Form Methods Syst Des (2017) 51:395-418 @ CrossMark
DOI 10.1007/510703-017-0299-2

A methodology to take credit for high-level verification
during RTL verification

Frederic Doucet! - Robert Kurshan?

Published online: 19 September 2017
© Springer Science+Business Media, LLC 2017

Abstract High-level verification and synthesis of SystemC models has become increasingly
popular as a means to reduce the high RTL verification cost of today’s complex designs.
However, the saving derived from performing verification at a higher level of abstraction is
largely negated if the RTL then must be completely reverified. We demonstrate how global
(system-level) properties may be verified at a behavioral level in a manner that reduces the
required RTL verification. Our methodology entails using high-level control models together
with semantic stubs for control and data-path refinements. The consequence is that cover
goals met during high-level verification are then “virtually” met (in a semantically sound
fashion) for RTL verification, and need not be re-established in the RTL. Moreover, it can be
significantly more efficient (in terms of required verification cycles) to meet these cover goals
at the higher level. This can lead both to less costly verification and earlier debug, providing
a better structured, faster and more reliable path to implementation than is possible through
conventional RTL verification.

Keywords SystemC - High-level synthesis - Micro-architecture - High-level verification -
Coverage - Abstraction - Refinement

1 Introduction

The last decade has brought verification to the brink, with designs that are too complex to
be adequately verified and even stories of commercial chip development cancelled because
the design was ultimately deemed “too complex to verify”. This has energized the electronic
design automation (EDA) industry to seek qualitatively more powerful verification methods,

B<d Robert Kurshan
rkurshan @ gmail.com

Frederic Doucet
fdoucet@qti.qualcomm.com

I Qualcomm Technologies, Inc., 1700 Technology Dr, San Jose, CA, USA
2 New York, NY, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0299-2&domain=pdf
http://orcid.org/0000-0002-4232-6530

396 Form Methods Syst Des (2017) 51:395-418

and this in turn has led inevitably to abstraction. In the last decade, High-Level Synthesis
(HLS) tools have been successfully used in industry for multiple large designs at most of the
large semiconductor companies. These tools operate at a higher level than traditional register-
transfer level (RTL) synthesis tools. The input is a high-level model (HLM) commonly
consisting of C++ functions describing untimed pipelined data-paths (or SystemC modules
with a mix of control and untimed data-path functions). This HLM then gets synthesized into
Verilog RTL. The main differences with traditional RTL logic synthesis are as follows:

1. the input C++ or SystemC code is abstracted from low-level microarchitecture details
for resource sharing, multiplexing, finite state machines, and

2. the HLS tool characterizes data-path resources to decide how many pipeline stages are
needed to implement an untimed function, and packs the logic in those cycles, automati-
cally shares large arithmetic resources, and creates the sharing logic, finite-state machine
(FSM) and all control bindings.

With the input code being free from such micro-architecture details, it can be much closer to
the algorithm code, yielding multiple productivity benefits:

— faster time to RTL,

— lower bug rates due to verification on the input code, and

— earlier elimination of algorithmic bugs than if left to the RTL, and
— fast turnaround for large design changes.

Industrial HLS tools have now matured to the point that, when driven by a talented hard-
ware engineer, the quality-of-results (QOR) of the generated RTL (in terms of speed and
area, and potentially even other parameters such as power) will match or exceed what would
be expected from a traditional RTL implementation. The potential to improve QOR while
simplifying and thus accelerating development are principal selling points of HLS.

Using the SystemC language for creating a HLM of hardware renders the design easier to
understand. Since it is smaller, it simulates faster. In practice, the higher-level of abstraction
is inherent in the choice of the language itself: using a general-purpose software language is
informally “more abstract” than using Verilog RTL simply because there are fewer details!

While the selling points of HLS are very attractive and have been demonstrated in many
industrial projects, the deployment of the technology is not widespread and has proceeded
more slowly than did RTL synthesis. One reason for this is that there is no clearly defined
semantic connection between the HLM and the synthesized RTL, and thus no sound high-
level verification (HLV) flow to pair with the HLS flow.

Although the HLM facilitates high-level verification, it fails to utilize positive high-level
verification results to relax the burden of RTL verification. Without a semantic relationship
between the HLM and the RTL synthesized from it, all properties verified in the HLM must
be reverified in the RTL. Thus, utilizing HLS requires high-level properties to be verified
twice.

Nonetheless, HLS can keep all its advantages while eliminating the disadvantage of
increasing the verification burden, if a semantic connection between the HLM and RTL
is established, rendering properties verified in the HLM automatically correct in the RTL as
well.

While there is considerable production usage of HLS methodologies where it may com-
monly be understood that the HLM is an “abstraction” of the RTL because the HLM is
simpler, easier to understand and meant to represent the RTL, high-level abstraction has not
been well-defined in the HLS flow.

The absence of sound abstraction in the HLS flow creates two significant issues with the
methodology.

@ Springer

Form Methods Syst Des (2017) 51:395-418 397

First, one may run many tests on the abstract design, but with the HLS flow, as already
explained, there is no guarantee that once the tests pass on the abstract design, the same set
of tests will pass in the generated RTL. Although many if not most re-run tests that passed
in the HLM may also pass in the RTL, they all must be re-run on the RTL, and the few
that passed in the HLM but failed in the RTL could require time-consuming fixes. There
are additional required RTL checks that the increased latencies inserted by the HLS tool do
not break the design functionality. (Of course, no matter the methodology, there always will
be a requirement to run low-level checks for behaviors unrepresented in the HLM, so some
checks in the RTL are inevitable.)

Although functional debug at a higher level of abstraction can accelerate design devel-
opment by eliminating functional bugs earlier in the design flow, doing verification at each
level of abstraction nonetheless can increase verification costs beyond the cost of conventional
RTL verification alone. This is the case even after accounting for the verification acceleration
advantage of earlier high-level debug. The added cost of repeated verification at multiple
levels of abstraction (even just two), has created a barrier for the utilization of HLS.

The second issue with HLV is that “coverage closure” is not well-defined in the HLS flow.
Coverage closure refers metrics that establish the adequacy of a suite of simulation tests.
Although these metrics may be defined for the RTL, there has been no automatic way to lift
these metrics to the HLM. This is especially problematic with regard to technology transfer
of HLS to RTL design teams accustomed to an RTL design methodology.

A semantic connection between the HLM and the RTL could be used to automatically
“lift” coverage closure metrics from the RTL to the HLM. Many randomized RTL tests could
abstract to the same HLM test and thus need not be run, opening the HLM testing budget to
a broader variety of tests than could be run on the RTL.

As mentioned above, in contrast with formal behavioral verification, there is a fundamental
problem with the way the HLM is written in SystemC and then synthesized using HLS: the
two models are not semantically consistent, i.e., the HLM is not necessarily a conservative
abstraction [1] of the RTL. This can work against the goals of HLS that are meant to provide
a more transparent representation of the RTL. While the current HLM structure has clear
benefits, as just explained, it unfortunately thus deprives the designer of the possibility to use
the HLM to accelerate design verification adequately, through HLM verification.

In this paper we show how to use high-level models, SystemC and micro-architecture
synthesis directives, to implement a hierarchical design and verification methodology wherein
high-level verification coverage can be inherited to the RTL coverage. This allows one to take
credit for HLV (both simulation-based and formal), thereby rendering superfluous any RTL
verification of system-level properties already verified in the HLM. Block-level verification
of data-path functions still is required, but since the data-path verification can be applied
locally to the data-path functions, this flow provides a verification methodology that can
scale with increasing design size.

Specifically, with an HLM that is a sound abstraction of the RTL design, compositional
techniques that are routine with formal verification may be applied to the simulation-based
flow as well. These techniques ensure that any property valid in the HLM is inherited by the
RTL. With formal verification, “valid” means “formally verified”. When using simulation-
based testing, the definition of “valid” can be weakened to mean “tested with adequate
coverage”.

