
Form Methods Syst Des (2017) 51:500–532
https://doi.org/10.1007/s10703-017-0290-y

Solving quantified linear arithmetic by
counterexample-guided instantiation

Andrew Reynolds1 · Tim King3 · Viktor Kuncak2

Published online: 3 August 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper presents a framework to derive instantiation-based decision procedures
for satisfiability of quantified formulas in first-order theories, including its correctness, imple-
mentation, and evaluation. Using this framework we derive decision procedures for linear
real arithmetic and linear integer arithmetic formulas with one quantifier alternation. We
discuss extensions of these techniques for handling mixed real and integer arithmetic, and
to formulas with arbitrary quantifier alternations. For the latter, we use a novel strategy that
handles quantified formulas that are not in prenex normal form, which has advantages with
respect to existing approaches. All of these techniques can be integrated within the solving
architecture used by typical SMT solvers. Experimental results on standardized benchmarks
frommodel checking, static analysis, and synthesis show that our implementation in the SMT
solver cvc4 outperforms existing tools for quantified linear arithmetic.

Keywords Satisfiability modulo theories · Quantifier elimination · Linear arithmetic ·
Quantifier Instantiation

1 Introduction

Among the biggest challenges in automated reasoning is efficient support for quantifiers
in the presence of background theories. Quantifiers enable direct encoding of a number of
problems of interest, including synthesis of software fragments from specifications [34,50,

B Andrew Reynolds
andrew.j.reynolds@gmail.com

Viktor Kuncak
viktor.kuncak@epfl.ch

1 Department of Computer Science, The University of Iowa, Iowa city, IA, USA

2 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

3 Google, Mountain view, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0290-y&domain=pdf

Form Methods Syst Des (2017) 51:500–532 501

56], construction of transfer functions for program analysis [40], invariant inference [14,27],
as well as analysis of properties that go beyond safety [10,11].

The most commonly used complete method for deciding constraints over quantified the-
ories is quantifier elimination [29, Section 2.7]. Quantifier elimination algorithms typically
solve amore general problem, of transforming arbitrary quantified formulawith free variables
into a theory-equivalent formula with no quantifiers.

However, depending on the particular variant of the language of constraints, performing
actual quantifier elimination can have worse complexity than the decision problem [9], in
part because it is required to give an answer on any formula, and the smallest formula
resulting from quantifier elimination can be very large [64]. When the goal is to decide
the satisfiability of quantified constraints, quantifier elimination may be doing unnecessary
work. More importantly, procedures based on quantifier elimination often do not handle the
underlying ground constraints in the most efficient way. Thus, quantifier elimination tends
to be prohibitively expensive in practice. Recent work involving quantifier elimination [12,
41] has been motivated by avoiding worst-case performance by effectively computing an
equisatisfiable set of ground formulas in a lazy fashion.

In the broader scope of automated theorem proving, it is often important to reason about
formulas involving multiple theories, each of which may or may not support quantifier elim-
ination. In practice, the goal is to obtain a framework for handling quantified formulas
that is both complete for formulas belonging to decidable logics, and empirically effec-
tive when completeness guarantees are not known. To this end, modern SMT solvers most
commonly use heuristic instantiation-based approaches [18], which are incomplete but work
well in practice for undecidable fragments of first-order logic. A long term goal of this
work is to capitalize both on recent advances in specialized techniques for quantified linear
arithmetic [12,13,32,44], and recent advances in instantiation-based theorem proving for
first-order logic [17,24,51].

In this paper, we introduce an approach for establishing the satisfiability of formulas in
quantified linear arithmetic based on a new quantifier instantiation framework. The use of
quantifier instantiation for this task is motivated by the following.

– Procedures based on lazy quantifier instantiation typically establish satisfiability much
faster than their theoretical complexity.

– Using quantifier instantiation for decidable fragments enables a uniform integration and
composition with existing instantiation-based techniques [17,18,51], which are widely
used by modern SMT solvers.

– An important class of synthesis problems can be expressed as quantified formulas with
one quantifier alternation. As shown in [50], solutions for these problems can be extracted
from an unsatisfiable core of quantifier instantiations.

Related work Quantifier elimination has been used to, e.g., show decidability and classifica-
tion ofBoolean algebras [55,61], Presburger arithmetic [46], decidability of products [22,42],
[39, Chapter 12], and algebraically closed fields [60]. The original result on decidability of
Presburger arithmetic is by Presburger [46]. The space bound for Presburger arithmetic was
shown in [23]. The matching lower and upper bounds for Presburger arithmetic were shown
in [9], see also [33, Lecture 24]. An analysis parameterized by the number of quantifier alter-
nations is presented in [48]. A mechanically verified quantifier elimination algorithm was
developed by Nipkow [43].

An approach for lazy quantifier elimination for linear real arithmetic was developed by
Monniaux [41]. Integration of linear quantifier elimination into the solving algorithm used
by SMT solvers was developed in [12], though the presented integration is not model driven.

123

502 Form Methods Syst Des (2017) 51:500–532

A lazy approach for quantifier elimination, which relies on an operation called model-based
projection, has been developed in the context of SMT-based model checking [32], and can
be used for extracting Skolem functions for simulation synthesis [21]. An efficient approach
for quantified linear real arithmetic that is based on finding player strategies for establishing
satisfiability is given in [20]. A recent approach involving quantified formulas with arbitrary
alternations has been developed by Bjørner and Janota [13] for several background theo-
ries, which is closely related to the approach in this paper. By comparison, their approach is
described in terms of a model-based projection operation whereas ours is based on instantia-
tion. Additionally, their strategy for handling quantified formulas with multiple alternations
assumes quantified formulas are in prenex form, whereas ours handles a more general gram-
mar of quantified formulas that includes those not in prenex normal form. We will comment
more on the technical differences between these two approaches in the later sections.

The most widely used techniques for quantifier instantiation in SMT were developed
in [18], and later in [17,25], which primarily focused on quantified formulas with unin-
terpreted functions. Our approach for quantified linear arithmetic instantiates quantified
formulas based on a lazy stream of candidate models, terminating when either it finds a
finite set of instances are unsatisfiable, or discovers that the original formula is satisfiable.
Other approaches in this spirit have been used for quantifiedBoolean formulas [31], quantified
bit-vectors [66], the essentially uninterpreted fragment [26], and, more generally, theories
having a locality property [5,30]; these works do not directly apply to quantified linear
arithmetic. A recent approach for quantified formulas with one quantifier alternation has
been developed in the SMT solver Yices [19]. The present paper builds upon our previous
work for solving synthesis conjectures using quantifier instantiation in SMT [50], where an
approach for quantified linear arithmetic was described without a specific method for select-
ing instances andwithout completeness guarantees.While the present paper focuses on linear
arithmetic, where it outperforms existing approaches, we expect the presented framework to
be relevant for other quantified theories. Among the examples of further decidable quanti-
fied constraints are quantified theories of term algebras [39, Chapter23], [38,57] and their
extensions [15,35,52], feature trees [4,62], and monadic second-order theories [63].
Contributions This paper makes the following contributions. First, we define a general class
of instantiation-based procedures for establishing the satisfiability of quantified formulas in
Sect. 2. We demonstrate instances of the procedure are sound and complete for formulas
over linear real arithmetic (LRA) and linear integer arithmetic (LIA) with one quantifier
alternation in Sects. 3 and 4, two quantified fragments for which many current SMT solvers
do not have efficient support for. We describe how these two procedures can be combined
for mixed real and integer arithmetic (LIRA) in Sect. 5, although completeness for this
fragment is left for futurework.We showhowour procedure can be integrated into the solving
architecture used by SMT solvers and how the procedure can be used for solving formulas
with arbitrary quantifier alternation in Sect. 6. A key feature of our strategy for handling
quantifier alternations is that we do not impose the restriction that quantified formulas must
be in prenex normal form. We show how instantiation procedures can be used in part for
solving synthesis problems in Sect. 7. Our approach is sound and complete for quantified
linear arithmetic and is based purely on quantifier instantiation, which has the advantage of
being composable with existing techniques and whose soundness is straightforward to verify.
Section 8 gives experimental results for an implementation of the procedures for LIA and
LRA in the SMT solver cvc4, which in addition to having the aforementioned advantages,
outperforms state-of-the-art SMT solvers and theoremprovers for quantified linear arithmetic
benchmarks.

123

Form Methods Syst Des (2017) 51:500–532 503

1.1 Preliminaries

We consider formulas in multi-sorted first-order logic. A signatureΣ consists of a countable
set of sort symbols and a set of function symbols. Given a signature Σ , well-sorted terms,
atoms, literals, and formulas are defined as usual, and referred to respectively as Σ-terms.
We denote by FV (t) the set of free variables occurring in the term t , and extend this notion
to formulas. A Σ-term or formula is ground if it has no free variables. We will consider term
tuples (t1, . . . , tn), and denote them by letters in bold font, e.g. t. A term written t[k] denotes
a term whose free variables are in the tuple k. A formula is closed if it has no free variables.

A Σ-interpretation I maps

– each set sort symbol τ ∈ Σ to a non-empty set τI , the domain of τ in I,
– each function f ∈ Σ of sort τ1 × · · · × τn → τ to a total function f I of sort τI

1 × · · · ×
τI
n → τI where n > 0, and to an element of τI when n = 0, and

– each variable x of sort τ to an element of τI .

We write tI to denote the interpretation of t in I, defined inductively as usual. A satisfiability
relation between Σ-interpretations and Σ-formulas, written I |� ϕ, is also defined induc-
tively as usual. In particular, we assume that I |� ¬ϕ if and only if it is not the case that
I |� ϕ. We say that I is a model of ϕ if I satisfies ϕ. Formulas ϕ1 and ϕ2 are equivalent (up
to k) if they are satisfied by the same set of models (when restricted to the interpretation of
variables k).

A theory is a pair T = (Σ,I) where Σ is a signature and I is a non-empty set of Σ-
interpretations, the models of T . We assume Σ contains the equality predicate, which we
denote by ≈. Let �ϕ�T denote the set of T -models of ϕ. Observe that �¬ϕ�T = I \ �ϕ�T . A
Σ-formula ϕ[x] is T -satisfiable if it is satisfied by some interpretation in I (i.e. �ϕ�T �= ∅).
Dually, a Σ-formula ϕ[x] is T -unsatisfiable if it is satisfied by no interpretation in I (i.e.
�ϕ�T = ∅). A formula ϕ is T -valid if every model of T is a model of ϕ (i.e., �ϕ�T = I).

A set Γ of formulas T -entails a Σ-formula ϕ, written Γ |�T ϕ, if every model of T that
satisfies all formulas in Γ satisfies ϕ as well. A set of literals M propositionally entails a
formula ϕ, written M |�p ϕ, if M entails ϕ when considering all atomic formulas in M ∪ ϕ

as propositional variables; such entailment is that of propositional logic and is independent
of the theory.

We write RA (resp. IA) to denote the theory of real (resp. integer) arithmetic. Its signature
consists of the sort Real (resp. Int), the binary predicate symbols > and <, functions + and
· denoting addition and multiplication, and the constants of its sort interpreted as usual. We
write t ≤ s as shorthand for ¬(t > s), and t ≥ s as shorthand for ¬(t < s). We write
LRA (resp. LIA) to denote the language of linear real (resp. integer) arithmetic formulas,
that is, whose literals are of the form (¬)(c1 · x1+· · ·+ cn · xn �� c) where c1, . . . , cn, c and
x1, . . . , xn are non-zero constants and distinct variables of sort Real (resp. Int) respectively,
and �� is one of >, <, or ≈. For each literal of this form, there exists an equivalent literal
that is in solved form with respect to xi for each i = 1, . . . , n. That is, an LRA-literal is in
solved form with respect to x if it is of the form (¬)(x �� t), where x /∈ FV (t). Similarly,
an LIA-literal is in solved form with respect to x if it is of the form (¬)(c · x �� t), where
x /∈ FV (t) and c is an integer constant greater than zero. For integer constants c1 and c2 and
non-zero constant c, we write c1 ≡c c2 to denote that c1 and c2 are congruent modulo c, that
is (c1 mod c) = (c2 mod c), and we write c | c1 if c divides c1.

Wewrite LIRA to denote the language ofmixed linear real and integer arithmetic formulas,
that is, linear arithmetic formulaswhere variables and constantsmaybeof either real or integer
sort.

123

504 Form Methods Syst Des (2017) 51:500–532

2 Counterexample-guided quantifier instantiation

In this section, we assume a fixed theory T and a language L that is closed under negation
and such that the satisfiability of finite sets of L formulas modulo T is decidable. We present
a procedure for checking satisfiability of formulas in the language Q(L) = {∃k ∀x ϕ[k, x] |
ϕ[k, x] ∈ L}.
2.1 An instantiation procedure and its soundness

Figure 1 presents an instantiation-based procedure for determining the satisfiability of a
T -formulas ∃k ∀x ϕ[k, x], where ϕ[k, x] belongs to L. The procedure introduces a tuple of
distinct fresh variables e of the same sort as x. It maintains a set of formulasΓ , initially empty,
and terminates when either Γ or Γ ∪ {¬ϕ[k, e]} is T -unsatisfiable. On each iteration, the
procedure invokes the subprocedure S (over which the procedure is parameterized), which
returns a tuple of terms t[k] whose free variables are a subset of k. We then add to Γ the
formula ϕ[k, t[k]]. We call S the selection function of PS .

Definition 1 A selection function (for L) takes as arguments an interpretation I, a set of
formulasΓ , and a formula¬ϕ[k, e] inL, and a tuple of variables e, where I |� Γ ∪¬ϕ[k, e].
It returns a tuple of terms t[k] such that ϕ[k, t[k]] is also in L.

The intuition of the algorithm in Fig. 1 is to find a subset of the instances of ∀x ϕ[k, x] that
are either (a) unsatisfiable, and are thus sufficient for showing that ∀x ϕ[k, x] is unsatisfiable,
or (b) satisfiable and entail ∀x ϕ[k, x]. The algorithm recognizes the latter case by checking
the satisfiability ofΓ ∪¬ϕ[k, e] on each iteration of itsmain loop. In either case, the algorithm
may terminate before enumerating all instances of ∀x ϕ[k, x].

The procedure above is agnostic to the theory T . We remark that similar instantiation-
based procedures have been developed in recent SMT solvers [19,50]. In this paper, we will
focus on instantiation-based procedures for linear arithmetic, giving technical comparisons
to existing approaches when applicable.

We first show that the procedure always returns correct results, regardless of the behavior
of the selection function, leaving the termination question for the next subsection. We first
prove that when the procedure terminates, the input to the procedure is equivalent to Γ . This
means that the procedure PS can perform quantifier elimination by means of tracking the
contents of Γ .

