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Abstract We study the realizability problem for concurrent recursive programs: given a
distributed system architecture and a sequential specification over words, find a distributed
automata implementation that is equivalent to the specification. This problem is well-studied
as far as finite-state processes are concerned, and it has a solution in terms of Zielonka’s
Theorem.We lift Zielonka’s Theorem to the case where processes are recursive and modeled
as visibly pushdown (or, equivalently, nested-word) automata. However, contrarily to the
finite-state case, it is undecidable whether a specification is realizable or not. Therefore, we
also consider suitable underapproximation techniques from the literature developed formulti-
pushdown systems, and we show that they lead to a realizability framework with effective
algorithms.

Keywords Concurrent recursive programs · Realizability · Asynchronous automata ·
Nested-word automata · Mazurkiewicz traces · Zielonka’s theorem · Monadic second-order
logic

1 Introduction

The realizability problem arises when we are given a specification that we would like to
transform into an implementation in terms of an automaton model. So, the first question to
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ask is if there is such an implementation at all. Famous instances of that problem are the
Kleene Theorem and the Büchi–Elgot–Trakhtenbrot Theorem saying that, roughly speaking,
all regular specifications are realizable. In Fig. 1, three equivalent specifications are given
(from top to bottom: an LTL formula, a regular expression, a first-order formula) as well as
an implementation in terms of a finite automaton.

While, as far as regular languages and their various representations are concerned, any
specification has an implementation, the situation is more difficult when we move to a con-
current setting. Let us look at a well-studied model of concurrent shared-memory systems
with finite-state processes, which we later refer to as Zielonka automata [46]. Suppose that
we have two processes, 1 and 2, where 1 executes action a, and 2 executes action b. Consider
Fig. 2. Is it justified to say that the concurrent automaton on the right-hand side, with no
communication between processes 1 and 2, is an implementation of the regular expression
α = ab(ab)∗ ? There are (at least) two arguments against it. Expression α implies that any
execution performs as many a’s as b’s. But this is not realizable under the architecture that
we consider (recall that 1 and 2 do not communicate). Moreover, b’s have to be preceded
by a’s, which is not realizable for the same reason. Note that these problems are inherent
to the specifications and will not vanish with a more clever implementation. So, what is the
“right” formalism for the specification of such systems? Or, put differently, what are the
specifications that, unlike ab(ab)∗, are realizable?

Consider Fig. 3, and suppose that the system provides a third action, call it c, that is
executed simultaneously by both processes. The concurrent automaton on the right-hand
side might then be seen as an implementation of the regular expression on the left. First,
the action c allows both processes to synchronize after each a-step (b-step, respectively),
so that, in particular, there are as many a’s as b’s in any execution. Second, the order of

b, c

a

b

a, c
G(a → Fb)

((b + c)∗(ε + a(a + c)∗b))∗

∀x.(a(x) → ∃y.(x ≤ y ∧ b(y))

Fig. 1 Realizability of sequential finite-state systems

Fig. 2 (Non-)realizability of concurrent finite-state systems

a

b

c((ab + ba)c)∗

Fig. 3 Realizability of concurrent finite-state systems
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executing a and b is not fixed anymore by the specification. Indeed, a classical result of
Mazurkiewicz trace theory due to Zielonka states that regular specifications that are closed
under permutation of such independent actions can be effectively translated into a concurrent
automaton [46]. Note that the specification from Fig. 2 is actually not closed in that sense
(it contains ab, but not ba), while the specification from Fig. 3 is closed. Similar results
were obtained in the static message-passing setting [11,17,21,22] for finite-state processes
communicating via (existentially or universally) bounded FIFO channels.

In this paper, we obtain a generalization of Zielonka’s theorem for concurrent recursive (as
opposed to finite-state) programs. A system is recursive if a process may suspend its activity
and invoke (or, call) a subtask, before proceeding (or, returning). A stack is used to store the
current configuration of the process, and to recover it once the subtask has been completed.
The programswe consider are boolean, i.e., possible variables range over a finite domain. This
implies that the set of states and the alphabet of stack symbols are finite. Boolean programs,
in turn, may arise as abstractions from programs with infinite-domain variables. Such an
extension is interesting from a theoretical but also from a practical point of view. Zielonka’s
theorem allows for automatic implementations of sequential specifications such as mutual
exclusion properties, which are easy to specify in a sequential, linearization-based language,
but hard to transfer to a distributed setting. These properties are, of course, not restricted to
finite-state processes but may involve recursive procedures. It would be interesting to extend
the case-studies from [42] in that respect.

In fact, recursive processes may be defined in several equivalent ways. The classical
definition is in terms of a pushdown automaton with explicit stacks. A run is then a sequence
of configurations that keep track of the current stack contents. Alternatively, automata may
run on words enriched with nesting relations [5], one for each process. A nesting relation
connects a call position with the corresponding return position. In that case, a transition of the
automaton that performs a return will depend on the state/stack symbol associated with the
corresponding call position. It is then sufficient to define a run as a sequence of states, without
explicitly mentioning the stack contents. This is the approach adopted in this paper. Note
that automata over words (or partial orders) that include one or several nesting relations are
equivalent to visibly pushdown automata (cf. again [5]) where each action is associated with
a unique stack operation. Generally, nested-word automata/visibly pushdown automata are
more robust than classical pushdown automata (they are complementable and closed under
intersection), and our results crucially rely on this robustness.