Since the HLM is simpler than the RTL design, any level of coverage obtained in the HLM
is in effect multiplied by the ratio of complexity between the RTL design and the HLM. Thus,
even once the RTL has been fully synthesized, if additional simulation cycles are required to
test system-level properties, it would be more efficient to perform those tests in the HLM than

@ Springer

398 Form Methods Syst Des (2017) 51:395-418

in the RTL. (Naturally, before one is confident of the high-level verification methodology,
verification would be redundantly repeated in the RTL. Eventually, with increased confidence,
such repeat verification will naturally be eliminated as test resources are switched to more
urgent priorities.) All this is possible only if the RTL is semantically consistent with the
HLM, in other words, if the HLM is a sound abstraction of the RTL design (in a formal
sense).

Our abstraction methodology is based on using “semantic stubs” as place-holders for
lower-level data-path elements, during the coding of the HLM. These stubs are similar to the
place-holders for code not yet written that are routinely used in programming, but are different
to the extent that some representation of “inputs” and “outputs” (reads and writes) are required
for these stubs. These inputs and outputs are abstractions of the RTL data-flow. For example,
consider an ALU that returns a value from data inputs. The semantic stub may just receive a
token (input abstraction) that triggers an abstract computation, the result of which is the output
token done, standing as an abstraction of the returned computation. With formal verification,
the stub would use nondeterminism to abstract the latency between the receipt of the input
token and the generation of the output token. When simulation is used, the nondeterminism is
replaced by a random variable that determines when the computation is complete. (Note that
in either case, the stub requires a bit of state to remember if a computation is “in progress”.)
Likewise, a stub can abstract control features through the use of nondeterministic or randomly
chosen output control tokens, which can be constrained to align with required behaviors.

Validation of the computation is deferred to the RTL. However, many aspects of the
control flow can be verified in the HLM without invoking the actual computation. In this
example, the stub provides for verification under all possible latencies. When such generalities
are not required or not allowed, bounds on latency can be defined in terms of events: the
latency is constrained so as not to exceed the time to some other event that expects the
returned result from the ALU. (Constraints are compatible both with formal verification
and constrained random simulation.) Constraints used to verify the HLM become proof
obligations (or RTL requirements) to be verified in the RTL. This methodology thus also
nicely partitions system level behaviors and RTL behaviors. The system level behaviors are
verified subject to assumptions about the RTL behavior and then these RTL assumptions are
verified in the RTL.

Such partitioning can further accelerate verification when the assumptions on the RTL
can be verified in isolated RTL blocks, thus speeding and simplifying their verification and
(in the case of simulation) improving coverage as a result of simulating blocks instead of the
entire design.

While this is at considerable variance with conventional simulation that runs the entire
design altogether, it is expected that with time, current simulation methodology will give way
to the more efficient and more reliable block-based simulation described here. Even if the
conventional system-wide simulation methodology is retained, efficiencies can be realized
by limiting the simulation targets to the RTL behaviors assumed during the system-level
verification of the HLM.

The experience of transferring formal verification technology to industry [2] suggests that
transferring the methodology proposed here will be no easier. However, within two decades,
that transfer succeeded through the persistent efforts of many researchers. It undoubtedly
would not have succeeded, however, without an increasingly dire need in the industries to
overcome what was quickly becoming an unsupportable debug problem. Designs had become
too complex to implement correctly within a commercially supportable timeframe, without
a new means to catch functional design errors earlier in the design cycle than was then
possible. Even so, to incorporate formal verification into the design/development flow all

@ Springer

Form Methods Syst Des (2017) 51:395-418 399

at once would have been prohibitively disruptive. The key was to devise means to adopt
formal verification incrementally, first as a parallel path, then as a simple largely automated
but correspondingly weak process that finally gained power as the user base became more
sophisticated. This allowed the EDA tool vendors to profitably market ever more sophisticated
formal verification tools. There is every reason to suppose that the current proposal could
follow the same path.

Writing semantic stubs can be significantly simplified through the creation of stub libraries
for commonly used elements. Such stubs would be parameterized, and various configurations
could be pre-verified, further simplifying their application. Helmut Veith has made many
important contributions to the verification of parameterized systems [3—7], which could be
used in support of such a program. This underscores the great loss to our profession of
Helmut, in the prime of his creativity and contributions, to whom this volume is dedicated.
Helmut was also a colleague highly admired for his inspirations and humanity, and is greatly
missed.

This paper is organized as follows: in the next section, we review the semantics of SystemC
for synthesis, and show how HLS can render the input and output designs semantically
incompatible, introducing coverage holes. We discuss how abstraction based on higher-level
modeling with semantic stubs can be used with synthesis directives to produce a sound
refinement. In the third section we present our methodology of encoding a global control
model that is step-wise refined in a semantically sound manner through the use of semantic
stubs, so that the resulting RTL design is semantically consistent with the HLM. We show
how coverage can be closed in the context of HLS through this methodology. Section 4
presents a small illustrative example of our methodology, and Sect. 5 discusses some related
work.

2 Semantics of high-level models for synthesis

In this section we define the semantics of synthesizable SystemC in the HLS context, and
discuss abstraction and refinement, setting the stage for a hierarchical compositional method-
ology presented in the next section.

2.1 Overview of high-level synthesis

High-level synthesis tools are used to synthesize SystemC into Verilog RTL. Figure 1 shows
the three typical inputs to such tools:

Fig. 1 Inputs to high-level / \

synthesis tools ! i i
3 SystemC Synthesis '
| Design directives |

\
\ S

Technology
node specs

High -level
synthesis

RTL
Verilog

@ Springer

400 Form Methods Syst Des (2017) 51:395-418

—

SystemC code for a module to be synthesized into Verilog RTL,

2. Description of the technology node, clock frequency etc., and

3. Synthesis directive for selecting micro-architecture implementations for the SystemC
syntactic structures.

The core engine in a typical HLS tool is the scheduler, which allocates resources (adders,
multipliers, etc) and maps arithmetic and logical operations (add, multiply etc) onto them.
The goals of the scheduler are to:

1. schedule the operations within given constraints: minimize the number of resources for
the given latency budgets;

2. generate RTL that will be synthesized by a logic synthesis tool, with predictable timing
closure and power efficiency.

For this, the scheduler will characterize all resources in the design for their timing and
area with the selected technology node. Generally, it will use this information to build the
RTL by filling the clock cycles (for a given frequency specification) with just enough logic
so that the generated RTL will close timing in logic synthesis. Typically, design latency will
be increased by the scheduler, as it builds the computation pipelines, to have positive slack
or minimize the design area. The designer provides synthesis directives to guide the tool
engines to specify how to implement specific SystemC structures, as well as constraints for
resource creation and latency budgets.

2.2 Interpretation of synthesizable SystemC syntax

The SystemC and Verilog languages are used to describe hardware modules containing
concurrent processes, communicating through signals. Both these languages have the same
semantic foundation. We restrict the HLM to use only a synthesizable subset of SystemC that
directly and unambiguously translates into hardware structures as RTL designs. (We omit the
semantic translation rules of SystemC.) This effectively simplifies the semantics of SystemC
to the classical synchronous semantics, enabling efficient analysis with existing commercial
Verilog simulators and model checkers.

We require all the external interfaces of components to be at the signal-level where each
transition is from/to a program counter location that denotes either the initial node of the
program graph, a node which corresponds to a wait statement, or the exit node of the graph.
Generally, a process will have a sequence of statements between two wait statements; these
must be written so as to be transitively collapsable into a single “macro” transition into the
transition system. The intermediate micro-transitions between the other SystemC statements
likewise must be constructed to be collapsable into these macro-transitions. Additionally,
any combinational processes leading to state variable assignments (i.e., to flops) are similarly
collapsed, so that we can reason on a single transition to successive steps.