Lemma 1 If PS terminates when Γ = {ϕ[k, t1], . . . , ϕ[k, tn]}, then ∃k ∀x ϕ[k, x] is equiv-
alent to ∃k ϕ[k, t1] ∧ · · · ∧ ϕ[k, tn].

PS(∃k ∀xϕ[k,x]):

Let Γ := ∅ and e be a tuple of fresh variables of the same type as x.
Repeat

If Γ is T -unsatisfiable, then return “unsat”.
If Γ = Γ ∪ {¬ϕ[k, e]} is T -unsatisfiable, then return “sat”.
Otherwise,

Let I be a model of T and Γ and let t[k] = S(I, Γ, ¬ϕ[k, e], e).
Γ := Γ ∪ {ϕ[k, t[k]]}.

Fig. 1 An instantiation-based procedurePS for determining the T -satisfiability of ∃k ∀x ϕ[k, x], parameter-
ized by selection function S

123

Form Methods Syst Des (2017) 51:500–532 505

Proof First, clearly all models of ∃k ∀x ϕ[k, x] also satisfy ∃k ϕ[k, t1]∧· · ·∧ϕ[k, tn], since
each ϕ[k, ti] is a consequence of ∀x ϕ[k, x].

To show the opposite direction of the equivalence, in the case that PS terminates with
“unsat”, we have that Γ is T -unsatisfiable, and thus ∃k ϕ[k, t1] ∧ · · · ∧ ϕ[k, tn] is T -
unsatisfiable. Thus, it is vacuously the case that all of its models satisfy ∀x ϕ[k, x]. In the
case that PS terminates with “sat”, we have that Γ is T -satisfiable and Γ ′ = Γ ∪{¬ϕ[k, e]}
is T -unsatisfiable. Since the only formulas added to Γ are of the form ϕ[k, t[k]], the vari-
ables e do not occur in Γ , and thus Γ ∪ {∃x¬ϕ[k, x]} is T -unsatisfiable as well. Let I
be a model of Γ . Since I is not a model of Γ ∪ {∃x¬ϕ[k, x]}, it must be the case that
I �|� ∃x¬ϕ[k, x], and hence I is a model for ∃k ∀x ϕ[k, x]. Thus, in this case all models of
∃k ϕ[k, t1] ∧ · · · ∧ ϕ[k, tn] also satisfy ∃k ∀x ϕ[k, x]. Thus, the lemma holds. ��
Corollary 1 If PS terminates with “unsat”, then ∃k ∀x ϕ[k, x] is T -unsatisfiable.
Proof PS terminates with “unsat” only if Γ is T -unsatisfiable. Thus by Lemma 1, we have
that ∃k ∀x ϕ[k, x] is T -unsatisfiable as well. ��
Corollary 2 If PS terminates with “sat”, then ∃k ∀x ϕ[k, x] is T -satisfiable.
Proof PS terminates with “sat” only if Γ is T -satisfiable. Thus by Lemma 1, we have that
∃k ∀x ϕ[k, x] is T -satisfiable as well. ��
2.2 Termination of the instantiation procedure

The following properties of selection functions are of interest for showing the procedure PS
terminates.

Definition 2 (Finite) A selection function S is finite for ϕ[k, e] if there exists a finite set
S∗(ϕ[k, e], e) such that S(I, Γ,¬ϕ[k, e], e) ∈ S∗(ϕ[k, e], e) for all I, Γ .

Definition 3 (Monotonic) A selection function S is monotonic for ϕ[k, e] if whenever Γ |�
ϕ[k, t], we have that S(I, Γ,¬ϕ[k, e], e) �= t.

Observe that, if S is a monotonic selection function, then for any finite list of terms t1, . . . tn
we have S(I, {ϕ[k, t1], . . . , ϕ[k, tn]},¬ϕ[k, e], e) /∈ {t1, . . . , tn}.
Definition 4 (Model-Preserving) A selection function S is model-preserving for ϕ[k, e] if
whenever S(I, Γ,¬ϕ[k, e], e) = t, we have that I |� ¬ϕ[k, t].
Lemma 2 A selection function that is model-preserving for ϕ[k, e] is also monotonic for
ϕ[k, e].
Proof Assume that S is model-preserving for ϕ[k, e] and that S(I, Γ,¬ϕ[k, e], e) = s.
By definition of model-preserving, we have that I |� ¬ϕ[k, s]. Thus, for each t such that
I |� ϕ[k, t], we have that s �= t. Thus, S is monotonic for ϕ[k, e]. ��
Theorem 1 If S is finite and monotonic for ϕ[k, e] in L, then PS is a (terminating) decision
procedure for the T -satisfiability of ∃k ∀x ϕ[k, x].
Proof Given a monotonic and finite S, the procedure PS can only execute a finite number of
iterations. Assuming a decision procedure for determining the T -satisfiability of T -formulas
in L, PS(∃k ∀x ϕ[k, x]) must terminate. By Corollaries 1 and 2, PS is a decision procedure
for the T -satisfiability of ∃k ∀x ϕ[k, x]. ��

123

506 Form Methods Syst Des (2017) 51:500–532

By this result, we obtain a sound and complete instantiation strategy from Fig. 1 by virtue
of constructing a selection function that is finite and monotonic for formulas residing in
a language L of interest. It is important to note that the property of being both finite and
monotonic is a sufficient condition of a selection function for proving the termination of an
instantiation-based procedure according to the algorithm in Fig. 1, although it is not the only
sufficient condition for doing so.

In this paper we will construct selection functions S that are finite and monotonic for all
ϕ[k, x] in quantifier-free linear real and integer arithmetic.

3 Instantiation for LRA-formulas

Consider the case where k and x are vectors ofReal variables andL is the class of quantifier-
free LRA-formulas ϕ[k, x]. For simplicity of the presentation, we assume that equalities are
eliminated from ϕ by the transformation:

t ≈ 0 � 0 ≤ t ∧ 0 ≥ t

As a result of Theorem 1, to devise a sound and complete instantiation-based procedure
for deciding the satisfiability of ∃k ∀x ϕ[k, x], it suffices to devise a finite and monotonic
selection function for LRA, which we describe in the following.

Figure 2 gives a selection function SLRA for LRA, which takes an interpretation I, a set
of formulas Γ , the formula ¬ϕ[k, e], and the tuple of variables e. It invokes the recursive
procedure SR which constructs a term corresponding to each variable in e. Analogous to
existing approaches for linear quantifier elimination [36,43], we assume that the signature
of linear real arithmetic contains non-standard terms for symbolically representing substitu-
tions (often referred to as virtual terms). In particular, we consider a signature that contains a
free distinguished constant δ of sort Real, representing an infinitesimal positive value. Any

SLRA(I, Γ, ¬ϕ[k, e], e):

Return SR(I, ¬ϕ[k, e], e, ())

SR(I, ψ, (ei, . . . , en), t):

If i > n, return t
Otherwise, let ti = SR0(I, ψ, ei), σ = {ei → ti}
Return SR(I, ψσ, (ei+1, . . . , en), (tσ, ti))

SR0(I, ψ, e):

Let M = M ∪ Mu ∪ Mc be such that:
– I |= M and M |=p ψ,
– M ⇔ {e 1, . . . , e n},
– Mu ⇔ {e ≺ u1, . . . , e ≺ um}, and
– e ∈ FV (1 n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of

⎧⎪⎨
⎪⎩

i + δi n > 0,max{(1 + δ1)
I , . . . , (n + δn)I} = (i + δi)

I

uj − δu
j m > 0,min{(u1 − δu

1)
I , . . . , (um − δu

m)I} = (uj − δu
j)

I

0 n = 0 and m = 0

Fig. 2 A selection function SLRA for linear real arithmetic LRA. Each ≺ is either < or ≤; δ�
i is δ if the i th

lower bound for e is strict, and 0 otherwise. Similarly, each � is either > or ≥; δuj is δ if the j th upper bound
for e is strict, and 0 otherwise

123

Form Methods Syst Des (2017) 51:500–532 507

quantifier-free constraint containing δ is equivalent to one that does not by the transforma-
tions:

δ < t � 0 < t and δ > t � 0 ≥ t where δ /∈ FV (t).

Thus we may assume without loss of generality that ¬ϕ[k, e] contains no occurrence of δ.
For each variable ei from e, the procedure SR invokes the (non-deterministic) subproce-

dure SR0, which chooses a term corresponding to ei based on a set of literals M over the
atoms of ψ which propositionally entail ψ and are satisfied by I, which we call a proposi-
tionally satisfying assignment for ψ . We partition M into three sets M�, Mu and Mc, where
M� contains literals that correspond to lower bounds for e, Mu contains literals that corre-
spond to upper bounds for e, and Mc contains the remaining literals. The sets M� and Mu are
equivalent to sets of literals that are in solved form with respect to e. When M� contains at
least one literal, we may return the lower bound whose value is maximal according to I, and
similarly for Mu . If both M� and Mu are empty, we return the term 0. When SR0 returns the
term ti , we apply the substitution {ei �→ ti } to ψ and t, and append ti to t. Terms returned by
SR0 may involve the constant δ. We define a satisfiability relation between models and for-
mulas involving δ, as well as themax andmin function for terms involving δ in the obvious
way, such that (t1 + c1 · δ)I > (t2 + c2 · δ)I if either tI1 > tI2 or both tI1 = tI2 and c1 > c2.

Overall, SLRA returns a tuple of terms t, after which we add ϕ[k, t] to Γ in Fig. 1.

Lemma 3 SLRA is finite for ϕ[k, e].
Proof We first show only a finite number of terms can be returned by SR0(I, (¬ϕ[k, e])σ,e)

for any I, σ,e. Let A be the set of atoms occurring in ϕ[k, e]σ . The literals in satisfying
assignments of (¬ϕ[k, e])σ are over these atoms. Let {e > t1, . . . ,e > tn,e < s1, . . . ,e <

sm} be the set of atoms that are in solved form with respect to e that are equivalent to the
atoms of A containing e, where e /∈ FV (t1, . . . , tn, s1, . . . , sm). The terms returned by
SR0(I, (¬ϕ[k, e])σ,e) are in the set:

{0, t1(+δ), . . . , tn(+δ), s1(−δ), . . . , sm(−δ)}
Notice that literals over the atoms in A may occur either with positive or negative polarity
in M . Thus for each literal e < ti for i = 1, . . . , n, SR0 may either return ti + δ when
considering (e > ti) in M as a lower bound for e, or ti when considering ¬(e > ti) in M ,
which is equivalent to (e ≤ ti), as an upper bound for e. Similarly we consider two cases for
each literal e > si for i = 1, . . . ,m. Since there are only a finite number of recursive calls
to SR within SLRA, and each call appends only a finite number of possible terms to t, the set
of possible return values of SLRA is finite, and thus it is finite for ϕ[k, e]. ��
Lemma 4 If I is a model for LRA and for the quantifier-free formula ψ , then I is also a
model for ψ{e �→ SR0(I, ψ,e)}.
Proof Let M be a set of literals of the form described in the definition of SR0 for I, ψ and
e. Consider the case where SR0(I, ψ,e) = �i + δ�

i for some i , where n > 0. We show that
I satisfies M{e �→ �i + δ�

i }. First, sincemax{(�1 + δ�
1)

I , . . . , (�n + δ�
n)

I} = (�i + δ�
i)

I , we
know that I satisfies M�{e �→ �i + δ�

i }. In the case that the bound on e we consider is strict,
that is, e > �i ∈ M�, then δ�

i is δ, and �Ii < uIj for all j ∈ {1, . . . ,m}. Thus, I satisfies
(�i + δ ≺ u j) = (e ≺ u j){e �→ �i + δ}. In the case that the bound on e we consider is
non-strict, that is, if e ≥ �i ∈ M�, then δ�

i is 0, and �Ii ≤ uIj for all j ∈ {1, . . . ,m}. Thus,
I satisfies (�i ≺ u j) = (e ≺ u j){e �→ �i }. In either case, we have that I satisfies each

123

508 Form Methods Syst Des (2017) 51:500–532

literal in Mu{e �→ �i + δ�
i }. Finally, I clearly satisfies Mc{e �→ �i + δ�

i } = Mc. The case
when m > 0 is symmetric to the case when n > 0. In the case where n = 0 and m = 0,
we have that ψ does not contain e, and I satisfies M{e �→ 0}. In each case, I satisfies
M{e �→ SR0(I, ψ,e)}, which entails ψ{e �→ SR0(I, ψ,e)}, and thus the lemma holds. ��
Lemma 5 SLRA is model-preserving for ϕ[k, e].
Proof Assume SLRA(I, Γ,¬ϕ[k, e], e) returns t. By definition of selection function, I and
¬ϕ[k, e] are such that I |� ¬ϕ[k, e]. By repeated applications of Lemma 4, we have that I
satisfies all inputs ψ to SR . When SR terminates, ψ is ¬ϕ[k, t], and thus I |� ¬ϕ[k, t]. ��
Theorem 2 PSLRA is a sound and complete procedure for determining theLRA-satisfiability
of ∃k ∀x ϕ[k, x].
Proof By Theorem 1 and Lemma 2 of our framework as well as LRA-specific Lemma 3 and
Lemma 5. ��

We illustrate the procedure through examples. SR0 is non-deterministic; we choose instan-
tiations only based on the lower boundsM� found in the procedure SR0, though the procedure
is free to choose its instantiations based on the upper bounds Mu as well. We underline the
literal in M� corresponding to the bound whose value is maximal in I. Γ is initially empty
and on each iteration Γ ′ is the union of Γ and the Skolemized negation ¬ϕ[e] of the input
formula ∀x ϕ[x], where e are fresh variables of the same sort as x. Each round of SLRA
computes a tuple t[k], which is used to instantiate our quantified formula in Fig. 1. The
last column shows the corresponding instance of the quantified formula after simplification,
including the elimination of δ.

Example 1 Consider the formula ∀x (x ≤ a ∨ x ≤ b). Let e be a fresh Skolem variable of
the same sort (Real) as x . The Skolemized negation of this formula is ¬(e ≤ a ∨ e ≤ b),
which simplifies to (e > a ∧ e > b). The iterations of the loop of PSLRA are summarized in
the following table, where Γ is initially empty, and Γ ′ is obtained by adding (e > a∧e > b)
to Γ on each iteration.

