndinoandur oy yiim suoqe uone[idwos paynuapt [9¢] ‘[e 10 POOIA ,

sanbruyoa) uonvznudo 1oAd[-91e3 pue 901nos parjdde ay) pue ‘[9¢] Te 19 POOIN Aq Apnis 9y} U0 paseq (SsauIdaL100 uone[idwod) A1umwuw may) ‘OJIN

apow-x1u 110ddns Aoy 1oyioym ‘Qumuni SuLnp paja.d.iajul ST eyl UoNeIuasaIdal AJRIPIULIAIUI U 10 JINOIID 9)9[dwod 03 a[idwod Ay Iaypaym 28pndun] 95Imos ay) st paredwo)

uoneurwIe 9)e3 peap ‘uonededoid jueisuod (800

Surdooms [vS ‘Sunumar ‘uonededoid jueisuod ‘uoneurwife Aqes pea

uoneurwpd es peap ‘uonededord jueisuod [9¢] paywI] pue [0
ON

uoneurw[31e3 peap ‘voneSedoid jueisuod (o0

uoneurwif 9je3 peop ‘uonededoid jueisuo)

Surdooms IS ‘Sunumar waloay) ‘uoneedord jueisuod ‘uoneurwife 9Jes peaq

8207

B/Uu

€00
ON
qPaNwry
ON
QoD

SOX
SOX

ON
ON
ON
ON

2SOA

ON
oN

SOX
SOX
ON
ON
ON

oON
ON

SOx
SOx
SOx
ON
ON

18a 91 Qs

TAHA 30[I0A 6T 9[qIeDAuL],
D-ISNV

1Sd S1.DA90

1SA STAAN0

O ISNV €1.40d

1Sa T1.SSY

OISNV T1.09-DED

1do 19A9] Q1B

Surpjoy/-doid Jsuo)

[9¢] AnjelN opow-X1jA pjaidiouy

ofen3ue] 1endwo)

DdIA Paseq 3o uedjoog 1oy uosiredwos roidwo) | Iqel,

pringer

as

Form Methods Syst Des (2017) 51:308-331 317

in function calls are not propagated, which is essential when providing an programming
interface to non MPC and digital logic experts.

4 From ANSI C to size minimized circuits

In this section, we first describe the architecture of our compiler CBMC-GC? (Sect. 4.1) that
translates ANSI-C into circuits satisfying the requirements described above by adapting the
software model checker CBMC [11]. Then, we describe the optimization techniques that have
been identified as effective and that have been implemented in CBMC-GC for the creation of
size minimized circuits for MPC, namely, efficient building blocks (Sect. 4.2) and gate-level
minimization techniques (Sect. 4.3).

4.1 CBMC-GC’s architecture

CBMC-GC uses the core engine of CBMC. Yet, instead of optimizing a Boolean formula
towards its use in SAT solvers, itis optimized towards its use in MPC frameworks. Using a well
tested bit-precise model checker equips CBMC-GC with a reliable compilation architecture.
The compilation pipeline of CBMC-GC, illustrated in Fig. 1, is divided into five steps,
where the first three steps are part of the standard CBMC processing, and the last two were
adapted or have been added to optimize circuits for MPC. We begin with a description of the
modifications of the input source code.

4.1.1 Code for CBMC-GC and circuit mapping

When programming for CPU/RAM architectures, inputs and outputs of a program are com-
monly realized with standard libraries that themselves invoke system calls of the operating
systems. This is in contrast to MPC, where the input and output interface is defined by
input/output (I/0) wires of the circuit. To realize the I/O mapping between C code and cir-
cuits, we use a special naming convention of I/O variables. The input variables are then
left uninitialized in the source code and are only assigned a value during the evaluation of
the circuit in an MPC framework. Hence, instead of adding additional standard libraries,
CBMC-GC requires the developer to name input and output variables accordingly.

To illustrate this naming convention, we give an example source code of the millionaires’
problem in Listing 2. The shown function is a standard C function, where only the input and
output variables are specifically annotated as designated input of party P4 or Pg (Lines 2
and 3) or as output (Line 4). Hence, variables that are inputs of party P4 or Pp have to be
named with a preceding INPUT_A or INPUT_B. Similar, output variable names have to start
with OUTPUT. Aside from this naming convention, arbitrary C computations are allowed to
produce the desired result, in this case a simple comparison (Line 5).

Listing 2 CBMC-GC code example for Yao’s Millionaires’ problem.

void millionaires () {
int INPUT_A_income; // Input Party A
int INPUT_B_income; // Input Party B
int OUTPUT_result = 0; // Output

if (INPUT_A_income > INPUT_B_income) {
OUTPUT_result = 1;
}

3 CBMC-GC is available at www.seceng.de/research/software/cbmce-gc/.

@ Springer

www.seceng.de/research/software/cbmc-gc/

318 Form Methods Syst Des (2017) 51:308-331

For simplicity, CBMC-GC only distinguishes between two parties and uses a shared
output, which is the simplest case of secure two-party computation. However, this does not
prevent the compilation of source code for more than two parties or code with outputs that
are designated for specific parties only. This is because, during compilation CBMC-GC only
distinguishes input and output variables, but not the association with any party. Hence, to
compile code for more parties, an application developer can use its own naming scheme that
extends the existing one.

As CBMC-GC outputs a mapping between every I/O variable and their associated wires
in the circuit, this information can be used in every MPC framework to correctly map wires
back to the designated parties.

Moreover, we remark that code for CBMC-GC must terminate in a finite number of steps.
Therefore, CBMC-GC expects a number k as input which bounds the size of program traces
(and CBMC-GC also determines if this bound is sufficient). This constraint is inherited from
CBMC. However, for MPC this property is actually a mandatory requirement rather than
a limitation. This is because combinatorial circuits have a fixed size and thus deterministic
evaluation time in any MPC protocol. This is a logical consequence of the requirement that
the runtime of a MPC protocol should not leak any information about the inputs of either

party.