2.3 Semantic framework for high-level and RTL models

Next we describe the basic framework on which the module descriptions are characterized,
and how to relate their behaviors. A hardware design description in SystemC or Verilog is the
definition of a module, with input and output variables and processes. Behavior of a process
is formalized by a transition system.

Definition 1 (Transition system) Let V be a set of Boolean input and output variables V =
(Vi, Vo) and X : V — {0, 1} is the state assignment function. A transition system is a tuple
(X, 00, T) where T C (X x X)) are the state transitions and og € X is the initial state.

@ Springer

Form Methods Syst Des (2017) 51:395-418 401

The behavior of a process is characterized by observing, at each clock cycle, the sequence
of values at its inputs and outputs. X' is the alphabet of M, and the observations of state
assignments are sequences of words opo10203 ... Such a sequence we call a trace of the
process.

Definition 2 (Trace) Let M = (X, 0p, T) be a transition system for a process P. A trace of
P is is a sequence of state assignments o € X synchronous to a clock: 6go10203 ... where
for each pair of successive states in the trace, (0;, 0;4+1) € T.

A state o in a trace includes both the input and output values, which will determine what
the next state will be. Input values are controlled by the environment, and output variable
are controlled by the design module. Output values can also include the values of internal
variables, which are not externally visible.

Definition 3 (Behavior) Let M = (X, 09, T) be a transition system for a process P. The
behavior of P is characterized by the set of all possible traces for P, denoted traces(P).

Since V7 is controlled by the environment, the behavior of P is its reactions: the assign-
ments of all the variables in Vj, for all possible input values.

2.4 Example: behavior of SystemC module

In this subsection, we illustrate the semantics of a SystemC description with an example of the
small design listed in Listing 1. First, there is a compute () data-path function multiplying
its inputs a and b, and inputs ¢ and d, adding and returning the result. The data-path function
is wrapped into a SystemC module where a synchronous process reads the input values from
the input ports and calls the compute function, and writes the result on the output signal port.
There is only one wait () statement, at the bottom of the while-loop, meaning all arithmetic
operations occur in a single clock cycle. Let us designate this version of the design by M.

Listing 1 Example code for SystemC module wrapping a data-path function

// datatpath function
int compute(int a, int b, int c, int d, int d) {
int vl = axb;
int v2 = cxd;
int z = v1+v2;
return z;

}

// SystemC module
SC_MODULE(DUT) {
sc_in <bool> clk; // input clock
sc_in <bool> nrst; // input reset signal
// input ports, 32 bits signed
sc_in <int> a_i;
sc_in <int> b_i;
sc_in <int> c_i;
sc_in <int> d_i;
// output port
sc_out<int> z_o;

SC_CTOR(DUT) { // declare process sensitive to posedge clk
SC_CTHREAD(process, clk.pos());
reset_signal_is(nrst, false);

}

@ Springer

402 Form Methods Syst Des (2017) 51:395-418

& ok T
o
b
g
ai

(a) (b)

Fig. 2 Design version M: cycle-accurate SystemC a interpreted circuit structure, b I/O trace behavior

void process() {
z_0 = 0; // Reset section, initialize all output flops to 0
RESET: wait(); // end of reset section
MAIN_LOOP: while (true) {
// Read inputs and call data—path function.
int z = compute(a_i.read(), b_i.read(),
c_i.read(), d_i.read());
// Empty statement for latency increase.
INCRLAT: ;
z_o.write(z); // Write outputs to D pin of flop.
OUTP: wait(); // Wait for next clock cycle (flops D—>Q)

The direct interpretation of the configuration version M; (or a high-level synthesis in
cycle accurate mode) is shown in Fig. 2a, where we see the data-path implementing the
computation in the upper part, and the state machine in the lower part. The data-path is very
simple, with two multipliers, one adder, and one output flop. The state machine has only two
states:

1. the reset state, where the output flop z_ o is initialized to zero, and

2. the output state, where the result z of the computation is assigned to the output flop (the
inputs are always flowing through the multipliers and the adder, computing the result in
a single cycle).

The depiction of the state machine shows labeled states and edges. The encoding of a
state in X' is for the state label with the assignments of the controller and observed variable
on an incoming edge (e.g. OUTP/nrst/z_o = z). Figure 2b shows the observable trace for the
process, where one can observe that the computation has a latency of a single cycle (each
output is always available in the cycle following each respective input value).

2.5 Semantic changes through micro-architecture directive

Next, we illustrate the semantic differences of input and output for two of the most important
micro-architecture directives used with HLS: latency constraints and pipelining.

In the previous sub-section, we described the synthesis of the SystemC description with a
architecture directive for cycle-accuracy, yielding RTL cycle-accurate to the SystemC. While
this is an important use case, most of the time, the HLS input will usually include micro-
architecture directives specifying latency and throughput constraints, or how to implement

@ Springer

Form Methods Syst Des (2017) 51:395-418 403

specific SystemC constructs (such as unrolling a loop), changing the behavior of the input
model. This is typically used to synthesize data-path functions in a pipeline: the function
itself does not fit within a single cycle and needs to be spread over multiple pipeline stages.
In that sense, the behavior of generated RTL is defined by both the input SystemC code as
well as the micro-architecture directives fed to the HLS tool.

We demonstrate how micro-architecture directives change the I/O behavior of the syn-
thesized model with the example listed in of Listing 1. For this, let us also provide as input
to the HLS a technology library where multipliers taking 4ns and adders 1.2ns, and specify
clock period of Sns.

2.5.1 Synthesis directive: latency constraints

Latency constraints are used to permit the scheduler to increase the latency of the design
and move the operations to the added states. Adding cycles can help with timing or to share
resources for area reduction. Let us denote by M> this version of the design example, where
the input code in Listing 1 is paired with the synthesis constraint to increase its latency the
at INCRLAT.

The synthesis results in the hardware structures are illustrated in Fig. 3a, where one can
see that the scheduler added two states, moved the multiplier to the second and the adder
to the third state. With this structure, the synthesized design can meet timing and use only
one multiplier to perform two multiplications. It also allocated several registers and sharing
multiplexers around the multiplier to share it for two operations. One can also observe in the
state machine when the registers are written and multiplexer paths selected. Figure 3b shows
the cycle behavior for the generated micro-architecture. The latency is now three cycles, and
the throughput is one input being read every three cycles.

Strictly comparing the behavior of synthesized model M, with the original SystemC
model M, one can observe that, while the variables are the same, the observable behaviors
are completely different because of the change in I/O timing. These are completely different
sets of traces: traces(M»>) N traces(M1) = () because even if the input is held constant for
three cycles, the latency to output will be different.

ok ML
a
b
i
di

Z 0 2z z3

(a) (b)

Fig. 3 Design version M7: synthesis directive to increase latency: a generated structures, b I/0 behavior

@ Springer

404 Form Methods Syst Des (2017) 51:395-418

a_i R
b_i

ck [UULTUULL
: — zo0
¥ g@T 2 ’ a—i @E as A3

b e

""""""" itttk B R) (05 0 0 £
R (D () (3 (B O € 2
el

z_0<=z
ri<=vl;
r2<=v2

(a) (b)

Fig. 4 Design version M3: synthesis directive for loop pipelining: a generated structures, b I/O behavior

2.5.2 Synthesis directive: loop pipelining

The second micro-architecture directive we consider is one to transform a loop in the SystemC
code into a hardware pipeline. This directive will instruct the HLS tool to spread the compute
function onto a pipeline structure. The depth of the pipeline is the number of stages necessary
to get positive slack. Keeping with the example in Listing 1, we instruct the HLS tool to create
a basic pipeline by adding pipeline stages at the INCRLAT statement in the SystemC code.

