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Abstract Automatic verification of threshold-based fault-tolerant distributed algorithms
(FTDA) is challenging: FTDAs have multiple parameters that are restricted by arithmetic
conditions, the number of processes and faults is parameterized, and the algorithm code is
parameterized due to conditions counting the number of received messages. Recently, we
introduced a technique that first applies data and counter abstraction and then runs bounded
model checking (BMC). Given an FTDA, our technique computes an upper bound on the
diameter of the system. This makes BMC complete for reachability properties: it always
finds a counterexample, if there is an actual error. To verify state-of-the-art FTDAs, further
improvement is needed. In contrast to encoding bounded executions of a counter system over
an abstract finite domain in SAT, in this paper, we encode bounded executions over integer
counters in SMT. In addition, we introduce a new form of reduction that exploits acceleration
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and the structure of the FTDAs. This aggressively prunes the execution space to be explored
by the solver. In this way, we verified safety of seven FTDAs that were out of reach before.

Keywords Parameterized verification · Bounded model checking · Completeness · Partial
orders in distributed systems · Reduction · Fault-tolerant distributed algorithms · Byzantine
faults

1 Introduction

Replication is a classic approach to make computing systems more reliable. In order to
avoid a single point of failure, one uses multiple processes in a distributed system. Then,
if some of these processes fail (e.g., by crashing or deviating from their expected behavior)
the distributed system as a whole should stay operational. For this purpose one uses fault-
tolerant distributed algorithms (FTDAs). These algorithms have been extensively studied in
distributed computing theory [1,50], and found application in safety critical systems (auto-
motive or aeronautic industry). With the recent advent of data centers and cloud computing
we observe growing interest in fault-tolerant distributed algorithms, and their correctness,
also for more mainstream computer science applications [19,20,31,47,52,54,60].

We consider automatic verification techniques specifically for threshold-based fault-
tolerant distributed algorithms. In these algorithms, processes collect messages from their
peers, and check whether the number of received messages reaches a threshold, e.g., a thresh-
old may ensure that acknowledgments from a majority of processes have been received.
Waiting for majorities, or more generally waiting for quorums, is a key pattern of many fault-
tolerant algorithms, e.g., consensus, replicated state machine, and atomic commit. In [34] we
introduced an efficient encoding of these algorithms, which we used in [33] for abstraction-
based parameterized model checking of safety and liveness of several case study algorithms,
which are parameterized in the number of processes n and the fraction of faults t , e.g., n > 3t .
In [41] we were able to verify reachability properties of more involved algorithms by apply-
ing bounded model checking. We showed how to make bounded model checking complete
in the parameterized case. In particular, we considered counter systems where we record for
each local state, how many processes are in this state. We have one counter per local state �,
denoted by κ[�]. A process step from local state � to local state �′ is modeled by decrementing
κ[�] and incrementing κ[�′]. When δ processes perform the same step one after the other, we
allow the processes to do the accelerated step that instantaneously changes the two affected
counters by δ. The number δ is called acceleration factor, which can vary in a single run.

Aswe focus on threshold-based FTDAs,we consider counter systems defined by threshold
automata. Here, transitions are guarded by threshold guards that compare a shared integer
variable to a linear combination of parameters, e.g., x ≥ n − t or x < t , where x is a shared
variable and n and t are parameters.

Completeness of the method [41] with respect to reachability is shown by proving a bound
on the diameter of the accelerated system. Inspired by Lamport’s view of distributed compu-
tation as partial order on events [43], our method uses a reduction similar to Lipton’s [48].
Instead of pruning executions that are “similar” to ones explored before as in partial order
reduction [28,53,59], we use the partial order to show (offline) that every run has a similar
run of bounded length. Interestingly, the bound is independent of the parameters. In [41],
we introduced the following automated method, which combines this idea with data abstrac-
tion [33]:
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Fig. 1 Tool chain with counter abstraction [27,33,41] on top, and with SMT-based bounded model checking
on bottom

1. Apply a parametric data abstraction to the process code to get a finite state process
description, and construct the threshold automaton (TA) [33,36].

2. Compute the diameter bound, based on the control flow of the TA.
3. Construct a system with abstract counters, i.e., a counter abstraction [33,55].
4. Perform SAT-based bounded model checking [6,16] up to the diameter bound, to check

whether bad states are reached in the counter abstraction.
5. If a counterexample is found, check its feasibility and refine, if needed [13,33].

Figure 1 gives on top a diagram [40] that shows the technique based on counter abstrac-
tion. While this allowed us to automatically verify several FTDAs not verified before, there
remained two bottlenecks for scalability to larger and more complex protocols: First, counter
abstraction can lead to spurious counterexamples. As counters range over a finite abstract
domain, the semantics of abstract increment and decrements on the counters introduce non-
determinism. For instance, the value of a counter can remain unchanged after applying an
increment. Intuitively, processes or messages can be “added” or “lost”, which results in
that, e.g., in the abstract model the number of messages sent is smaller than the number of
processes that have sent a message, which obviously is spurious behavior. Second, counter
abstraction works well in practice only for processes with a few dozens of local states. It has
been observed in [4] that counter abstraction does not scale to hundreds of local states. We
had similar experience with counter abstraction in our experiments in [41]. We conjecture
that this is partly due to the many different interleavings, which result in a large search space.

To address these bottlenecks, we make two crucial contributions in this paper:

1. To eliminate one of the two sources of spurious counterexamples, namely, the non-
determinism added by abstract counters, we do bounded model checking using SMT
solvers with linear integer arithmetic on the accelerated system, instead of SAT-based
bounded model checking on the counter abstraction.
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Fig. 2 An example threshold
automaton with threshold guards
“ϕ1 : x ≥ �(n + t)/2� − f ”,
“ϕ2 : y ≥ (t + 1) − f ”, and
“ϕ3 : y ≥ (2t + 1) − f ”

1

2

3 4 5

r3 : ϕ1 → x++

r2 : ϕ2 → x++

r1 : true → x++

r4 : ϕ1 → y++

r5 : ϕ2 → y++

r6 : ϕ3

2. We reduce the search space dramatically: we introduce the notion of an execution schema
that is defined as a sequence of local rules of the TA. By assigning to each rule of a
schema an acceleration factor (possibly 0, which models that no process executes the
rule), one obtains a run of the counter system. Hence, due to parameterization, each
schema represents infinitely many runs. We show how to construct a set of schemas
whose set of reachable states coincides with the set of reachable states of the accelerated
counter system.

The resulting method is depicted at the bottom of Fig. 1. Our construction can be seen
as an aggressive form of reduction, where each run has a similar run generated by a schema
from the set. To show this, we capture the guards that are locked and unlocked in a context.
Our key insight is that a bounded number of transitions changes the context in each run. For
example, of all transitions increasing a variable x , at most one makes x ≥ n − t true, and
at most one makes x < t + 1 false (the parameters n and t are fixed in a run, and shared
variables can only be increased). We fix those transitions that change the context, and apply
the ideas of reduction to the subexecutions between these transitions.

Our experiments show that SMT solvers and schemas outperform SAT solvers and counter
abstraction in parameterized verification of threshold-based FTDAs. We verified safety of
FTDAs [10,18,29,51,56,57] that have not been automatically verified before. In addition
we achieved dramatic speedup and reduced memory footprint for FTDAs [9,12,58] which
previously were verified in [41].

In this article we focus on parameterized reachability properties. Recently, we extended
this approach to safety and liveness, for which we used the reachability technique of this
article as a black box [37].

2 Our approach at a glance

Formodeling threshold-based FTDAs,we use threshold automata thatwere introduced in [38,
41] and are discussed in more detail in [40]. We use Fig. 2 to describe our contributions in
this section. The figure presents a threshold automaton TA over two shared variables x and
y and parameters n, t , and f , which is inspired by the distributed asynchronous broadcast
protocol from [9]. There, n− f correct processes concurrently follow the control flow of TA,
and f processes are Byzantine faulty. As is typical for FTDAs, the parameters must satisfy
a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0, that is, less than a third of the processes are
faulty. The circles depict the local states �1, . . . , �5, two of them are the initial states �1 and
�2. The edges depict the rules r1, . . . , r6 labeled with guarded commands ϕ �→ act, where ϕ

is one of the threshold guards “ϕ1 : x ≥ �(n + t)/2� − f ”, “ϕ2 : y ≥ (t + 1) − f ”, and
“ϕ3 : y ≥ (2t + 1) − f ”, and an action act increases the shared variables (x and y) by one,
or zero (as in rule r6).
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We associate with every local state �i a non-negative counter κ[�i ] that represents the
number of processes in �i . Together with the values of x , y, n, t , and f , the values of the
counters constitute a configuration of the system. In the initial configuration there are n − f
processes in initial states, i.e., κ[�1] + κ[�2] = n − f , and the other counters and the shared
variables x and y are zero.

The rules define the transitions of the counter system. For example, according to the
rule r2, if in the current configuration the guard y ≥ t +1− f holds true and κ[�1] ≥ 5, then
five processes can instantaneously move out of the local state �1 to the local state �3, and
increment x as prescribed by the action of r2 (since the evaluation of the guard y ≥ t +1− f
cannot change from true to false). This results in increasing x and κ[�3] byfive, and decreasing
the counter κ[�1] by five. When, as in our example, rule r2 is conceptually executed by 5
processes, we denote this transition by (r2, 5), where 5 is the acceleration factor. A sequence
of transitions forms a schedule, e.g., (r1, 2), (r3, 1), (r1, 1).

In this paper, we address a parameterized reachability problem, e.g., can at least one correct
process reach the local state �5, when n − f correct processes start in the local state �1? Or,
in terms of counter systems, is a configuration with κ[�5] 	= 0 reachable from an initial
configuration with κ[�1] = n − f ∧ κ[�2] = 0? As discussed in [41], acceleration does not
affect reachability, and precise treatment of the resilience condition and threshold guards is
crucial for solving this problem.

2.1 Schemas

When applied to a configuration, a schedule generates a path, that is, an alternating sequence
of configurations and transitions. As initially x and y are zero, threshold guards ϕ1, ϕ2, and
ϕ3 evaluate to false. As rules may increase variables, these guards may eventually become
true. In our example we do not consider guards like x < t + 1 that are initially true and
become false, although we formally treat them in our technique. In fact, initially only r1 is
unlocked. Because r1 increases x , it may unlock ϕ1. Thus r4 becomes unlocked. Rule r4
increases y and thus repeated application of r4 (by different processes) first unlocks ϕ2 and
then ϕ3. We introduce a notion of a context that is the set of threshold guards that evaluate to
true in a configuration. For our example we observe that each path goes through the following
sequence of contexts {}, {ϕ1}, {ϕ1, ϕ2}, and {ϕ1, ϕ2, ϕ3}. In fact, the sequence of contexts in
a path is always monotonic, as the shared variables can only be increased.

The conjunction of the guards in the context {ϕ1, ϕ2} implies the guards of the rules
r1, r2, r3, r4, r5; we call these rules unlocked in the context. This motivates our definition of
a schema: a sequence of contexts and rules. We give an example of a schema below, where
inside the curly brackets we give the contexts, and fixed sequences of rules in between. (We
discuss the underlined rules below.)

S = {} r1, r1 {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}
r1, r2, r3, r4, r5, r4, r5 {ϕ1, ϕ2, ϕ3} r1, r2, r3, r4, r5, r6 {ϕ1, ϕ2, ϕ3} (2.1)

Given a schema, we can generate a schedule by attaching to each rule an acceleration
factor, which can possibly be 0. For instance, if we attach non-zero factors to the underlined
rules in S, and a zero factor to the other rules, we generate the following schedule τ ′ (we
omit the transitions with 0 factors here).

τ ′ = (r1, 1)

τ ′
1

, (r1, 1)
︸ ︷︷ ︸

t1

, (r1, 1), (r3, 1)

τ ′
2

, (r4, 1)
︸ ︷︷ ︸

t2

,

τ ′
3

(r5, 1)
︸ ︷︷ ︸

t3

, (r5, 2), (r6, 4)

τ ′
4

(2.2)
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It can easily be checked that τ ′ is generated by schema S, because the sequence of the
underlined rules in S matches the sequence of rules appearing in τ ′.

In this paper, we show that the schedules generated by a few schemas—one per each
monotonic sequence of contexts—span the set of all reachable configurations. To this end,
we apply reduction and acceleration to relate arbitrary schedules to their representatives,
which are generated by schemas.

2.2 Reduction and acceleration

In this section we show what we mean by a schedule being “related” to its representative.
Consider, e.g., the following schedule τ from the initial state σ0 with n = 5, t = f = 1,
κ[�1] = 1, and κ[�2] = 3:

τ = (r1, 1),
τ1

(r1, 1)
︸ ︷︷ ︸

t1

, (r3, 1), (r1, 1)
τ2

, (r4, 1)
︸ ︷︷ ︸

t2

,

τ3

(r5, 1)
︸ ︷︷ ︸

t3

,

(r6, 1), (r5, 1), (r5, 1), (r6, 1), (r6, 1), (r6, 1)
τ4

Observe that after (r1, 1), (r1, 1), variable x = 2, and thus ϕ1 is true. Hence transition t1
changes the context from {} to {ϕ1}. Similarly t2 and t3 change the context. Context changing
transitions aremarkedwith curly brackets.Between themwehave the subschedules τ1, . . . , τ4
(τ3 is empty) marked with square brackets.

To show that this schedule is captured by the schema (2.1), we apply partial order argu-
ments—that is, amover analysis [48]—regarding distributed computations:As the guardsϕ2

and ϕ3 evaluate to true in τ4, and r5 precedes r6 in the control flow of the TA, all transi-
tions (r5, 1) can be moved to the left in τ4. Similarly, (r1, 1) can be moved to the left in τ2.
The resulting schedule is applicable and leads to the same configuration as the original one.
Further, we can accelerate the adjacent transitions with the same rule, e.g., the sequence
(r5, 1), (r5, 1) can be transformed into (r5, 2). Thus, we transform subschedules τi into τ ′

i ,
and arrive at the schedule τ ′ fromEq. (2.2), whichwe call the representative schedule of τ . As
the representative schedule τ ′ is generated from the schema in (2.1), we say that the schema
captures schedule τ . (It also captures τ ′.) Importantly for reachability checking, if τ and τ ′
are applied to the same configuration, they end in the same configuration. These arguments
are formalized in Sects. 5, 6 and 7.