4.1.2 Compile chain

Given a source code as described above, it passes the following compilation steps of CBMC-
GC:

1. Intermediate representation On input of an ANSI C program f and a bound k, CBMC(-
GO) first translates the program into an intermediate representation—a so-called GOTO
program. In a GOTO program, all control statements like while-loops are transformed into
if-then-else statements (guarded GOTOs) with conditional jumps, similarly to assembly
language.

2. Loop unrolling To make the program acyclic, the loops are replaced by a sequence of
k nested 1if statements; the sequence is followed by a special assertion (called unwind-
ing assertion) which can detect a missed loop iteration due to insufficient k. Similarly,
recursive function calls are expanded k times. This process is called “unwinding” the
program. For programs with at most k steps, unwinding preserves the semantics of the
program.

3. Single static assignment Once the program is acyclic, it is turned into single-static assign-
ment (SSA) form. This means that each variable x in the program is replaced by fresh
variables xp, x2, ... where each of them is assigned a value only once. For instance, the
code sequence

x=x+1; xX=X*2;
is replaced by
Xo=xX1+1; X3=xX2*2;

The SSA format has the important advantage that we can now view the assignments to
program variables as mathematical equations. (Note that, an equation, such x=x+1,, is
unsolvable.) The indices of the variables essentially correspond to different intermediate
states in the computation.

@ Springer

Form Methods Syst Des (2017) 51:308-331 319

4. Circuit instantiation In the next step, CBMC replaces the variables by bit vectors. For
instance, depending on the architecture, an integer variable will be represented by a bit
vector of size 16 or 32. For more complex variables such as arrays and pointers, CBMC
uses more advanced techniques [12] whose presentation we omit for simplicity.
Correspondingly, operations over variables (e.g. arithmetic computations or compar-
isons) are naturally translated into Boolean functions over the corresponding variables.
Internally, CBMC realizes these Boolean functions as circuits, henceforth called building
blocks, whose construction principles are inspired by methods from hardware design.
At some places in this compilation step, we had to modify the circuit generation of CBMC
for CBMC-GC for a subtle reason: Since CBMC aims to produce good instances for a
SAT solver, it has the freedom to use circuits which are equisatisfiable with the circuits we
expect, but not logically equivalent. CBMC sometimes introduces circuits with free input
variables, and adds constraints which requires them to coincide with other variables. In
these places, we had to change the circuit generation to reflect actual computation.

5. Gate-level minimization In the last step of the compilation chain, the instantiated circuit
is minimized on the gate-level using a fix-point minimization procedure introduced by
CBMC-GC.

More details on the first three compilation steps can be found in [12], whereas the building
blocks optimized for MPC, as well as the minimization procedure used in CBMC-GC are
elaborated upon in the following sub-sections.

4.2 Building blocks for Boolean circuit based MPC

Optimized building blocks are an essential part of designing complex circuits. They facilitate
efficient compilation, as they can be highly optimized once and subsequently instantiated at
practically no cost during compilation. In the following paragraphs, we give a comprehensive
overview over the currently best known building blocks for MPC based on Boolean circuits
that are required for basic arithmetic and control flow operations.

4.2.1 Adder

All arithmetic building blocks are constructed of smaller building blocks, namely Half-
Adders (HA) and Full-Adders (FA). A Half-Adder is a combinatorial circuit that takes two
bits A and B and computes their sum S = A @ B and carry bit C,,; = A - B. A Full-Adder
allows an additional carry-in bit C;, as input. The best known constructions for computing
the sum is by XOR-ing all inputs S = A @ B @ C;,, the carry-out bit can be computed by
Cour = (A® Ci))(B ® C;,) @ Cip [26]. Both, the HA and FA have size s = 1.

An n-bit adder takes two bit strings x and y of length n, representing two (signed) integers,
as input and returns their sum as an output bit string S of length n + 1. We note that according
to the semantics in ANSI-C an addition is computed as x +y mod 2" and no overflow bit is
returned. The standard and best known adder is the Ripple Carry Adder (RCA) that consists
of a successive composition of n FAs. This leads to a linear circuit size sgcqa = n [25].

4.2.2 Subtractor
A subtractor for two n bit strings can be implemented with one additional non-linear gate by
using the two’s complement representation x —y = x +y+ 1, with y being the negated binary

representation. The addition of negative numbers in the two’s complement is equivalent to
an addition of positive numbers.

@ Springer

320 Form Methods Syst Des (2017) 51:308-331

4.2.3 Comparator

An equivalence (EQ) comparator checks whether two input bit strings of length n are equiv-
alent and outputs a single result bit. The comparator can be implemented naively by a
successive OR composition over pairwise XOR gates that compare single bits. This resultsin a
sizeof sp g (n) = n—1 gates [26]. A greater-than (GT) comparator that compares two integers
can be implemented with the help of a subtractor by observing thatx > y < x —y—1>0
and returning the carry out bit, which yields to a circuit size of sGo(n) = n.

4.2.4 Multiplier

In classic hardware synthesis, a multiplier (MUL) computes the product of two n bit strings x
and y, which has a bit-width of 2n. However, in many programming languages, e.g., ANSI-C,
multiplication of unsigned numbers is defined as an n — n bit operation: x - y mod 2". The
standard approach for computing an n — 2n bit multiplication is often referred to as the
“school method”. Using a bitwise multiplication and shifted addition, the product is computed
as Z,nz_ol 2/(X;y). This approach leads to a circuit requiring n2 1-bit multiplications and n — 1
shifted n-bit additions, which in total results in a circuit size of sy = 2-n%—n gates [25].
When compiling a n — n bit multiplication with the same method, only half of the one bit
multiplications are relevant, leading to a circuit size of sy = n*> — n gates. The n — n
multiplication of negative numbers in the two’s complement representation can be realized
with the same circuit.