The synthesis will result in the structures showed in Fig. 4a, where the data-path has two
multipliers in the first stage, and the adder is in the second stage. The state machine shows
only two states: reset and output. In the output state, the pipeline is active and with all registers
enabled to store the values through the pipe. Figure 4b shows the behavior of the generated
RTL, with latency of two cycles, but throughput of one cycle (one value out every cycle
once the pipeline is full). Here again, while the set of variables are the same, the observable
sequences are very different beecause of the initial latency: the sets of traces of the synthesized
model has no relation to the set of traces of the input model: traces(M3) N traces(My) = ?.

2.6 HLS verification in practice

As we have seen in the previous two subsections, the output of HLS can have different I/O
behavior than the input SystemC. This is typical to HLS usage. While semantically this quite
apparently is a big issue, it has not stopped its use in industrial production. It is a fact of current
practice that HLS is being used and designs are being verified and taped-out. However, not
surprisingly, this semantic disconnect commonly introduces serious bugs that can require
extensive effort to correct.

For data-flow designs, the main use case for HLS, this can be done with a procedure
illustrated in Fig. 5: simulate the SystemC version of the design under test (DUT), synthesize
it, and then re-run the same tests (and perhaps more) on the RTL version of the DUT. The key
to this procedure is that the calls to the data-path function must behave like a “transaction”:
an untimed function that, given a specific input, will produce a specific expected output.
Then, the sequence of input and output values can be checked during simulation: a driver

@ Springer

Form Methods Syst Des (2017) 51:395-418 405

Fig. 5 Sandbox verification flow
arou}ild EIL};S k driver and mofnlt(I)/rO Driver DUT % Monitor
use handshakes to account for (SystemC) (SystemC) (SystemC)
behavior changes introduced by
the HLS
synthesis |:> High-level
directives synthesis
S|
Driver N DUT ; Monitor
(SystemC) 4 (Verilog RTL) (SystemC)
[|
=P

Export to
larger design

will feed the input values to the design at designated times, and a monitor will check for
them as required. To handle the I/O behavior changes introduced by the HLS, the driver and
monitor typically will use some kind of handshakes to denote the event when a value should
be driven or a check should occur. It is a common design practice to make those robust to
design throughput and latency changes using data-valid handshakes, to check only when it
sees the output valid signal asserted. With such techniques, the events in the input model
traces can be related to the events in the generated RTL traces. Typical procedure is for the
driver to feed the DUT with a “golden” input trace thought to define correct behavior, and
for the monitor to assert that the DUT output matches golden output traces (large designs
will typically have a very large number of such trace files). If the design and test bench are
robust to I/O behavior changes, this methodology is straightforward and can be efficiently
implemented by design and design verification (DV) teams.

While re-running all tests on both models may be practical for block verification for
data-flow style hardware accelerators (where the data-path functions are synthesized in a
straightforward way), for larger submodules (and complete subsystems), it may become
much more complicated to align input and output models. Also, often RTL design engineers
will forgo handshakes due to the area/latency cost and complexity that these incur, and
instead use timers in the system. Thus, while transaction-based verification works well for
data-flow blocks in the design, for more control-oriented blocks in the design, the nature of
the verification is different.

This effort of trace alignment and of repeating the verification on the RTL could be avoided
by taking a little care during synthesis to maintain the soundness of the HLS by ensuring that
the SystemC model is indeed a semantic abstraction of the synthesized design.

2.7 Abstraction in HLS flow

Industrial practitioners (hardware designers, DV engineers, EDA tool developers, etc.) often
think the SystemC model is more abstract in an informal sense because it is usually contains
fewer lines of codes, is easier to debug, faster to correct, etc. As the examples in the previous
subsections suggest, the designer does not need to explicitly (or at all) specify:

— operation to resource mappings (with resource sharing and multiplexer creation and
wiring)

— allocation, sharing, and mapping of registers for all internal control and data values,

@ Springer

406 Form Methods Syst Des (2017) 51:395-418

— creation of a control finite state machine (FSM), with exact cycle mapping of control bits
to/from the data-path in the required clock cycles, and
— creation and wiring of register and resource clock gating logic.

While relegating these to the synthesis tool clearly provides benefits (much less structural
details for the designer to design), it does not articulate a precise and formal meaning for
abstraction in the HLS context. By contrast, we argue to formally establish the meaning of
abstraction in the HLS flow by using the standard automata-theoretic approach to formal
verification such as described, for example, in [1].

2.7.1 Property verification

A property P defines a set of traces(P) C X over the observable variables that is described
using an w-automaton. An w-automaton is a sequence acceptor, defining a language L(P),
where a trace is in the language if and only if a set of its states or transitions is visited
infinitely often in a manner that conforms with the automaton acceptance condition. This
type of automaton specifies safety and liveness properties: requirements for what must not
happen, and, respectively, for what must happen repeated or eventually.

A design M is formalized as a transition system represented by an automaton whose traces
comprise the set of possible executions of the design.

The verification of a property P over a design M is checking the language containment
L(M) € L(P); this can be performed through well-known decision procedures that have
been implemented in commercial model checkers for at least the last two decades. For safety
properties, this procedure is commonly effective for many large design blocks. Liveness
properties typically require more computational resources.

2.7.2 Abstraction and refinement

We use the standard definition of refinement as one of trace or formal language containment:
the abstract model has a behavior that is a superset of the traces of the refined model. We use
the language of a property (or the more abstract design) to provide the basis for testing the
soundness of a refinement (namely as automaton language containment).

Definition 4 (Refinement) Let M| and M, be two transition systems, and 7 a map of events
in M to events in M. Then Mj is a refinement of M1, denoted My < M|, and equivalently,
M is an abstraction of M», if and only if traces(w M>) C traces(My).

Thus, any property that is valid for an abstraction M| remains valid for a refinement M>,
relative to the map 7.

Typically, a system M is composed of n submodules, M = Mj]||...||M,. A global
property P specifies a behavior governing the interaction of all components, requiring the
global verification of L(M) C L(P) to be performed. The more abstract the model, the easier
it is computationaly to perform this check. A local property P; can be checked locally on a
sub-component M with £L(M1) € L(P1), and a M| can be refined into M{ =< M with more
details (and more local verification £L(M {) - E(Pl’)). For the refinement to be valid, and for
P to hold on the last refined model M’ = Mj||...||M,, the refinement relation M| < M,
must be checked for each sub-component refinement. An abstraction is conservative if it is
an abstraction of an inferred refinement as per the above definition.

@ Springer

Form Methods Syst Des (2017) 51:395-418 407

2.7.3 Controlled refinement to avoid expensive consistency checks

The goal of the methodology described in this paper is to provide a framework where the
refinement is correct by construction, thereby avoiding expensive refinement checks. To that
end, abstraction is introduced in a model using non-determinism or by datatype and selection
abstraction. Specifically, we require the entire high-level control structure to be preserved
through all refinements, including a special nondeterministic “pause” self-loop transition that
finally resolves to a specific delay in the implementation.

The only exception to the “valid by construction” refinement is in the case of fairness
constraints added to these “pause” self-loops, in order to be able to verify eventuality prop-
erties in the abstract level. Examples of such fairness constraints include an assumption that
a computation eventually must terminate, or an assumption that some appropriate response
eventually is sent. However, such fairness constraints are required only in the case that there
are liveness properties whose verification is required in the high level model. An example of
such a liveness property might be that some task is eventually completed.

If all the properties are safety properties—properties that stipulate that something “bad”,
like buffer overflow, can never happen, then there is no need for fairness constraints, and
the verification process is completely “by construction”: no computational verification is
required.

Once the nondeterminism is resolved, any fairness constraints become proof obligations
that must be verified on the lower level at which the nondeterminism is resolved. Again: these
are the only not-by-construction verifications required.