2.3 Encoding a schema in SMT

One of the key insights in this paper is that reachability checking via schemas can be encoded
efficiently as SMT queries in linear integer arithmetic. In more detail, finite paths of counter
systems can be expressed with inequalities over counters such as κ[�2] and κ[�3], shared
variables such as x and y, parameters such as n, t , and f , and acceleration factors. Also,
threshold guards and resilience conditions are expressions in linear integer arithmetic.

We give an example of reachability checking with SMT using the simple schema
{} r1, r1 {ϕ1} which is contained in the schema S in Eq. (2.1). To obtain a complete encoding
for S, one can similarly encode the other simple schemas and combine them.

To this end, we have to express constraints on three configurations σ0, σ1, and σ2. For the
initial configuration σ0, we introduce integer variables: κ0

1, . . . , κ
0
5 for local state counters,

x0 and y0 for shared variables, and n, t , and f for parameters. As is written in Eq. (2.3), the
configuration σ0 should satisfy the initial constraints, and its context should be empty (that
is, all guards evaluate to false):
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κ0
1 + κ0

2 = n − f ∧ κ0
3 = κ0

4 = κ0
5 = 0 ∧ x0 = y0 = 0

∧n ≥ 3t ∧ t ≥ f ≥ 0 ∧ (¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x0/x, y0/y] (2.3)

The configuration σ1 is reached from σ0 by applying a transition with the rule r1 and an
acceleration factor δ1, and the configuration σ2 is reached from σ1 by applying a transition
with the rule r1 and an acceleration factor δ2. Applying transition with the rule r1 to σ0 just
means to increase both κ[�3] and x by δ1 and decrease κ[�2] by δ1. Hence, we introduce four
fresh variables per transition and add the arithmetic operations. According to the schema,
configuration σ2 has the context {ϕ2}. The following equations express these constraints1:

κ1
3 = κ0

3 + δ1 ∧ κ1
2 = κ0

2 − δ1 ∧ x1 = x0 + δ1 (2.4)

κ2
3 = κ1

3 + δ2 ∧ κ2
2 = κ1

2 − δ2 ∧ x2 = x1 + δ2

∧(ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x2/x, y0/y] (2.5)

Finally, we express the reachability question for all paths generated by the simple schema
{} r1, r1 {ϕ1}. Whether there is a configuration with κ[�5] 	= 0 reachable from an initial
configuration with κ[�1] = n − f and κ[�2] = 0 can then be encoded as:

κ0
1 = n − f ∧ κ0

2 = 0 ∧ κ0
5 	= 0 (2.6)

Note that we check only κ0
5 against zero, as the local state �5 is never updated by the

rule r1. It is easy to see that conjunction of Eqs. (2.3)–(2.6) does not have a solution, and thus
all paths generated by the schema {} r1, r1 {ϕ1} do not reach a configuration with κ[�5] 	= 0.
By writing down constraints for the other three simple schemas in Eq. (2.1), we can check
reachability for the paths generated by the whole schema as well. As discussed in Sect. 2.1,
our results also imply reachability on all paths whose representatives are generated by the
schema. More details on the SMT encoding can be found in Sect. 9.

3 Parameterized counter systems

We recall the framework of [41] to the extent necessary, and extend it with the notion of a
context in Sect. 3.2. A threshold automaton describes a process in a concurrent system, and
is a tuple TA = (L, I, Γ,	,R,RC) defined below.

The finite setL contains the local states, and I ⊆ L is the set of initial states. The finite set
Γ contains the shared variables that range over the natural numbers N0. The finite set 	 is a
set of parameter variables that range over N0, and the resilience condition RC is a formula
over parameter variables in linear integer arithmetic, e.g., n > 3t . The set of admissible
parameters is PRC = {p ∈ N

|	|
0 : p |� RC}.

A key ingredient of threshold automata are threshold guards (or, just guards):

Definition 3.1 A threshold guard is an inequality of one of the following two forms:

(R) x ≥ a0 + a1 · p1 + · · · + a|	| · p|	|, or
(F) x < a0 + a1 · p1 + · · · + a|	| · p|	|,
where x ∈ Γ is a shared variable, a0, . . . , a|	| ∈ Z are integer coefficients, and
p1, . . . , p|	| ∈ 	 are parameters. We denote the set of all guards of the form (R) by Φrise,
and the set of all guards of the form (F) by Φfall.

1 Our model requires all variables to be non-negative integers. Although these constraints (e.g., x1 ≥ 0) have
to be encoded in the SMT queries, we omit these constraints here for a more concise presentation.
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A rule defines a conditional transition between local states that may update the shared
variables. Formally, a rule is a tuple (from, to, ϕrise, ϕfall, u): the local states from and to are
from L. (Intuitively, they capture from which local state to which a process moves.) A rule is
only executed if the conditions ϕrise and ϕfall evaluate to true. Condition ϕrise is a conjunction
of guards from Φrise, and ϕfall is a conjunction of guards from Φfall (cf. Definition 3.1). We
denote the set of guards used in ϕrise by guard(ϕrise), and guard(ϕfall) is the set of guards
used in ϕfall.

Rules may increase shared variables using an update vector u ∈ N
|Γ |
0 that is added to

the vector of shared variables. As u ∈ N
|Γ |
0 , global variables can only be increased or left

unchanged. As will be later formalized in Proposition 3.1, guards fromΦrise can only change
from false to true (rise), and guards from Φfall can change from true to false (fall). Finally,R
is the finite set of rules. We use the dot notation to refer to components of rules, e.g., r.from
or r.u.

Example 3.1 In Fig. 2, the rule r2 : ϕ2 �→ x++ that describes a transition from �1 to �3, can
formally be written as (�1, �3, ϕ2,
, (1, 0)). Its intuitive meaning is as follows. If the guard
ϕ2 : y ≥ (t + 1)− f evaluates to true, a process can move from the local state �1 to the local
state �3, and the global variable x is incremented, while y remains unchanged. We formalize
the semantics as counter systems in Sect. 3.1.

Definition 3.2 Given a threshold automaton (L, I, Γ,	,R,RC), we define the precedence
relation ≺P: for a pair of rules r1, r2 ∈ R, it holds that r1 ≺P r2 if and only if r1.to =
r2.from. We denote by ≺+

P the transitive closure of ≺P. Further, we say that r1 ∼P r2, if
r1 ≺+

P r2 ∧ r2 ≺+
P r1, or r1 = r2.

Assumption 3.3 We limit ourselves to threshold automata relevant for FTDAs, i.e., those
where r.u = 0 for all rules r ∈ R that satisfy r ≺+

P r . Such automata were called canonical
in [41].

Remark 3.1 We use threshold automata to model fault-tolerant distributed algorithms that
count messages from distinct senders. These algorithms are based on an “idealistic” reliable
communication assumption (nomessage loss); these assumptions are typically expected to be
ensured by “lower level bookkeeping code”, e.g., communication protocols. As a result, the
algorithms we consider here do not gain from sending the same message (that is, increasing
a variable) inside a loop, so that we can focus on threshold automata that do not increase
shared variables in loops.

Example 3.2 In the threshold automaton from Fig. 3 we have that r2 ≺P r3 ≺P r4 ≺P r5 ≺P

r6 ≺P r8 ≺P r2. Thus, we have that r2 ≺+
P r2. In our case this implies that r2.u = 0 by

definition. Similarly we can conclude that r3.u = r4.u = r5.u = r6.u = r7.u = r8.u = 0.

Looplets The relation ∼P defines equivalence classes of rules. An equivalence class corre-
sponds to a loop or to a single rule that is not part of a loop. Hence, we use the term looplet
for one such equivalence class. For a given set of rules R let R/∼ be the set of equivalence
classes defined by ∼P. We denote by [r ] the equivalence class of rule r . For two classes c1
and c2 fromR/∼we write c1 ≺C c2 iff there are two rules r1 and r2 inR satisfying [r1] = c1
and [r2] = c2 and r1 ≺+

P r2 and r1 �P r2. As the relation ≺C is a strict partial order, there
are linear extensions of ≺C . Below, we fix an arbitrary of these linear extensions to sort
transitions in a schedule: We denote by ≺lin

C a linear extension of ≺C .

123



278 Form Methods Syst Des (2017) 51:270–307
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5

6 7
8

9

r1
r2

r3
r4

r5

r6

r7

r8

r9
r10

r11

Fig. 3 A threshold automaton TA with local states L = {�i : 1 ≤ i ≤ 9} and rules R = {ri : 1 ≤ i ≤ 11}.
The rules drawn with solid arrows {r2, . . . , r8} constitute a single equivalence class, while all other rules are
singleton equivalence classes

1

1

2

2

no crash detected

a crash detected

Fig. 4 A typical structure found in threshold automata that model fault-tolerant algorithms with a failure
detector [12]. The gray circles depict those local states, where the failure detector reports a crash. The local
states �i and �′

i differ only in the output of the failure detector. As the failure detector output changes non-
deterministically, the threshold automaton contains loops of size two

Example 3.3 Consider Fig. 3. The threshold automaton has five looplets: c1 = {r1}, c2 =
{r2, . . . , r8}, c3 = {r9}, c4 = {r10}, and c5 = {r11}. From r9 ≺P r10, it follows that c3 ≺C c4,
and from r4 ≺+

P r10, it follows that c2 ≺C c4. We can pick two linear extensions of ≺C ,
denoted by ≺1 and ≺2. We have c1 ≺1 · · · ≺1 c5, and c1 ≺2 c2 ≺2 c3 ≺2 c5 ≺2 c4. In this
paper we always fix one linear extension.

Remark 3.2 It may seem natural to collapse such loops into singleton local states. In our case
studies, e.g, [29], non-trivial loops are used to express non-deterministic choice due to failure
detectors [12], as shown in Fig. 4. Importantly, some local states inside the loops appear in
the specifications. Thus, one would have to use arguments from distributed computing to
characterize when collapsing states is sound. In this paper, we present a technique that deals
with the loops without need for additional modelling arguments.

3.1 Counter systems

Weuse a function N : PRC → N0 to capture the number of processes for each combination of
parameters. As we use SMT, we assume that N can be expressed in linear integer arithmetic.
For instance, if only correct processes are explictly modeled we typically have N (n, t, f ) =
n − f , and the respective SMT expression is n − f . Given N , a threshold automaton TA,
and admissible parameter values p ∈ PRC , we define a counter system as a transition system
(Σ, I, R). It consists of the set of configurationsΣ , which contain evaluations of the counters
and variables, the set of initial configurations I , and the transition relation R:

Configurations Σ and I A configuration σ = (κ, g, p) consists of a vector of counter values
σ.κ ∈ N

|L|
0 (for simplicity we use the convention that L = {1, . . . , |L|}) a vector of shared

variable values σ.g ∈ N
|Γ |
0 , and a vector of parameter values σ.p = p. The set Σ is the
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set of all configurations. The set of initial configurations I contains the configurations that
satisfy σ.g = 0,

∑

i∈I σ.κ[i] = N (p), and
∑

i /∈I σ.κ[i] = 0. This means that in every
initial configuration all global variables have zero values, and all N (p) modeled processes
are located only in the initial local states.

Example 3.4 Consider the threshold automaton from Fig. 2 with the initial states �1 and �2.
Let us consider a system of five processes, one of them being Byzantine faulty. Thus, n = 5,
t = f = 1, and we explicitely model N (5, 1, 1) = n − f = 4 correct processes. One of the
initial configurations is σ = (κ, g, p), where σ.κ = (1, 3, 0, 0, 0), σ.g = (0, 0), and σ.p =
(5, 1, 1). In other words, there is one process in �1, three processes in �2, and global variables
are initially x = y = 0. Note that

∑

i∈I σ.κ[i] = κ[�1] + κ[�2] = 1 + 3 = 4 = N (5, 1, 1).

Transition relation R A transition is a pair t = (rule, factor) of a rule of the TA and a non-
negative integer called the acceleration factor, or just factor for short. (As already discussed
in Sect. 2.1, we will use the zero factors when generating schedules from schemas.) For a
transition t = (rule, factor) we refer by t.u to rule.u, and by t.ϕfall to rule.ϕfall, etc. We say
a transition t is unlocked in configuration σ if (σ.κ, σ.g + k · t.u, σ.p) |� t.ϕrise ∧ t.ϕfall,
for k ∈ {0, . . . , t.factor − 1}. Note that here we use a notation that a configuration satisfies
a formula, which is considered true if and only if the formula becomes true when all free
variables of the formulas are evaluated as in the configuration.

We say that transition t is applicable (or enabled) in configuration σ , if it is unlocked, and
σ.κ[t.from] ≥ t.factor. (As all counters are non-negative, a transition with the zero factor is
always applicable to all configurations provided that the guards are unlocked.) We say that
σ ′ is the result of applying the enabled transition t to σ , and write σ ′ = t (σ ), if

– σ ′.g = σ.g + t.factor · t.u and σ ′.p = σ.p
– if t.from 	= t.to then

– σ ′.κ[t.from] = σ.κ[t.from] − t.factor,
– σ ′.κ[t.to] = σ.κ[t.to] + t.factor, and
– ∀� ∈ L\{t.from, t.to} it holds that σ ′.κ[�] = σ.κ[�]

– if t.from = t.to then σ ′.κ = σ.κ

The transition relation R ⊆ Σ×Σ of the counter system is defined as follows: (σ, σ ′) ∈ R
iff there is a rule r ∈ R and a factor k ∈ N0 such that σ ′ = t (σ ) for t = (r, k). Updates do not
decrease the values of shared variables, and thus the following proposition was introduced
in [41]:

Proposition 3.1 [41] For all configurations σ , all rules r , and all transitions t applicable to
σ , the following holds:

1. If σ |� r.ϕrise then t (σ ) |� r.ϕrise 3. If σ 	|� r.ϕfall then t (σ ) 	|� r.ϕfall

2. If t (σ ) 	|� r.ϕrise then σ 	|� r.ϕrise 4. If t (σ ) |� r.ϕfall then σ |� r.ϕfall

Schedules and paths A schedule is a (finite) sequence of transitions. For a schedule τ and
an index i : 1 ≤ i ≤ |τ |, by τ [i] we denote the i th transition of τ , and by τ i we denote the
prefix τ [1], . . . , τ [i] of τ . A schedule τ = t1, . . . , tm is applicable to configuration σ0, if
there is a sequence of configurations σ1, . . . , σm with σi = ti (σi−1) for 1 ≤ i ≤ m. If there
is a ti .factor > 1, then a schedule is accelerated.