Alternatively, for n — 2n bit multiplication, the Karatsuba-Ofmann multiplication
(KMUL) can be used, achieving an asymptotic complexity of O (n'°22)). Henecka et al. [23]
et al. presented the first adoption for MPC, which was subsequently improved by Demm-
ler et al. [16] by 3% using commercial hardware synthesis tools. Their construction
outperforms the school methods for bit-widths n > 19.

4.2.5 Multiplexer

Control flow operations, e.g., branches and array read access, are expressed on the circuit
level through multiplexers (MUX). A 2:1 n-bit MUX consists of two input bit strings d° and
d! of length n and a control input bit c. The control input decides which of the two input
bit strings is propagated to the output bit string o of the same bit length. A 2:1 MUX can be
extended to a m:1 MUX that selects between m input strings d°, d', ..., d” using log, (m)
control bits ¢ = co, c1, . . . Clog(n) by tree based composition of 2:1 MUXSs. For example, a
dynamic access to an array with four elements can be realized as illustrated in Fig. 3, where
an array a is accessed with index 1.

Kolesnikov and Schneider [26] presented a construction of a 2:1 MUX that only requires
one single non-linear gate for every pair of input bits by computing the output bit as O =

Fig. 3 Exemplary array access lo Iy
compiled into a multiplexer tree |
al0l— 2.1
a[l]— MUX
2:1 :
[mox [20
al2l— 21
a[3] — MUX

@ Springer

Form Methods Syst Des (2017) 51:308-331 321

Circuit %ﬁ Minimization Procedure ’;‘\—> OPtlmlzed
-7 o T~ Circuit

_-7 - -7 - l repeat on improvement Sl N S~ -
And-Invert Graph Constant Structural Rewrite SAT
Conversion Propagation Hashing Pattern Sweeping
T repeat on improvment

Fig. 4 Illustration of CBMC-GC’s minimization procedure and its components

(DY@ DYYC @ DO. This leads to a circuit size for an n-bit 2:1 MUX of sy x (n) = n. The
circuit size of a tree based m:1 MUX depends on the number of choices m, as well as the
bit-width n: Spyyx_tree(m, n) = (m — 1) - syyx (n).

4.2.6 Divisor

A divisor computes the quotient and/or remainder for a division of two binary integer numbers.
The standard approach for integer division is known as long division and works similar to the
school-method for multiplication. Namely, the divisor is iteratively shifted and subtracted
from the remainder, which is initially set to the dividend. Only if the divisor fits into the
remainder, which is efficiently decidable by overflow free subtraction, a bit in the quotient
is set and the newly computed remainder is used. Thus, a divisor can be built with the
help of n subtractors and n multiplexers, each of bit-width n, leading to a circuit size of
sspry(m) = 212, The divisor can be improved by using restoring division [39], which leads
to a circuit size of sgpry (1) = n? + 2n + 1.

4.3 Circuit minimization in CBMC-GC

As identified in Sect. 1, with the compilation being a one-time task, it is very useful to
invest computing time in circuit optimization during their compilation. Moreover, as shown
in Sect. 2.5, a naive translation of code into optimized building blocks does not directly
lead to a minimal circuit. Therefore, after the instantiation of all building blocks, and thus,
construction of the complete circuit, a circuit minimization procedure is run that reduces the
number of non-linear gates. Unfortunately, finding a minimal circuit for a given circuit is
known to be Ef complete [7]. Because of this, CBMC-GC follows an heuristic approach
using a minimization procedure that applies multiple different algorithms, known from logic
synthesis, to reduce the non-linear circuit size. In the next paragraphs, we first describe the
general procedure, before discussing the different components in detail.

4.3.1 CBMC-GC’s minimization procedure

CBMC-GC’s minimization routine is illustrated in Fig. 4. It begins with the translation of
the circuit into an intermediate And-Invert Graph (AIG) representation, which is a circuit
description that has been shown to allow gate-level optimizations in a very efficient manner.
During the AIG translation, a first optimization is performed, before the main fix-point
minimization routine is started. The algorithm is run until no further improvements in the
circuit size are observed or a user given time bound has been reached. In both cases, the result
of the latest iteration is returned.

@ Springer

322 Form Methods Syst Des (2017) 51:308-331

In every iteration of the algorithm a complete and topological pass over all gates from
from inputs to outputs is initiated. During this pass, constants, i.e., zero or one, are propa-
gated (constant propagation), duplicated gate structures are eliminated (structual hashing)
and small sub-circuits are matched and replaced by hand-optimized sub-circuits (rewrite pat-
terns). If any improvement, i.e., reduction in the number of non-linear gates, is observed, a
new pass is initiated. If no improvement is observed, a more expensive optimization routine
is invoked that detects constant and duplicated gates using a SAT solver (SAT sweeping).

4.3.2 AIG, constant propagation and structural hashing

An AND-inverter graph is a representation of a logical functionality using only binary AND
gates (nodes) with (inverted) inputs. AIGs have been identified as a very useful representation
for circuit minimization, as they allow very efficient graph manipulations, such as the adding
or merging of nodes. This phase is implemented with the ABC library [1], which provides
state-of-the-art logic synthesis methods. As a first step in CBMC-GC, input and output wires
(known as primary inputs and primary outputs) are created for every input and output variable.
Then, during the instantiation of building blocks, the AIG is iteratively constructed by substi-
tuting every gate type that is different from an AND gate by a Boolean equivalent AIG sub-

graph. For example an XOR gate (A @ B) can be replaced by the following AIG: A - B-A - B.

Whenever a node is added to the AIG, two optimization techniques are directly applied
by the ABC library. First, constant inputs are propagated. Hence, whenever an input to a new
node is known as constant, the added node is replaced by an edge. Second, structural hashing
is applied. Structural hashing [15] is used to detect redundant sub-graphs that operate on the
same inputs. The duplication check can be realized efficiently by hash-based comparison of
the inputs during the insertion of new gates.