There can be other properties as well that must be verified at lower levels, namely properties
involving behaviors not defined at higher levels. In the design process, the high-level control
structure is preserved: only nondeterministic transitions can be resolved in implementation
(removing the need for the fairness constraint), and data-type and selection can be refined if
it preserve the abstract alphabet through map 7.

All other refinement needs to preserve the sequences (through the map). If a given
refinement requires breaking a module into submodules (introducing more concurrency),
then the language containment must be checked to discharge the verification of any fairness
constraint (that the design shall not stall, for example). But the goal is to avoid these kind
of checks, and to capture the concurrency in the abstract model, proving all local properties
there. If more concurrency needs to be added, then the designer needs either to return to the
abstract model or perform the refinement check.

This “controlled refinement” rule is the foundation of our methodology. If HLS is per-
formed in a manner that produces a formal refinement in this sense, any verification performed
on the abstract model need not be repeated on the implementation. The examples in preced-
ing subsections show that the traces of the SystemC input may not support any map to the
corresponding variables of the traces of the generated RTL model. To be able to do this we
thus require a formal alignment of transactions entailing:

1. auxiliary processes to model the driver and monitor behavior and auxiliary variables for
aligning the traces, and

2. silent transitions in the models that may be transitively collapsed into traces that can be
compared.

If not accomplished through a structured design methodology, such structures are quite

tedious to create and align, and it is not something done in practice because the formal
verification algorithms typically work well only on the control-oriented parts of the design

@ Springer

408 Form Methods Syst Des (2017) 51:395-418

and do not scale well on the data-path functions (which are usually removed by abstraction,
but with increasing use of word-level formal verification, this may be changing.)

For the proceeding examples, with their I/O changes, and for the HLS flow in general,
it is thus clear why the verification (formal or simulation) needs to be fully redone on the
implementation model, with all tests redefined and re-run. To avoid this crippling cost, and
associated design development delays, is the motivation for the methodology presented next.

3 Design and verification methodology

Now we propose a design and verification methodology built around a HLS flow that preserves
the HLM as a semantic abstraction of the generated RTL design. The first step is to define a
map 7 from the events of the generated RTL to the HLM. To accomplish this we refer both
to a SystemC description of the HLM and the HLS micro-architecture synthesis directives.
Our methodology incorporates two aspects:

1. A top—down design methodology for global control-oriented behaviors and the design’s
data-flow, and
2. A bottom—up coding methodology for data-path functions.

Verification is integrated into each methodology. For the first, one starts with a HLM
model, verifies properties relative to it and then refines it to a lower level model. In practice,
the top—down methodology establishes a hierarchy of models, rather than proceeding from
a single HLM to the RTL design in a single step. Each of the intervening models is also a
HLM, although it may be a refinement of a more abstract HLM.

At each level of the top—down hierarchy, properties are verified using assumptions, if
necessary, that eventually get verified at lower levels of the hierarchy. The higher-level models
typically are more control-oriented, with the consequence that in the systematic top—down
approach, control gets implemented before data paths. This is consistent with modern design
practices [8] for control-dominated designs, permitting the designer to get functional debug
feedback as soon as the control-flow is coded, well before the completion of RTL coding of
data-path functions.

It is well-known that this design style affords earlier debug, which can significantly accel-
erate design verification closure by highlighting functional bugs while the design is still
fluid. Likewise, it comes early enough in the design development flow to permit inexpensive
redesign.

The bottom—up methodology is focused on the correct implementation of micro-
architectures and data-path functions that are inherent in the design. Since these have very
specific implementations, it is important to start with appropriate coding for them, and then
abstract the codings for use in the HLM verification. These abstractions have the form of
the “stubs” mentioned in the introduction. These two methodologies “meet in the middle” to
form a design hierarchy. Each component of the bottom—up methodology tends to be “local”,
in the sense that its behavior can be defined and verified without reference to the rest of the
design. An ALU is an example.

3.1 Semantic stubs for controlled abstractions and refinements
In our methodology, we use semantic “stubs” as place holders for further refinements, as

well as abstractions of low level structures. Soundness of refinement can be guaranteed by
adhering to the following rules:

@ Springer

Form Methods Syst Des (2017) 51:395-418 409

1. abstract model must either include the micro-architecture synthesis directives, to have
same I/O timing behavior as the implementation, or else be left nondeterministic, with
the timing to be resolved in the refinement;

2. symbolic values represent datatypes that are refined in implementation;

3. control input/output ports can be expanded with data ports;

4. case-statement branches can be expanded if they do not change the observable I/O behav-
ior;

5. nondeterministic latencies can be refined into actual implementation latencies of the
computation in data-path functions.

The stub rules provide the framework for a conservative abstraction and refinement by
introducing non-determinism (implemented as random choice for simulation) to abstract both
latency and low-level computations, when the precise latency or computation is not germane
to the level of abstraction. Both uses of nondeterminism can be constrained with assumptions
about their selections relative to contemporaneous events in the model.

For example, a nondeterministic latency can be constrained to end no sooner than the
“ready” signal of a peer component, and no later than some other event. Likewise, a unit that
may return a selection of error codes may be abstracted by a stub that returns only two codes,
say, “error” and “no error”, and this selection may be constrained to never return “error”
in cases that that selection is incompatible with other model actions. All such constraints
comprise proof obligations that need to be verified in the implementation.

A representation of the latency associated with a computation is fundamentally important,
of course, and can not be set to span fewer clock cycles (or align with the completion of fewer
events) than will be possible in the implementation, as doing so could mask concurrency bugs
such as conflicts or race conditions. On the other hand, conservatively generalizing latency
beyond what is actually possible in the implementation can help illuminate concurrency
bugs that may not be present in the current design, but could manifest as the design evolves.
Designers have found it very useful to have such potential bugs illuminated (although they
may not be possible in the current implementation), as understanding their potential can lead
to a more robust design. Moreover, understanding such concurrency “pitfalls” can lead to
deeper insights into the design behavior that can be very useful as the design evolves.

3.2 Unifying top—down and bottom—up methodologies

In the top—down methodology, one begins with a hierarchy imposed by the given design
specification. Design specification properties (defined by simulation monitors or formal ver-
ification assertions) are partitioned according to their respective extent of locality. More
global (system) properties sit higher in the hierarchy. A system design hierarchy is induced
from the specification hierarchy.

The granularity of the HLM is determined by the degree of locality of respective design
specification properties. The more global properties give rise to more abstract HLM models
that are utilized to verify those properties.

Figure 6 illustrates the global and local flows with an HLM example. We see two modules,
the first one with a state machine receiving a start signal, with local values written into the
memory on data-valid event (the transition and the directions of the variable indicate the
observed and controlled variables; self-loops are omitted). The values read from input and
written to the memories are abstracted out of this model. The state machine in module 1 will
write values to the memories until the synthetic non-deterministic (or random) input nd1
is asserted. Then, it will trigger module 2 with the go signal. Nondeterminism is easy to

@ Springer

410 Form Methods Syst Des (2017) 51:395-418

”””” N
Design

synthesis
Module 1 directives

L] 4
data_| > |:> High-level
_vid synthesis

ot L1

Design

(Verilog RTL)

SystemC
Simulation with
C++ Coverage

Golden |:>
Vectors

Fig. 6 Example of global top—down and bottom—up refinement flow

Global Model
Properties Checking

encode: it is implemented through the introduction of a synthetic input; for simulation, it is
randomly assigned.

Upon reception of the go bit, the second module will call the compute () function.
The compute () function will read values from the memories until the non-deterministic
signal nd2 is asserted. Then, compute () will end and return the output with the output
data value asserted. Here, the latency of the compute () data-path function is abstracted by
the nondeterministic signal nd?2.