By τ · τ ′ we denote the concatenation of two schedules τ and τ ′. A sequence
σ0, t1, σ1, . . . , σk−1, tk, σk of alternating configurations and transitions is called a (finite)
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path, if transition ti is enabled in σi−1 and σi = ti (σi−1), for 1 ≤ i ≤ k. For a configuration σ0
and a schedule τ applicable to σ0, by path(σ0, τ )we denote the path σ0, t1, . . . , t|τ |, σ|τ | with
ti = τ [i] and σi = ti (σi−1), for 1 ≤ i ≤ |τ |.
3.2 Contexts and slices

The evaluation of the guards in the sets Φrise and Φfall in a configuration solely defines
whether certain transitions are unlocked (but not necessarily enabled). From Proposition 3.1,
one can see that after a transition has been applied, more guards fromΦrise may get unlocked
and more guards from Φfall may get locked. In other words, more guards from Φrise may
evaluate to true and more guards from Φfall may evaluate to false. To capture this intuition,
we define:

Definition 3.4 A context Ω is a pair (Ω rise,Ω fall) with Ω rise ⊆ Φrise and Ω fall ⊆ Φfall. We
denote by |Ω| = |Ω rise| + |Ω fall|.

For two contexts (Ω rise
1 ,Ω fall

1 ) and (Ω rise
2 ,Ω fall

2 ), we define that (Ω rise
1 ,Ω fall

1 ) �
(Ω rise

2 ,Ω fall
2 ) if and only if Ω rise

1 ∪ Ω fall
1 ⊂ Ω rise

2 ∪ Ω fall
2 . Then, a sequence of contexts

Ω1, . . . ,Ωm is monotonically increasing, if Ωi � Ωi+1, for 1 ≤ i < m. Further, a
monotonically increasing sequence of contexts Ω1, . . . , Ωm is maximal, if Ω1 = (∅,∅)

and Ωm = (Φrise, Φfall) and |Ωi+1| = |Ωi | + 1, for 1 ≤ i < m. We obtain:

Proposition 3.2 Every maximal monotonically increasing sequence of contexts is of length
|Φrise| + |Φfall| + 1. There are at most (|Φrise| + |Φfall|)! such sequences.

Example 3.5 For the example in Fig. 2, we have Φrise = {ϕ1, ϕ2, ϕ3}, and Φfall = ∅.
Thus, there are (|Φrise| + |Φfall|)! = 6 maximal monotonically increasing sequences
of contexts. Two of them are (∅,∅) � ({ϕ1},∅) � ({ϕ1, ϕ2},∅) � ({ϕ1, ϕ2, ϕ3},∅)

and (∅,∅) � ({ϕ3},∅) � ({ϕ1, ϕ3},∅) � ({ϕ1, ϕ2, ϕ3},∅). All of them have length
|Φrise| + |Φfall| + 1 = 4.

To every configuration σ , we attach the context consisting of all guards in Φrise that
evaluate to true in σ , and all guards in Φfall that evaluate to false in σ :

Definition 3.5 Given a threshold automaton,we define its configuration context as a function
ω : Σ → 2Φrise × 2Φfall

that for each configuration σ ∈ Σ gives a context (Ω rise,Ω fall) with
Ω rise = {ϕ ∈ Φrise : σ |� ϕ} and Ω fall = {ϕ ∈ Φfall : σ 	|� ϕ}.

The following monotonicity result is a direct consequence of Proposition 3.1.

Proposition 3.3 If a transition t is enabled in a configurationσ , then eitherω(σ) � ω(t (σ )),
or ω(σ) = ω(t (σ )).

Definition 3.6 A schedule τ is steady for a configuration σ , if for every prefix τ ′ of τ , the
context does not change, i.e., ω(τ ′(σ )) = ω(σ).

Proposition 3.4 A schedule τ is steady for a configuration σ if and only ifω(σ) = ω(τ(σ )).

In the following definition, we associate a sequence of contexts with a path:

Definition 3.7 Given a configuration σ and a schedule τ applicable to σ , we say that
path(σ, τ ) is consistent with a sequence of contexts Ω1, . . . , Ωm , if there exist indices
n0, . . . , nm , with 0 = n0 ≤ n1 ≤ . . . ≤ nm = |τ | + 1, such that for every k, 1 ≤ k ≤ m, and
every i with nk−1 ≤ i < nk , it holds that ω(τ i (σ )) = Ωk .
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Fig. 5 The slice of the TA in
Fig. 2 that is constructed for the
context ({ϕ2}, ∅)

1

2

3 4 5

r2 : ϕ2 → x++

r1 : true → x++

r5 : ϕ2 → y++

Every path is consistent with a uniquely defined maximal monotonically increasing
sequence of contexts. (Some of the indices n0, . . . , nm in Definition 3.7 may be equal.)
In Sect. 4, we use such sequences of contexts to construct a schema recognizing many paths
that are consistent with the same sequence of contexts.

A context defines which rules of the TA are unlocked. A schedule that is steady for a
configuration visits only one context, and thus we can statically remove TA’s rules that are
locked in the context:

Definition 3.8 Given a threshold automaton TA = (L, I, Γ,	,R,RC) and a context Ω ,
we define the slice of TA with context Ω = (Ω rise,Ω fall) as a threshold automaton TA|Ω =
(L, I, Γ,	,R|Ω,RC), where a rule r ∈ R belongs to R|Ω if and only if

( ∧

ϕ∈Ω rise ϕ
) →

r.ϕrise and
( ∧

ψ∈Φfall\Ω fall ψ
) → r.ϕfall.

In otherwords,R|Ω contains those andonly those rules r withguards that evaluate to true in
all configurations σ withω(σ) = Ω . These are exactly the guards fromΩ rise∪(Φfall\Ω fall).
When ω(σ) = Ω , then all guards from Ω rise evaluate to true, and then r.ϕrise must also be
true. AsΩ fall contains those guards fromΦfall that evaluate to false in σ , then all other guards
fromΦfall must evaluate to true, and then r.ϕfall must be true too. Figure 5 shows an example
of a slice.

3.3 Model checking problem: parameterized reachability

Given a threshold automaton TA, a state property B is a Boolean combination of formulas
that have the form

∧

i∈Y κ[i] = 0, for some Y ⊆ L. The parameterized reachability problem
is to decide whether there are parameter values p ∈ PRC , an initial configuration σ0 ∈ I ,
with σ0.p = p, and a schedule τ , such that τ is applicable to σ0, and property B holds in the
final state: τ(σ0) |� B.

4 Main result: a complete set of schemas

To address parameterized reachability, we introduce schemas, i.e., alternating sequences of
contexts and rule sequences. A schema serves as a pattern for a set of paths, and is used to
efficiently encode parameterized reachability in SMT. As parameters give rise to infinitely
many initial states, a schema captures an infinite set of paths.We showhow to construct a finite
set of schemas S with the following property: for each schedule τ and each configuration σ

there is a representative schedule s(τ ) such that: (1) applying s(τ ) to σ results in τ(σ ), and
(2) path(σ, s(τ )) is generated by a schema from S.
Definition 4.1 A schema is a sequence Ω0, ρ1,Ω1, . . . , ρm,Ωm of alternating contexts and
rule sequences. We often write {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm} for a schema. A schema
with two contexts is called simple.
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Given two schemas S1 = Ω0, ρ1, . . . , ρk,Ωk and S2 = Ω ′
0, ρ

′
1, . . . , ρ

′
m,Ω ′

m with Ωk =
Ω ′

0, we define their composition S1 ◦ S2 to be the schema that is obtained by concatenation
of the two sequences: Ω0, ρ1, . . . , ρk,Ω

′
0, ρ

′
1, . . . , ρ

′
m,Ω ′

m .

Definition 4.2 Given a configuration σ and a schedule τ applicable to σ , we say that
path(σ, τ ) is generated by a simple schema {Ω} ρ {Ω ′}, if the following hold:

– Forρ = r1, . . . , rk there is amonotonically increasing sequenceof indices i(1), . . . , i(m),
i.e., 1 ≤ i(1) < · · · < i(m) ≤ k, and there are factors f1, . . . , fm ≥ 0, so that schedule
(ri(1), f1), . . . , (ri(m), fm) = τ .

– The first and the last states match the contexts: ω(σ) = Ω and ω(τ(σ )) = Ω ′.
In general, we say that path(σ, τ ) is generated by a schema S, if S = S1 ◦ · · · ◦ Sk for

simple schemas S1, . . . , Sk and τ = τ1 · · · τk such that each path(πi (σ ), τi ) is generated by
the simple schema Si , for πi = τ1 · · · τi−1 and 1 ≤ i ≤ k.

Remark 4.1 Definition 4.2 allows schemas to generate paths that have transitions with zero
acceleration factors. Applying a transition with a zero factor to a configuration σ results
in the same configuration σ , which corresponds to a stuttering step. This does not affect
reachability. In the following, we will apply Definition 4.2 to representative paths that may
have transitions with zero factors.

Example 4.1 Let us go back to the example of a schema S and a schedule τ ′ introduced in
Eqs. (2.1) and (2.2) in Sect. 2.1. It is easy to see that schema S can be decomposed into four
simple schemas S1 ◦ · · · ◦ S4, e.g., S1 = {} r1, r1 {ϕ1} and S2 = {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}.
Consider an initial state σ0 with n = 5, t = f = 1, x = y = 0, κ[�1] = 1, κ[�2] = 3, and
κ[�i ] = 0 for i ∈ {3, 4, 5}. To ensure that path(σ0, τ

′) is generated by schema S, one has to
check Definition 4.2 for schemas S1, . . . , S4 and schedules (τ ′

1 · t1), (τ ′
2 · t2), (τ ′

3 · t3), and τ ′
4,

respectively. For instance, path(σ0, τ
′
1 · t1) is generated by S1. Indeed, take the sequence of

indices 1 and 2 and the sequence of acceleration factors 1 and 1. The path path(σ0, τ
′
1 · t1)

ends in the configuration σ1 that differs from σ0 in that κ[�2] = 1, κ[�3] = 2, and x = 2.
The contexts ω(σ0) = ({}, {}) and ω(σ1) = ({ϕ1}, {}) match the contexts of schema S1, as
required by Definition 4.2.

Similarly, path(σ1, τ
′
2 · t2) is generated by schema S2. To see that, compare the contexts

and use the index sequence 1, 2, 4, and acceleration factors 1.

The language of a schema S—denoted with L(S)—is the set of all paths generated by S.
For a set of configurations C ⊆ Σ and a set of schemas S, we define the set Reach(C,S) to
contain all configurations reachable from C via the paths generated by the schemas from S,
i.e., Reach(C,S) = {τ(σ ) | σ ∈ C, ∃S ∈ S. path(σ, τ ) ∈ L(S)}. We say that a set
S of schemas is complete, if for every set of configurations C ⊆ Σ it is the case that
the set of all states reachable from C via the paths generated by the schemas from S, is
exactly the set of all possible states reachable from C . Formally, ∀C ⊆ Σ. {τ(σ ) | σ ∈
C, τ is applicable to σ } = Reach(C,S).

In [41], a quantity C has been introduced that depends on the number of conditions in
a TA. It has been shown that for every configuration σ and every schedule τ applicable to σ ,
there is a schedule τ ′ of length at most d = |R| · (C + 1) + C that is also applicable to σ and
results in τ(σ ) [41, Thm. 8]. Hence, by enumerating all sequences of rules of length up to d ,
one can construct a complete set of schemas:

Theorem 4.1 For a threshold automaton, there is a complete schema set Sd of cardinality
|R||R|·(C+1)+C .
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Although the set Sd is finite, enumerating all its elements is impractical. We show that
there is a complete set of schemas whose cardinality solely depends on the number of guards
that syntactically occur in the TA. These numbers |Φrise| and |Φfall| are in practice much
smaller than the number of rules |R|:
Theorem 4.2 For all threshold automata, there exists a complete schema set of cardinality
at most (|Φrise| + |Φfall|)!. In this set, the length of each schema does not exceed (3 · |Φrise ∪
Φfall| + 2) · |R|.

In the following sections we prove the ingredients of the following argument for the the-
orem: construct the set Z of all maximal monotonically increasing sequences of contexts.
From Proposition 3.2, we know that there are at most (|Φrise| + |Φfall|)! maximal monoton-
ically increasing sequences of contexts. Therefore, |Z | ≤ (|Φrise| + |Φfall|)!. Then, for each
sequence z ∈ Z , we do the following:

(1) We show that for each configuration σ and each schedule τ applicable to σ and consistent
with the sequence z, there is a schedule s(τ ) that has a specific structure, and is also
applicable to σ . We call s(τ ) the representative of τ . We introduce and formally define
this specific structure of representative schedules in Sects. 5, 6 and 7.We prove existence
and properties of the representative schedule in Theorem 7.1 (Sect. 7). Before that
we consider special cases: when all rules of a schedule belong to the same looplet
(Theorem 5.1, Sect. 5), and when a schedule is steady (Theorem 6.1, Sect. 6).

(2) Next we construct a schema (for the sequence z) and show that it generates all paths
of all schedules s(τ ) found in (1). The length of the schema is at most (3 · (|Φrise| +
|Φfall|) + 2) · |R|. This is shown in Theorem 7.2 (Sect. 7).

Theorem 4.2 follows from the above theorems, which we prove in the following.

Remark 4.2 Let us stress the difference between [41] and this work. From [41], it follows that
in order to check correctness of a TA it is sufficient to check only the schedules of bounded
length d(TA). The bound d(TA) does not depend on the parameters, and can be computed
for each TA. The proofs in [41] demonstrate that every schedule longer than d(TA) can be
transformed into an “equivalent” representative schedule, whose length is bounded by d(TA).
Consequently, one can treat every schedule of length up to d(TA) as its own representative
schedule. Similar reasoning does not apply to the schemas constructed in this paper: (i) we
construct a complete set of schemas, whose cardinality is substantially smaller than |Sd |, and
(ii) the schemas constructed in this paper can be twice as long as the schemas in Sd .