4.3.3 Rewrite patterns

Circuit rewriting is a greedy optimization algorithm used in logic synthesis [35], which was
first proposed for hardware verification [4]. A rewrite pattern consist of two templates, i.e.,
sub-circuits, that are functionally equivalent, where the first is the template that is searched
for and the second is the substitute. Pattern based rewriting has been shown to a very effective
optimization technique in logic synthesis, as it can be applied with very little computational
cost [35]. In CBMC-GC'’s compilation chain, rewrite patterns are of high importance due
to multiple reasons. First, they are responsible for translating the AIG back into a Boolean
circuit representation with a low number of non-linear gates. This is necessary, because all
linear gates have been replaced by non-linear AND gates during the translation in the AIG
representation. Second, pattern based rewriting allows for further MPC specific optimizations
by applying patterns that favor linear gates and reduce the number of non-linear gates beyond
a conversion from AIG. Finally, in CBMC-GC each rewrite pass is also used for constant
propagation and structural hashing, as described above. To illustrate the importance of both
techniques, we remark, that CBMC-GC performs a high-level synthesis, which, for exam-
ple, frequently requires to reduce the bit-width of many declared variables through constant
propagation.

For circuit rewriting in CBMC-GC, all gates are first ordered in topological order by their
circuit depth. Subsequently, by iterating over all gates, the patterns are matched against all
gates and possible sub-circuits. Whenever a match is found, the sub-circuit becomes a can-
didate for a replacement. However, the sub-circuit will only be replaced, if the substitution

@ Springer

Form Methods Syst Des (2017) 51:308-331 323

Table 2 Example rewrite

patterns that are used in Search pattern Substitute
CBMCjGC, grouped in three Propagate pattern
categories _
0 1
0-AorA-0 0
O+AorA+0 A
0@AorAdO A
1 0
1-AorA-1 A
1+AorA+1 1
Trivial patterns
A-A A
A-A 0
A+ A A
A+ A 1
ADA 0
AGA 1
a A
XOR patterns
A®B A®B
(A+B)®(A-B) A®B
(A+B)-(A-B) A®B
A.B-A B A® B
(A-(B®(A-C)) A-(B®C)
(A-B)®(A-C) (A®0)-A
(A-O)®(B-0) (AeB)-C

leads to an actual improvement in the circuit size. This is guaranteed for the patterns them-
selves, which are designed to be minimizing. However, dependencies of intermediate gates,
which might be input to other gates, can rule the substitution ineffective. In these cases the
sub-circuit will not be replaced.

The outcome and performance of this greedy replacement approach depends not only on
the patterns themselves, but also on the order of patterns. Therefore, in CBMC-GC, small
patterns are matched first, e.g., single gate patterns, as they can be matched with little cost
and offer guaranteed improvements, before matching more complex patterns that require to
compare sub-circuits consisting of multiple gates and inputs. Table 2 lists exemplary rewrite
patterns that are used in CBMC-GC and that have been shown to be very effective in our
evaluation. In total more than 80 patterns are used for rewriting.

4.3.4 SAT sweeping

SAT sweeping is a powerful minimization tool, widely used for equivalence checking of
combinatorial circuits [29,34]. The core idea of SAT sweeping is to prove that the output of
a sub-circuit is either constant or equivalent to another sub-circuit (detection of duplicity).
In both cases the sub-circuit is unnecessary and can be removed. As usual, SAT sweeping is
applied in CBMC-GC in a probabilistic manner. A naive application, which compares every

@ Springer

324 Form Methods Syst Des (2017) 51:308-331

possible combination of sub-circuits would result in infeasible computational costs. Thus,
for efficient equivalence checking, the circuit is first evaluated (simulated) multiple times
with different (random) inputs. The outputs of all gates in every run are are then grouped
by their output. Gates that always output one or always output zero are presumed constant,
whereas gates that have the same output are presumed equivalent. This is then proven using
the efficient tool of a SAT solver. For this purpose, sub-circuits have to be converted into
conjunctive normal form. Due to its high computational costs in comparison with the circuit
rewriting, SAT sweeping is only applied if other optimization methods cannot minimize the
circuit any further.

5 Evaluation

In this section, we evaluate CBMC-GC’s compilation approach alongside various example
applications that emerged as standard benchmarks for MPC. We first present a comparison
to previous releases of CBMC-GC (Sect. 5.2) to illustrate the effectiveness of the described
optimization techniques. Moreover, we also present a comparison of the circuits generated
by CBMC-GC with circuits from other recently presented compilers (Sect. 5.3).

We begin with a description of sample applications used for benchmarking purposes.

5.1 Benchmarking applications

All the following example applications have emerged as benchmarks for MPC frameworks
or compilers.

5.1.1 Distances

Various distances need to be computed in many privacy preserving protocols. The Hamming
distance between two bit strings is the number of pairwise differences in every bit position.
Due to its application in biometrics, the Hamming distance has often been used for bench-
marking MPC compilers, e.g., [24,28,36]. The Hamming distance can be parametrized by
the bit length of the input strings. We compare an implementation optimized for CPU/reg-
ister based computation, a naVe implementation that compares and aggregates individual
bits, and a tree based aggregation. The source code of the three implementations is given in
“Appendix A”. The Manhattan distance disty g = |x; — x2| + |y1 — y2| between two
points a = (x1,y;) and b = (x2, y») is the distance along a two dimensional space,
when only allowing horizontal or vertical moves. The Euclidean distance is defined as
distgp = \/ (x1 — x2)% + (y1 — ¥2)2. For the computation of the square root function, we
implemented the Babylonian method (division by mean) over 5 and 20 iterations.