SR0(I, ψ, e)
Γ Γ ′ e M� Return t[k] Add to Γ

1 sat sat e {e > a, e > b} a + δ (a + δ) a < b
2 sat sat e {e > a, e > b} b + δ (b + δ) b < a
3 unsat

On the first iteration, Γ and Γ ′ = {e > a∧e > b} are satisfiable by a model, call it I1, where
assume that eI1 = 2, aI1 = 1, bI1 = 0. We call SR0 with inputs I1, (e > a ∧ e > b), and e.
A propositionally satisfying assignment M for (e > a ∧ e > b) includes both these literals,
and the set of lower bounds M� for e on this iteration is {e > a, e > b}. Since aI1 > bI1 ,
the procedure SR0 finds that the literal e > a gives the maximal lower bound for e, and
hence it returns the term a + δ. The disjuncts of the instance a + δ ≤ a ∨ a + δ ≤ b added
to Γ on the first iteration simplify to ⊥ and a < b respectively. On the second iteration,
Γ and Γ ′ = {e > a ∧ e > b, a < b} are still satisfiable with a model, call it I2, where
assume that eI2 = 2, aI2 = 0, bI2 = 1. Since now bI2 > aI2 , we have that b is now the

123

Form Methods Syst Des (2017) 51:500–532 509

maximal lower bound for e. Hence, SR0 returns b+ δ on the second iteration, and we add the
formula b < a to Γ . On the third iteration, Γ contains both a < b and b < a and hence is
LRA-unsatisfiable. Overall, this run shows ∃ab ∀x (a ≥ x ∨ x ≥ b) is LRA-unsatisfiable. ��
Example 2 To demonstrate how multiple universally quantified variables are handled, con-
sider the formula∀xy (x+y < a∨x−y < b)whose Skolemized negation after simplification
is e1 + e2 ≥ a ∧ e1 − e2 ≥ b. A possible run of PSLRA is as follows.

SR0(I, ψ, e)

Γ Γ ′ e M� Return t[k] Add to Γ

1 sat sat e1 {e1 ≥ a − e2, e1 ≥ b + e2} b + e2
e2 {e2 ≥ a−b

2 } a−b
2 (a+b

2 , a−b
2) ⊥

2 unsat

On the first iteration, since Γ and Γ ′ are satisfiable say with model I1, we first call SR0 on
I1, (e1 + e2 ≥ a ∧ e1 − e2 ≥ b), and e1. The set M� contains inequalities that are in solved
formwith respect to e1 that correspond to lower bounds for e1 in (e1+e2 ≥ a∧e1−e2 ≥ b),
which are {e1 ≥ a − e2 ∧ e1 ≥ b + e2}. Assuming b + e2 is the maximal lower bound for
e1, SR0 returns b+ e2. In the procedure SR , we then apply the substitution {e1 �→ b+ e2} to
(e1+e2 ≥ a∧e1−e2 ≥ b), giving us (b+e2+e2 ≥ a∧b+e2−e2 ≥ b), which simplifies to
e2 ≥ a−b

2 . Calling SR0 again with input I1, this formula, and e2, we have that M� now is the
set {e2 ≥ a−b

2 }, and thus SR0 returns a−b
2 for e2. We apply the substitution {e2 �→ a−b

2 } to the
term b+ e2 we computed for e1, giving us b+ a−b

2 , which simplifies to a+b
2 . Overall, SLRA

returns the tuple of terms (a+b
2 , a−b

2). Applying the substitution {x �→ a+b
2 , y �→ a−b

2 } to
our input formula results in the formula (a+b

2 + a−b
2 < a∨ a+b

2 − a−b
2 < b), which simplifies

to ⊥. This run shows ∃ab ∀xy (x + y < a ∨ x − y < b) is LRA-unsatisfiable. ��
Example 3 To demonstrate how quantified formulas with Boolean structure are handled,
consider the formula ∀x ((a < x ∧ x < b) ∨ x < a + b) whose Skolemized negation is
(a ≥ e ∨ e ≥ b) ∧ e ≥ a + b. A possible run of PSLRA is as follows.

SR0(I, ψ, e)

Γ Γ ′ e M� Return t[k] Add to Γ

1 sat sat e {e ≥ a + b} a + b (a + b) 0 < b ∧ a < 0
2 sat sat e {e ≥ b, e ≥ a + b} b (b) 0 < a
3 unsat

On the first iteration, we have that Γ and Γ ′ = {(a ≥ e ∨ e ≥ b) ∧ e ≥ a + b} are
satisfiable with a model, call it I1. In the above run, we assume that I1 satisfies a ≥ e but
not e ≥ b, and hence e ≥ b is not included as a lower bound in M�. We return the instance
for {x �→ a + b}, which simplifies to 0 < b ∧ a < 0. On the second iteration, the model for
Γ ′, call it I2, must now satisfy 0 < b ∧ a < 0, and hence bI2 > (a + b)I2 > aI2 . Since
I2 satisfies e ≥ a + b, it cannot satisfy a ≥ e, and hence it must satisfy e ≥ b. Thus, on
this iteration, M� contains e ≥ b and e ≥ a + b. Moreover since bI2 > (a + b)I2 , we know

123

510 Form Methods Syst Des (2017) 51:500–532

that b must be the maximal lower bound for e, and hence we return an instance based on
{x �→ b}, which simplifies to 0 < a, after which we find that Γ is unsatisfiable. This run
shows ∃ab ∀x ((a < x ∧ x < b) ∨ x < a + b) is LRA-unsatisfiable. ��
Example 4 To demonstrate a case where a variable has no bounds, consider the formula
∀xy (x ≤ y), whose Skolemized negation is e1 > e2. A possible run of PSLRA on this input
is as follows.

SR0(I, ψ, e)

Γ Γ ′ e M� Return t[k] Add to Γ

1 sat sat e1 {e1 > e2} e2 + δ

e2 ∅ 0 (δ, 0) ⊥
2 unsat

On the first iteration, after choosing e2 + δ for e1, we apply the substitution {e1 �→ e2 + δ}
to Γ ′, giving us the set containing e2 + δ > e2, which simplifies to�. Thus when using SR0
to choose a term for e2, we have that M� contains neither an upper nor a lower bound for e2,
and hence we choose to return the value 0. The instance of our input formula corresponding
to the substitution {x �→ δ, y �→ 0} simplifies to ⊥. This run shows ∀xy (x ≤ y) is LRA-
unsatisfiable. ��
Example 5 To demonstrate a non-trivial case using the infinitesimal δ, consider the formula
∀xy (x ≤ 0 ∨ y − 2 · x ≤ 0) whose Skolemized negation is e1 > 0 ∧ e2 − 2 · e1 > 0. A
possible run of PSLRA on this input is as follows.

SR0(I, ψ, e)

Γ Γ ′ e M� Return t[k] Add to Γ

1 sat sat e1 {e1 > 0} δ

e2 {e2 > 2 · δ} 3 · δ (δ, 3 · δ) ⊥
2 unsat

The instance corresponding to the substition {x �→ δ, y �→ 3 ·δ} is (δ ≤ 0∨3 ·δ−2 ·δ ≤ 0),
which simplifies to (δ ≤ 0 ∨ δ ≤ 0), which after eliminating δ simplifies to ⊥. This run
shows ∀xy (x ≤ 0 ∨ y − 2 · x ≤ 0) is LRA-unsatisfiable. ��

The procedurePSLRA , which is an instance of the procedure in Fig. 1, can be understood as
lazily enumerating the disjuncts of the Loos–Weispfenning method for quantifier elimination
over linear real arithmetic [36], with minor differences which we discuss in the next section.
In this way, our approach is similar to the projection-based procedures described in [13,32].
These approaches compute implicants of quantified formulas, while our approach instead
computes a term which is in turn used for instantiation. For our purposes, computing a term
instead of an implicant has several advantages. In particular, it allows the instantiation-based
procedure to be used as a subprocedure for synthesis, which we describe in Sect. 7, and
enables a uniform combination of the approach with existing instantiation-based techniques
for first-order logic [18,24,51].

123

Form Methods Syst Des (2017) 51:500–532 511

3.1 Comparison to existing approaches

Recent approaches (including ours) for solving quantified linear arithmetic share similarities
with one another. In particular, given an existentially quantified formula ∃x.ϕ, based on some
strategy, they enumerate (possibly lazily) a finite set of ground formulas that are entailed by
this formula.We give a brief overview contrasting the technical details of existing approaches
in this section.

We have mentioned that the approach in Fig. 2 involves the use of a free distinguished
constant δ, representing an infinitesimal positive value. Other approaches also involve use of
a free distinguished constant ∞, representing an arbitrarily large positive value. Like δ, this
term can be eliminated from quantifier-free constraints, noting:

∞ < t � ⊥ and ∞ > t � � where ∞ /∈ FV (t).

The twomost widely known algorithms for quantifier elimination for linear real arithmetic
are the method based on virtual term substitution by Loos and Weispfenning [36], and the
method based on interior points by Ferrante and Rackoff [23]. In the context of our approach,
two alternatives for the return value of SR0 (Figs. 3 and 4) closely approximate the effect of
these methods.

Recent approaches are inspired by of one (or both) of these methods. The approaches
described in [13,32] are closely based on the Loos–Weispfenning method, and the approach
described in [19] is closely based on Ferrante–Rackoff method. The approach described
in [43] examines a certified version of both approaches. The approach in Fig. 2 is inspired
by the Loos–Weispfenning method, but does not use infinities.

Another possible return value is given in Fig. 5 that does not use any virtual terms. The
approach in Fig. 5 may be advantageous when considering quantified formulas having nested
quantification, where eliminating virtual terms from quantified constraints is not obvious.

4 Instantiation for LIA-formulas

We now turn our attention to the class of LIA-formulas ∃k ∀x ϕ[k, x], where x and k are
vectors of Int variables, and ϕ[k, x] is quantifier-free. We again assume all equalities are

Return one of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i + δ n > 0
uj − δ m > 0
∞ m = 0

n = 0

, where
max{ I

1
I
n} = I

i if n > 0
min{uI

1 , . . . , uI
m} = uI

j if m > 0.
.

−∞

Fig. 3 An alternative return value for SR0 that is analogous to Loos and Weispfenning’s method

Return

⎧⎪⎨
⎪⎩

uj+ i

2 n > 0 and m > 0
∞ m = 0

n = 0
, where

max{ I
1

I
n} = I

i if n > 0
min{uI

1 , . . . , uI
m} = uI

j if m > 0.
.

−∞

Fig. 4 An alternative return value for SR0 that is analogous to Ferrante and Rackoff’s method

123

512 Form Methods Syst Des (2017) 51:500–532

Return

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uj+ i

2 n > 0 and m > 0

i + 1 n > 0 and m = 0
uj − 1 n = 0 and m > 0
0 n = 0 and m = 0

, where
max{ I

1
I
n} = I

i if n > 0
min{uI

1 , . . . , uI
m} = uI

j if m > 0.
.

Fig. 5 An alternative return value for SR0

SLIA(I, Γ, ¬ϕ[k, e], e):

Return SI(I, ¬ϕ[k, e], e, 1, (), ()).

SI(I, ψ, (ei, . . . , en), θ, t,p):

If i > n, return t divp θ
Otherwise, let (c, ti, pi) = SI0(I, ψ, ei, θ), σ = {c · ei → ti}
Return SI(I, ψσ, (ei+1, . . . , en), θ · c, ((c · t)σ, θ · ti), (p, pi))

SI0(I, ψ, e, θ):

Let M = M ∪ Mu ∪ Mc be such that:
– I |= M and M |=p ψ,
– M ⇔ {c1 · e ≥ 1, . . . , cn · e ≥ n}, c1 > 0, . . . , cn > 0,
– Mu ⇔ {d1 · e ≤ u1, . . . , dm · e ≤ um}, d1 > 0, . . . , dm > 0, and
– e ∈ FV (1 n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ci i + ρ,+)
n > 0,max{(1

c1
)I , . . . , (n

cn
)I} = (i

ci
)I ,

ρ = (ci · e − i)I mod (θ · ci)

(dj , uj − ρ, −)
m > 0,min{(u1

d1
)I , . . . , (um

dm
)I} = (uj

dj
)I ,

ρ = (uj − dj · e)I mod (θ · dj)

(1, ρ,+) n = 0, m = 0, ρ = eI mod θ

Fig. 6 A selection function SLIA for linear integer arithmetic LIA

eliminated from ϕ by replacing them with a conjunction of inequalities. Additionally, we
assume the signature of integer arithmetic is extended with symbols div+ and div−, denoting
integer division rounding up and down respectively, and that the language of LIA includes
terms of the form t divp c, where p ∈ {+,−} and c is a non-zero integer constant. All occur-
rences of these symbols can be eliminated from any quantifier-free formula ϕ by repeated
applications of the transformation:

ϕ[t divp c] � ϕ[d] ∧ c · d ≈ t ±p m ∧ 0 ≤ m < c (1)

where d and m are distinct fresh variables, and ±p is + if p is + and analogously for −.
Figure 6 gives a selection function SLIA for LIA. The procedure invokes the recursive pro-

cedure SI , which takes as arguments I, ¬ϕ[k, e], variables e that we have yet to incorporate
into the substitutions, an integer θ , terms t found as substitutions for variables from e so far,
and a tuple of symbols p from {+,−} which we refer to as polarities. Due to the transfor-
mation (1), we may assume without loss of generality that ¬ϕ[k, e] contains no instance of
integer division. The role of θ will be to capture divisibility relationships through the proce-
dure, where θ is initially 1. The procedure invokes a call to SI0(I, ψ,ei , θ) which based on
the propositionally satisfying assignment for ψ returns a tuple of the form (c, ti , pi), where
c is a constant, ti is a term, and pi is a polarity. The procedure for constructing the term ti

123

Form Methods Syst Des (2017) 51:500–532 513

in the procedure SI0 is similar to the procedure SR0 in the previous section, where we find
the lower bound of the form ci · e ≥ �i such that the (rational) value (

�i
ci

)I is maximal, and
similarly for Mu . Additionally, SI0 adds a constant ρ to the maximal lower bound (resp.
subtracts a constant from the minimal lower bound). This constant ensures that the returned
term ti and e are congruent modulo θ · c in I, a fact which in part suffices to show the overall
function to be model-preserving. It then constructs a substitution with coefficients σ of the
form {c · ei �→ ti }, where c �= 0. A substitution of this form may be applied to integer terms
of the form c · (d ·ei + s) where ei /∈ FV (s) and (c · (d ·ei + s))σ is defined as d · ti + c · s.
Additionally, we define (s1 �� s2)σ as (c · s1)σ �� (c · s2)σ for ��∈ {<,>}, and thus we can
apply σ to arbitrary LIA-formulas. After constructing σ , the procedure SI invokes a recursive
call where σ is applied to ψ and (c · t), θ is multiplied by c, the term θ · ti is appended to t,
and pi is appended to p.

Overall, SLIA returns a vector of terms (t divp θ), that is, integer division applied pairwise
to the terms in t and the constant θ , where p determines whether this division rounds up or
down. When using this selection function in the context of Fig. 1, the instance ϕ[k, t divp θ] is
added to Γ . Note that our selection function chooses p such that integer division rounds up
for terms coming from lower bounds, and rounds down for terms coming from upper bounds.
This choice is not required for correctness, but can reduce the number of instances needed
for showing unsatisfiability.