Since the realizability question amounts to askingwhether a specification can be translated
into an automaton at all, we would like to distinguish, algorithmically, between the speci-
fications from Fig. 2 (not realizable) and Fig. 3 (realizable). The question is decidable for
finite-state systems [37,40], but, unfortunately, it is undecidable in the recursive case, which
follows from the undecidability of the nonemptiness problem. We will, therefore, identify
sufficient decidable criteria that still guarantee realizability.

A fruitful approach to recover decidability in the realm of verification has been to
restrict the possible system executions, for example by imposing a bound on the num-
ber of context switches, a notion introduced in [41]. There, each context allows only
one dedicated process to perform calls or returns. This amounts to underapproximating
the complete system behavior. However, as calls and returns from different processes
are possibly independent, the final implementation may still exhibit executions that do
not fit into this restriction anymore. The notion of context switches has been relaxed in
several orthogonal ways. Phase-bounded systems only restrict the number of switches
between returns from different processes [25]. Scope-bounded systems, on the other hand,
restrict the number of contexts that separate a call and its return [28]. Finally, ordered
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systems impose an ordering on the processes and allow only the first process with a pend-
ing call to perform a return [6]. All these underapproximations render basic verification
and model-checking questions decidable, though with varying complexity. Interestingly,
it was later shown that they all induce classes of graphs that have bounded tree-width,
which yields a unifying proof technique [31,36]. Relying on the corresponding decidabil-
ity results, we show that realizability becomes decidable for context- and phase-bounded
systems.

We then look at monadic second-order (MSO) logic, a specification formalism that does
not distinguish between equivalent linearizations (like ab and ba) but is interpreted directly
on the partial order induced by a system execution. The partial order induced by ab with a
and b independent has two incomparable elements with labels a and b, respectively. Though
an MSO specification does not necessarily guarantee realizability, it already rules out design
errors that can a priori be avoided. Under the above-mentioned restrictions, we provide results
in the spirit of the Büchi–Elgot–Trakhtenbrot Theorem, showing an effective equivalence
between automata and MSO logic. This actually generalizes a result by Thomas for finite-
state processes [44].

Outline The paper is organized as follows: Sect. 2 introduces nested-trace automata (NTAs),
our model of concurrent recursive programs. Section 3 focuses on sequential specifications in
terms of nested-word languages, and it presents the corresponding automata model of nested-
word automata (NWAs). In Sect. 4, we consider realizability, i.e., the task of synthesizing
an NTA from a given NWA specification. In doing so, we extend Zielonka’s Theorem to
concurrent recursive programs. Section 5 first reviews known results on NWAs based on
restrictions that render basic decision problems decidable and that will then be used to obtain
decidable criteria for realizability. In Sect. 6, we provide a logical characterization of NTAs
in terms of MSO logic. We conclude with Sect. 7, in which we suggest several directions for
future work.

This is a revised and extended version of the FOSSACS’09 paper [9]. The presentation,
however, is quite different, presenting the framework in terms of nested words and traces
rather than classical words. Note that both views are, in a sense, equivalent, and proofs
are not immediately affected. However, the current presentation simplifies some definitions
and corresponds to nested-word automata as presented in the standard reference [5]. Since
structures exhibit explicit nesting relations, it is also closer to the MSO characterization
presented in Sect. 6. Finally, we extended some results to context-bounded behaviors, and
some others to scope-bounded and ordered structures.

2 Nested traces and their automata

In this section, we present our model of a concurrent recursive program, where a fixed
finite set of processes communicate via shared memory. As a single process is recursive and
involves function calls and returns, its executions are not just words, but rather nested words
[5]. A nested word extends a word over a finite alphabet by a nesting relation, connecting
function calls with their respective returns. An execution of the whole program, which we
call a nested trace, involves several processes. It can, thus, be described as a collection of
nested words. Some of the word positions are “shared” by several nested words, which mod-
els the shared memory. Note that nested traces combine nested words and Mazurkiewicz
traces [15,33] in a straightforward manner. An example nested trace is depicted in
Fig. 4.
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Fig. 4 Nested trace T

Before we can define nested traces formally, we will have to fix an architecture, which
determines the actions and processes of a system, the type of an action (call, return, or
internal), and the attribution of an action to one or more processes. Fixing the type of an
action implies that the nesting relations are uniquely determined by the underlying strings.

Definition 1 (Distributed call-return alphabet) A distributed call-return alphabet is a tuple
Σ̃ = (Σ, P, type, dom) where

– Σ is the nonempty finite set of actions,
– P is the nonempty finite set of processes,
– type : Σ → {call, ret, int} indicates the type of an action (for a given type τ ∈

{call, ret, int}, we let Στ
def= type−1(τ )), and

– dom : Σ → 2P associates with every action its domain, i.e., the set of processes that are
involved in its execution.