5.1.2 Biometric matching (BioMatch)

In biometric matching a party matches one biometric sample against the other’s party database
of biometric templates. Example scenarios are face-recognition or fingerprint-matching [18].
One of the main concepts is the computation of a distance, e.g., the Euclidean distance,
between the sample and all database entries. Once all distances have been computed, the
minimal distance determines the best match. In the following experiments, we fix the dimen-
sion of a sample to d = 4, as it has been used before [10,17]. We use a database of 128
and 256 samples consisting of four 32-bit integers. Due to the complexity of the square root
function, it is common in MPC to use the squared Euclidean distance for matching [40].

@ Springer

Form Methods Syst Des (2017) 51:308-331 325

The BioMatch application is very interesting for benchmarking, as it involves many parallel
arithmetic operations, as well as a large number of comparisons.

5.1.3 Fixed and floating point operations

Fixed point and floating point arithmetic are necessary for all applications where numerical
precision is required, e.g., privacy preserving statistics. We rely on the compiler’s capabilities
to compile a software fixed point and a IEEE-754 (32 bit) compliant software floating point
addition and multiplication. Both implementations use the integer data types available in C
to “emulate” the computation of fixed or floating point operations. Floating point operations
are very suited to benchmark the gate level optimization methods of compilers since they
require many bit operations.

5.1.4 Location-aware scheduling

Privacy-preserving availability scheduling is another use-case for MPC, e.g., [3]. The func-
tionality matches the availability of two parties over a number of time slots, without revealing
the individual schedule to the other party. Location-aware scheduling, as implemented here,
also considers the location and maximum travel distance of the two parties for a given time
slot. Therefore, the functionality outputs a matching time slot where both parties can meet
and the distance between the parties is minimal. We benchmark the functionality for 56 slots
with 16 bit integer coordinates, and distinguish between the squared Euclidean (SQ), as well
as the Manhattan distance (MH).

5.1.5 Matrix multiplication

Algebraic operations, such a matrix multiplications, are building blocks for many privacy-
preserving applications and have repeatedly been used before to benchmark MPC [10, 16,
24,27]. We evaluate a 5 x 5 and 8 x 8 matrix multiplication over 32 bit signed integers,
fixed-point and floating point numbers.

5.1.6 Median computation

The secure computation of the median is required in privacy preserving statistics. It is an
interesting task for compilation, as it involves the implementation of a sorting algorithm, as
a sorted array allows easy access to the median element. Here we use two different sorting
algorithms, namely bubble sort and merge sort. In contrast to generic computation, bubble
sort compiles to a smaller circuit representation than merge sort. Here we use an array of
n = 21 and n = 31 integer elements.

5.1.7 Random arithmetic operations

Circuits for programs that perform several arithmetic operations sequentially scale linear in
the number of operations. We use programs, as in [24], that contain 3000 random arithmetic
operations, comprising of 90% additions and 10% multiplications with varying numbers of
input and output variables.

@ Springer

326 Form Methods Syst Des (2017) 51:308-331

Table 3 Experimental results: circuit sizes in the number of non-linear gates produced by CBMC-GC v0.8
[24], v0.9 [19], and the current version for various example applications

Application #gates v0.8 #gates v0.9 #gates current
Arithmetic operations 2000 405,640 319,584 253,776
Hamming distance (reg), 320 bit 6038 924 924
Hamming distance (reg), 800 bit 15,143 2344 2340
Hamming distance (reg), 1600 bit 30,318 4738 4726
Matrix multiplication, 5 x 5 221,625 148,650 127,255
Matrix multiplication, 8 x 8 907,776 600,768 522,304
Median, merge sort, 21 elements 244,720 136,154 61,403
Median, merge sort, 31 elements 602,576 348,761 152,823
Median, bubble sort, 21 elements 112,800 40,320 10,560
Median, bubble sort, 31 elements 349,600 89,280 23,040
Scheduling, sq. Euclidean, 56 items 317,544 169,427 113,064
Scheduling, Manhattan, 56 items 133,192 88,843 62,188

5.2 Evaluation of circuit minimization techniques

We abstain from an individual evaluation of the optimization methods presented in this work.
The main reason is that the (de-)activation of a single optimization method has various side-
effects that are hard to be controlled and measured in an isolated manner. For example, when
using less efficient building blocks, the circuit minimization phase will partly be able to
compensate inefficient building blocks and start optimizing these. However, the computation
time spent on optimizing the building blocks can consequently not be applied to the remaining
parts of the circuit. Similarly, SAT sweeping is highly ineffective without efficient constant
propagation. Moreover, some rewrite patterns can become ineffective without the application
of other rewrite patterns. Yet, we show that the combination of optimization techniques in
CBMC-GC has continuously evolved, such that the circuit sizes compared to earlier releases
have significantly been reduced.

Table 3 gives a comparison of circuit sizes between the first release of CBMC-GC v0.8 [24]
in 2012, its successor CBMC-GC v0.9 [19] from 2014 and the current version described in
this article. For comparison, we use the applications introduced in Sect. 5.1. All applications
have been compiled from the same source code and optimized with a maximum optimization
time of at most 10 min on a commodity laptop. The initial release of CBMC-GC provided
no gate-level minimization techniques, yet it contained first optimized building blocks. In
CBMC-GC v0.9 the optimization algorithm, described in this chapter, was introduced. All
techniques and building blocks have subsequently been improved and adapted for the current
version. For example the building blocks have been revisited and the set of rewrite patterns
has been refined, which results in size reductions for all applications.