Lemma 6 SLIA is finite for ϕ[k, e].
Proof First, we show only a finite number of tuples are returned by SI0(I, (¬ϕ[k, e])σ,e, θ)

for any I, σ,e and finite θ . Let A be the set of atoms occurring in ϕ[k,ei]σ . The literals
in satisfying assignments of (¬ϕ[k, e])σ are over these atoms. Let {a1 · e > t1, . . . , an ·
e > tn, b1 · e < s1, . . . , bm · e < sm} be the set of atoms that are in solved form with
respect to e and are equivalent to the atoms of A that contain e, where we have ei /∈
FV (t1, . . . , tn, s1, . . . , sm) and a1 > 0, . . . , an > 0, b1 > 0, . . . , bm > 0. The tuples
returned by the call to SI0(I, (¬ϕ[k, e])σ,e, θ) are in the set:

{(ai , ti − ρ,−) | 1 ≤ i ≤ n, 0 ≤ ρ < θ · ai } ∪
{(ai , ti + 1+ ρ,+) | 1 ≤ i ≤ n, 0 ≤ ρ < θ · ai } ∪
{(bi , si − 1− ρ,−) | 1 ≤ i ≤ m, 0 ≤ ρ < θ · bi } ∪

{(bi , si + ρ,+) | 1 ≤ i ≤ m, 0 ≤ ρ < θ · bi } ∪ {(1, ρ,+) | 0 ≤ ρ < θ}
Notice that since atoms can appear positively or negatively in M , we consider two possible
tuples for each literal in the above set. Since θ is finite, there are a finite number of tuples of
this form. Since there are only a finite number of recursive calls to SI within SLIA, and each
call modifies t based a finite number of possible tuples coming from the set above, the set of
possible return values of SLIA is finite, and thus it is finite for ϕ[k, e]. ��
Lemma 7 If I is a model for LIA and for quantifier-free ψ , θ ≥ 1, and SI0(I, ψ,e, θ) =
(c, t, p), then:

1. c1.] (c · e)I ≡θ ·c tI , and
2. I |� ψ{c · e �→ t}.
Proof We first show part 7. When n > 0 and SI0(I, ψ,e, θ) = (ci , �i + ρ,+), we have

(�i + ρ)I ≡θ ·ci
(
�i + (ci · e− �i)

I mod (θ · ci)
)I ≡θ ·ci (ci · e)I .

123

514 Form Methods Syst Des (2017) 51:500–532

When m > 0 and SI0(I, ψ,e, θ) = (d j , u j − ρ,−), we have

(
u j − ρ

)I ≡θ ·d j

(
u j −

(
u j − d j · e

)I mod
(
θ · d j

))I ≡θ ·d j

(
d j · e

)I
.

When n = 0, m = 0, and SI0(I, ψ,e, θ) = (1, ρ,+), we have

ρI ≡θ ·1
(
eI mod θ

)I ≡θ ·1 (1 · e)I

To show part 7, we first focus on the case where n > 0 and SI0(I, ψ,e, θ) = (ci , �i +
ρ,+). We have that ρ = (ci · e − �i)

I mod (θ · ci). Let M be a set of literals of the form
described in the body of SI0(I, ψ,e). We show that I satisfies each literal in Mσ , where
σ = {ci · e �→ �i + ρ}. First, consider an atom in M�σ that is equivalent to (c j · e ≥ � j)σ

for some j ∈ {1, . . . , n}. This is equivalent to (c j · ci · e ≥ ci · � j)σ , which is equivalent

to
c j ·ci
ci

· (�i + ρ) ≥ c j ·ci
c j

· � j , which is satisfied by I since (
�i
ci

)I ≥ (
� j
c j

)I by our selection
of (ci , �i + ρ) and since ρ ≥ 0. Second, consider the atom in Muσ that is equivalent to
(d j · e ≤ u j)σ for some j ∈ {1, . . . ,m}. Let ρ′ = (ci · e − �i)

I , which is greater than
0 since I satisfies (ci · e ≥ �i). Since (ci · e)I = (�i + ρ′)I , we have that I satisfies
(d j · e ≤ u j){ci · e �→ �i + ρ′}, which is equivalent to (d j · (�i + ρ′) ≤ ci · u j). Since
ρ = ρ′ mod (θ · ci) ≤ ρ′, we have that I also satisfies (d j · (�i + ρ) ≤ ci · u j), which
is (d j · e ≤ u j)σ . Finally, I satisfies Mcσ as Mcσ = Mc and I |� Mc. Thus, I satisfies
Mσ , which entails ψσ . The case when m > 0 and SI0(I, ψ,e, θ) = (d j , u j − ρ,−) is
symmetric. When n = 0, m = 0, and SI0(I, ψ,e) = (1, ρ,+), the assignment M does not
contain e, and thus I satisfies M{c · e �→ ρ} = M and ψ{c · e �→ ρ}. ��
Lemma 8 Each recursive call to SI (I, ψ, (ei , . . . ,en), θ, (t1, . . . , ti−1),p) within a call to
SLIA(I, Γ,¬ϕ[k, e], (e1, . . . ,en)) is such that:

1. θ | tIj for each 1 ≤ j < i , and
2. I |� ψ and ψ is equivalent to ¬ϕ[k, e]{θ · e1 �→ t1} · . . . · {θ · ei−1 �→ ti−1}.
Proof Both statements clearly hold for the initial call to SI in the body of SLIA. Now,
assume both statements hold for some call to SI (I, ψ, (ei , e′), θ, (t1, . . . , ti−1),p), and
assume (c, ti , pi) = SI0(I, ψ,ei , θ). We show that both statements hold for the call to
SI (I, ψσ, e′, θ · c, ((c · t1)σ, . . . , (c · ti−1)σ, θ · ti), (p, pi)), where σ = {c · ei �→ ti }.

To show part 1, we have from Lemma 7 part 1 that:

(c · ei)I ≡θ ·c tIi (2)

Consider a t j where 1 ≤ j < i , which by our assumption is such that θ | tIj , and thus

θ · c | (c · t j)I . By (2), we have that θ · c | ((c · t j)σ)I . Also by (2), we have that c | tIi , and
thus θ · c | (θ · ti)I .

To show part 2, by our assumption, I |� ψ and thus by Lemma 7 part 7 we have that
I |� ψσ . By our assumption,ψ is equivalent to¬ϕ[k, e]{θ ·e1 �→ t1}·. . .·{θ ·ei−1 �→ ti−1}.
Thus, ψσ is equivalent to ¬ϕ[k, e]{(θ · c) · e1 �→ (c · t1)σ } · . . . · {(θ · c) · ei−1 �→
(c · ti−1)σ } · {(θ · c) · ei �→ θ · ti }. Thus, the lemma holds. ��
Lemma 9 SLIA is model-preserving for ϕ[k, e].
Proof Assume SLIA(I, Γ,¬ϕ[k, e], e) = t, where e = (e1, . . . ,en) and t = (t1, . . . , tn).
By Lemma 8 and the definition of SLIA, there is a θ such that for each i = 1, . . . , n, term ti is
of the form si divp θ where θ | sIi , and I |� (¬ϕ[k, e]){θ ·e1 �→ s1}·. . .·{θ ·en �→ sn}. Thus,
I satisfies (¬ϕ[k, e]){e �→ t} = ¬ϕ[k, t], and thus SLIA is model-preserving for ϕ[k, e]. ��

123

Form Methods Syst Des (2017) 51:500–532 515

Theorem 3 PSLIA is a sound and complete procedure for determining the LIA-satisfiability
of ∃k ∀x ϕ[k, x].

Proof By Theorem 1, Lemma 2, Lemma 6 and Lemma 9. ��

Example 6 To demonstrate a case involving a substitution with coefficients, consider the
formula ∀xy (2 · x < a ∨ x + 3 · y < b) whose negation is 2 · e1 ≥ a ∧ e1 + 3 · e2 ≥ b. A
possible run of PSLIA on this input is as follows.

SI0(I, ψ, e, θ)

Γ Γ ′ e θ M� Return t[k] Add to Γ

1 sat sat e1 1 {2 · e1 ≥ a, . . .} (2, a,+)

e2 2 {6 · e2 ≥ 2 · b − a} (6, 2 · b − a,+) (6 ·a, 4 ·b−2 ·
a) div+ 12

ψ1

2 unsat

We assume ρ = 0 for all calls to SI0 in this run. Applying the substitution {2 · e1 �→ a} to
e1+3 ·e2 ≥ b results in the bound 6 ·e2 ≥ 2 ·b−a for e2. We add to Γ an instance, call itψ1,
which is equivalent to 2·((6·a) div+ 12) < a∨(6·a)div+ 12+3·((4·b−2·a)div+ 12) < b,
which after eliminating integer division is:

(2 · k1 < a ∨ k1 + 3 · k2 < b) ∧ 12 · k1 ≈ 6 · a + m1 ∧ 0 ≤ m1 < 12 ∧
12 · k2 ≈ (4 · b − 2 · a) + m2 ∧ 0 ≤ m2 < 12

which is equisatisfiable to:

(6 · a + m1 < 6 · a ∨ 12 · b + m1 + 3 · m2 < 12 · b) ∧ 0 ≤ m1 < 12 ∧
0 ≤ m2 < 12

which is LIA-unsatisfiable. Thus, ∃ab ∀xy (2 · x < a ∨ x + 3 · y < b) is LIA-unsatisfiable.
��

Example 7 To demonstrate a case involving a non-zero value of ρ, consider the formula
∀xy (3 · x + y �≈ a ∨ 0 > y ∨ y > 2) whose negation is 3 · e1 + e2 ≈ a ∧ 0 ≤ e2 ∧ e2 ≤ 2,
where ≈ denotes the conjunction of non-strict upper and lower bounds. A possible run of
PSLIA on this input is as follows.

SI0(I, ψ, e, θ)

Γ Γ ′ e θ M� Return t[k] Add to Γ

1 sat sat e1 1 {3 · e1 ≥ a − e2} (3, a − e2,+)

e2 3 {e2 ≥ 0} (1, 0,+) (a, 0) div+ 3 ψ1
2 sat sat e1 1 {3 · e1 ≥ a − e2} (3, a − e2,+)

e2 3 {e2 ≥ 0} (1, 1,+) (a − 1, 1) div+ 3 ψ2
3 sat sat e1 1 {3 · e1 ≥ a − e2} (3, a − e2,+)

e2 3 {e2 ≥ 0} (1, 2,+) (a − 2, 2) div+ 3 ψ3
4 unsat

123

516 Form Methods Syst Des (2017) 51:500–532

On the first iteration, we assume that Γ ′ is satisfied by a model, call it I1, that interprets
all variables as 0, and hence the values chosen for e1 and e2 correspond to their maximal
lower bounds in I1, a − e2 and 0 respectively, where in each call to SI0 we have ρ = 0. The
instance ψ1 added to Γ on this iteration is equivalent to 3 · (a div+ 3) �≈ a and implies that
aI �≡3 0 in subsequent models I. Thus, models I satisfying 3 · e1 + e2 ≈ a are such that
eI2 �≡3 0. On the next iteration, Γ ′ is satisfied by a model, call it I2, where the maximal lower
bound for e2 is 0. By the above reasoning and since I2 satisfies 3 · e1 + e2 ≈ a, it must be
that ρ = ((e2 − 0)I2 mod 3) �= 0. Assume (e2 − 0)I2 ≡3 1. The instance ψ2 is equivalent
to 3 · ((a − 1) div+ 3) + 1 �≈ a, which implies that aI �≡3 1 in subsequent models I, and
hence eI2 �≡3 1. The instance ψ3 is equivalent to 3 · ((a − 2) div+ 3) + 2 �≈ a and implies
that aI �≡3 2, which together with the two previous instances are T -unsatisfiable. This run
shows ∃a ∀xy (3 · x + y �≈ a ∨ 0 > y ∨ y > 2) is LIA-unsatisfiable. ��

The procedure PSLIA can be understood to lazily enumerating disjuncts of Cooper’s algo-
rithm for quantifier elimination over linear integer arithmetic [16], with minor differences.
The algorithm is essentially enumerating a single path of [16] by using the model to select a
satisfied case split for each variable over an entire block of quantifiers.1 Like that approach,
the worst-case performance is dependent upon the size of coefficients of monomials, which
is manifested in our case by the fact that the number of possible return values of SI0 is pro-
portional to the size of θ . While not shown here, our implementation takes steps to reduce
the size of θ by factoring out common divisors in θ and the coefficients returned by SI0.

4.1 Comparison to existing approaches

The approach taken in PSLIA is similar to the one taken in Section 2.5 in [13]. The most
substantial difference between the two algorithms is that PSLIA implements a variant of
Cooper’s algorithm while resolve in [13] uses the model to guide an execution of the Omega
test [47]. The most similar aspects of the approaches are the computation of a feasible ρ

and the computation of the d values in the grey shadow cases of resolve. These differ in
that a different d value is selected to ensure separation between each upper bound and the
greatest lower bound in a projection whereas ρ is selected using the current value of ci · e
(the selection of d is agnostic to e in our parlance) to ensure all bounds are satisfied by a
single instantiation.

5 Instantiation for LIRA-formulas

The methods in the previous two sections can be used in part for the class of LIRA-formulas
with one alternation where constraints are over both real and integer variables. For conve-
nience, we assume the signature of LIRA is extended with conversion functions to_int+ and
to_int− of sort Real → Int, denoting the result of rounding its (real) argument to an integer.
All occurrences of these symbols can be eliminated from quantifier-free constraints by the
transformation:

ϕ[to_intp(t)] � ϕ[i] ∧ 0 ≤ ±p(i − t) < 1 (3)

where i is a fresh constant of type Int, and ±p is + if p is + and analogously for −.

1 In the parlance of [16], PSLIA selects a feasible j value using the calculation of ρ and avoids introducing
the F±∞ cases by introducing the no bounds case (n = 0,m = 0) and always favoring bounds when one
exists.

123

Form Methods Syst Des (2017) 51:500–532 517

SLIRA(I, Γ, ¬ϕ[k, er, ei], e):

Let tr = SR(I, ¬ϕ[k, er, ei], er, ()).
Let (I , ϕ) = to lia(I, ¬ϕ[k, tr, ei]). Let ti = to lira(SI (I , ϕ , ei, 1, (), ())).
Return (tr{ei → ti}, ti).