3.2.1 Global verification

For the global verification, we go through the high-level synthesis, where a directive of latency
constraints is applied to the compute function, setting it either to a nondeterministic value
(for higher-level verification), or to a specific number of cycles in the ultimate RTL design.
The input model is synthesized into Verilog, and the global control verification is done with
a Verilog model checker or simulator against a given set of properties. For simulation, this
provides the coverage for all possible control paths covered in the HLM.

3.2.2 Local data-path function verification

The local verification is typically done by simulating the data-path function and using
“golden” reference vectors for correctness. These are vectors that are believed to define
correct design behavior. (Unsurprisingly, they are virtually never complete in this regard,
but it’s what’s available to simulation-based verification.) This testing may be done with a
transaction-level test, where we call the function with the input arguments, and verify that
the outputs are as expected. We can use a C++ coverage tool to ensure that all the paths and
conditional expression terms in the source code of the compute function are covered. This
provides us the means to test and debug directly with C++ code and close the coverage at
that lower, more local level of abstraction.

@ Springer

Form Methods Syst Des (2017) 51:395-418 411

Fig. 7 Example structure of A A
CRC example X
P max_'tx_m mac_rx_buf mac_rx|out
e
tx buf le| PrOCeESs tx_q P
2% cre 2%
Y

phy_rx_out phy_Irx_in

Having a sound bottom—up component is very important in the HLS flow for one reason:
QOR refinement. Design engineers will often refine and fine-tune the data-path functions
to get the best area/timing result possible out of the HLS tools. This is best done when the
abstraction is sound and the context in which the function is used is robust to the latency and
throughput changes of the data-path function.

3.3 Merging global and local coverage

The unification of the local coverage of the verification of the data-path function along with
the coverage from the verification of the control model (simulation or formal) is how the DV
team can achieve verification closure.

4 Tllustrative example

In this section, we present an illustrative example of a link layer subsystem, interfacing media
access control (MAC) and physical (PHY) layers. The subsystem receives messages from the
MAC layer and is required to transmit them to the physical layer and vice-versa. In so doing,
it uses a cyclic redundancy check (CRC) error detection mechanism that adds the CRC code
to messages before sending them to the physical layer. Figure 7 illustrates the structure with
the sender and receiver processes and Listing 2 shows the SystemC code for the first model
of the receiver process. (While we encapsulate all signal-level communication through the
functional put ()/get () interfaces for simplicity, all the underlying signals are visible and
used as the variable domain for the property verifications.)

This receiver communicates with the sender through the tx_g message buffer. When
messages are received and deemed correct, an “ack” message is sent, but only every N
messages. When the receiver receives the “ack” message, it instructs the sender to clear its
retry buffer. The receiver process will request the sender process to send a retry request if
a packet has an error. The sender will enter a “go-back-N" pattern, starting from a specific
message that is in the retry buffer. In the first model, the non-deterministic (or random) signal
ndl is used to model random packet errors.

4.1 First refinement: properties of global interaction
With the first model, the high level (global) properties to be verified are the required coop-

eration of both the sender and the receiver processes: this is where the global concurrency is
verified. In particular, we check the following properties:

@ Springer

412 Form Methods Syst Des (2017) 51:395-418

Listing 2 First model of receiver process in link layer

void rx_process() {
reset_interfaces();
bool drop_until_retry_ack = 0;
wait();
while (1) {
MSG msg = phy_rx_in—>get();
if (drop_until_retry_ack) {
if (msg.type==RETRY_ACK) {
drop_until_retry_ack = 0;
}
} else {
if (msg.type == ACK) {
tx_q—>put(FLUSH_TXBUF);
} else if (msg.type==RETRY) {
tx_q—>put(GO_BACK_N);
} else {
bool b = error_check(msg); / semantic stub
if (b==0) { // message has error
tx_q—>put(RETRY);
mac_rx_buf—>clear();
} else { // message is good
mac_rx_buf—>put(msg);
if (msg.last) {
mac_rx_out—>put(RCV_DONE);

void error_check(msg) {
while (nd_delay.read()) wait(); // random pause—done delay
return nd_result.read(); // return random good or bad.

— Property 1 when a retry-request is received, a retry-ack is sent back, and
— Property 2 when an ack is received, the sender clears the retry-buffer.

The control-flows of both sender and receiver processes are encoded to cooperate in
exercising these scenarios: the process checks if a message passes the check, and if not, it
sends a retry request through the sender buffer. Then, it ignores all other incoming messages
until it gets an acknowledgement for the retry request.

To test these properties, a representation in the design model of the error check itself
and even of the message handling mechanism would be irrelevant, all that is needed is a
representation of the possible outcomes: there is some delay and then it is determined that the
packet is either good or bad. The model derived for this property is a semantic “stub” function
error_check () whose latency (relative to other parallel design actions) is determined
by a nondeterministic choice of {pause, done} for latency, while the possible error checking
function returns of {good, bad} likewise are modeled by a nondeterministic choice.

If we want to assure the eventual correctness of these properties, then fairness constraints
would be required, specifically that latencies (“pauses”) are not infinite. Alternatively, the
properties could be recast as safety properties, requiring, for example, that a retry-ack is never
sent back unless a retry-request is received, and for the second property, that the sender never
clears the retry-buffer unless an ack is received.

@ Springer

Form Methods Syst Des (2017) 51:395-418 413

4.2 Second refinement: properties in scope of individual processes

The second-level of refinement is to specify the usage of the CRC mechanism for error
checking, defining its datatype interface and semantic stubs. A more local design specification
property (lower in the design specification hierarchy) may govern local message handling for
the CRC. To test this property, one would need a stub for this same function that provided a bit-
level representation of the associated data path (a new SystemC process for the computation),
but this function model stub may still abstract the actual CRC computation to an empty call
with nondeterministic latency and returns, as before.

These changes are listed in Listing 3, where we redefine the body of the error_check ()
function to communicate with the new CRC block that will just return random values with
random delay at this level of abstraction. Using this refinement, we can verify the second
layer properties:

— Property 3 when CRC check fails, a retry request is passed to the sender process.

As with Properties 1 and 2, this property would require a fairness constraint on latencies;
alternatively, it could be recast as a safety property that requires that a retry request is never
passed to the sender unless the CRC check failed.

Listing 3 Refinement for CRC datatypes and stubs

void error_check(msg) {
crc—>put(msg.data, msg.crc);
return crc—>get(); // get result

}

// Add a new process calling this function:

woid compute_crc(DATA data, CRC code) {
while (nd_crc_delay.read()) wait(); / random delay
return nd_crc_result.read(); // return random 1 or 0.

}

4.3 Third refinement: reducing global to local latency budgets

The third layer of our design specification is about the “latency budget”: ensuring that
responses are sent within the desired time budget. For this, designers must synthesize the stub
models with their specific latencies, and explore which combinations of stub latencies will
satisfy the global schedule. These too can be expressed as constraints on model events that
impose the required temporal orders. This requires micro-architecture architectural analysis
and a strong sense of the realistic implementation budgets for the stubs. Once the tempo-
ral constraints are established, it is time for the data-path function verification, as well as
verifying the correctness of any fairness constraints that had been imposed on latencies.

4.4 Fourth refinement: data-path function verification

The fourth and lowest-level design specification property in our example stipulates that the
CRC implementation conforms to a stated algorithm (correctly divides by the generator),
or it may simply state that for a test-bench word generator that generates both correct and
corrupted words, the implementation correctly distinguishes between them. For this, the
complete SystemC code of the compute () function would be used in the verification (no
abstraction), so verification of this property would be deferred to the lowest level. An example
of the data-path function to be verified is shown in Listing 4.