We observe that the improvement in building blocks is directly visible in the example
application of random arithmetic operations and matrix multiplication, which have been
improved up to a factor of two, between the first and the current release of CBMC-GC. These
two applications purely consist of arithmetic operations that utilize the full bit-width of the
used data types, and thus, barely profit from gate-level optimizations. The resulting circuit
sizes for the Hamming distance computation show significant improvements when comparing
the first and the current release, yet only marginal improvement in comparison to CBMC-
GC v0.9. The more complex applications, such as bubble sort based median computation,
which involve more interesting control flow logic, have been improved by more than a factor
of ten between the first and the current release of CBMC-GC. Similarly, for the location

@ Springer

Form Methods Syst Des (2017) 51:308-331 327

Table4 Experimental results: compiler comparison between Frigate [36], OblivC [47] and the current version
of CBMC-GC. Given are the circuit sizes in the number of non-linear gates when compiling various applications

Application Frigate [36] OblivC [47] CBMC-GC Improv. (%)
Biometric matching 128 561,218 560,192 404,419 27.8
Biometric matching 256 1.1 M 1.1 M 831,846 25.7
Euclidean 5, int 7960 7811 6235 20.2
Euclidean 20, int 25,675 25,001 23,255 7.0
Euclidean 5, fix 26,430 26,307 7834 70.2
Euclidean 20, fix 90,735 90,057 24,559 12.3
Float addition 5237 5581 1201 771
Float multiplication 16,502 14,041 3534 74.8
Hamming 160 (reg) 567 899 449 20.8
Hamming 1600 (reg) 6546 9269 4738 27.6
Hamming 160 (tree) 747 4929 351 53.0
Hamming 1600 (tree) 8261 49,569 3859 533
Hamming 160 (naive) 1009 4929 541 46.3
Hamming 1600 (naive) 10,282 49,569 6042 41.2
Matrix mult. 5 x 5, int 127,477 127,225 127,225 0

Matrix mult. 5 x 5, fix 314,000 313,225 183,100 41.5
Matrix mult. 5 x 5, float 27M 24M 626,506 739
Scheduling SQ 56 133,216 181,071 113,064 15.1
Scheduling MH 56 79,008 77,023 58,800 23.7

Marked in bold are significant improvements over the best previous result

aware scheduling application, which involves minimizable arithmetic operations as well as
control flow logic, we observe an improvement up to a factor of three between the first and
the current release.

5.3 Compiler comparison

We compare the circuits created by CBMC-GC for the aforementioned benchmark appli-
cations with the circuits created by the recently published Frigate [36] and Obliv-C [47]
compilers, which are the most promising candidates for a comparison, as they create circuits
with the least number of non-linear gates according the compiler analysis by Mood et al. [36].
TinyGarble [43] with its state-of-the art synthesis tool chain would be very interesting candi-
date for comparison, but unfortunately its complete C-to-circuit tool chain has not been open
sourced. Therefore, here we only compare circuits created Frigate and Obliv-C with those
created by CBMC-GC. Even though all compilers use different input languages, we ensure
a fair comparison by implementing the functionalities using the same code structure (i.e.,
functions, loops), data types and bit-widths. All applications have been compiled with the
latest available version at the time of writing. For the CBMC-GC, we again set a maximum
optimization time limit of 10 min on a commodity laptop. The resulting circuit sizes and the
improvement of CBMC-GC over the best result from related work are presented in Table 4.
Circuit sizes above one million (M) gates are rounded to the nearest 100,000.

We observe that the current version of CBMC-GC outperforms related compilers in circuit
size for almost all applications. For example, the biometric matching application, or schedul-

@ Springer

328 Form Methods Syst Des (2017) 51:308-331

ing applications improve by more than 25%. Most significant is the advantage in compiling
floating point operations, where a 77% improvement can be observed for the dedicated multi-
plication operation. A similar improvement is achieved for the computation of the Euclidean
distance or matrix multiplication on non-integer values. Floating point and fix point operations
are dominated by bit wise operations and thus, can be optimized with gate-level optimization
when compiled from high-level source code. No improvement is observed for the integer
based matrix multiplication. As discussed above, the matrix multiplication compiles into a
sequential composition of building blocks, which barely can be improved further.

The Hamming distance computations show implementation dependent results and illus-
trate the challenges of circuit compilation from standard code. The source code of the three
benchmarked implementations is given in “Appendix A”. The tree based computation shows
the smallest circuit size, even though it is the most inefficient CPU implementation. This
is because, a tree-based composition allows to apply adders with small bit-widths for a
majority of the bit counting. Comparing the resulting circuit sizes of the compilers, we
observe differences between the implementations. The tree based and naive implementation
are significantly more optimized by CBMC-GC, i.e., up to a factor of two, than in the other
compilers. The implementation optimized for register based computation compiles into a cir-
cuit that is also smaller in CBMC-GC than in related work, yet only by 20%. This is because,
the compilation of the naive bit counting profits significantly from constant propagation, as
only a few bits per expression are required on the gate-level. The register optimized imple-
mentation maximizes the number of bits used per arithmetic operation, thus, allows only
little gate-level optimization. We remark that Frigate and OblivC compile larger applications
noticeably faster than CBMC-GC, yet the circuits created by CBMC-GC are up to a factor
of four smaller.

6 Conclusion

Secure computation is a very powerful cryptographic tool that allows to achieve privacy in
a provable manner for almost all interactive applications. However, its wide-spread use cru-
cially depends on its accessibility for non-domain experts. Optimizing compilers that compile
high-level source code into efficient circuit descriptions, understood by MPC protocols, offer
the required level of abstraction to facilitate the use of MPC. In this work, we have shown
that CBMC-GC, which is based on the model checker CBMC, is well suited to compile
circuits for secure computation from ANSI-C. Using advanced optimization techniques that
have been adapted to the MPC cost model, our compiler CBMC-GC outperforms state-of-
the-art compilers in circuit size for various non-trivial applications, ranging from floating
point operations to end-user applications as privacy preserving location aware scheduling.

For future work we plan to achieve a fully automatized decomposition on the source code
level to enhance the scalability of CBMC-GC. Moreover, we plan to support built-in floating
point operations and to investigate the integration of oblivious data structures in CBMC-GC,
e.g., ORAM [21].