Fig. 7 A selection function SLIRA for quantifier-free LIRA-formula ϕ[k, er, ei], where er are real variables
and ei are integer variables. In this procedure, to_lia(I, ψ) denotes the result of casting LIRA-formula ψ to
a LIA one, and I′ is an extension of I (see Example 8)

Figure 7 gives a selection function SLIRA for LIRA, where by the above transformation we
may assume without loss of generality that ¬ϕ[k, er, ei] contains no conversion functions.
Real variables er are processed before integer ones ei. The procedure invokes the selection
function SR for LRA which returns a set of terms tr. Afterwards, we apply a transformation,
denoted to_lia, to the formula ¬ϕ[k, tr, ei], which returns a pair (I ′, ϕ′) where I ′ is an
extension of I, and ϕ′ is a LIA formula. We construct ϕ′ by replacing each literal L of
the form (¬)(ci · xi + cr · xr �� c) in ¬ϕ[k, tr, ei] by the literal (¬)(ci · xi + i pcr·xr �� c)
where xi are of type Int, xr are of type Real, i pcr·xr is a fresh variable of type Int and p is
one of {+,−}. We define the interpretation of i pcr·xr in I ′ to be the result of rounding the
value (cr · xr)I to an integer up if p is + or down if p is −. If this variable occurs in a
literal L that entails a lower bound on i pcr·xr , then p is −, otherwise p is +. Notice that in
either case, the interpretation of L remains unchanged by the transformation to_lia. After
constructing to_lia(I, (¬ϕ[k, tr, ei])), the procedure calls the selection function SI on the
resulting interpretation and formula, which returns a tuple of terms, call it si. We then obtain
a tuple of terms ti by applying a second transformation, denoted to_lira, to si , which replaces
all LIA-variables of the form i pt in si with the LIRA-term to_intp(t). Overall, we return
the tuple (tr{ei → ti}, ti), where integer variables ei are replaced by ti within the terms tr
selected for the real variables. When using this selection in the context of the procedure in
Fig. 1, the instance ϕ[k, tr{ei → ti}, ti] is added to Γ .

Example 8 Consider the formula ∀x :Real y:Int (x − 2 · y < b ∨ y < a) where a and b
are free constants of type Real and Int respectively. The negated Skolemized form of this
formula is equivalent to e1 − 2 · e2 ≥ b ∧ e2 ≥ a, where e1 and e2 are fresh constants. A
possible run of PSLIRA on this input is as follows.

Γ Γ ′ e M� (SR , SI) return t[k] Add to Γ

1 sat sat e1 {e1 ≥ b + 2 · e2} (b + 2 · e2)
e2 {e2 ≥ i+a } (i+a) (b + 2 · to_int+(a), to_int+(a)) ⊥

2 unsat

On the first iteration, we run SR which returns the term b+2·e2 for x based on the bound e1 ≥
b+2·e2.We then call to_lia(I, ((b+2·e2)−2·e2 ≥ b∧e2 ≥ a)),which returns (I ′, ψ ′),where
ψ ′ is equivalent to e2 ≥ i+a , and I ′ interprets i+a as aI was rounded up to an integer value.We
subsequently call SI on this interpretation and formula, which results in the selection of term
i+a for e2. Thus, SI returns the tuple (i+a), where applying the transformation to_lira gives
us (to_int+(a)). Overall, SLIRA returns the tuple (b+ 2 · to_int+(a), to_int+(a)), which we
obtain by applying the substitution {y �→ to_int+(a)} to our value for e1 and appending our

123

518 Form Methods Syst Des (2017) 51:500–532

value to_int+(a) for e2. Applying the substitution {x �→ b+2 · to_int+(a), y �→ to_int+(a)}
to our input results in the formula (b+2 · to_int+(a)−2 · to_int+(a) < b∨ to_int+(a) < a),
which after simplification is (to_int+(a) < a). After eliminating conversion functions, this
formula is i < a ∧ 0 ≤ i − a < 1 where i is a fresh integer variable, which is LIRA-
unsatisfiable. This run shows that ∃a:Real b: Int ∀x :Real y: Int (x − 2 · y < b ∨ y < a) is
LIRA-unsatisfiable. ��

It is straightforward that the use of this selection function in Fig. 1 gives a sound proce-
dure for quantified LIRA due to Corollaries 1 and 2, and the transformation (3) preserves
equivalence (up to variables k). We do not provide a formal proof of completeness for this
approach, although we note that quantifier elimination is possible for this fragment [65].

6 Boolean structure and nested quantification

This section presents a novel technique for establishing the T -satisfiability of formulas with
Boolean structure and nested quantification. The technique generalizes the instantiation-
based procedure as described in Sect. 2, and can be integrated within the solving architecture
used by SMT solvers.

In the following, we show an approach for determining the T -satisfiability of closed T -
formula (¬)ϕ. Without loss of generality, we assume ϕ is a formula from the following
grammar:

ϕ := ¬∀x ϕ | G | ϕ1 ∨ · · · ∨ ϕm (4)

whereG is quantifier-free. In other words, all quantification in our input occurs as a (negated)
child of a disjunction. Notice this grammar is effectively a generalization of prenex normal
form, since all formulas in prenex normal form are equivalent to a formula in a subset of the
above grammar which restricts m = 1.2

At its core, our approach for establishing the satisfiability of ϕ is the following. Let
∀yψ[k, y] be a sub-formula of our input, where this formula may occur beneath any num-
ber of negations and ψ is quantifier-free. Using the procedure in Fig. 1, construct a set
of instances {ψ[k, t1[k]], . . . , ψ[k, tn[k]]} that is either unsatisfiable, or that collectively
entail ∀yψ[k, y]. Note that the free variables k of this sub-formula are considered to be
existentially quantified implicitly here. If this set is unsatisfiable, replace ∀yψ[k, y] in
the input by ⊥. Otherwise, replace ∀yψ[k, y] in the input by the (quantifier-free) formula
ψ[k, t1[k]]∧· · ·∧ψ[k, tn[k]]. Repeat this process until our input is replaced by a quantifier-
free formula. In this section, we describe an approach that is based on the above reasoning,
but is amenable to the standard solving architecture used by SMT solvers. In particular, the
approach will be based on incrementally constructing a set of quantifier-free formulas Γ that
approximate the input ϕ, where this set is periodically checked for T -satisfiability.

We begin with the following preliminaries. For each closed quantified T -formula, we
associate a Boolean variable A called the positive guard of ∀x ϕ, and unique set of Skolem
variables e of the same sort as x.Wewrite (A, e) � ∀x ϕ to denote that A and e are associated
with ∀x ϕ. We write �ϕ� for the result of replacing in ϕ all closed quantified formulas (not
occurring beneath other quantifiers in ϕ) with their corresponding positive guards. We write
A(ϕ) to denote the set of positive guards in ϕ. Our approach maintains an evolving set of
formulas Γ . We add formulas of the form A ⇒ φ to Γ , where φ is a quantifier-free formula
that is entailed by ∀x ϕ and (A, e) � ∀x ϕ. We call such formulas guarded instances. We

2 For example, notice that ¬∀x1 ∃x2 ∀x3 ∃x4ϕ is equivalent to ¬∀x1 ¬∀x2 ¬∀x3 ¬∀x4 ¬ϕ.

123

Form Methods Syst Des (2017) 51:500–532 519

write �ψ�Γ to denote the result of replacing in �ψ� each positive guard A by the conjunction
of formulas on the right hand sides of instances from Γ that are guarded by A. Conceptually,
the formula �ψ�Γ will correspond to the current quantifier-free approximation of ψ in Γ in
our approach.

Example 9 Let ϕ be ¬∀x P(x) ∨ ¬∀y R(y) ∨ ¬∀z Q(z) ∨ G where G is quantifier-free,
let A1 � (∀x P(x), e1), A2 � (∀y R(y), e2) and A3 � (∀z Q(z), e3), and let Γ be
{A1 ⇒ P(a), A2 ⇒ R(b), A2 ⇒ R(c)}. Then, �ϕ� is ¬A1 ∨ ¬A2 ∨ ¬A3 ∨ G, A(�ϕ�) =
{A1, A2, A3}, and �ϕ�Γ is ¬P(a) ∨ ¬(R(b) ∧ R(c)) ∨ ¬� ∨ G. ��

To determine the T -satisfiability of a closed T -formula ∀x ϕ[x], we use the procedure
solveT in Fig. 8. This procedure incrementally refines an approximation of ∀x ϕ[x], given
by set Γ , until it is found to be (un)satisfiable in T . The procedure first invokes the recursive
subprocedure CEGQIT , which takes as input a set Γ initially containing the positive guard
A0 of ∀x ϕ[x], and A0 itself. This subprocedure adds formulas to Γ in Step 3 until either Γ is
T -unsatisfiable (Step 1), in which case the input is unsatisfiable, or otherwise the procedure
saturates (Step 2), in which case the input is satisfiable.

Formulas are added to Γ based on the recursive procedure recT . Recall that our input
formula ∀x ϕ[x] is a formula having a tree-like structure built from grammar (4). At a high
level, the procedure recT returns a guarded instance of some quantified sub-formula in this
tree whose satisfiability is yet to be determined, if one exists. In detail, this function takes
as arguments Γ and the positive guard A of a quantified formula ∀y.ψ[k, y], called initially
with A = A0. It first constructs the formula φ[k, e] = �ψ[k, e]�Γ , which represents an
approximation of the formula ψ[k, e] under the assumption of the current instances in Γ .
If the current set of instances �A�Γ that are guarded by A and the negation of this formula
are unsatisfiable, then it is the case that ∀yψ[k, y] is equivalent to �A�Γ and the procedure
returns the empty set. Otherwise, we consider the direct children of ψ , i.e. those whose
positive guard A′ occurs in A(�ψ[k, e]�). If the recursive call to recT returns a guarded
instance for some child A′, then the procedure returns that instance. Otherwise, it returns a
guarded instance A ⇒ φ[k, t[k]], where I is a model of theory T , �A�Γ and ¬φ[k, e], and
terms t[k] are chosen by the selection function ST for theory T .

solveT (∀xϕ[x]):

Return CEGQIT (xϕ[x] , xϕ[x])

CEGQIT (Γ, A0):

1. If Γ is T -unsatisfiable, then return “unsat”.
2. If recT (Γ, A0) = ∅, then return “sat”.
3. Otherwise, return CEGQIT (Γ ∪ recT (Γ, A0), A0).

recT (Γ, A), where (A, e) ∀y.ψ[k,y]:

Let φ[k, e] = ψ[k, e] Γ .
If A Γ ∧ ¬φ[k, e] is T -unsatisfiable, then return ∅.
If there exists an A ∈ A(ψ[k, e]) such that recT (Γ, A) = ∅, then return recT (Γ, A).
Otherwise,

Let I be a model of T and A Γ ∧ ¬φ[k, e], and let t[k] = ST (I, Γ, ¬φ[k, e], e).
Return {A ⇒ φ[k, t[k]]}.

Fig. 8 Abstract procedure solve for establishing the T -satisfiability of ∀x ϕ[x], which calls a counterexample-
guided approach for quantifier instantiation CEGQIT . Instances are added to Γ based on a selection function
ST for theory T . This procedure generalizes the one in Fig. 1

123

520 Form Methods Syst Des (2017) 51:500–532

The correctness of this procedure relies on the following facts, where recall from Sect. 1.1
two formulas are equivalent up to k if the are satisfied by the same set of models when
restricted to the interpretation of variables from k.

Lemma 10 Let (A, e) � ∀yψ[k, y].
1. If recT (Γ, A) returns {A ⇒ φ[k, t]}, then φ[k, t] is equivalent to ψ[k, t] up to k.
2. If �A�Γ ∧ �¬ψ[k, e]�Γ is T -unsat, then ∀yψ[k, y] is equivalent to �A�Γ up to k.

Proof We prove both facts simultaneously by induction on the structure of ψ .
(Base case) When ψ[k, y] is quantifier-free, then �ψ[k, e]�Γ = ψ[k, e] and recT (Γ, A)

returns only sets of the form {A ⇒ ψ[k, t[k]]}. Thus, part 1 holds, and moreover we have
that ∀yψ[k, y] |�T �A�Γ . To show part 2, assume �A�Γ ∧ �¬ψ[k, e]�Γ is T -unsatisfiable,
or in other words �A�Γ |�T ψ[k, e]. Since e does not occur in �A�Γ , we have that �A�Γ |�T

∀yψ[k, y], and thus ∀yψ[k, y] is equivalent to �A�Γ up to k.
(Inductive case) When ψ[k, y] is ¬∀x1 ψ1[k1, x1] ∨ · · · ∨ ¬∀xm ψm[km, xm], for i =

1, . . . ,m, let (Ai , ei) � ∀xi ψi [ki , xi] if xi is non-empty. To showpart 1, assume recT (Γ, A)

returns {A ⇒ φ[k, t]}, where φ[k, t] is �ψ[k, t]�Γ . For each i = 1, . . . ,m where xi is
non-empty, by definition of recT it must be that recT (Γ, Ai) returns ∅, and thus �Ai�Γ ∧
�¬ψi [ki , ei]�Γ is T -unsatisfiable. Thus, by part 2 of the induction hypothesis, we have that
�Ai�Γ is equivalent to ∀xi ψi [ki , xi] up to ki where ki is a subset of k. Thus, �ψ[k, t]�Γ

is equivalent to ψ[k, t] up to k, and thus part 1 holds. To show part 2, we have by part
1 that ∀yψ[k, y] |�T �A�Γ . When �A�Γ ∧ �¬ψ[k, e]�Γ is T -unsatisfiable, ∀yψ[k, y] is
equivalent to �A�Γ up to k for the same reasons as in the base case. ��
Theorem 4 Assume the satisfiability of quantifier-free T -formulas is decidable, and a selec-
tion function ST exists that is finite and monotonic.

1. If solveT (∀x ϕ[x]) returns “unsat”, then ∀x ϕ[x] is T -unsatisfiable.
2. If solveT (∀x ϕ[x]) returns “sat”, then ∀x ϕ[x] is T -satisfiable.
3. solveT (∀x ϕ[x]) terminates.

Proof To show1, let �Γ denote the result of replacing the positive guards inΓ with the quan-
tified formula they respond to. By definition of solveT , we have that �Γ contains ∀x ϕ[x],
and additionally contains tautologies of the form∀xψ[k, y] ⇒ φ[k, t]where byLemma10.1
φ[k, t] is equivalent to ψ[k, t] up to k. Thus, �Γ is equivalent to ∀x ϕ[x]. Furthermore, we
have that �Γ |�T Γ , and Γ is T -unsatisfiable. Thus, ∀x ϕ[x] is T -unsatisfiable.

To show2, by definition of solveT , we have thatΓ is T -satisfiable, and �A0�Γ ∧¬�ϕ[e]�Γ

is T -unsatisfiable, where (A0, e) � ∀x ϕ[x]. By Lemma 10.2, we have that ∀x ϕ[x] is
equivalent to �A0�Γ . Since A0 ∈ Γ , we have that Γ |�T �A0�Γ , and thus ∀x ϕ[x] is satisfied
by a model of Γ .