@ Springer

414 Form Methods Syst Des (2017) 51:395-418

Listing 4 Leaf refinement for CRC data-path function

bool compute_crc (MSG m) {

sc_bigint<72> datain = m.data;

sc_uint<8> dataout = 0;

sc_uint<8> dataoutO = 0;

for (unsigned int i=0; i<72; i++) {
dataoutO[0]= dataout[7] ~{} datain[i];
dataoutO[1]= dataout[0];
dataoutO[2]= dataout[1] ~{} dataoutO[0];

dataoutQ[7]= dataout[6] *{ } dataoutO[0];
dataout= dataoutOQ;

}

return (m.crc == dataout); }

The designer can then use the microarchitecture command of the HLS tool to unroll the loop,
and the HLS tool can optimize the logic to get a parallel computation into efficient RTL and
also to meet the latency budgets for implementation.

4.5 Discussion

Although this flow makes it appear as though the designer must encode n separate models of
the same design for n levels of abstraction, it is critical to the usability of the methodology
that this is not in fact the case. Indeed, if the methodology entailed writing distinct models
for each level of abstraction—in the case of the above example, four separate models for the
CRC-calling function, then the design process would quickly become imponderable-it is
hard enough to code one design! Coding it several times for the several levels of abstraction
would not be considered acceptable.

With the hierarchical design flow advocated here, the design is coded only once. The
various levels of abstraction are derived from the order of coding. For example, convention-
ally one would code the CRC-calling function monolithically, integrating its control-flow,
message-handling and the CRC computations in a single flat piece of code. In the hierarchi-
cal design flow proposed here, one first codes the function’s control-flow. This first part of
the coding would entail writing mainly the function’s semantic stubs with its arguments and
returns, and its communication primitives for the numerical computation to be applied to the
input word passed by the receiver process. The details of the computation would be deferred
until later in the design flow. In order to support verification that includes this high-level
representation of the CRC-calling function, its latency and its return would be chosen non-
deterministically. In fact, the coding of these choices could be automated, based on the return
type of the function and the designation of the code as a “stub”. With this stub, properties
could be tested that do not depend on the details of how the CRC computations are performed,
but only on the return values of the CRC.

Next, the CRC-calling function code would be augmented to add a mechanism for message
extraction. It is important that this be an augmentation (or semantic refinement), not a re-
writing: new code is added to the original code, defining a code refinement. At this level of
abstraction the design could be tested to ensure that the message is properly handled, and this
would entail a bit-level representation of the associated data paths. This refinement could be
implemented by replacing the higher-level function’s abstract data type for message by the
appropriate word type. Thus, the new model is derived from the previous model by adding
code to the previous model.

@ Springer

Form Methods Syst Des (2017) 51:395-418 415

Eventually, coding is completed by fully expanding data, finally supporting low-level
local checks such as the correctness of the CRC. Thus, the CRC-calling function is coded
only once, but in a different order than conventionally. Considering a design with many such
functions, at first the “high-level” parts of all the functions are coded and tested; next, each
function is augmented, writing more of its code, as appropriate for properties to be tested at
the next level of abstraction. And so on, until all the coding of all the functions is complete.
Each successive model starts with the higher-level control model and expands it, until the
coding is complete.

Importantly, this methodology supports allowing the hardware designer to verify the com-
pute functions as soon as their coding is complete, and then progress directly to work on
timing/latency goals, in a mix of top—down and bottom—up fashions, where the design archi-
tects can verify, analyze and improve the higher-level more global model.

5 Related work

There have been many related proposals over the years exemplified by the methodologies
used in Esterel [9,10], StateCharts [11,12] the hierarchical models of Alur [13-15], and the
relaxed timing models of Gajski [16—18], where high-level models have been used to guide
the verification flow. In all of these cases there is an abstraction hierarchy based upon a
separation of a design’s control-flow and data-flow.

In his Esterel methodology, Berry has long argued for coding control before data, and
parameterizing data paths, but the Esterel methodology does not allow for nondeterminism.
Esterel thus supports data type abstraction, but without nondeterminism, the behavioral data
path abstraction that we advocate here cannot be supported. Their CRP methodology [19]
is a step in this direction, but because of its underlying CSP semantics, it is too restrictive
for abstracting data paths in concurrent hardware and getting good QOR in the RTL is a
challenge.

StateCharts provides a hierarchical abstraction framework that has been given many dif-
ferent semantics. In principle, it could be given the semantics described here and utilized in
the manner that we have proposed, but to our knowledge this has never been done. Alter-
natively, the Unified Modeling Language (UML) provides multiple graphical notations to
specify software systems, and there has been much promising work using the class diagrams
and message sequence charts to specify properties and generate stubs models for further
software development [20—22] and in the broadening field of model-based design [23].

Alur’s hierarchal methodology likewise could support the framework that we propose
here, but to our knowledge it never has been applied in this way. Gajski with his team
describe new timing abstractions based on the abstractions found in the OSCI SystemC and
TLM reference manuals and generally accepted refinement methodologies [24]. The resulting
models are described as being loosely-timed, approximately-timed and cycle accurate. While
this is related to the idea of the nondeterministic transaction latency, it is unclear if the
semantic basis for these abstractions can provide a sound connection to the RTL. The work
described in [25-27] uses a high-level model to guide verification, but as it is not formally
related to the implementation, there is no way to “take credit” for their high level verification
during their RTL verification. Also, cycle-equivalent abstractions do not support the more
powerful behavior abstractions and thus verification acceleration that we support through
nondeterminism.

@ Springer

416 Form Methods Syst Des (2017) 51:395-418

There is also promising work on code coverage at the SystemC level [28-31] and tech-
niques to leverage that to improve verification, however, none of these address the abstraction
soundness and semantic gap with the implementation models.

To our knowledge, in none of these abstract schemes can high-level verification actually be
used to replace RTL verification in a sound manner. The theoretical basis for the methodology
presented here was described by the second author in [1]. However, the application of this to
a HLM and the presentation of this as a means for “taking credit” for behavior verification
during RTL verification is new.

6 Conclusion and future work

We have presented a top—down/bottom—up design methodology that supports verification of
system-level properties in an abstract high-level model in a manner that avoids the necessity
of reverifying these properties in the RTL. In this way the design development and verifi-
cation teams can “take credit” for HLM verification in a HLS framework. The top—down
methodology is hierarchical and supports acceleration of verification through early debug of
controllers before design data-paths are coded and before the design becomes cumbersome
to correct or modify, thus retaining all the benefits of utilizing a HLM, including its trans-
parency and relative compactness. The benefit of a sound abstraction is that the properties
verified on the abstract model do not have to be re-verified on the refined model (with more
details).

The methodology entails a significant change in the conventional flow, requiring the coding
of control before data-path. However, this coincides with the architectural design view, and
by accommodating it in this manner, aligns the development flow with the design flow.

This is the way design development would naturally evolve, were it not for the technicality
that control elements need to refer to data-path elements that thus seemingly inevitably need
to be developed first. We have circumvented this technical impediment by replacing the
required data-path elements with semantic stubs. In order to be able to utilize these stubs for
system-level verification, the stubs are endowed with an interface that semantically abstracts
the I/O of the corresponding data-path element.

This methodology supports both formal and simulation-based verification, and any mix
of the two. Naturally, formal verification would best be used to verify control properties and
system-level global behavior, while simulation and word-level formal verification could be
used to verify more local data-path properties.

There are many challenges in fully deploying this methodology. The systematic approach
for coverage closure, the ramp-up costs and technology transfer effort may be considerable
because it inverts the conventional coding flow that codes data-path before control.

The proposed design/development flow alignment provides an easy entrance for the incor-
poration of formal verification, and this would provide a very significant enhancement to
verification closure.

The methodology described here could be applied to portions of a design as well as to
an entire design. The former could limit technology transfer costs, as one could start with a
small expert team and then expand the methodology as expertise grows.