Acknowledgements We thank all anonymous reviewers for their helpful and constructive comments. This
work has been co-funded by the DFG as part of project S5 within the CRC 1119 CROSSING, by the DFG
as part of project A.1 within the RTG 2050 “Privacy and Trust for Mobile User”. The initial idea behind
CBMC-GC, i.e., using a bounded model checker for high-level synthesis in the context of MPC, was coined
in a very fruitful discussion with Helmut Veith over a cup of coffee in a Wiener Kaffeehaus (typical Viennese
coffee house).

@ Springer

Form Methods Syst Des (2017) 51:308-331 329

A Code example: Hamming distance computation

The Hamming distance between two bit strings is the number of pairwise different bits. This
number can be computed by XOR-ing the input bit strings and then counting the number of
bits. An exemplary implementation is given in Listing 3 that computes the distance between
two bit-strings of length 160 bits, which are split over five unsigned integers. In Line 7 the
number of ones in a string of 32 bits is computed. This task is also known as population
count. In the following paragraphs we describe three different implementations.

Listing 3 Hamming distance computation between two bit strings

##define N 5
void hamming () {
unsigned INPUT_A_X[N];
unsigned INPUT_B_vyI[N];
unsigned res = 0;
for(int i = 0; 1 < N; i++) {
res += count_naive32 (INPUT_A_x[i]"INPUT_B_yI[i]);
}
unsigned OUTPUT_res = res;
}

[« RNl RN e LY N N S

—_

The first implementation is given in Listing 4. In this naive approach, each bit is extracted
using bit shifts and the logical AND operator & before being aggregated.

Listing 4 Counting bits, naive approach

1 unsigned char count_naive32 (unsigned y) {
2 unsigned char m = O0;

3 for (unsigned i = 0; 1 < 32; i++4) {

4 m += (y & (1 << i)) >> 1i;

5 }

6 return m;

7 %

A variant of this implementation is given in Listing 5. Here, the bit string of length 32
is first split into chunks of 8 bits (unsigned char). The ones set in each chunk are then
counted as described above.

Listing 5 Counting bits over unsigned chars

1 unsigned char count_naive8 (unsigned char c) {
2 unsigned char m = O0;

3 for(int i = 0; 1 < 8; 1i++) {

4 m += (c & (1 << 1)) >> 1i;

5 }

6 return m;

7 %

8

9 unsigned char count_tree32 (unsigned y) {

10 unsigned char mO0 = y & OxFF;

11 unsigned char ml = (y & OxFF00) >> 8;

12 unsigned char m2 = (y & O0xFF0000) >> 16;

13 unsigned char m3 = (y & OxFF000000) >> 24;
14 return count_naive8 (m0) + count_naive8 (ml) + \
15 count_naive8 (m2) + count_naive8 (m3);
16 1}

@ Springer

330 Form Methods Syst Des (2017) 51:308-331

Finally, in Listing 6 the best known implementation optimized for a CPU with 32 bit

registers and slow multiplication is given. This implementation uses only 14 instructions.

Listing 6 Counting bits, optimized for a 32 bit CPU

1 unsigned count_reg32 (unsigned y) {
2 unsigned x = y - ((y >> 1) & 0x55555555);
3 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
4 x = (x + (x >> 4)) & O0xO0f0f0f0f;
5 X += x >> 8;
6 X += x >> 16;
7 return x;
8 3
References
1. Berkeley logic synthesis and verification group, abc: a system for sequential synthesis and verification,
release 30916. http://www.eecs.berkeley.edu/~alanmi/abc/
2. Bellare M, Hoang VT, Keelveedhi S, Rogaway P (2013) Efficient garbling from a fixed-key blockcipher.
In: IEEE S&P
3. Bilogrevic I, Jadliwala M, Hubaux J, Aad I, Niemi V (2011) Privacy-preserving activity scheduling on
mobile devices. In: ACM CODASPY
4. Bjesse P, Borilv A (2004) Dag-aware circuit compression for formal verification. In: ICCAD
5. Bogdanov D, Laur S, Willemson J (2008) Sharemind: a framework for fast privacy-preserving computa-
tions. In: ESORICS
6. Bogetoft P, Christensen DL, Damgard I, Geisler M, Jakobsen T, Krgigaard M, Nielsen JD, Nielsen JB,
Nielsen K, Pagter J et al (2009) Secure multiparty computation goes live. In: FC
7. Buchfuhrer D, Umans C (2011) The complexity of Boolean formula minimization. J. Comput. Syst. Sci.
77(1):142-153
8. Buescher N, Holzer A, Weber A, Katzenbeisser S (2016) Compiling low depth circuits for practical secure
computation. In: ESORICS
9. Buescher N, Kretzmer D, Jindal A, Stefan K (2016) Scalable secure computation from ansi-c. In: IEEE
WIFS
10. Biischer N, Katzenbeisser S (2015) Faster secure computation through automatic parallelization. In:
USENIX Security
11. Clarke EM, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: TACAS
12. Clarke EM, Kroening D, Yorav K (2003) Behavioral consistency of C and verilog programs using bounded
model checking. In: DAC
13. Courtois N, Hulme D, Mourouzis T (2011) Solving circuit optimisation problems in cryptography and
cryptanalysi. IACR cryptology ePrint archive
14. Damgard I, Pastro V, Smart NP, Zakarias S (2012) Multiparty computation from somewhat homomorphic
encryption. In: CRYPTO
15. Darringer JA, Joyner WH, Berman CL, Trevillyan L (1981) Logic synthesis through local transformations.
IBM J Res Dev 25:272-280
16. Demmler D, Dessouky G, Koushanfar F, Sadeghi AR, Schneider T, Zeitouni S (2015) Automated synthesis
of optimized circuits for secure computation. In: ACM CCS
17. Demmler D, Schneider T, Zohner M (2015) ABY—a framework for efficient mixed-protocol secure
two-party computation. In: NDSS
18. Erkin Z, Franz M, Guajardo J, Katzenbeisser S, Lagendijk I, Toft T (2009) Privacy-preserving face
recognition. In: PETS
19. Franz M, Holzer A, Katzenbeisser S, Schallhart C, Veith H (2014) CBMC-GC: an ANSI C compiler for
secure two-party computations. In: Compiler construction CC
20. Goldreich O, Micali S, Wigderson A (1987) How to play any mental game or a completeness theorem
for protocols with honest majority. In: ACM STOC
21. Goldreich O, Ostrovsky R (1996) Software protection and simulation on oblivious rams. J ACM
43(3):431-473
22. Goudarzi D, Rivain M (2016) On the multiplicative complexity of boolean functions and bitsliced higher-