As discussed in Remark 3.2, the looplets in our case studies are typically either singleton
looplets or looplets of size two. In fact, most of our benchmarks have singleton looplets only,
and thus their threshold automata can be reduced to directed acyclic graphs. The theoretical
constructs of Sect. 5.2 are presented for the more general case of looplets of any size. For
most of the benchmarks—the ones not using failure detectors—we need only the simple
construction laid out in Sect. 5.1.

5 Case I: one context and one looplet

We show that for each schedule that uses only the rules from a fixed looplet and does not
change its context, there exists a representative schedule of bounded length that reaches the
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same final state. The goal is to construct a single schema per looplet. The technical challenge
is that this single schema must generate representative schedules for all possible schedules,
where, intuitively, processes may move arbitrarily between all local states in the looplet. As
a consequence, the rules that appear in the representative schedules can differ from the rules
that appear in the arbitrary schedules visiting a looplet.

We fix a threshold automaton, a contextΩ , a configuration σ with ω(σ) = Ω , a looplet c,
and a schedule τ applicable to σ and using only rules from c. We then construct the repre-
sentative schedule crepΩ

c [σ, τ ] and the schema cschemaΩ
c .

The technical details of the construction of crepΩ
c [σ, τ ] for the case when |c| = 1 is given

in Sect. 5.1, and for the case when |c| > 1 in Sect. 5.2. We show in Sect. 5.3 that these
constructions give us a schedule that has the desired properties: it reaches the same final state
as the given schedule τ , and its length does not exceed 2 · |c|.

Note that in [41], the length of the representative schedule was bounded by |c|. However,
all representative schedules of a looplet in this section can be generated by a single looplet
schema.

5.1 Singleton looplet

Let us consider the case of the looplet c containing only one transition, that is, |c| = 1. There
is a trivial representative schedule of a single transition:

Lemma 5.1 Given a threshold automaton, a configuration σ , and a schedule τ = (r, f1), …,
(r, fm) applicable to σ , one of the two schedules is also applicable to σ and results in τ(σ ):
schedule (r, f1 + · · · + fm), or schedule (r, 0).

Proof We distinguish two cases:
Case r.to = r. f rom Then, r.u = 0, and τ k(σ ) = σ for 0 ≤ k ≤ |τ |. Consequently, the

schedule (r, 0) is applicable to σ , and it results in τ(σ ) = σ .
Case r.to 	= r. f rom We prove by induction on the length k : 1 ≤ k ≤ m of a prefix of τ ,

that the following constraints hold for all k:

(τ k(σ )).κ[r.from] = σ.κ[r.from] − ( f1 + · · · + fk) (5.1)

(τ k(σ )).g = σ.g + ( f1 + · · · + fk) · r.u (5.2)

(σ.κ, σ.g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise for all f ∈ {0, . . . , f1 + · · · + fk} (5.3)

Base case k = 1. As schedule τ is applicable to σ , its first transition is enabled in σ . Thus,
by the definition of an enabled transition, the rule r is unlocked, i.e., for all f ∈ {0, . . . , f1},
it holds (σ.κ, σ.g + f1 · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise. By the definition, once the transition
τ [1] is applied, it holds that τ 1(σ ).κ[from] = σ.κ[from]− f1 and (τ k(σ )).g = σ.g+ f1 ·r.u.
Thus, Constraints (5.1)–(5.3) are satisfied for k = 1.

Inductive step k > 1. As schedule τ is applicable to σ , its prefix τ k is applicable to σ .
Hence, transition τ [k] is applicable to τ k−1(σ ).

By the definition of an enabled transition, for all f ∈ {0, . . . , fk}, it holds
((τ k−1(σ )).κ, ((τ k−1(σ )).g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise.

By applying the Eq. (5.2) for k − 1 of the inductive hypothesis, we obtain that for all f ∈
{0, . . . , fk}, it holds that (σ.κ, σ.g + ( f1 + · · · + fk−1 + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise. By
combining this constraint with the constraint (5.3) for k − 1, we arrive at the constraint (5.3)
for k.
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By applying τ [k], we get that (τ k(σ )).κ[r.from] = (τ k−1(σ )).κ[r.from] − fk and
(τ k(σ )).g = (τ k−1(σ )).g + fk · r.u. By applying (5.1) and (5.2) for k − 1 to these equations,
we arrive at the Eqs. (5.1) and (5.2) for k.

Based on (5.1) and (5.3) for all values of k, and in particular k = m, we can now show
applicability. From Eq. (5.1), we immediately obtain that σ.κ[r.from] ≥ f1 + · · · + fm .
From constraint (5.3), we obtain that (σ.κ, σ.g + f · r.u, σ.p) |� r.ϕfall ∧ r.ϕrise for all f ∈
{0, . . . , f1 +· · ·+ fm}. These are the required conditions for the transition (r, f1 +· · ·+ fm)

to be applicable to the configuration σ . ��

Consequently, when c has a single rule r , for configuration σ and a schedule τ =
(r, f1), . . . , (r, fm), Lemma5.1 allows us to take the singleton schedule (r, f ) as crepΩ

c [σ, τ ]
and to take the singleton schema {Ω} r {Ω} as cschemaΩ

c . The factor f is either f1+. . .+ fm
or zero.

5.2 Non-singleton looplet

Next we focus on non-singleton looplets. Thus, we assume that |c| > 1. Our construction is
based on two directed trees, whose undirected versions are spanning trees, sharing the same
root. In order to find a representative of a steady schedule τ which leads from σ to τ(σ ), we
determine for each local state how many processes have to move in or out of the state, and
then we move them along the edges of the trees. First, we give the definitions of such trees,
and then we show how to use them to construct the representative schedules and the schema.

Spanning out-trees and in-trees We construct the underlying graph of looplet c, that is, a
directed graph Gc, whose vertices consist of local states that appear as components from or
to of the rules from c, and the edges are the rules of c. More precisely, we construct a directed
graph Gc = (Vc, Ec, Lc), whose edges from Ec are labeled by function Lc : Ec → c with
the rules of c as follows:

Vc = {� | ∃r ∈ c, r.to = � ∨ r.from = �},
Ec = {(�, �′) | ∃r ∈ c, r.from = �, r.to = �′},

Lc((�, �
′)) = r , if r.from = �, r.to = �′ for (�, �′) ∈ Ec and r ∈ c.

Lemma 5.2 Given a threshold automaton and a non-singleton looplet c ∈ R/∼, graph Gc

is non-empty and strongly connected.

Proof As, |c| > 1 and thus Ec ≥ 2, graph Gc is non-empty. To prove that Gc is strongly
connected, we consider a pair of rules r1, r2 ∈ c. By the definition of a looplet, it holds that
r1 ≺+

P r2 and r2 ≺+
P r1. Thus, there is a path in Gc from r1.to to r2.from, and there is a path

in Gc from r2.to to r1.from. As r1 and r2 correspond to some edges in Gc, there is a cycle that
contains the vertices r1.from, r1.to, r2.from, and r2.to. Thus, graph Gc is strongly connected.

��

As Gc is non-empty and strongly connected, we can fix an arbitrary node h ∈ Vc—called
a hub—and construct two directed trees, whose undirected versions are spanning trees of the
undirected version of Gc. These are two subgraphs of Gc: a directed tree Tout = (Vc, Eout),
whose edges Eout ⊆ Ec are pointing away from h (out-tree); a directed tree Tin = (Vc, Ein),
whose edges Ein ⊆ Ec are pointing to h (in-tree). For every node v ∈ Vc\{h}, it holds that
|{u : (u, v) ∈ Eout}| = 1 and |{w : (v,w) ∈ Ein}| = 1.
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Fig. 6 The underlying graph of the looplet c2 of the threshold automaton from Example 3.3 and Fig. 3 (left),
together with trees Tin (middle) and Tout (right)

Further, we fix a topological order�in on the edges of tree Tin. More precisely,�in is such
a partial order on Ein that for each pair of adjacent edges (�, �′), (�′, �′′) ∈ Ein, it holds that
(�, �′) �in (�′, �′′). In the same way, we fix a topological order�out on the edges of tree Tout.

Example 5.1 Consider again the threshold automaton from Example 3.3 and Fig. 3. We
construct trees Tin and Tout for looplet c2, shown in Fig. 6.

Note that Vc = {�2, �3, �4, �5, �6}, and Ec = {(�2, �3), (�3, �5), (�5, �6), (�6, �4),
(�4, �4), (�4, �5), (�4, �2)}. Fix �4 as a hub. We can fix a linear order �in such that
(�2, �3) �in (�3, �5) �in (�5, �6) �in (�6, �4), and a linear order�out such that (�4, �2) �out
(�2, �3) �out (�4, �5) �out (�5, �6).

Note that for the chosen hub l4 and this specific example, Tin and�in are uniquely defined,
while an out-tree can be different from Tout from our Fig. 6 (the rules r8, r2, r3, r4 constitute
a different tree from the same hub). Because out-tree Tout is not a chain, several linear orders
different from �out can be chosen, e.g., (�4, �2) �out (�4, �5) �out (�2, �3) �out (�5, �6).
Representatives of non-singleton looplets Using these trees, we show how to construct a
representative crepΩ

c [σ, τ ] of a schedule τ applicable to σ with σ ′ = τ(σ ). For a configu-
ration σ and a schedule τ applicable to σ , consider the trees Tin and Tout. We construct two
sequences: the sequence ein(1), . . . , ein(|Ein|) of all edges of Tin following the order�in, i.e.,
if ein(i) �in ein( j), then i ≤ j ; the sequence eout(1), . . . , eout(|Eout|) of all edges of Tout
following the order �out. Further, we define the sequence of rules rin(1), . . . , rin(|Ein|) with
rin(i) = Lc(ein(i)) for 1 ≤ i ≤ |Ein|, and the sequence of rules rout(1), . . . , rout(|Eout|)
with rout(i) = Lc(eout(i)) for 1 ≤ i ≤ |Eout|. Using configurations σ and σ ′ = τ(σ ), we
define:

δin(i) = σ.κ[ f ] − σ ′.κ[ f ], for f = rin(i).from and 1 ≤ i ≤ |Ein|,
δout( j) = σ ′.κ[t] − σ.κ[t], for t = rout( j).to and 1 ≤ j ≤ |Eout|.

If δin(i) ≥ 0, then δin(i) processes should leave the local state rin(i).from towards the hub,
and they do it exclusively using the edge ein(i). If δout( j) ≥ 0, then δout( j) processes should
reach the state rout( j).to from the hub, and they do it exclusively using the edge eout( j). The
negative values of δin(i) and δout( j) do not play any role in our construction, and thus, we
use max(δin(i), 0) and max(δout( j), 0).

The main idea of the representative construction is as follows. First, we fire the sequence
of rules rin(1), . . . , rin(k) to collect sufficiently many processes in the hub. Then, we fire the
sequence of rules rout(1), . . . , rout(k) to distribute the required number of processes from
the hub. As a result, for each location � in the graph, the processes are transferred from �
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rrinin(3) =(3) = rr44

δδinin(3) = 1(3) = 1 −− 0 = 10 = 1
wwinin(3) = 1 + 1 + 0 = 2(3) = 1 + 1 + 0 = 2
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Fig. 7 Construction of the representative of a schedule using the rules in the four-element looplet, following
Example 5.2

to the other locations, if σ [�] > σ ′[�], and additional processes arrive at �, if σ [�] < σ ′[�].
Using δin(i) and δout(i), we define the acceleration factors for each rule as follows:

win(i) =
∑

j : ein( j)�in ein(i)

max(δin( j), 0) and

wout(i) =
∑

j : eout(i) �out eout( j)

max(δout( j), 0).

Finally, we construct the schedule crepΩ
c [σ, τ ] as follows:

crepΩ
c [σ, τ ] = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)),

(rout(1), wout(1)), . . . , (rout(|Eout|), wout(|Eout|)). (5.4)

Example 5.2 Consider the TA shown in Fig. 7. Let c be the four-element looplet that
contains the rules r1, r2, r3, and r4, and τ be the schedule τ = (r4, 1), (r3, 1),
(r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1) that uses the rules of the looplet c.
Consider a configuration σ with σ.κ[�3] = σ.κ[�4] = 1, and σ.κ[�1] = σ.κ[�2] = 0.
The final configuration σ ′ = τ(σ ) has the following properties: σ ′.κ[�2] = 2 and
σ ′.κ[�1] = σ ′.κ[�3] = σ ′.κ[�4] = 0. By comparing σ and σ ′, we notice that one pro-
cess should move from �3 to �2, and one from �4 to �2. We will now show how this is
achieved by our construction.

For constructing the representative schedule crepΩ
c [σ, τ ], we first define trees Tin and Tout.

If we chose �1 to be the hub, we get that Ein = {(�4, �1), (�3, �4), (�2, �3)}, and thus the order
is (�2, �3) �in (�3, �4) �in (�4, �1). Therefore, we obtain ein(1) = (�2, �3), ein(2) = (�3, �4)

and ein(3) = (�4, �1). By calculating δin(i) for every i ∈ {1, 2, 3}, we see that δin(2) = 1 and
δin(3) = 1 are positive. Consequently, two processes go to the hub: one from rin(2).from = �3
and one from rin(3).from = �4. The coefficients win give us acceleration factors for all rules.

Similarly, we obtain Eout = {(�1, �2), (�2, �3), (�3, �4)}, and the order must be
(�1, �2) �out (�2, �3) �out (�3, �4). Thus, eout(1) = (�1, �2), ein(2) = (�2, �3), and
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eout(3) = (�3, �4). Here only δout(1) = 2 has a positive value, and hence, two processes
should move from hub to the local state rout(1).to = �2. To achieve this, the acceleration
factor of every rule rout(i), 1 ≤ i ≤ 3, must be wout(i).

Therefore, by Eq. (5.4), the representative schedule is

crepΩ
c [σ, τ ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

Choosing another hub gives us another representative. For each hub, the representative is
not longer than 2|c| = 8, and leads to σ ′ when applied to σ .

In the following, we fix a threshold automatonTA, a contextΩ , and a non-singleton looplet
c of the slice TA|Ω . We also fix a configuration σ of TA and a schedule τ that is contained
in c and is applicable to σ . Our goal is to prove Lemma 5.8, which states that crepΩ

c [σ, τ ] is
indeed applicable to σ and ends in τ(σ ). To this end, we first prove auxiliary Lemmas 5.3–5.7.