The utilization of semantic stubs provides a handy means for a verification group to
experiment with the methodology: a little effort yields a little acceleration; a little more
yields alittle more. Therefore, the ramp-up costs and technology transfer effort can be limited,
and once ready with the formal verification expertise to handle more flexible abstractions,

@ Springer

Form Methods Syst Des (2017) 51:395-418 417

the team can move to a full top—down flow. The bottom—up methodology can be gracefully
introduced into the design development flow, where the amount of verification acceleration is
proportional to the amount of effort applied to writing HLM models, with the resulting benefit
that all cover goals met with HLM verification are “virtually”” met during RTL verification
and thus need not be re-verified in the RTL.

Nonetheless, work remains to establish concrete guidelines for applying this methodol-
ogy in a standard design flow. Although many have independently applied part or all of
this methodology successfully in commercial designs (including, for the second author, one
complete design), a few comprehensive case studies would go a long way to illuminate the
methodology for routine utilization. One could imagine the development of a “cook book” of
supporting strategies. This could be very useful and could pave the way to broader utilization.

Acknowledgements We thank the reviewers for their very helpful suggestions.

References

1. Kurshan RP (1994) Computer-aided verification of coordinating processes. Princeton University Press,
Princeton
2. Kurshan RP (2008) Verification technology transfer. In: 25 Years of model checking, LNCS no. 5000,
Springer, pp 46-64
3. Bloem R, Jacobs S, Khalimov A, Konnov I, Rubin S, Veith H, Widder J (2016) Decidability of parame-
terized verification. ACM SIGACT News 47(2):53-64
4. Konnov I, Kotek T, Wang Q, Veith H, Bliudze S, Sifakis J (2016) Parameterized systems in BIP: design
and model checking. In: Desharnais J, Jagadeesan R (eds) 27th International conference on concurrency
theory (CONCUR 2016), volume 59 of Leibniz international proceedings in informatics (LIPIcs). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, pp 30:1-30:16
5. Bloem R, Jacobs S, Khalimov A, Konnov I, Rubin S, Veith H, Widder J (2015) Decidability of parame-
terized verification. Synth Lect Distributed Comput Theory 6:1-170
6. Aminof B, Kotek T, Rubin S, Spegni F, Veith H (2014) Parameterized model checking of rendezvous
systems. In: Baldan P, Gorla D (eds) CONCUR 2014: concurrency theory, volume 8704 of lecture notes
in computer science. Springer, Berlin, Heidelberg, pp 109-124
7. John A, Konnov I, Schmid U, Veith H, Widder J (2013) Parameterized model checking of fault-tolerant
distributed algorithms by abstraction. In: FMCAD, pp. 201-209
8. Berry G, Kishinevsky M, Singh S (2003) System-level design and verification using a synchronous
language. In: ICCAD ’03: proceedings of the 2003 IEEE/ACM international conference on Computer-
aided design. IEEE Computer Society, Washington, DC, USA, p 433
9. Berry G, Gonthier G (1992) The Esterel synchronous programming language: design, semantics, imple-
mentation. Sci Comput Program 19(2):87-152
10. Berry G (2000) The foundations of Esterel. MIT Press, Cambridge
11. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231-274
12. Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw Eng Methodol
5(4):293-333
13. Alur R, Henzinger TA (1999) Reactive modules. Form Methods Syst Des 15(1):7-48
14. AlurR, Grosu R (2000) Modular refinement of hierarchical reactive machines. In: POPL *00: proceedings
of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Press,
New York, NY, USA, pp 390402
15. Alur R, Grosu R (2004) Modular refinement of hierarchic reactive machines. ACM Trans Program Lang
Syst 26(2):339-369
16. Abdi S, Gajski D (2004) System-level verification with model algebra. CECS, UCI, Technical Report
04-29
17. Abdi S (2005) Functional verification of system-level model refinements. Ph.D. dissertation, University
of California, Irvine
18. Abdi S, Gajski D (2006) Verification of system-level model transformations. Int J Parallel Program
34(1):29-59
19. Berry G, Ramesh S, Shyamasundar RK (1993) Communicating Reactive Processes. In: POPL

@ Springer

418 Form Methods Syst Des (2017) 51:395-418

20. KollmannR, GogollaM (2001) Capturing dynamic program behaviour with UML collaboration diagrams.
In: Proceedings fifth European conference on software maintenance and reengineering, Lisbon, pp 58-67

21. Cartaxo EG, Neto FGO, Machado PDL (2007) Test case generation by means of UML sequence diagrams
and labeled transition systems. In: 2007 in Proceedings of IEEE international conference on systems, man
and cybernetics, Montreal, pp 1292-1297

22. Broy M, Kriiger I, Meisinger M (2004) Automotive software-connected services in mobile networks:
first automotive software workshop, ASWSD 2004, San Diego, CA, USA, January 10-12, 2004, Revised
selected papers, Broy M, Kriiger I, Meisinger M (eds), Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 2006

23. Seiter J, Wille R, Kahne U, Drechsler R (2014) Automatic refinement checking for formal system models.
In: Proceedings of the 2014 forum on specification and design languages (FDL), Munich, pp 1-8

24. Groetker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic Publishers,
Dordrecht

25. Flaisher A, Gluska A, Singerman E (2007) Case study: integrating fv and dv in the verification of the
intel core 2 duo microprocessor. In: FMCAD ’07: proceedings of the formal methods in computer aided
design. IEEE Computer Society, Washington, DC, USA, pp 192-195

26. Beers R (2008) Pre-RTL formal verification: an intel experience. In: DAC 08: proceedings of the 45th
annual design automation conference. ACM, New York, NY, USA, pp 806-811

27. Gluska A, Libis L (2009) Shortening the verification cycle with synthesizable abstract models. In: DAC
’09: proceedings of the 46th annual design automation conference. ACM, New York, NY, USA, pp
454-459

28. Grobe D, Peraza H, Klingauf W, Drechsler R (2008) Measuring the quality of a SystemC Testbench
by using code coverage techniques. In: Embedded systems specification and design languages: selected
contributions from FDL’07. Springer, Netherlands, pp 73-86

29. Herber P, Glesner S (2013) A HW/SW co-verification framework for SystemC. ACM Trans Embed
Comput Syst 12(1s):61

30. Junior AD, da Silva DJC (2007) Code-coverage based test vector generation for SystemC designs. In:
IEEE computer society annual symposium on VLSI (ISVLSI *07), Porto Alegre, pp 198-206

31. LinB, Yang Z, Cong K, Xie F (2016) Generating high coverage tests for SystemC designs using symbolic
execution. In: Design automation conference (ASP-DAC) 2016 21st Asia and South Pacific, pp 166-171

@ Springer

	A methodology to take credit for high-level verification during RTL verification
	Abstract
	1 Introduction
	2 Semantics of high-level models for synthesis
	2.1 Overview of high-level synthesis
	2.2 Interpretation of synthesizable SystemC syntax
	2.3 Semantic framework for high-level and RTL models
	2.4 Example: behavior of SystemC module
	2.5 Semantic changes through micro-architecture directive
	2.5.1 Synthesis directive: latency constraints
	2.5.2 Synthesis directive: loop pipelining

	2.6 HLS verification in practice
	2.7 Abstraction in HLS flow
	2.7.1 Property verification
	2.7.2 Abstraction and refinement
	2.7.3 Controlled refinement to avoid expensive consistency checks

	3 Design and verification methodology
	3.1 Semantic stubs for controlled abstractions and refinements
	3.2 Unifying top–down and bottom–up methodologies
	3.2.1 Global verification
	3.2.2 Local data-path function verification

	3.3 Merging global and local coverage

	4 Illustrative example
	4.1 First refinement: properties of global interaction
	4.2 Second refinement: properties in scope of individual processes
	4.3 Third refinement: reducing global to local latency budgets
	4.4 Fourth refinement: data-path function verification
	4.5 Discussion

	5 Related work
	6 Conclusion and future work
	Acknowledgements
	References