To show 3, all individual steps in the procedure are terminating since the T -satisfiability of
quantifier-free T -formulas is decidable. Furthermore, we show that the number of instances
added to Γ is finite. Let ∀yψ[k, y] be a formula where (A, e) � ∀yψ[k, y] and for which
recT (Γ, A) is called. Assume that at least one instance of the form {A ⇒ φ[k, t1[k]]} is
added for some quantifier-free T -formula φ[k, e] = �ψ[k, e]�Γ . Since formulas are never
removed from Γ , it must be the case that �ψ[k, e]�Γ = �ψ[k, e]�Γ ∪Γ ′ for all formulas
Γ ′ added in subsequent recursive calls to CEGQIT . Thus, all instances returned by recT
guarded by A are of the form {A ⇒ φ[k, ti [k]]} for the same φ. Since ST is monotonic
for ∃k ∀y φ[k, y], we are guaranteed to add a new instance to Γ on each recursive call to
CEGQIT . Thus, since ST is finite for ∃k ∀y φ[k, y], only finitely many instances of this form

123

Form Methods Syst Des (2017) 51:500–532 521

are returned. Since there are only finitely many ∀yψ[k, y] for which recT is called on, we
have that only finitely many instances are added to Γ , finitely many recursive calls are made
to CEGQIT , and thus solveT (∀x ϕ[x]) terminates. ��

By the previous theorem, assuming satisfiability of quantifier-free T -formulas is decidable
and a finite and monotonic selection function exists for T , solveT is a decision procedure
for T -formulas containing arbitrary nested quantification.

Example 10 Consider the LIA-formula ∀x ϕ[x]where ϕ[x] is¬(∀y x > y∨0 > y)∨x < 0.
Let (A1, e1) � ∀x ϕ[x] and let (A2, e2) � ∀y e1 > y ∨ 0 > y. We call CEGQI where Γ

is initially {A1}. A possible run of this procedure is summarized in the table below.

recT
Γ ? A �¬ψ[e]� �¬ψ[e]�Γ �A�Γ ∧ �¬ψ[e]�Γ ? t[k] return return

1 sat A1 A2 ∧ e1 ≥ 0 � ∧ e1 ≥ 0 sat recT (Γ, A2)
A2 e1 ≤ e2 ∧ 0 ≤ e2 e1 ≤ e2 ∧ 0 ≤ e2 sat (e1) {A2 ⇒ 0 > e1}

2 sat A1 A2 ∧ e1 ≥ 0 0 > e1 ∧ e1 ≥ 0 unsat ∅ “sat”

On the first call to the procedure CEGQI, Γ is T -satisfiable. We call recT on Γ and A1,
which first checks the satisfiability of �A1�Γ ∧ �(∀y e1 > y ∨ 0 > y) ∧ e1 ≥ 0�Γ , which is
�∧ (�∧ e1 ≥ 0), which is satisfiable. It then checks if there exists an A′ among the positive
guards in �(∀y e1 > y ∨ 0 > y)∧ e1 ≥ 0� for which an instance can be returned. On the call
to recT where A′ = A2, we find that e1 ≤ e2∧0 ≤ e2 is satisfiable, and there are no positive
guards in �e1 > e2 ∨ 0 > e2�, that is, ∀y e1 > y ∨ 0 > y contains no nested quantifiers. We
use the selection function for linear integer arithmetic SLIA as given in Sect. 4, which given
input e1 ≤ e2 ∧ 0 ≤ e2 returns the tuple t[e1] = (e1), thus giving the instance A2 ⇒ 0 > e1
which we add to Γ . On the second call toCEGQIT , we have that Γ = {A1, A2 ⇒ 0 > e1} is
satisfiable, and we again call recT on Γ and A1, where now 0 > e1∧ e1 ≥ 0 is unsatisfiable.
This establishes that ∀x ¬(∀y x > y ∨ 0 > y) ∨ x < 0 is LIA-satisfiable. ��
Example 11 We remark that treating formulas that are not in prenex normal form allows
us to avoid unnecessary computation. Consider the LIA-formula ∀x ϕ[x], where ϕ[x] is
(¬(∀y x > y) ∨ ¬∀z ψ[x]), and ψ[x] is some LIA-formula. Let (A1, e1) � ∀x ϕ[x], let
(A2, e2) � ∀y e1 > y, and let (A3, e3) � ∀z ψ[e1]. A possible run of this procedure is
summarized in the table below.

recT
Γ ? A �¬ψ[e]� �¬ψ[e]�Γ �A�Γ ∧ �¬ψ[e]�Γ ? t[k] return return

1 sat A1 A2 ∧ A3 � ∧ � sat recT (Γ, A2)
A2 e1 ≤ e2 e1 ≤ e2 sat (e1) {A2 ⇒ e1 > e1}

2 sat A1 A2 ∧ A3 e1 > e1 ∧ � unsat ∅ “sat”

The first call to procedure CEGQIT , adds the formula A2 ⇒ e1 > e1 to Γ . In the second
call to CEGQIT , within the call to recT for A = A1, we find that �A1�Γ ∧ �(∀y e1 >

y) ∧ ∀z ψ[e1]�Γ , which is � ∧ (e1 > e1 ∧ �), is unsatisfiable. Thus, we conclude that
∀x (¬(∀y x > y) ∨ ¬∀z ψ[x]) is LIA-satisfiable. This was determined regardless of the
content of ψ . ��

123

522 Form Methods Syst Des (2017) 51:500–532

Example 12 Consider the LIA-formula ∀xy ϕ[x, y], where ϕ[x, y] is (¬(∀z z < x ∨ y <

z) ∨ x < y + 5). Let (A1, (e1, e2)) � ∀xy ϕ[x, y] and let (A3, e3) � ∀z z < e1 ∨ e2 < z.
We call CEGQI where Γ is initially {A1}. A possible run of this procedure is summarized
in the table below.

recT
Γ ? A �¬ψ[e]� �¬ψ[e]�Γ �A�Γ ∧ �¬ψ[e]�Γ ? t[k] Return Return

1 sat A1 A3 ∧ e1 ≥ e2 + 5 � ∧ e1 ≥ e2 + 5 sat recT (Γ, A3)
A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 sat (e2) {A3 ⇒ e1 > e2}

2 sat A1 A3 ∧ e1 ≥ e2 + 5 e1 > e2 ∧ e1 ≥ e2 + 5 sat . . .

A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 unsat ∅
A1 (5, 0) {A1 ⇒ ⊥}

2 unsat “unsat”

On the first call to CEGQI, we find that Γ is satisfiable, and the call to recT returns the
guarded instance A3 ⇒ e1 > e2, which we add to Γ . On the second call to CEGQI, we find
thatΓ is again satisfiable. The call to recT for A = A1 first finds thatΓ ∪{A3∧e1 ≥ e2+5} is
also satisfiable, and invokes itself recursively on A3. The call to recT for A = A3 determines
that �A�Γ ∧ �¬ψ[e]�Γ , which is e1 > e2 ∧ (e3 ≥ e1 ∧ e2 ≥ e3), is unsatisfiable and thus
returns the empty set. By Lemma 10.2, this indicates that ∀z z < e1 ∨ e2 < z is equivalent
to e1 > e2, that is, the conjunction of instances in Γ that are guarded by A3. Returning to
recT for A = A1, we add an instance for ∀xy ϕ[x, y] where A3 is replaced by e1 > e2 in
the construction of �¬ϕ[e1, e2]�Γ , which gives us e1 > e2 ∧ e1 ≥ e2 + 5. Applying the
selection function SLIA as given in Sect. 4 to this formula returns the tuple (5, 0) for (e1, e2),
thus giving the instance A1 ⇒ ¬(5 > 0 ∧ 5 ≥ 0 + 5), which is equivalent to A1 ⇒ ⊥. We
add this instance to Γ , after which we find that it is unsatisfiable, and thus ∀xy ϕ[x, y] is
LIA-unsatisfiable. ��
6.1 Implementation details

In practice, the approach in Fig. 8 can be accomplished by a single instance of an SMT solver.
Although not shown here, we additionally associate a second Boolean variable B with each
quantified formula, called its negative guard. For each quantified formula ∀x ϕ with negative
guard B, we add the formula B ⇒ ¬ϕ[e] to Γ . The function recT then can be simulated
using a decision heuristic in the underlying SAT solver that decides positively on the negative
guards of innermost quantified formulas first, and adds instances of quantified formulas only
if their negative guards are not propagated to false at decision level 0. A formal description
of this technique is the subject of future work.

An alternative strategy to Fig. 8 is to add instances of (top-most) quantified formulas
that may have nested quantification. That is, for a quantified formula ∀x ϕ[x], we may add
instances of the form A ⇒ ϕ[t], where ϕ contains quantified formulas. In such a strategy,
virtual terms in t (δ or∞) that are substituted beneath quantifiers inϕmust be treated specially.
Adding instances of this form may potentially allow us to discover unsatisfiable instances
quicker, but also may introduce many quantified formulas that in turn degrade performance.
In the latest version of our implementation, we do not use this strategy. However, an earlier
version of our implementation (cvc4 from SMT COMP 2016) makes use of this strategy.

123

Form Methods Syst Des (2017) 51:500–532 523

6.2 Comparison to existing approaches

We refer to the treatment of quantified formulas in Fig. 8 as counterexample-guided quantifier
instantiation [50]. The algorithm is similar to existing instantiation-based approaches used
by SMT solvers for quantified formulas [17,25] in that it adds guarded instances of quantified
formulas incrementally. Its instance selection is guided by models for the negation of quanti-
fied formulas, similar tomodel-based quantifier instantiation [26]. This approach differs in its
scope, in that it primarily targets quantified formulas having uninterpreted functions, whereas
the approach described in Fig. 8 targets quantified formulas having no uninterpreted func-
tions. The approach of [26] also differs in that it uses a separate copy of the SMT solver as an
oracle for checking the satisfiability of the negation of each quantified formula it instantiates,
whereas our approach uses a single instance of the SMT solver for doing these tasks simulta-
neously in its main solving loop. Other approaches that are specialized for quantified linear
arithmetic invoke separate instances of an SMT solver for each quantifier alternation [13,19],
and are often restricted to inputs where quantified formulas are in prenex normal form. In
contrast, the approach in this section requires only one instance of the SMT solver and may
be applied to inputs with Boolean structure in the grammar (4) described at the beginning of
this section.

7 Instantiation as a synthesis procedure

The connection between quantifier elimination and synthesis has been shown fruitful in pre-
vious work [34]; it is one of our motivations for further improving quantified reasoning
modulo theories. The instantiation procedure mentioned in this paper can be used to synthe-
size functions from certain classes of specifications. Consider (second-order) T -formulas of
the form:

∃f ∀x ϕ[f, x] (5)

where ϕ is a quantifier-free formula, x = (x1, . . . , xn) is a tuple of variables of sort τi for
i = 1, . . . , n, and f = (f1, . . . , fm) is a tuple of functions of sort τ1 × · · · × τn → τ j for
j = 1, . . . ,m. We call such formulas synthesis conjectures. A synthesis conjecture is single
invocation (over L) if it is equivalent to:

∃f ∀xψ[x, f(x)] (6)

where ψ[x, y] ∈ L. That is, functions f are applied to the tuple x only. The formula (6) is
equivalent to the (first-order) formula ∀x ∃y ψ[x, y], whose negation

∃x ∀y ¬ψ[x, y] (7)

is suitable as an input to Fig. 1. As observed in [50], solutions for single invocation synthesis
conjectures can be extracted from an unsatisfiable core of instantiations when proving the
unsatisfiability of (7). In particular, let k be a set of distinct fresh variables of the same
sort as x, and say the set {¬ψ[k, t1[k]], . . . ,¬ψ[k, tn[k]]} is T -unsatisfiable where ti =
(t1i [k], . . . , tmi [k]) for i = 1, . . . , n. Then:

1 ≤ j ≤ m: f j = λx. ite(ψ[x, t jn [x]], t jn [x], (· · · ite(ψ[x, t j2 [x]], t j2 [x], t j1 [x]))) (8)

is a solution for f in (6). The instantiation-based procedure in Fig. 1 can be used to discharge
(7). It is important to note that the solution (8) does not necessarily belong to the language L,

123

524 Form Methods Syst Des (2017) 51:500–532

since there is no restriction on the selection functions for L that restricts its return value t to
terms in L. For example, in some of our approaches to linear real arithmetic, t may contain
a free distinguished constants δ or∞ which are outside of the typical language of linear real
arithmetic. Different selection functions or post-processing may be required based on the
restrictions for the solutions to synthesis conjectures.

In this paper, we have devised selection functions S for linear real and integer arithmetic
that are finite and monotonic in Sects. 3 and 4. This implies a sound and complete method
for synthesizing tuples of functions whose specification is a single invocation synthesis
conjecture over linear real and integer arithmetic.

Example 13 Consider the second-order LIA-formula ∃ f ∀xy (f (x, y) ≥ x ∧ f (x, y) ≥ y),
which states that there exists a function f that is the maximum of its arguments x and y. This
formula is equisatisfiable to the first-order LIA-formula∀xy ∃z (z ≥ x∧z ≥ y).We apply the
instantiation-based procedure in Fig. 1 on the negation of this input, ∃xy ∀z¬(z ≥ x∧z ≥ y).
The procedure may find the T -unsatisfiable set of instances based on {¬(x ≥ x ∧ x ≥
y),¬(y ≥ x ∧ y ≥ y)}. Thus, a solution for f is λx1x2. ite((x1 ≥ x1 ∧ x1 ≥ x2), x1, x2),
which after simplification is λx1x2. ite(x1 ≥ x2, x1, x2). ��

8 Experimental evaluation

We have implemented the procedure in the SMT solver cvc4 [6] (version 1.5 pre-release).
This section presents an evaluation of this implementation compared against other SMT
solvers, first-order theorem provers and synthesis solvers.

We considered all quantified benchmarks over 6 classes in the LRA and LIA logics
of the SMT library [7]. The class keymaera are verification conditions coming from the
Keymaera verification tool [45], schollwere used for simplification of non-convex polyhedra
in [54], psyco were used for weakest precondition synthesis for compiler optimizations
in [37],uauto correspond to verification conditions in [28], and the tptp classes correspond to
simple arithmetic conjectures coming from the TPTP library [58]. We also considered a class
of benchmarks sygus corresponding to first-order formulations of the 71 single-invocation
synthesis conjectures taken from the conditional linear integer track of the 2015 edition of the
syntax-guided synthesis competition [1]. All benchmarks are in the SMT version 2 format.
For comparisons with automated theorem provers, they were converted to the TPTP format
by the SMTtoTPTP conversion tool [8]. We remark that all benchmarks consist purely of
quantified formulas over linear arithmetic with very little, and in a majority of cases, no
quantifier-free content. Of the 7 benchmark classes, only one (the scholl class from LRA)
had quantified formulas with nested quantification.3

The results for the linear real and integer benchmarks are in Tables 1 and 2 respectively.
We considered all SMT solvers and theorem provers from the LRA and LIA divisions of
SMT COMP 2016, and the TFA division of CASC J8 [59], the latest competitions in the
SMT and automated theorem proving communities.4 We write cvc4-sc16 and z3-sc16 to
denote solvers from SMT COMP 2016, where cvc4 implements an earlier version of the
techniques from this paper and z3 (version 4.4.1) implements the techniques from [12]. We
additionally considered Yices version 2.4.1 for LRA, and z3 version 4.4.2 which implements

3 Details can be found at http://cs.uiowa.edu/~ajreynol/FMSD-InstLA.
4 The solver cvc4-sc16 won the LRA and LIA divisions of SMT COMP 2016. The TFA division of CASC
J8 includes problems that combine arithmetic and uninterpreted functions, where the techniques in this paper
are only partially applicable. Vampire won this division, and cvc4 came in 3rd.