Lemma 5.3 For every i : 1 ≤ i ≤ |Ein|, it holds that σ.κ[ri .from] ≥ max(δin(i), 0), where
ri = Lc(ein(i)).

Proof Recall that by the definition of a configuration, every counter σ.κ[�] is non-negative.
If δin(i) ≥ 0, then max(δin(i), 0) = δin(i) = σ.κ[ri .from] − σ ′.κ[ri .from], which is bound
from above by σ.κ[ri .from]. Otherwise, δin(i) ≤ 0, and we trivially have max(δin(i), 0) = 0
and 0 ≤ σ.κ[ri .from]. ��
Lemma 5.4 Schedule τin = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)) is applicable to
configuration σ .

Proof We denote by αi the schedule (rin(1), win(1)), . . . , (rin(i), win(i)), for 1 ≤ i ≤ |Ein|.
Then τin = α|Ein|.

All rules rin(1), . . . , rin(|Ein|) are from R|Ω , and thus are unlocked. Hence, it is suffi-
cient to show that the values of the locations from the set Vc are large enough to enable
each transition (rin(i), win(i)) for 1 ≤ i ≤ |Ein|. To this end, we prove by induction that
(αi−1(σ )).κ[ri .from] ≥ win(i), for 1 ≤ i ≤ |Ein| and ri = Lc(ein(i)).

Base case i = 1. For r1 = Lc(ein(1)), we want to show that σ.κ[r1.from] ≥ win(1). As
ein(1) is the first element of the sequence ein(1), . . . , ein(Ein), which respects the order �in,
we conclude that win(1) = max(δin(1), 0). From Lemma 5.3, it follows that σ.κ[r1.from] ≥
max(δin(1), 0).

Inductive step k assume that for all i : 1 ≤ i ≤ k − 1 < |Ein|, schedule αi is applicable
to σ and show that (αk−1(σ )).κ[rk .from] ≥ win(k) with rk = Lc(ein(k)).

To this end, we construct the set of edges Pk that precede the edge ein(k) in the topological
order �in, that is, Pk = {e | e ∈ Ein, e �in ein(k), e 	= ein(k)}. We show that the following
equation holds:

αk−1(σ )).κ[rk .from] = σ.κ[rk .from] +
∑

ein( j)∈Pk

max(δin( j), 0). (5.5)

Indeed, if one picks an edge ein( j) ∈ Pk , the edge ein( j) adds win( j) to the
counter κ[rk .from]. As the sequence {ein(i)}i≤k is topologically sorted, it follows that j < k.
Moreover, as the tree Tin is oriented towards the root, ein(k) is the only edge leaving the local
state rk .from. Thus, no edge ein(i) with i < k decrements the counter σ.κ[rk .from].

From Eq. (5.5) and Lemma 5.3, we conclude that (αk−1(σ )).κ[rk .from] is not less than
max(δin(k), 0) + ∑

ein( j) : ein( j)�in ein(k), j 	=k max(δin( j), 0), which equals to win(k). This
proves the inductive step.

Therefore, we have shown that τin = α|Ein| is applicable to σ . ��
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The following lemma is easy to prove by induction on the length of a schedule. The base
case for a single transition follows from the definition of a counter system.

Lemma 5.5 Let σ and σ ′ be two configurations and τ be a schedule applicable to σ such
that τ(σ ) = σ ′. Then it holds that

∑

�∈L(σ ′[�] − σ [�]) = 0.

Further, we show that the required number of processes is reaching (or leaving) the hub,
when the transitions derived from the trees Tin and Tout are executed:

Lemma 5.6 The following equality holds:

σ ′.κ[h] − σ.κ[h] =
∑

1≤i≤|Ein|
max(δin(i), 0) −

∑

1≤i≤|Eout|
max(δout(i), 0).

Proof Recall that Tin is a tree directed towards h, and the undirected version of Tin is a
spanning tree of graph C . Hence, for each local state � ∈ Vc\{h}, there is exactly one
edge e ∈ Ein with Lc(e).from = �. Thus, the following equation holds:

∑

1≤i≤|Ein|
max(δin(i), 0) =

∑

�∈Vc\{h}
max(σ.κ[�] − σ ′.κ[�], 0). (5.6)

Similarly, Tout is a tree directed outwards h, and the undirected version of Tout is a spanning
tree of graph C . Hence, for each local state � ∈ Vc\{h}, there is exactly one edge e ∈ Eout
with Lc(e).to = �. Thus, the following equation holds:

∑

1≤i≤|Eout|
max(δout(i), 0) =

∑

�∈Vc\{h}
max(σ ′.κ[�] − σ.κ[�], 0). (5.7)

By combining (5.6) and (5.7), we obtain the following:
∑

1≤i≤|Ein|
max(δin(i), 0) −

∑

1≤i≤|Eout|
max(δout(i), 0)

=
∑

�∈Vc\{h}

(

max(σ.κ[�] − σ ′.κ[�], 0) − max(σ ′.κ[�] − σ.κ[�], 0))

=
∑

�∈Vc\{h}

(

σ.κ[�] − σ ′.κ[�]) =
⎛

⎝

∑

�∈Vc
σ.κ[�] − σ ′.κ[�]

⎞

⎠ − (

σ.κ[h] − σ ′.κ[h]). (5.8)

As the initial schedule τ is applicable to σ , and τ(σ ) = σ ′, by Lemma 5.5,
∑

�∈L(σ.κ[�]−
σ ′.κ[�]) = 0. As all rules in crepΩ

c [σ, τ ] are fromR|Ω and thus change only the counters of
local states in Vc, for each local state � ∈ L\Vc, its respective counter does not change, that
is, σ.κ[�] − σ ′.κ[�] = 0. Hence,

∑

�∈Vc (σ.κ[�] − σ ′.κ[�]) = 0. From this and Eq. (5.8), the
statement of the lemma follows. ��
Lemma 5.7 If τin denotes the schedule (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)), the fol-
lowing equation holds:

τin(σ ).κ[�] =
{

σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0), if � = h

min(σ.κ[�], σ ′.κ[�]), if � ∈ Vc\{h}.
Proof We prove the lemma by case distinction:

Case � = h We show that (τin(σ )).κ[h] = σ.κ[h] + ∑

1≤i≤|Ein| max(δin(i), 0). Indeed, let
P be the indices of edges coming into h, i.e., P = {i | 1 ≤ i ≤ |Ein|, Lc(ein(i)) =
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r, h = r.to}. As all edges in Tin are oriented towards h, it holds that (τin(σ )).κ[h] equals to
σ.κ[h] + ∑

i∈P win(i). By unfolding the definition of win, we obtain that (τin(σ )).κ[h] =
σ.κ[h] + ∑

1≤i≤|Ein| max(δin(i), 0). We observe that by Lemma 5.6, this sum equals to
σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0). This proves the first case.

Case � ∈ Vc\{h} We show that (τin(σ )).κ[�] = min(σ.κ[�], σ ′.κ[�]). Indeed, fix a node
� ∈ Vc\{h} and construct two sets: the set of incoming edges In = {ein(i) | ∃�′ ∈
Vc. ein(i) = (�′, �)} and the singleton set of outgoing edges Out = {ein(i) | ∃�′ ∈
Vc. ein(i) = (�, �′)}. By summing up the effect of all transitions in τin, we obtain
(τin(σ )).κ[�] = σ.κ[�] + ∑

ein(i)∈In win(i) − ∑

eout(i)∈Out wout(i). By unfolding the defi-
nition of win, we obtain (τin(σ )).κ[�] = σ.κ[�] − ∑

ein(i)∈Out δin(i), which can be rewritten
as σ.κ[�] − max(σ.κ[�] − σ ′.κ[�], 0), which, in turn, equals to min(σ.κ[�], σ ′.κ[�]). This
proves the second case. ��

Now we are in a position to prove that schedule crepΩ
c [σ, τ ] is applicable to configura-

tion σ and results in configuration τ(σ ):

Lemma 5.8 The schedule crepΩ
c [σ, τ ] has the following properties: (a) crepΩ

c [σ, τ ] is
applicable to σ , and (b) crepΩ

c [σ, τ ] results in τ(σ ) when applied to σ .

Proof Denote with τin the prefix (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)) of the schedule
crepΩ

c [σ, τ ]. For each j : 1 ≤ j ≤ |Eout|, denote with β j the prefix of crepΩ
c [σ, τ ] that has

length of |Ein| + j . Note that β |Eout| = crepΩ
c [σ, τ ].

Proving applicability of crepΩ
c [σ, τ ] to σ We notice that all rules in crepΩ

c [σ, τ ] are
from R|Ω and thus are unlocked, and that τin is applicable to σ by Lemma 5.4. Hence, we
only have to check that the values of counters from Vc are large enough, so that transitions
(rout( j), wout( j)) can fire.

We prove that each schedule β j is applicable to σ , for j : 1 ≤ j ≤ |Eout|. We do so by
induction on the distance from the root h in the tree Tout.

Base case root node h. Denote with Oh the set {(�, �′) ∈ Eout | � = h}. Let j1, . . . , jm
be the indices of all edges in Oh , and jm be the maximum among them.

From Lemma 5.7, (τin(σ )).κ[h] = σ ′.κ[h] + ∑

1≤i≤|Eout| max(δout(i), 0) = σ ′.κ[h] +
∑

eout( j)∈Oh
wout( j). Thus, every transition (eout( j), wout( j)) with eout( j) ∈ Oh , is appli-

cable to β j−1(σ ). Also, (β jm (σ )).κ[h] = σ ′.κ[h].
Inductive step assume that for a node � ∈ Vc and an edge eout(k) = (�, �′) ∈ Eout outgoing

from node �, schedule βk is applicable to configuration σ . Show that for each edge eout(i)
outgoing from node �′ the following hold: (i) schedule β i is also applicable to σ ; and (ii)
β |Eout|(σ ).κ[�′] = σ ′.κ[�′].

(i) As the sequence {eout( j)} j≤|Eout| is topologically sorted, for each edge eout(i) outgoing
from node �′, it holds that k < i .

From Lemma 5.7, we have that βk(σ ).κ[�′] = min(σ.κ[�′], σ ′.κ[�′]). Because the
transition (eout(k), wout(k)) adds wout(k) to βk−1(σ ).κ[�′], we have βk(σ ).κ[�′] =
min(σ.κ[�′], σ ′.κ[�′]) + wout(k). Let S be the set of all immediate successors of eout(k),
i.e., S = {i | ∃�′′. (�′, �′′) = eout(i)}. From the definition of wout(k), it follows that
wout(k) = max(δout(k), 0) + ∑

s∈S wout(s). Thus, the transition (eout(i), wout(i)) for
edge eout(i) outgoing from node �′, can be executed.

(ii) Let j1, . . . , jm be the indices of all edges outgoing from �′, and jm be the maximum
among them. From (i), it follows that

(β jm (σ )).κ[�′] = min(σ.κ[�′], σ ′.κ[�′]) + max(δout(k), 0),

which equals to σ ′.κ[�′].
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This proves that the schedule β |Eout| = crepΩ
c [σ, τ ] is applicable to σ .

Proving that crepΩ
c [σ, τ ] results in τ(σ ) From the induction above, we conclude that

for each � ∈ Vc, it holds that (β |Eout|(σ )).κ[�] = σ ′.κ[�]. Edges in the trees Tin and
Tout change only local states from Vc. We conclude that for all � ∈ L, it holds that
crepΩ

c [σ, τ ](σ ).κ[�] = σ ′.κ[�]. As the rules in non-singleton looplets do not change shared
variables, crepΩ

c [σ, τ ](σ ).g = σ.g = σ ′.g. Therefore, crepΩ
c [σ, τ ](σ ) = σ ′. ��

5.3 Representatives for one context and one looplet

We now summarize results from Sects. 5.1 and 5.2, giving the representative of a schedule τ

in the case when τ uses only the rules from one looplet, and does not change its context. If
the given looplet consists of a single rule, the construction is given in Sect. 5.1, and otherwise
in Sect. 5.2. We show that these constructions indeed give us a schedule of bounded length,
that reaches the same state as τ .

In the following, given a threshold automaton TA and a looplet c, we will say that a
schedule τ = t1, . . . , tn is contained in c, if [ti .rule] = c for 1 ≤ i ≤ n.

Theorem 5.1 Fix a threshold automaton, and a contextΩ , and a looplet c in the slice TA|Ω .
Let σ be a configuration and τ be a steady schedule contained in c and applicable to σ .
There exists a representative schedule crepΩ

c [σ, τ ] with the following properties:

(a) schedule crepΩ
c [σ, τ ] is applicable to σ , and crepΩ

c [σ, τ ](σ ) = τ(σ ),
(b) the rule of each transition t in crepΩ

c [σ, τ ] belongs to c, that is, [t.rule] = c,
(c) schedule crepΩ

c [σ, τ ] is not longer than 2 · |c|.
Proof If |c| = 1, then we use a single accelerated transition or the empty schedule as
representative, as described in Lemma 5.1.

If |c| > 1, we construct the representative as in Sect. 5.2, so that by Lemma 5.8 property
(a) follows. For every edge e ∈ Ec, the rule Lc(e) belongs to c, and thus crepΩ

c [σ, τ ] satisfies
property (b). As |Ein| ≤ |c| and |Eout| ≤ |c|, we conclude that |crepΩ

c [σ, τ ]| ≤ 2 · |c|, and
thus property c) is also satisfied. From this and Lemma 5.8, we conclude that crepΩ

c [σ, τ ] is
the required representative schedule. ��

Theorem 5.1 gives us a way to construct schemas that generate all representatives of the
schedules contained in a looplet:

Theorem 5.2 Fix a threshold automaton TA, a context Ω , and a looplet c in the slice TA|Ω .
There exists a schema cschemaΩ

c with the following properties:
Fix an arbitrary configuration σ and a steady schedule τ that is contained in c and is

applicable to σ . Let τ ′ = crepΩ
c [σ, τ ] be the representative schedule of τ , from Theorem 5.1.

Then, path(σ, τ ′) is generated by cschemaΩ
c . Moreover, the length of cschemaΩ

c is at
most 2 · |c|.
Proof Note that τ ′ = crepΩ

c [σ, τ ] can be constructed in two different ways depending on
the looplet c.