order masking. In: CHES

@ Springer

http://www.eecs.berkeley.edu/~alanmi/abc/

Form Methods Syst Des (2017) 51:308-331 331

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

Henecka W, Kogl S, Sadeghi AR, Schneider T, Wehrenberg I (2010) TASTY: tool for automating secure
two-party computations. In: ACM CCS

Holzer A, Franz M, Katzenbeisser S, Veith H (2012) Secure two-party computations in ANSIC. In: ACM
CCS

Kolesnikov V, Sadeghi AR, Schneider T (2009) Improved garbled circuit building blocks and applications
to auctions and computing minima. In: CANS

Kolesnikov V, Schneider T (2008) Improved garbled circuit: free XOR gates and applications. In: ICALP
Kreuter B, Shelat A, Mood B, Butler K (2013) PCF: a portable circuit format for scalable two-party secure
computation. In: USENIX security

Kreuter B, Shelat A, Shen C (2012) Billion-gate secure computation with malicious adversaries. In:
USENIX security

Kuehlmann A (2004) Dynamic transition relation simplification for bounded property checking. In: IEEE
ICCAD

Larraia E, Orsini E, Smart NP (2014) Dishonest majority multi-party computation for binary circuits. In:
CRYPTO

Liu C, Huang Y, Shi E, Katz J, Hicks MW (2014) Automating efficient RAM-model secure computation.
In: IEEE S&P

Liu C, Wang XS, Nayak K, Huang Y, Shi E (2015) ObliVM: a programming framework for secure
computation. In: IEEE S&P

Malkhi D, Nisan N, Pinkas B, Sella Y (2004) Fairplay - secure two-party computation system. In: USENIX
Security

Mishchenko A, Chatterjee S, Brayton R, Een N (2006) Improvements to combinational equivalence
checking. In: IEEE ICCAD

Mishchenko A, Chatterjee S, Brayton RK (2006) Dag-aware AIG rewriting a fresh look at combinational
logic synthesis. In: DAC

Mood B, Gupta D, Carter H, Butler K, Traynor P (2016) Frigate: a validated, extensible, and efficient
compiler and interpreter for secure computation. In: IEEE Euro S&P

Mood B, Letaw L, Butler K (2012) Memory-efficient garbled circuit generation for mobile devices. In:
FC

Nielsen JB, Nordholt PS, Orlandi C, Burra SS (2012) A new approach to practical active-secure two-party
computation. In: CRYPTO

Robertson JE (1958) A new class of digital division methods. IRE Trans Electron Comput 3:218-222
Schneider T, Zohner M (2013) GMW vs. Yao? Efficient secure two-party computation with low depth
circuits. In: FC

Schnorr CP (1974) Zwei lineare untere Schranken fiir die Komplexitit Boolescher Funktionen. Computing
13:155-171

Schropfer A, Kerschbaum F, Miiller G (2011) L1—an intermediate language for mixed-protocol secure
computation. In: COMPSAC

Songhori EM, Hussain SU, Sadeghi A, Schneider T, Koushanfar F (2015) Tinygarble: Highly compressed
and scalable sequential garbled circuits. In: IEEE S&P

Turan MS, Peralta R (2014) The multiplicative complexity of boolean functions on four and five variables.
In: LightSec

. Yao ACC (1982) Protocols for secure computations (extended abstract). In: IEEE FOCS

Yao ACC (1986) How to generate and exchange secrets (extended abstract). In: IEEE FOCS

. Zahur S, Evans D (2015) Obliv-c: a language for extensible data-oblivious computation. IACR cryptology

ePrint archive

@ Springer

	On compiling Boolean circuits optimized for secure multi-party computation
	Abstract
	1 Introduction
	1.1 Compilation for MPC
	1.2 Optimization
	1.3 Outline

	2 Preliminaries
	2.1 Secure computation over Boolean circuits
	2.2 Cost model
	2.3 Notation
	2.4 Two's complement
	2.5 The need for optimization in compilation for MPC
	2.6 Circuit minimization

	3 Compilers for Boolean circuit based MPC
	3.1 Compiler classification

	4 From ANSI C to size minimized circuits
	4.1 CBMC-GC's architecture
	4.1.1 Code for CBMC-GC and circuit mapping
	4.1.2 Compile chain

	4.2 Building blocks for Boolean circuit based MPC
	4.2.1 Adder
	4.2.2 Subtractor
	4.2.3 Comparator
	4.2.4 Multiplier
	4.2.5 Multiplexer
	4.2.6 Divisor

	4.3 Circuit minimization in CBMC-GC
	4.3.1 CBMC-GC's minimization procedure
	4.3.2 AIG, constant propagation and structural hashing
	4.3.3 Rewrite patterns
	4.3.4 SAT sweeping

	5 Evaluation
	5.1 Benchmarking applications
	5.1.1 Distances
	5.1.2 Biometric matching (BioMatch)
	5.1.3 Fixed and floating point operations
	5.1.4 Location-aware scheduling
	5.1.5 Matrix multiplication
	5.1.6 Median computation
	5.1.7 Random arithmetic operations

	5.2 Evaluation of circuit minimization techniques
	5.3 Compiler comparison

	6 Conclusion
	Acknowledgements
	A Code example: Hamming distance computation
	References