123

http://cs.uiowa.edu/~ajreynol/FMSD-InstLA

Form Methods Syst Des (2017) 51:500–532 525

Table 1 Results for LRA benchmarks, showing times (in seconds) and benchmarks solved by each solver
and configuration over 3 benchmark classes with a 300s timeout

keymaera (222) scholl (374) tptp (25) Total (621)

Time # Time # Time # Time

cvc4+lw 222 4.1 369 700.0 25 0.4 616 704.4

cvc4 222 4.8 369 818.3 25 0.4 616 823.5

z3 222 8.1 368 875.4 25 0.9 615 884.5

cvc4+fr 222 4.1 365 672.7 25 0.7 612 677.5

cvc4+nvt 222 4.0 365 684.4 25 0.4 612 688.8

cvc4-sc16 222 5.4 349 1213.4 25 0.6 596 1219.3

z3-sc16 222 8.0 330 1345.9 25 0.8 577 1354.8

Vampire 222 29.9 100 305.9 25 1.4 347 337.2

VeriT 222 4.0 46 504.3 12 0.3 280 508.6

Yices 222 3.9 – 0.0 25 0.4 247 4.2

Princess 202 1068.7 0 0.0 25 59.2 227 1127.9

Yices (version 2.4.1) does not support nested quantification, hence it was not applicable for the scholl class

Table 2 Results for LIA benchmarks, showing times (in seconds) and benchmarks solved by each solver and
configuration over 4 benchmark classes with a 300s timeout

psyco (189) sygus (71) tptp (46) uauto (155) Total (461)

Time # Time # Time # Time # Time

z3 189 10.7 71 7.0 46 2.1 155 6.1 461 25.9

cvc4 189 65.7 71 8.7 46 0.9 155 3.1 461 78.3

cvc4-sc16 189 26.6 67 268.9 46 1.4 155 3.7 457 300.7

z3-sc16 176 6.7 70 11.5 46 1.9 155 5.4 447 25.5

Vampire 26 145.7 59 522.0 44 3.2 155 54.4 284 725.4

Beagle 28 1330.4 55 378.9 46 54.1 153 389.2 282 2152.5

Princess 12 550.0 68 868.6 46 48.1 155 193.9 281 1660.6

VeriT 1 0.1 67 82.3 15 0.4 155 3.0 238 85.6

ProB 0 0.0 1 1.0 35 35.2 0 0.0 36 36.2

the techniques from [13], which we denote yices and z3 respectively. For LRA, we consider
4 configurations of CVC4 each using different variants of the selection function in Fig. 2:

– cvc4 uses the return value in Fig. 2,
– cvc4+lw uses the return value in Fig. 3 (Loos and Weispfenning),
– cvc4+fr uses the return value in Fig. 4 (Ferrante and Rackoff), and
– cvc4+nvt uses the return value in Fig. 5 (with no virtual terms).

By convention, all versions of cvc4 return instantiations for maximal lower bounds before
minmial upper bounds, and do not use variable ordering heuristics for quantified formulas
with multiple variables.

For both LRA and LIA, the best configuration of cvc4 solves the most benchmarks
overall (616 and 461 respectively). Among the configurations of cvc4, the configuration
using a selection function based on Loos and Weispfenning’s method cvc4+lw performed

123

526 Form Methods Syst Des (2017) 51:500–532

the best. The performance of the latest version of z3 has comparable performance, solving
one fewer benchmark in LRA. The configuration cvc4+lw solves 5 benchmarks that z3 does
not. z3 solves 4 benchmarks that cvc4+lw does not, and the virtual best of these solvers
solves all but one benchmark within the timeout. Moreover, we note that cvc4+lw solves
the aforementioned 5 benchmarks in an average of .4 s per benchmark. We believe that this
is because cvc4’s strategy is not restricted to quantified formulas that are in prenex normal
form, and thus it may terminate quickly by realizing large nested disjunctions are not relevant
to the overall formula. We will comment more on this in the next section. cvc4 solves more
benchmarks (616) from the scholl class than anyother solver due to its techniques for formulas
with nested quantification from Sect 6. A technique [19] in the SMT solver Yices (version
2.4.1) is able to solve all benchmarks from the keymaera and tptp classes of LRA, but does
not handle quantified formulas in LIA or with nested quantification.

For both benchmarks over LIA and LRA, the automated theorem provers trail the perfor-
mance of cvc4 (and z3) significantly. The best LRA automated theorem prover, Vampire,
which uses a combination of a first-order theorem prover and an SMT solver [49], solves
only 347 benchmarks, compared to 616 solved by cvc4-fr. The best LIA automated theorem
prover was also Vampire, which solves 284 benchmarks, notably less than the 461 solved by
cvc4. We conclude that recent lazy model-based techniques for quantified linear arithmetic,
as implemented in cvc4 and z3, are highly effective for solving quantified linear arithmetic.

8.1 Comparison of strategies for quantifier alternation on crafted benchmarks

In this subsection, we demonstrate the effectiveness of our approach for handling nested
quantification based on the strategy in Sect. 6. As mentioned, our strategy may be applied
to quantified formulas in a grammar that is not restricted to prenex normal form, and may
often avoid reasoning about irrelevant portions of quantified formulas, as demonstrated in
Example 11. This gives us an advantage with respect to existing approaches, including the
strategy used in z3 [13], which is limited to quantified formulas in prenex normal form.

To demonstrate this advantage, we constructed a set of benchmarks that are very easy
if Boolean structure within quantifier scope is properly taken into account, and very hard
otherwise. In detail, we randomly constructed 500 unique formula templates of the form
ϕ1[F], . . . , ϕ500[F], where F occurs at some formula position in ϕi . Examples of formula
templates of this form are⊥∧ F , ∀x ∃y (x > y ∧ F), ∃xy x > y ∧∃z (x > z ∧ z > y)∧ F ,
and so on. These templates were constructed by recursively generating an abstract syntax
tree where each formula node is given some probability of being one of ∀, ∃,¬,∧,∨,>, and
each term node is given some probability of being either a bound variable or one of +, 0, 1.
For each i = 1, . . . , 500, we checked whether:

– The satisfiability result of ϕi [�] was the same as the satisfiability result of ϕi [⊥], and
– The satisfiability of both ϕi [�] and ϕi [⊥] could be quickly determined (in less than 5s)

by both cvc4 and z3.

Among the 500 templates, we found that 360 met the first criterion above and 497 met the
second criterion.5 Overall, 357 met both criteria. Notice that for any such template that meets
the first criteria, the satisfiability of ϕi [F] can be determined independently of any closed
formula we substitute for F . For each of these 357 templates, we measure the time taken by
cvc4 and z3 to solve the formula obtained by replacing F with closed formulas corresponding
to hard benchmarks from the previous section. Since F is irrelevant to the satisfiability of

5 For 2 templates, both z3 and cvc4 took more than 5s to solve for both cases of F ∈ {�,⊥}, and for 1
template, z3 timed out when F was ⊥.

123

Form Methods Syst Des (2017) 51:500–532 527

Table 3 Results for 357 randomly constructed templates of the formϕ[F]whose satisfiability does not depend
on F , for five cases of F

Solver F

� ⊥ Frnd_6_39 Frndpre_4_41 Frndpre_4_56

Time # Time # Time # Time # Time

cvc4 357 9.0 357 9.0 357 77.1 357 23.1 357 57.6

z3 357 8.0 357 7.9 297 17107.7 355 2043.9 356 2550.1

The first and second sets of columns give the number of solved and cumulative running time of cvc4 and z3
where F is � and ⊥ respectively. The remaining three sets of columns give the results where F is formulas
corresponding to hard benchmarks from the scholl class of SMT-LIB. All experiments run with a 300s timeout

ϕi [F], one might expect that the satisfiability of ϕi [Fhard] should be determined relatively
quickly, even if the satisfiability of Fhard is hard to determine. However, we have that this is
not necessarily the case, and that solving time can vary significantly from solver to solver.

Table 3 give the results of solvers cvc4 and z3 on template and instantiation pairs. We
consider the 357 formula templates, as described above. The first two sets of columns give
cvc4 and z3’s cumulative run time on the 357 templates where F is replaced by � and ⊥
respectively. For the remaining three sets of columns,we replace F by formulas corresponding
to benchmarks from the scholl class of SMT-LIB (rnd_6_39, rndpre_4_41, and rndpre_4_56).
We chose these benchmarks since they are the three benchmarks that neither cvc4 nor z3
can solve within a two minute timeout. We found that no solver answered differently for two
queries of the form ϕ[F1] and ϕ[F2] for F1 �= F2. In this experiment, z3 timed out for 169
templates instantiated with Frnd_6_39, and 2 templates instantiated with Frndpre_4_41. Overall,
z3 solved 71.2% benchmarks from the last three sets columns in less than 30s. On the other
hand, the results show that cvc4 solves each benchmark relatively quickly, regardless of the
contents of F . The longest it took to solve any benchmark was 4.6 s. When comparing the
average solving time for benchmarks in the last three sets of columns versus the first two
sets, the average overhead was .13 s per benchmark.

For a closer look, Table 4 gives results for an additional five crafted templates, and the
times taken by cvc4 and z3 to solve each (template, benchmark) pair. For all templates, we
assume when applicable that free constants (e.g. a and b) are existentially quantified. The
first four templates are unsatisfiable regardless of the content of F . The fifth template we
considered was of the form Frndpre_4_8∨F , where Frndpre_4_8 is the formula corresponding to
a benchmark (also from the scholl class) which cvc4 and z3 both find to be satisfiable quickly,
and thus this template is satisfiable for all F . For the first template, both cvc4 and z3 solve
all three instances quickly. For the other templates, z3’s performance varies significantly. In
fact, for some benchmarks such as the fourth template where F is Frnd_6_39, z3’s performance
is worse (>300 s) than running on Frnd_6_39 alone, which it solves in 226.3s. Overall, cvc4
answers quickly for all benchmarks, solving almost all benchmarks in less than a second. It
takes around 4s to solve the second and third templates instantiated with rndpre_4_56, where
it spends a majority of its time finding a model for the initial set of quantifier-free constraints
and terminates after only two iterations of the loop in procedureCEGQIT from Fig. 8. In our
testing, we were unable to find a template ϕ[F] for which cvc4 took more than 5s longer
to solve ϕ[Fhard] when compared to the time it took to solve ϕ[�], where Fhard is a formula
corresponding to one of the benchmarks in the columns of Table 4. On the other hand, z3’s
performance varied significantly on many of the non-trivial templates we considered.

123

528 Form Methods Syst Des (2017) 51:500–532

Table 4 Results for example crafted templatesϕ[F] for three cases of F . The formula Frndpre_4_8 corresponds
to an easy satisfiable benchmark from the same class

Template F

Frnd_6_39 Frndpre_4_41 Frndpre_4_56

Solver Time Solver Time Solver Time

a > b ∧ ∃y (a > y ∧ y >

b) ∧ F
cvc4 0.17 cvc4 0.05 cvc4 0.21

z3 0.13 z3 0.03 z3 0.06

∀x ∃y (∀w ∃z (w > z ∧ x >

y ∧ y > a) ∧ ¬F)

cvc4 0.28 cvc4 0.19 cvc4 4.15

z3 203.5 z3 209.7 z3 29.17

∀x ∃y ∀w ∃z (w > z ∧ x >

y ∧ y > a ∧ ¬F)

cvc4 0.28 cvc4 0.19 cvc4 4.22

z3 234.0 z3 172.9 z3 75.5

∀x ∃y ((∀w ∃z ∀u w >

z ∧ u > z ∧ z > w ∧ w >

y ∧ y > x) ∧ F)

cvc4 0.16 cvc4 0.04 cvc4 0.09

z3 >300 z3 0.69 z3 3.2

Frndpre_4_8 ∨ F cvc4 0.16 cvc4 0.04 cvc4 0.10

z3 196.4 z3 1.85 z3 8.9

Webelieve this indicates that a strategy for quantified linear arithmetic that does not require
formulas to be in prenex normal form, such as the one from Sect. 6, can have significant
performance advantages. We conjecture that this design decision accounts for the differences
between cvc4 and z3 in our evaluation in the previous section,wherewe found that for 5 of the
original benchmarks from the scholl class for which z3 timed out, at least one configuration
of cvc4 was able to solve in less than 2s.

8.2 Comparison with synthesis solvers

The techniques for solving quantified linear arithmetic in cvc4 have the additional advantage
that they may produce solutions to synthesis conjectures as described in Sect. 7. In the 2015
edition of the syntax-guided synthesis (SyGuS) competition [2], an earlier version of cvc4
won the conditional linear arithmetic track, solving 70 of 73 benchmarks using techniques
from [50]. The nearest solver ALCHEMIST [53] solved 43. cvc4 also won the conditional
linear arithmetic track in the 2016 edition, solving all 73 synthesis conjectures, and a new
approach in EUsolver [3] solved 72. The improvement in cvc4 in the latest edition is due to
its use of a complete instantiation strategy for linear integer arithmetic when solving single
invocation synthesis conjectures as described in Sect. 7.

8.3 Number of instantiations

Wemeasured statistics on the number of instantiations cvc4 constructs while solving bench-
marks in the previous section. Let #lits(ψ, X) be the number of literals in ψ containing
a variable in set X . We approximate the number of possible instantiations of a quantified
formula ψ of the form ∀x1 . . . xn ϕ where ϕ is quantifier-free by the following calculation:

#PInst(ψ) = Πi=1,...,nmax(1, #lits(ϕ, {xi })

123

Form Methods Syst Des (2017) 51:500–532 529

Table 5 Average number of instantiations and possible instantiations per benchmark for LRA and LIA
benchmarks

keymaera (222) scholl (351) tptp (25)

#Inst #PInst #Inst #PInst #Inst #PInst

cvc4 0.11 0.86 7.23 5937.8 0.04 0.08

psyco (189) sygus (71) tptp (46) uauto (155)

#Inst #PInst #Inst #PInst #Inst #PInst #Inst #PInst

cvc4 21.9 >1M 5.1 7.6 0.2 0.3 1.6 6.3

For each i , we add a factor corresponding to an approximation of the number of possible
bounds for variable xi . This measure is proportional to the worst-case behavior of the total
number of instantiations required for the termination of the instantiation-based procedure in
Fig. 1 when using the selection functionsSLRA andSLIA for linear real and integer arithmetic.
More precisely, each factor for variable xi is an approximation of the size of the set of possible
terms returned by functions SR0 and SI0, as described in the proofs of Lemmas 3 and 6
respectively.