If |c| = 1, then by Lemma 5.1 we have that τ ′ = (r, f ) for a rule r ∈ c and a factor
f ∈ N0. In this case we construct cschemaΩ

c to be

cschemaΩ
c = {Ω} r {Ω}.

It is easy to see that path(σ, τ ′) is generated by cschemaΩ
c , as well as that the length

of cschemaΩ
c is exactly 1, that is less than 2 · |c|.
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If |c| > 1, then we use the trees Tin and Tout to construct the schema cschemaΩ
c as

follows:

cschemaΩ
c = {Ω} rin(1) · · · rin(|Ein|) · rout(1) · · · rout(|Eout|) {Ω}. (5.9)

Since for an arbitrary configuration σ and a schedule τ , we use the same sequence of edges
in Eqs. (5.4) and (5.9) to construct crepΩ

c [σ, τ ] and cschemaΩ
c , the schema cschemaΩ

c
generates all paths of the representative schedules, and its length is at most 2 · |c|. ��

6 Case II: one context and multiple looplets

In this section, we show that for each steady schedule, there exists a representative steady
schedule of bounded length that reaches the same final state.

Theorem 6.1 Fix a threshold automaton and a context Ω . For every configuration σ with
ω(σ) = Ω and every steady schedule τ applicable to σ , there exists a steady schedule
srepΩ [σ, τ ] with the following properties:

(a) srepΩ [σ, τ ] is applicable to σ , and srepΩ [σ, τ ](σ ) = τ(σ ),
(b) |srepΩ [σ, τ ]| ≤ 2 · |(R|Ω)|
To construct a representative schedule, we fix a context Ω of a TA, a configuration σ with

ω(σ) = Ω , and a steady schedule τ applicable to σ . The key notion in our construction is a
projection of a schedule on a set of looplets:

Definition 6.1 Let τ = t1, . . . , tk , for k > 0, be a schedule, and let C be a set of looplets.
Given an increasing sequence of indices i(1), . . . , i(m) ∈ {1, . . . , k}, where m ≤ k, i.e.,
i( j) < i( j + 1), for 1 ≤ j < m, a schedule ti(1) . . . ti(m) is a projection of τ on C , if each
index j ∈ {1, . . . , k} belongs to {i(1), . . . , i(m)} if and only if [t j .rule] ∈ C .

In fact, each schedule τ has a unique projection on a set C . In the following, we
write τ |c1,...,cm to denote the projection of τ on a set {c1, . . . , cm}.

Provided that c1, . . . , cm are all looplets of the sliceR|Ω ordered with respect to ≺lin
C , we

construct the following sequences of projections on each looplet (note that π0 is the empty
schedule): πi = τ |c1 · · · · · τ |ci for 0 ≤ i ≤ m.

Having defined {πi }0≤i≤m , we construct the representative srepΩ [σ, τ ] simply as a con-
catenation of the representatives of each looplet:

srepΩ [σ, τ ] = crepΩ
c1 [π0(σ ), τ |c1 ] · crepΩ

c2 [π1(σ ), τ |c2 ] · . . . · crepΩ
cm [πm−1(σ ), τ |cm ]

Example 6.1 Consider the TA shown in Fig. 8. It has three looplets, namely c1 =
{r1, r2, r3, r4}, c2 = {r5}, c3 = {r6, r7, r8}, and the rules are depicted as solid, dotted,
and dashed, respectively. These looplets are ordered such that c1 ≺lin

C c2 ≺lin
C c3.

Let σ be the configuration represented in Fig. 8 left, i.e. κ[�3] = κ[�4] = κ[�5] =
1 and κ[�3] = κ[�4] = κ[�5] = 0. Let τ be the schedule (r4, 1), (r6, 1), (r3, 1),
(r4, 1), (r1, 1), (r2, 1), (r7, 1), (r3, 1), (r1, 1), (r5, 1), (r7, 1), (r4, 1), (r8, 1), (r1, 1), (r6, 1),
(r7, 1), (r5, 1), (r8, 1), (r7, 1). Note that τ is applicable to σ and that τ(σ ) is the configura-
tion σ ′ from Fig. 8 right, i.e. κ[�5] = 1, κ[�6] = 2 and κ[�1] = κ[�2] = κ[�3] = κ[�4] = 0.
We construct the representative schedule srepΩ [σ, τ ].

Projection of τ on the looplets c1, c2, and c3, gives us the following schedules:

τ |c1 = (r4, 1), (r3, 1), (r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1),
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Fig. 8 Threshold automaton and configurations used in Example 6.1

τ |c2 = (r5, 1), (r5, 1),

τ |c3 = (r6, 1), (r7, 1), (r7, 1), (r8, 1), (r6, 1), (r7, 1), (r8, 1), (r7, 1).

Recall that

srepΩ [σ, τ ] = crepΩ
c1 [π0(σ ), τ |c1 ] · crepΩ

c2 [π1(σ ), τ |c2 ] · crepΩ
c3 [π2(σ ), τ |c3 ].

In order to construct this schedule, we firstly construct the required configurations. Note
that π0(σ ) = σ . Then π1(σ ) = τ |c1(σ ), and this is the configuration from Fig. 8 lower
left, i.e. κ[�2] = 2, κ[�5] = 1 and κ[�1] = κ[�3] = κ[�4] = κ[�6] = 0. Configuration
π2(σ ) = τ |c1 · τ |c2(σ ) = τ |c2(π1(σ )) is represented on Fig. 8 lower right, i.e. κ[�5] = 3
and all other counters are zero.

Section 5 deals with the construction of representatives of schedules that contain rules
from only one looplet. Recall that construction of crepΩ

c1 [π0(σ ), τ |c1 ] corresponds to the one
from Example 5.2. Thus, we know that

crepΩ
c1 [π0(σ ), τ |c1 ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

As c2 is a singleton looplet, we use the result of Sect. 5.1. Thus,

crepΩ
c2 [π1(σ ), τ |c2 ] = (r5, 2).

Using the result from Sect. 5.2 we obtain that

crepΩ
c3 [π2(σ ), τ |c3 ] = (r8, 0), (r7, 2),

and finaly we have the representative for τ that is

srepΩ [σ, τ ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0), (r5, 2), (r8, 0), (r7, 2).

Lemma 6.1 (Looplet sorting)Given a threshold automaton, a contextΩ , a configuration σ ,
a steady schedule τ applicable to σ , and a sequence c1, . . . , cm of all looplets in the sliceR|Ω
with the property ci ≺lin

C c j for 1 ≤ i < j ≤ m, the following holds:

1. Schedule τ |c1 is applicable to the configuration σ .
2. Schedule τ |c2,...,cm is applicable to the configuration τ |c1(σ ).
3. Schedule τ |c1 · τ |c2,...,cm , when applied to σ , results in configuration τ(σ ).
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Proof In the following, we show Points 1–3 one-by-one.
We need extra notation. For a local state � we denote by 1� the |L|-dimensional vector,

where the �th component is 1, and all the other components are 0. Given a schedule ρ =
t1 · · · tk , we introduce a vectorΔκ (ρ) ∈ Z

|L| to keep counter difference and a vectorΔg(ρ) ∈
N

|Γ |
0 to keep difference on shared variables as follows:

Δκ (ρ) =
∑

1≤i≤|ρ|
ti .factor · (1ti .to − 1ti .from) and Δg(ρ) =

∑

1≤i≤|ρ|
ti .u

Proof of (1) Assume by contradiction that schedule τ |c1 is not applicable to configuration σ .
Thus, there is a schedule τ ′ and a transition t∗ that constitute a prefix of τ |c1 ,with the following
property: τ ′ is applicable to σ , whereas τ ′ · t∗ is not applicable to σ . Let � = t∗.from and
�′ = t∗.to.

There are three cases of why t∗ may be not applicable to τ ′(σ ):
(i) There is not enough processes to move: (σ.κ + Δκ (τ ′ · t∗))[�] < 0. As τ is applicable

to σ , there is a transition t of τ with [t.rule] 	= c1 and t.to = � as well as t.factor > 0.
From this, by definition of ≺lin

C , it follows that [t.rule] ≺lin
C c1. This contradicts the lemma’s

assumption on the order c1 ≺lin
C · · · ≺lin

C cm .
(ii) The condition t∗.ϕrise is not satisfied, that is, τ ′(σ ) 	|� t∗.ϕrise. Then, there is a guard

ϕ ∈ guard(t∗.ϕrise) with τ ′(σ ) 	|� ϕ.
Since τ is applicable to σ , there is a prefix ρ · t of τ , for a schedule ρ and a transition t

that unlocks ϕ in ρ(σ ), that is, ρ(σ ) 	|� ϕ and t (ρ(σ )) |� ϕ. Thus, transition t changes the
context: ω(ρ(σ )) 	= ω(t (ρ(σ ))). This contradicts the assumption that schedule τ is steady.

(iii) The condition t∗.ϕfall is not satisfied: τ ′(σ ) 	|� t∗.ϕfall. Then, there is a guard ϕ ∈
guard(t∗.ϕfall) with τ ′(σ ) 	|� ϕ.

Let ρ be the longest prefix of τ satisfying ρ|c1 = τ ′. Note that ρ · t∗ is also a prefix of τ . As
ρ|c1 = τ ′ and no transition decrements the shared variables, we conclude that (τ ′(σ )).g ≤
(ρ(σ )).g. From this and from the fact that τ ′(σ ) 	|� ϕ, it follows that ρ(σ ) 	|� ϕ. Thus
transition t∗ is not applicable to ρ(σ ). This contradicts the assumption that τ is applicable
to σ .

From (i), (ii), and (iii), we conclude that (1) holds.

Proof of (2)We show that τ |c2,...,cm is applicable to τ |c1(σ ).
To this end, we fix an arbitrary prefix τ ′ of τ , a transition t , and a suffix τ ′′, that constitute

τ , that is, τ = τ ′ · t · τ ′′. We show that if schedule τ ′|c2,...,cm is applicable to τ |c1(σ ), then so
is (τ ′ · t)|c2,...,cm .

Let us assume that τ ′|c2,...,cm is applicable to τ |c1(σ ), and let σ ′′ denote the resulting state
(τ |c1 · τ ′|c2,...,cm )(σ ). We consider two cases:

– [t.rule] = c1. This case holds trivially, as (τ ′ · t)|c2,...,cm equals to τ ′|c2,...,cm , which is
applicable to τ |c1(σ ) by assumption.

– [t.rule] 	= c1. In order to prove that(τ ′ · t)|c2,...,cm is applicable to τ |c1(σ ), we show that
counters σ ′′.κ and shared variables σ ′′.g are large enough, so that transition t is applicable
to σ ′′:
(i) We start by showing that σ ′′.κ[t.from] ≥ t.factor. We distinguish between different

cases on source and target states of transition t .

(i.A) We will show by contradiction that there is no rule r ∈ c1 with t.to = r.from. Let’s
assume it exists. Then, on one hand, as [t.rule] 	= c1, by definition of ≺lin

C , it follows
that [t.rule] ≺lin

C . . . ≺lin
C c1. On the other hand, as [t.rule] 	= c1 and c1, . . . , cm are

all classes of the rules used in τ , it holds that [t.rule] ∈ {c2, . . . , cm}. By the lemma’s
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assumption, c1 ≺lin
C · · · ≺lin

C cm , and thus, c1 ≺lin
C · · · ≺lin

C [t.rule]. We arrive at a
contradiction.

(i.B) Let’s consider the case of a rule r ∈ c1 with r.to = t.from. Assume by contradiction
that t is not applicable to σ ′′, that is, σ ′′.κ[t.from] < t.factor. On one hand, transition t
is not applicable to σ ′′ = (τ |c1 · τ ′|c2,...,cm )(σ ). Then by the definition of Δκ , it
holds that σ [t.from] + (Δκ (τ |c1 · τ ′|c2,...,cm ) + Δκ (t))[t.from] < 0. By observing that
τ |c1 = τ ′|c1 + τ ′′|c1 , we derive the following inequality:

σ [t.from]
+(Δκ (τ ′|c1) + Δκ (τ ′′|c1) + Δκ (τ ′|c2,...,cm ) + Δκ (t))[t.from] < 0 (6.1)

On the other hand, schedule τ = τ ′ · t · τ ′′ is applicable to configuration σ . Thus,
σ [t.from] + (Δκ (τ ′) + Δκ (t) + Δκ (τ ′′))[t.from] ≥ 0. By observing that τ |c1 =
τ ′|c1 + τ ′′|c1 and τ |c2,...,cm = τ ′|c2,...,cm + τ ′′|c2,...,cm , we arrive at:

σ [t.from] + (Δκ (τ ′|c1) + Δκ (τ ′|c2,...,cm )

+Δκ (t) + Δκ (τ ′′|c1) + Δκ (τ ′′|c2,...,cm ))[t.from] ≥ 0 (6.2)

By subtracting (6.2) from (6.1), and by commutativity of vector addition, we arrive at
Δκ (τ ′′|c2,...,cm )[t.from] > 0. Thus, there is a transition t ′ in τ ′′|c2,...,cm and a rule r ′ ∈ c1
such that t ′.to = r ′.from. We again arrived at the contradictory Case (i.A). Hence,
transition t must be applicable to configuration σ ′′.

(i.C) Otherwise, neither t.from nor t.to belong to the set of local states affected by the
rules from c1, i.e., {t.from, t.to} ∩ {� | ∃r ∈ c1. r.from = � ∨ r.to = �} is empty.
Then, schedule τ |c1 does not change the counter κ[t.from], and Δκ (τ ′)[t.from] =
Δκ (τ ′|c2,...,cm )[t.from].As t is applicable to τ ′(σ ), that is, (τ ′(σ )).κ[t.from] ≥ t.factor,
we conclude that σ ′′.κ[t.from] ≥ t.factor.

(ii) We now show that σ ′′ |� t.ϕrise ∧ t.ϕfall. Assume by contradiction that σ ′′ 	|� t.ϕrise ∧
t.ϕfall. There are two cases to consider.

If σ ′′ 	|� t.ϕrise. By definition, the shared variables are never decremented in a non-singleton
looplet. As τ ′ is a prefix of τ , schedule τ |c1 ·τ ′|c2,...,cm includes all transitions
of τ ′. Thus, Δg(τ |c1 · τ ′|c2,...,cm ) ≥ Δg(τ

′). From this and σ ′′ 	|� t.ϕrise, it
follows that τ ′(σ ) 	|� t.ϕrise. This contradicts applicability of τ to σ .

If σ ′′ 	|� t.ϕfall. Then, there is a guard ϕ ∈ guard(t.ϕfall) with τ ′′(σ ) 	|� ϕ. On one hand,
τ |c1 · τ ′|c2,...,cm is applicable to σ . On the other hand, τ is applicable to σ .
We notice that Δg(τ ) = Δg(τ |c1) + Δg(τ

′|c2,...,cm ) + Δg(τ
′′|c2,...,cm ) +

Δg(t) ≥ Δg(τ |c1) + Δg(τ
′|c2,...,cm ). As shared variables are never

decreased, it follows that (τ |c1 · τ ′|c2,...,cm )(σ ) 	|� ϕ. Thus, ω(σ) 	=
ω(τ(σ )). This contradicts the assumption on that schedule τ is steady.

Having proved that, we conclude that transition t is applicable to configuration (τ |c1 ·
τ ′|c2,...,cm )(σ ). Thus, by induction (τ |c1 · τ |c2,...,cm )(σ ) is applicable to σ . We conclude that
Point 2 of the theorem holds.

Proof of (3) By the commutativity property of vector addition,

Δκ (τ |c1 · τ |c2,...,cm ) = Δκ (τ |c1) + Δκ (τ |c2,...,cm ) =
∑

1≤i≤|τ |
Δκ (ti ) = Δκ (τ ).

Thus, (τ |c1 · τ |c2,...,cm )(σ ) = τ(σ ), and Point (3) follows.
We have thus shown all three points of Lemma 6.1. ��
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Proof (of Theorem 6.1) By iteratively applying Lemma 6.1, we prove by induction that
schedule τ |c1 ·. . .·τ |cm is applicable to σ and results in τ(σ ). FromTheorem 5.1, we conclude
that each schedule τ |ci can be replaced by its representative crepΩ

ci [πi−1(σ ), τ |ci ]. Thus,
srepΩ [σ, τ ] is applicable to σ and results in τ(σ ). By Proposition 3.4, schedule srepΩ [σ, τ ]
is steady, since ω(σ) = ω(τ(σ )). ��

Finally, we show that for a given context, there is a schema that generates all paths of such
representative schedules.

Theorem 6.2 Fix a threshold automaton and a context Ω . Let c1, . . . , cm be the sorted
sequence of all looplets of the slice R|Ω , i.e., c1 ≺lin

C . . . ≺lin
C cm. Schema sschemaΩ =

cschemaΩ
c1 ◦· · ·◦cschemaΩ

cm has two properties: (a) For a configuration σ withω(σ) = Ω

and a steady schedule τ applicable to σ , path(σ, τ ′) of the representative τ ′ = srepΩ [σ, τ ]
is generated by sschemaΩ ; and (b) the length of sschemaΩ is at most 2 · |(R|Ω)|.
Proof Fix a configuration σ with ω(σ) = Ω and a steady schedule τ applicable to σ . As
srepΩ [σ, τ ] is a sorted sequence of the looplet representatives, all paths of srepΩ [σ, τ ] are
generated by sschemaΩ , which is not longer than 2 · |(R|Ω)|. ��

7 Proving the main result

Using the results from Sects. 5 and 6, for each configuration and each schedule (without
restrictions) we construct a representative schedule.

Theorem 7.1 Given a threshold automaton, a configuration σ , and a schedule τ applicable
to σ , there exists a schedule rep[σ, τ ] with the following properties:

(a) rep[σ, τ ] is applicable to σ , and rep[σ, τ ](σ ) = τ(σ ),
(b) |rep[σ, τ ]| ≤ 2 · |R| · (|Φrise| + |Φfall| + 1) + |Φrise| + |Φfall|.
Proof Given a threshold automaton, fix a configuration σ and a schedule τ applicable to σ .
Let Ω1, . . . , ΩK+1 be the maximal monotonically increasing sequence of contexts such
that path(σ, τ ) is consistent with the sequence by Definition 3.7. From Proposition 3.2, the
length of the sequence is K + 1 = |Φrise| + |Φfall| + 1. Thus, there are at most K transitions
t�1 , . . . , t

�
K in τ that change their context, i.e., for i ∈ {1, . . . , K }, it holds ω(σi ) � ω(t�i (σi ))

for t�i ’s respective state σi in τ . Therefore, we can divide τ into K + 1 steady schedules
separated by the transitions t�1 , . . . , t

�
K :

τ = ν1 · t�1 · ν2 · · · νK · t�K · νK+1.

Now, the main idea is to replace the steady schedules with their representatives from The-
orem 6.1. That is, using t�1 , . . . , t

�
K and ν1, . . . , νK+1, we construct the schedules ρ1, . . . , ρK

(by convention, ρ0 is the empty schedule):

ρi = ρi−1 · νi · t�i for 1 ≤ i ≤ K .

Finally, the representative schedule rep[τ, σ ] is constructed as follows:

repΩ1
[σ, ν1] · t�1 · repΩ2

[ρ1(σ ), ν2] · · · repΩK
[ρK−1(σ ), νK ] · t�K · repΩK+1

[ρK (σ ), νK+1]
From Theorem 6.1, it follows that rep[τ, σ ] is applicable to σ and it results in τ(σ ).

Moreover, the representative of a steady schedule is not longer than 2|R|, which together
with K transitions gives us the bound 2|R|(K+1)+K . Aswe have that K = |Φrise|+|Φfall|,
this gives us the required bound. ��
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Further, given a maximal monotonically increasing sequence z of contexts, we construct
a schema that generates all paths of the schedules consistent with z:

Theorem 7.2 For a threshold automaton and a monotonically increasing sequence z of
contexts, there exists a schema schema(z) that generates all paths of the representative
schedules that are consistent with z, and the length of schema(z) does not exceed 3 · |R| ·
(|Φrise| + |Φfall|) + 2 · |R|.
Proof Given a threshold automaton, let ρall be the sequence r1, . . . , r|R| of all rules fromR,
and let z = Ω0, . . . , Ωm be amonotonically increasing sequence of contexts. By the construc-
tion in Theorem 7.1, each representative schedule rep[σ, τ ] consists of the representatives of
steady schedules terminated with transitions that change the context. Then, for each context
Ωi , for 0 ≤ i < m, we compose sschemaΩ and {Ωi } ρall {Ωi+1}. This composition gener-
ates the representative of a steady schedule and the transition changing the context from Ωi

to Ωi+1. Consequently, we construct the schema(z) as follows:

(sschemaΩ0 ◦ {Ω0} ρall {Ω1})◦ . . .◦ (sschemaΩm−1 ◦ {Ωm−1} ρall {Ωm}) ◦ sschemaΩm

By inductively applying Theorem 6.2, we prove that schema(z) generates all paths of
schedules rep[σ, τ ] that are consistent with the sequence z. We get the needed bound on the
length of schema(z) by using an argument similar to Theorem 7.1 and by noting that for
every context, instead of one rule that is changing it, we add |R| extra rules. ��

8 Complete set of schemas and optimizations

Our proofs show that the set of schemas is easily computed from the TA: the threshold
guards are syntactic parts of the TA, and enable us to directly construct increasing sequences
of contexts. To find a slice of the TA for a given context, we filter the rules with unlocked
guards, i.e., check whether the context contains the guard. To produce the simple schema of
a looplet, we compute a spanning tree over the slice. To construct simple schemas, we do
a topological sort over the looplets. For example, it takes just 30 s to compute the schemas
in our longest experiment that runs for 4 h. In our tool we have implemented the following
optimizations that lead to simpler and fewer SMT queries.

Entailment optimization We say that a guard ϕ1 ∈ Φrise entails a guard ϕ2 ∈ Φrise, if for all
combinations of parameters p ∈ PRC and shared variables g ∈ N

|Γ |
0 , it holds that (g, p) |�

ϕ1 → ϕ2. For instance, in our example, ϕ3 : y ≥ (2t +1)− f entails ϕ2 : y ≥ (t +1)− f . If
ϕ1 entails ϕ2, then we can omit all monotonically increasing sequences that contain a context
(Ω rise,Ω fall) with ϕ1 ∈ Ω rise and ϕ2 /∈ Ω rise. If the number of schemas before applying this
optimization is m! and there are k entailments, then the number of schemas reduces from m!
to (m − k)!. A similar optimization is introduced for the guards from Φfall.

Control flow optimization Based on the proof of Lemma 6.1, we introduce the following
optimization for TAs that are directed acyclic graphs (possibly with self loops). We say
that a rule r ∈ R may unlock a guard ϕ ∈ Φrise, if there is a p ∈ PRC and g ∈ N

|Γ |
0

satisfying: (g, p) |� r.ϕrise ∧ r.ϕfall (the rule is unlocked); (g, p) 	|� ϕ (the guard is locked);
(g + r.u, p) |� ϕ (the guard is now unlocked).

In our example from Fig. 2, the rule r1 : true �→ x++ may unlock the guard ϕ1 : x ≥
�(n + t)/2� − f .
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Let ϕ ∈ Φrise be a guard, r ′
1, . . . , r

′
m be the rules that use ϕ, and r1, . . . , rk be the rules

that may unlock ϕ. If ri ≺lin
C r ′

j , for 1 ≤ i ≤ k and 1 ≤ j ≤ m, then we exclude some

sequences of contexts as follows (we call ϕ forward-unlockable). Let ψ1, . . . , ψn ∈ Φrise be
the guards of r1, . . . , rk . Guardϕ cannot be unlocked beforeψ1, . . . , ψn , and thuswe can omit
all sequences of contexts, where ϕ appears in the contexts before ψ1, . . . , ψn . Moreover, as
ψ1, . . . , ψn are the only guards of the rules unlocking ϕ, we omit the sequences with different
combinations of contexts involving ϕ and the guards from Φrise\{ϕ,ψ1, . . . , ψn}. Finally,
as the rules r ′

1, . . . , r
′
m appear after the rules r1, . . . , rk in the order ≺lin

C , the rules r ′
1, . . . , r

′
m

appear after the rules r1, . . . , rk in a rule sequence of every schema. Thus, we omit the
combinations of the contexts involving ϕ and ψ1, . . . , ψn .

Hence, we add all forward-unlockable guards to the initial context (we still check the
guards of the rules in the SMT encoding in Sect. 9). If the number of schemas before applying
this optimization ism! and there are k forward-unlocking guards, then the number of schemas
reduces from m! to (m − k)!. A similar optimization is introduced for the guards from Φfall.

9 Checking a schema with SMT

We decompose a schema into a sequence of simple schemas, and encode the simple schemas.
Given a simple schema S = {Ω1} r1, . . . , rm {Ω2}, which contains m rules, we construct
an SMT formula such that every model of the formula represents a path from L(S)—the
languageof paths generatedby schema S—and for everypath inL(S) there is a corresponding
model of the formula. Thus, we need tomodel a path ofm+1 configurations andm transitions
(whose acceleration factors may be 0).

To represent a configurationσi , for 0 ≤ i ≤ m, we introduce two vectors of SMTvariables:
Given the set of local statesL and the set of shared variablesΓ , a vectorki = (ki1, . . . , k

i|L|) to
represent the process counters, a vector xi = (xi1, . . . , x

i|Γ |) to represent the shared variables.
We call the pair (ki , xi ) the layer i , for 1 ≤ i ≤ m.

Based on this we encode schemas, for which the sequence of rules r1, . . . , rm is fixed.
We exploit this in two ways: First, we encode for each layer i the constraints of rule ri .
Second, as this constraint may update only two counters—the processes move from and
move to according to the rule—we do not need |L| counter variables per layer, but only
encode the two counters per layer that have actually changed. As is a common technique in
boundedmodel checking, the counters that are not changed are “reused” from previous layers
in our encoding. By doing so, we encode the schema rules with |L| + |Γ | + m · (2 + |Γ |)
integer variables, 2m equations, and inequalities in linear integer arithmetic that represent
threshold guards that evaluate to true (at most the number of threshold guards times m of
these inequalities).

In the following, we use the notation [k : m] to denote the set {k, . . . ,m}. In order to reuse
the variables from the previous layers, we introduce a function υ : L × [0 : m] → [0 : m]
that for a layer i ∈ [0 : m] and a local state � ∈ L, gives the largest number j ≤ i of the
layer, where the counter k j

� is updated:
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υ(�, i) =
{

i, if i = 0 ∨ � ∈ {ri .from, ri .to}
υ(�, i − 1), otherwise.

Having defined layers, we encode: the effect of rules on counters and shared variables (in
formulas M and U below), the effect of rules on the configuration (T ), restrictions imposed
by contexts (C), and, finally, the reachability question.

To represent m transitions, for each transition i ∈ [1 : m], we introduce a non-negative
variable δi for the acceleration factor, and define two formulas: formula M�(i − 1, i) to
express the update of the counter of local state � ∈ L, and formula Ux (i − 1, i) to represent
the update of the shared variable x ∈ Γ :

M�(i − 1, i) ≡

⎧

⎪
⎨

⎪
⎩

ki� = kυ(�,i−1)
� + δi , for � = ri .to and i ∈ [1 : m]

ki� = kυ(�,i−1)
� − δi , for � = ri .from and i ∈ [1 : m]

true, otherwise

Ux (i − 1, i ) ≡
{

xi = xi−1 + δi · u, if u = ri .u[ j] > 0,

true, otherwise.

The formula T (i − 1, i) collects all constraints by the rule ri :

T (i − 1, i) ≡
∧

�∈L
M�(i − 1, i) ∧

∧

x∈Γ

Ux (i − 1, i).

For a formula ϕ, we denote by ϕ[xi ] the formula, where each variable x ∈ Γ is substituted
with xi . Then, given a context Ω = (Ω rise,Ω fall), a formula CΩ(i) adds the constraints of
the context Ω on the layer i :

CΩ(i) ≡
∧

ϕ∈Ω rise

ϕ[xi ] ∧
∧

ϕ∈Φrise\Ω rise

¬ϕ[xi ] ∧
∧

ϕ∈Ω fall

¬ϕ[xi ] ∧
∧

ϕ∈Φfall\Ω fall

ϕ[xi ].

Finally, the formula CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m − 1,m) ∧ CΩ2(m) captures all the
constraints of the schema S = {Ω1} r1, . . . , rm {Ω2}, and thus, its models correspond to the
paths of schedules that are generated by S.