Table 5 gives the average number of instantiations considered by cvc4 and the aver-
age possible number of instantiations considered by cvc4 across all benchmark families
on benchmarks that all configurations of cvc4 solve. A few benchmark families (such as
tptp and keymaera) had a very small number of possible instantiations, which can partially
be attributed to the fact that cvc4 applies aggressive preprocessing techniques to eliminate
variables from quantified formulas. Conversely, other benchmark families (such as scholl
and psyco) had a very large number of possible instantiations. Many of the benchmarks in
psyco contained formulas with quantifier prefixes up to 50 variables in length, and hence
often had upwards of 250 possible instantiations. Since the benchmarks in scholl contain
nested quantification, we consider a very conservative estimate of the number of possible
instantiations by only considering innermost quantified formulas in our computation. The
number of instantiations cvc4 considers is on average considerably less the number of possi-
ble instantiations, demonstrating that a lazy approach for quantifier instantiation is beneficial,
and often critical, to solving benchmarks in these libraries.

9 Conclusion

Wehave presented a class of instantiation-based procedures that are at the same time complete
for quantified linear arithmetic and highly efficient in practice. Thanks to our framework we
also obtain a simple and modular correctness argument for soundness and completeness
on formulas with one quantifier alternation. This correctness argument is used in part for
showing soundness and completeness on formulas with arbitrary quantifier alternations, as
well as a complete and efficient method for solving single invocation synthesis conjectures.
Our procedure for arbitrary quantifier alternations has advantages over approaches that are
limited to formulas in prenex normal form.

For future work, we would like to extend the approach to new theories including fixed-
width bit vectors, strings, and non-linear arithmetic, as well as for combinations of theories

123

530 Form Methods Syst Des (2017) 51:500–532

that admit quantifier elimination. We would like to focus on further heuristics for quantified
linear arithmetic with arbitrary quantifier alternations, and for avoiding worst case perfor-
mance for quantified integer arithmetic involving large coefficients. A longer term goal of this
work is to develop an approach that is effective in practice for quantified formulas involving
both background theories and uninterpreted functions. We plan to investigate the use of the
framework described in this paper as a component of such an approach.

Acknowledgements Wewould like to thankMikolas Janota for his helpful discussion, and Peter Baumgartner
for his help with converting the benchmarks used in the evaluation to the TPTP format.

References

1. Alur R, Bodik R, Dallal E, Fisman D, Garg P, Juniwal G, Kress-Gazit H, Madhusudan P, Martin MMK,
RaghothamanM, Saha S, Seshia SA, Singh R, Solar-LezamaA, Torlak E, Udupa A (2014) Syntax-guided
synthesis. To Appear in Marktoberdorf NATO proceedings

2. AlurR, FismanD, SinghR, Solar-LezamaA (2016)Results and analysis of sygus-comp’15. arXiv preprint
arXiv:1602.01170

3. Alur R, Radhakrishna A, Udupa A (2016) Scaling enumerative program synthesis via divide and conquer.
Technical report, UPenn https://www.seas.upenn.edu/~arjunrad/publications/eusolver_report.pdf

4. Backofen R (1995) A complete axiomatization of a theory with feature and arity constraints. J Log
Program 24:37–72

5. Bansal K, Reynolds A, King T, Barrett C,Wies T (2015) Deciding local theory extensions via e-matching.
In: Computer aided verification (CAV), Springer

6. Barrett C, Conway C, Deters M, Hadarean L, Jovanovic D, King T, Reynolds A, Tinelli C (2011) Cvx4.
In: Computer aided verification (CAV), Springer

7. Barrett C, Stump A, Tinelli C (2010) The satisfiability modulo theories library (SMT-LIB). http://www.
SMT-LIB.org

8. Baumgartner P (2015) Smttotptp a converter for theorem proving formats. In: CADE-25, Lecture notes
in computer science, vol 9195. Springer

9. Berman L (1980) The complexity of logical theories. Theor Comput Sci 11(1):71–77
10. Beyene TA, Chaudhuri S, Popeea C, RybalchenkoA (2014)A constraint-based approach to solving games

on infinite graphs. In: POPL, pp 221–234
11. Beyene TA, Popeea C, Rybalchenko A (2013) Solving existentially quantified Horn clauses. In: CAV, pp

869–882
12. Bjørner N (2010) Linear quantifier elimination as an abstract decision procedure. In Giesl J, Hähnle R

(eds) IJCAR, LNCS, vol 6173. Springer, pp 316–330
13. Bjørner N, Janota M (2015) Playing with quantified satisfaction. In: 20th international conferences on

logic for programming, artificial intelligence and reasoning—short presentations, LPAR 2015, Suva, Fiji,
24–28 November 2015, pp 15–27

14. Bjørner N, McMillan KL, Rybalchenko A (2012) Program verification as satisfiability modulo theories.
In: SMT@IJCAR, pp 3–11

15. ComonH,Delor C (1994) Equational formulaewithmembership constraints. Inf Comput 112(2):167–216
16. Cooper DC (1972) Theorem proving in arithmetic without multiplication. In: Meltzer B, Michie D (eds)

Machine intelligence, vol 7. Edinburgh University Press, Edinburgh, pp 91–100
17. de Moura LM, Bjørner N (2007) Efficient e-matching for SMT solvers. In: Pfenning F, (ed) CADE,

LNCS, vol 4603. Springer, pp 183–198
18. Detlefs D, NelsonG, Saxe JB (2003) Simplify: a theorem prover for program checking. J. ACM, Technical

report
19. Dutertre B (2015) Solving exists/forall problems with yices. In: Workshop on Satisfiability modulo the-

ories
20. Farzan A Kincaid Z (2016) Linear arithmetic satisfiability via strategy improvement. In: Proceedings of

the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, NewYork, NY, USA,
9–15 July 2016, pp 735–743

21. Fedyukovich G, Gurfinkel A, Sharygina N (2015) Automated discovery of simulation between programs.
In: Logic for programming, artificial intelligence, and reasoning—20th international conference, LPAR-
20 2015, Suva, Fiji, 24–28 November 2015, Proceedings, pp 606–621

123

http://arxiv.org/abs/1602.01170
https://www.seas.upenn.edu/~arjunrad/publications/eusolver_report.pdf
http://www.SMT-LIB.org
http://www.SMT-LIB.org

Form Methods Syst Des (2017) 51:500–532 531

22. Feferman S, Vaught RL (1959) The first order properties of products of algebraic systems. FundamMath
47:57–103

23. Ferrante J, Rackoff CW (1979) The computational complexity of logical theories, lecture notes in math-
ematics, vol 718. Springer, Berlin

24. Ganzinger H, Korovin K (2003) New directions in instantiation-based theorem proving. In: Logic in
computer science, 2003. IEEE

25. Ge Y, Barrett C, Tinelli C (2007) Solving quantified verification conditions using satisfiability modulo
theories. In CADE, LNCS, vol 4603. Springer

26. Ge Y, de Moura L (2009) Complete instantiation for quantified formulas in satisfiability modulo theories.
In: Proceedings of CAV’09, LNCS, vol 5643. Springer

27. Grebenshchikov S, Lopes NP, Popeea C, Rybalchenko A (2012) Synthesizing software verifiers from
proof rules. In: PLDI, pp 405–416

28. HeizmannM, Dietsch D, Leike J,Musa B, Podelski A (2015) Ultimate automizer with array interpolation.
In: TACAS

29. Hodges W (1993) Model Theory, encyclopedia of mathematics and its applications, vol 42. Cambridge
University Press, Cambridge

30. Jacobs S (2009) Incremental instance generation in local reasoning. In: CAV ’09, Springer, Berlin, Hei-
delberg, pp 368–382

31. Janota M, Klieber W, Marques-Silva J, Clarke E (2012) Solving qbf with counterexample guided refine-
ment. In: International conference on theory and applications of satisfiability testing, Springer, Berlin,
Heidelberg, pp 114–128

32. Komuravelli A, Gurfinkel A, Chaki S (2014) SMT-based model checking for recursive programs. In:
Computer aided verification, Springer

33. Kozen D (2006) Theory of computation. Springer, Berlin
34. Kuncak V, Mayer M, Piskac R, Suter P (2010) Complete functional synthesis. In: Zorn BG, Aiken A

(eds) PLDI. ACM, New york, pp 316–329
35. Kuncak V, Rinard M (2003) Structural subtyping of non-recursive types is decidable. In: Eighteenth

annual IEEE symposium on logic in computer science (LICS). IEEE
36. Loos R, Weispfenning V (1993) Applying linear quantifier elimination. Comput J 36(5):450–462
37. Lopes NP, Monteiro J (2014) Weakest precondition synthesis for compiler optimizations. In: VMCAI

2014, pp 203–221
38. Maher MJ (1988) Complete axiomatizations of the algebras of the finite, rational, and infinite trees. In:

IEEE symposium on logic in computer science
39. Mal’cev AI (1971) The metamathematics of algebraic systems, studies in logic and the foundations of

mathematics, vol 66. North-Holland, Amsterdam
40. Monniaux D (2009) Automatic modular abstractions for linear constraints. In: POPL 2009, pp 140–151
41. Monniaux D (2010) Quantifier elimination by lazy model enumeration. In: Touili T, Cook B, Jackson P,

(eds), CAV, LNCS, vol 6174. Springer, pp 585–599
42. Mostowski A (1952) On direct products of theories. J Symb Logic 17(1):1–31
43. Nipkow T (2008) Linear quantifier elimination. In: Automated reasoning, pp 18–33
44. PhanA, Bjørner N,MonniauxD (2012)Anatomy of alternating quantifier satisfiability (work in progress).

In SMT 2012
45. Platzer A, Quesel J-D, Rümmer P (2009) Real world verification. In: Automated Deduction–CADE-22,

Springer, Berlin, Heidelberg, pp 485–501
46. Presburger M (1929) über die vollständigkeit eines gewissen systems der aritmethik ganzer zahlen, in

welchem die addition als einzige operation hervortritt. In: Comptes Rendus du premier Congrès des
Mathématiciens des Pays slaves, Warsawa, pp 92–101

47. Pugh W (1991) The Omega test: a fast and practical integer programming algorithm for dependence
analysis. In: ACM/IEEE conference supercomputing

48. Reddy CR, Loveland DW (1978) Presburger arithmetic with bounded quantifier alternation. In: ACM
STOC, ACM Press, pp 320–325

49. Reger G, SudaM, Voronkov A (2015) Playing with avatar. In: Automated deduction-CADE-25, Springer,
pp 399–415

50. Reynolds A, DetersM, KuncakV, Tinelli C, Barrett CW (2015) Counterexample-guided quantifier instan-
tiation for synthesis in SMT. In: Computer aided verification—27th international conference, CAV 2015,
San Francisco, CA, USA, 18-24 July 2015, Proceedings, Part II, pp 198–216

51. Reynolds A, Tinelli C, Moura LD (2014) Finding conflicting instances of quantified formulas in SMT.
In: Formal methods in computer-aided design (FMCAD)

52. Rybina T, Voronkov A (2001) A decision procedure for term algebras with queues. ACM Trans Comput
Logic (TOCL) 2(2):155–181

123

532 Form Methods Syst Des (2017) 51:500–532

53. Saha S, Garg P, Madhusudan P (2015) Alchemist: learning guarded affine functions. In: Computer aided
verification—27th international conference, CAV 2015, San Francisco, CA, USA, 18–24 July 2015,
Proceedings, Part I, pp 440–446

54. Scholl C, Disch S, Pigorsch F, Kupferschmid S (2008) Using an smt solver and craig interpolation to
detect and remove redundant linear constraints in representations of non-convex polyhedra. In: SMT,
ACM, pp 18–26

55. Skolem T (1919) Untersuchungen über die Axiome des Klassenkalküls and über “Produktations- und
Summationsprobleme”, welche gewisse Klassen von Aussagen betreffen. Skrifter utgit av Vidnskapssel-
skapet i Kristiania, I. klasse, no. 3, Oslo

56. Sturm T, Tiwari A (2011) Verification and synthesis using real quantifier elimination. In: ISSAC 2011,
pp 329–336

57. Sturm T, Weispfenning V (2002) Quantifier elimination in term algebras: the case of finite languages.
TUM Muenchen, In: Computer algebra in scientific computing (CASC)

58. Sutcliffe G (2009) The TPTP problem library and associated infrastructure: the FOF and CNF parts,
v3.5.0. J Autom Reason 43(4):337–362

59. Sutcliffe G (2016) The CADE ATP system competition—CASC. AI Magazine 37(2):99–101
60. Tarski A (1949) Arithmetical classes and types of algebraically closed and real-closed fields. Bull Am

Math Soc 55(1):64
61. Tarski A (1949) Arithmetical classes and types of boolean algebras. Bull Am Math Soc 55(64):1192
62. Treinen R (1997) Feature trees over arbitrary structures, chapter 7. In: Blackburn P, de Rijke M (eds)

Specifying syntactic structures. CSLI Publications and FoLLI, Stanford
63. Walukiewicz I (2002) Monadic second-order logic on tree-like structures. Theor Comput Sci 275(1–

2):311–346
64. Weispfenning V (1997) Complexity and uniformity of elimination in Presburger arithmetic. In: ISSAC

’97, New York, NY, USA, ACM, pp 48–53
65. Weispfenning V (1999) Mixed real-integer linear quantifier elimination. In: Proceedings of the 1999

international symposium on symbolic and algebraic computation, ISSAC ’99, New York, NY, USA,
ACM, pp 129–136

66. Wintersteiger CM,Hamadi Y, DeMoura L (2013) Efficiently solving quantified bit-vector formulas. Form
Methods Syst Des 42(1):3–23

123

	Solving quantified linear arithmetic by counterexample-guided instantiation
	Abstract
	1 Introduction
	1.1 Preliminaries

	2 Counterexample-guided quantifier instantiation
	2.1 An instantiation procedure and its soundness
	2.2 Termination of the instantiation procedure

	3 Instantiation for LRA-formulas
	3.1 Comparison to existing approaches

	4 Instantiation for LIA-formulas
	4.1 Comparison to existing approaches

	5 Instantiation for LIRA-formulas
	6 Boolean structure and nested quantification
	6.1 Implementation details
	6.2 Comparison to existing approaches

	7 Instantiation as a synthesis procedure
	8 Experimental evaluation
	8.1 Comparison of strategies for quantifier alternation on crafted benchmarks
	8.2 Comparison with synthesis solvers
	8.3 Number of instantiations

	9 Conclusion
	Acknowledgements
	References