Let I (0) be the formula over the variables of layer i that captures the initial states of
the threshold automaton, and B(i) be a state property over the variables of layer i . Then,
parameterized reachability for the schema S is encoded with the following formula in linear
integer arithmetic:

I (0) ∧ CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m − 1,m) ∧ CΩ2(m) ∧ (

B(0) ∨ · · · ∨ B(m)
)

.

10 Experiments

We have extended our tool ByMC (Byzantine Model Checker [2]) with the technique
discussed in this paper. All of our benchmark algorithmswere originally published in pseudo-
code, and we model them in a parametric extension of Promela, which was discussed
in [27,34].

10.1 Benchmarks

We revisited several asynchronous FTDAs that were evaluated in [33,41]. In addition to these
classic FTDAs, we considered asynchronous (Byzantine) consensus algorithms, namely,
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BOSCO [57], C1CS [10], and CF1S [18], that are designed to work despite partial failure
of the distributed system. In contrast to the conference version of this paper [39], we used
a new version of the benchmarks from [37] that have been slightly updated for liveness
properties. Hence, for some benchmarks, the running times of our tool may vary from [39].
The benchmarks, their source code in parametric of Promela, and the code of the threshold
automata are freely available [30].

10.2 Implementation

ByMC supports several tool chains (shown in Fig. 1, p. 3), the first using counter abstraction
(that is, process counters over an abstract domain), and the second using counter systems
with counters over integers:

Data and counter abstractions In this chain, the message counters are first mapped to para-
metric intervals, e.g., counters range over the abstract domain D̂ = {[0, 1), [1, t + 1), [t +
1, n − t), [n − t,∞)}. By doing so, we obtain a finite (data) abstraction of each process,
and thus we can represent the system as a counter system: We maintain one counter κ[�] per
local state � of a process, as well as the counters for the sent messages. Then, in the counter
abstraction step, every process counter κ[�] is mapped to the set of parametric intervals D̂.
As the abstractions may produce spurious counterexamples, we run them in an abstraction-
refinement loop that incrementally prunes spurious transitions and unfair executions. More
details on the data and counter abstractions and refinement can be found in [33]. In our
experiments, we use two kinds of model checkers as backend:

1. BDD The counter abstraction is checked with nuXmv [11] using Binary Decision Dia-
grams (BDDs). For safety properties, the tool executes the command check_invar.
In our experiments, we used the timeout of 3 days, as there was at least one benchmark
that needed a bit more than a day to complete.

2. BMC The counter abstraction is checked with nuXmv using bounded model check-
ing [6]. To ensure completeness (at the level of counter abstraction), we explore the
computations of the length up to the diameter bounds that were obtained in [41].
To efficiently eliminate shallow spurious counterexamples, we first run the bounded
model checker in the incremental mode up to length of 30. This is done by issuing
the nuXmv command check_ltlspec_sbmc_inc, which uses the built-in SAT
solver MiniSAT. Then, we run a single-shot SAT problem by issuing the nuXmv com-
mand gen_ltlspec_sbmc and checking the generated formula with the SAT solver
lingeling [5]. In our experiments, we set the timeout to 1 day.

Reachability for threshold automata In this tool chain, to obtain a threshold automaton, our
tool first applies data abstraction over the domain D̂ to the Promela code, which abstracts
the message counters that keep the number of messages received by every process, while
the message counters for the sent messages are kept as integers. More details can be found
in [40]. Having constructed a threshold automaton, we compare two verification approaches:

1. PARA2 Bounded model checking with SMT The approach of this article. BYMC enumer-
ates the schemas (as explained in Sect. 4), encodes them in SMT (as explained in Sect. 9)
and checks every schema with the SMT solver Z3 [17].
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2. FAST Acceleration of counter automata In this chain, our tool constructs a threshold
automaton and checks the reachability properties with the existing tool FAST [3]. For
comparison with our tool, we run FAST with the MONA plugin that produced the best
results in our experiments.

The challenge in the verification of FTDAs is the immense non-determinism caused
by interleavings, asynchronous message passing, and faults. In our modeling, all these are
reflected in non-deterministic choices in the Promela code. To obtain threshold automata,
as required for our technique, our tool constructs a parametric interval data abstraction [33]
that adds to non-determinism.

Comparing to [39], in this paper, we have introduced an optimization to schema checking
that dramatically reduced the running times for some of the benchmarks. In this optimization,
we group schemas in a prefix tree, whose nodes are contexts and edges are simple schemas.
In each node of the prefix tree, our tool checks, whether there are configurations that are
reachable from the initial configurations by following the schemas in the prefix. If there are
no such reachable configurations, we can safely prune the whole suffix and thus prove many
schemas to be unsatisfiable at once.

10.3 Evaluation

Table 1 summarizes the features of threshold automata that are automatically constructed
by ByMC from parametric Promela. The number of local states |L| varies from 7 (FRB
and STRB) to hundreds (C1CS and CBC). Our threshold automata are obtained by apply-
ing interval abstraction to Promela code, which keeps track of the number of messages
received by each process. Thus, the number |L| is proportional to the number of control
states and |̂D|k , where ̂D is the domain of parametric intervals (discussed above) and k is the
number of message types. Sometimes, one can manually construct a more efficient threshold
automaton that models the same fault-tolerant distributed algorithm and preserves the same
safety properties. For instance, Fig. 2 shows a manual abstraction of ABA that has only 5
local states, in contrast to 61 local states in the automatic abstraction (cf. Table 1). We leave
open the question of whether one can automatically construct a minimal threshold automaton
with respect to given specifications.

Table 2 summarizes our experiments conducted with the techniques introduced in
Sect. 10.2: BDD, BMC, PARA2, and FAST. On large problems, our new technique works
significantly better than BDD- and SAT-based model checking. BDD-based model checking
works very well on top of counter abstraction. Importantly, our new technique does not use
abstraction refinement. In comparison to our earlier experiments [39], we verified safety of
a larger set of benchmarks with nuXmv. We believe that this is due to the improvements
in nuXmv and, probably, slight modifications of the benchmarks from [37].

NBAC and NBACC are challenging as the model checker produces many spurious coun-
terexamples, which are an artifact of counter abstraction losing or adding processes. When
using SAT-based model checking, the individual calls to nuXmv are fast, but the abstraction-
refinement loop times out, due to a large number of refinements (about 500). BDD-based
model checking times out when looking for a counterexample. Our new technique, preserves
the number of proceses, and thus, there are no spurious counterexamples of this kind. In
comparison to the general-purpose acceleration tool FAST, our tool uses less memory and is
faster on the benchmarks where FAST is successful.

As predicted by the distributed algorithms literature, our tool finds counterexamples, when
we relax the resilience condition. In contrast to counter abstraction, our new technique gives
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Table 1 The benchmarks used in our experiments. Somebenchmarks, e.g., ABA, require us to consider several
cases on the parameters, which are mentioned in the column “Case”. The meaning of the other columns is as
follows: |L| is the number of local states in TA, |R| is the number of rules in TA, |Φrise| and |Φfall| is the
number of (R)- and (F)-guards respectively. Finally, |S| is the number of enumerated schemas, and Bound is
the theoretical upper bound on |S|, as given in Theorem 4.2

# Input Case Threshold Automaton Schemas

FTDA (if more than one) |L| |R| |Φrise| |Φfall| |S| Theor. Bound

1 FRB — 7 10 1 0 1 1

2 STRB — 7 15 3 0 4 6

3 NBACC — 78 1356 0 0 1 1

4 NBAC — 77 988 6 0 448 720

5 NBACG — 24 44 4 0 14 24

6 CF1S f = 0 41 266 4 0 14 24

7 CF1S f = 1 41 266 4 1 60 120

8 CF1S f > 1 68 672 6 1 3429 5040

9 C1CS f = 0 101 1254 8 0 70 4 · 104
10 C1CS f = 1 70 629 6 1 140 5040

11 C1CS f > 1 101 1298 8 1 630 3.6 · 105
12 BOSCO n+3t

2 1 = n − t 28 126 6 0 20 720

13 BOSCO n+3t
2 1 > n − t 40 204 8 0 70 4 · 104

14 BOSCO n+3t
2 1 < n − t 32 158 6 0 20 720

15 BOSCO n > 5t ∧ f = 0 82 1292 12 0 924 4.8 · 108
16 BOSCO n > 7t 90 1656 12 0 924 4.8 · 108
17 ABA n+t

2 = 2t + 1 37 180 6 0 448 720

18 ABA n+t
2 > 2t + 1 61 392 8 0 2100 4 · 104

19 CBC n
2 < n − t ∧ f = 0 164 1996 22 12 2 2.9 · 1038

20 CBC n
2 n − t ∧ f = 0 73 442 17 12 2 8.8 · 1030

21 CBC n
2 < n − t ∧ f > 0 304 6799 27 12 5 2 · 1046

22 CBC n
2 n − t ∧ f > 0 161 2040 22 12 5 2.9 · 1038

us concrete values of the parameters and shows how many processes move at each step of
the counterexample.

Our new method uses integer counters and thus does not introduce spurious behavior due
to counter abstraction, but still has spurious behavior due to data abstraction on complex
FTDAs such as BOSCO, C1CS, and NBAC. In these cases, we manually refine the interval
domain by adding new symbolic interval borders, see [33]. We believe that these intervals
can be obtained directly from threshold automata, and no refinement is necessary. We leave
this question to future work.

Sets of schemas and time to check a single schema On one hand, Theorem 4.2 gives us a
theoretical bound on the number of schemas to be explored. On the other hand, optimizations
discussed in Sect. 8 introduce many ways of reducing the number of schemas. Two columns
in Table 1 compare the theoretical bound and the practical number of schemas: the column
“Theoretical bound” shows the bound of (|Φrise| + |Φfall|)!, while the column |S| shows the
actual number of schemas. (For reachability, we are merging the schemas with the prefix
tree, and thus the actual number of explored schemas is even smaller.) As one can see, the
theoretical bound is quite pessimistic, and is only useful to show completeness of the set of
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Table 2 Summary of our experiments on AMDOpteron® 6272, 32 cores, 192 GB. The symbols are: “ ” for

timeout (72 h. for BDD and 24 h. otherwise); “ ” for memory overrun of 32 GB; “ ” for BDD nodes overrun;
“ ” for timeout in the refinement loop (72 h. for BDD and 24 h. otherwise); “ ” for spurious counterexamples
due to counter abstraction

schemas. The much smaller numbers for the fault-tolerant distributed algorithms are due to
a natural order on guards, e.g., as x ≥ t + 1 becomes true earlier than x ≥ n − t under the
resilience condition n > 3t . The drastic reduction in the case of CBC is due to the control flow
optimization discussed in Sect. 8 and the fact that basically all guards are forward-unlocking.

When doing experiments, we noticed that the only kinds of guards that cannot be treated
by our optimizations and blow up the number of schemas are the guards that use independent
shared variables. For instance, consider the guards x0 ≥ n − t and x1 ≥ n − t that are
counting the number of 0’s and 1’s sent by the correct processes. Even though they are
mutually exlusive under the resilience condition n > 3t , our tool has to explore all possible
orderings of these guards. We are not aware of a reduction that would prevent our method
from exploding in the number of schemas for this example.

Since the schemas can be checked independently, one can check them in parallel. Figure 9
shows a distribution of schemas along with the time needed to check an individual schema.
There are only a few divergent schemas that required more than 7 s to get checked, while the
large portion of schemas require 1–3 s. Hence, a parallel implementation of the tool should
verify the algorithms significantly faster. We leave such a parallel extension for future work.
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Fig. 9 The times required to check individual schemas and the distribution of schemas over these times (the
value 0 refers to the running times of less than a second). The benchmarks containing the schemas that are
verified in (a) T ≥ 8sec. and (b) T ≥ 18sec. are: (a) C1CS, CBC, CF1S, and (b) CBC and CF1S

11 Discussions and related work

We introduced a method to efficiently check reachability properties of FTDAs in a parame-
terized way. If n > 7t as for BOSCO, even the simplest interesting case with t = 2 leads to
a system size that is out of range of explicit state model checking. Hence, FTDAs force us
to develop parameterized verification methods.

The problem we consider is concerned with parameterized model checking, for which
many interesting results exist [14,15,21–23,35]; cf. [7] for a survey. However, the FTDAs
considered by us run under the different assumptions.

From a methodological viewpoint, our approach combines techniques from several areas
including compact programs [49], counter abstraction [4,55], completeness thresholds for
bounded model checking [6,16,42], partial order reduction [8,28,53,59], and Lipton’s
movers [48]. Regarding counter automata, our result entails flattability [46] of every counter
system of threshold automata: a complete set of schemas immediately gives us a flat counter
automaton. Hence, the acceleration-based semi-algorithms [3,46] should in principle termi-
nate on the systems of TAs, though it did not always happen in our experiments. Similar to our
SMT queries based on schemas, the inductive data flow graphs iDFG introduced in [24] are a
succinct representations of schedules (they call them traces) for systems where the number of
processes (or threads) is fixed. The work presented in [25] then considers parameterized ver-
ification. Further, our execution schemas are inspired by a general notion of semi-linear path
schemas SLPS [45,46]. We construct a small complete set of schemas and thus a provably
small SLPS. Besides, we distinguish counter systems and counter abstraction: the former
counts processes as integers, while the latter uses counters over a finite abstract domain, e.g.,
{0, 1,many} [55].

Many distributed algorithms can be represented with I/O Automata [50] or TLA+ [44]. In
these frameworks, correctness is typically shownwith a proof assistant, whilemodel checking
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is used as a debugger on small instances. Parameterized model checking is not a concern
there, except one notable result [32].

The results presented in this article can be used to check reachability properties of FTDAs.
We can thus establish safety of FTDAs. However, for fault-tolerant distributed algorithms
liveness is as important as safety: The seminal impossibility result by Fischer, Lynch, and
Paterson [26] states that a fault-tolerant consensus algorithm cannot ensure both safety and
liveness in asynchronous systems. In recent work [37] we also considered liveness verifica-
tion, ormore precisely, verification of temporal logic specificationwith theG andF temporal
operators. In [37], we use the results of this article as a black box and show that combinations
of schemas can be used to generate counterexamples to liveness properties, and that we can
verify both safety and liveness by complete SMT-based bounded model checking.
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