We require that dom(a) �= ∅ for all a ∈ Σ , and |dom(a)| = 1 for all a ∈ Σcall ∪ Σret. The
latter condition will imply that synchronization is achieved via internal actions only.

When Σ = Σint, then we say distributed alphabet instead of distributed call-return
alphabet.

Definition 2 (Nested trace) A nested trace over the distributed call-return alphabet Σ̃ is a
tuple (E, (�p)p∈P ,�cr, λ) where

1. E is a finite set of events,
2. λ : E → Σ is the event-labeling function (given τ ∈ {call, ret, int} and p ∈ P , we let

Eτ
def= {e ∈ E | λ(e) ∈ Στ } and Ep

def= {e ∈ E | p ∈ dom(λ(e))}),
3. for all p ∈ P , �p ⊆ Ep × Ep is the direct-sucessor relation of some (unique) total order

on Ep , which we denote by �p (with strict part <p), and
4. �cr ⊆ E × E is the call-return relation satisfying the following:

(a) �cr induces a bijection between Ecall and Eret,
(b) for all (e, f ) ∈ �cr, there is p ∈ P such that e <p f ,
(c) for all (e1, f1), (e2, f2) ∈ �cr and p ∈ P such that e1 ∈ Ep , e2 ∈ Ep , and

e1 <p e2 <p f1, we have f2 <p f1.

In addition, we require that ≤ def= (�cr ∪ ⋃
p∈P �p)

∗ is a partial order.

Condition 4(a) implies that there are no pending calls or returns.1 Condition 4(b) says that
a call-return pair belongs to a unique process and that a call takes always place before its
return. By Condition 4(c), the call-return relation of each process is well-nested.

1 In [5], pending calls or returns are possible. We can also include them without affecting any of the results,
but do not do so to simplify the presentation.
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The set of nested traces over Σ̃ is denoted by NTr(Σ̃). We do not distinguish between
isomorphic nested traces.

Example 1 Consider the distributed call-return alphabet Σ̃ = (Σ, P, type, dom) given by
Σ = {a1, b1, a2, b2, c}, P = {1, 2}, type(a1) = type(a2) = call, type(b1) = type(b2) = ret,
and type(c) = int, as well as dom(a1) = dom(b1) = {1}, dom(a2) = dom(b2) = {2}, and
dom(c) = {1, 2}. A nested trace over Σ̃ is depicted in Fig. 4. Curved edges represent the
relation �cr. Moreover, straight edges with label p ∈ P represent the process-successor
relation �p .

Next, we define a distributed automata model running on nested traces, which is a mix
of nested-word automata and Zielonka automata. Here, the term distributed reflects the fact
that every process has its own local state space and transition relation. Actually, there is
a transition relation for every action a ∈ Σ . A transition involving a can access the local
state of any process from dom(a), and modify it. Therefore, since a ∈ Σcall ∪ Σret implies
|dom(a)| = 1, executing a call or return action updates the local state of only one single
component.

Definition 3 (NTA) A nested-trace automaton (NTA) over Σ̃ is a tuple C = ((Sp)p∈P , Γ,�,

ι, F) where

– the Sp are disjoint finite sets of local states (for P ′ ⊆ P , we define SP ′ def= ∏
p∈P ′ Sp),

– Γ is the nonempty finite set of stack symbols,
– ι ∈ SP is the global initial state,
– F ⊆ SP is the set of global final states, and
– � = �call � �ret � �int is the transition relation, partitioned into

– �call ⊆
⋃

p∈P (Sp × Σcall × Γ × Sp),
– �ret ⊆ ⋃

p∈P (Sp × Σret × Γ × Sp), and
– �int ⊆ ⋃

a∈Σint
(Sdom(a) × {a} × Sdom(a)).

Let S = ⋃
P ′⊆P SP ′ . For s ∈ S and p ∈ P , we let sp be the p-th component of s (if it

exists).
Suppose the automaton is about to read an event e of a nested trace with label λ(e) = a. If

a ∈ Σint, a transition of the form (s, a, s′) ∈ �int lets process p move on from sp to s′
p , for

all p ∈ dom(a). Only one process is involved when a ∈ Σcall ∪ Σret and a transition of the
form (s, a, A, s′) ∈ �call ∪ �ret is applied. In addition, if a ∈ Σcall, the call event e will be
tagged with stack symbol A. The latter can be retrieved at the corresponding return position.
More precisely, we require that, whenever e �cr f , the stack symbol chosen at e is the same
as the stack symbol employed by the transition that is taken at position f . In a sense, this is
equivalent to reading a stack symbol previously pushed onto a stack.

A run of the NTA C on a nested trace T = (E, (�p)p∈P ,�cr, λ) ∈ NTr(Σ̃) will include
a mapping ρ : E → S such that ρ(e) ∈ Sdom(λ(e)) for all e ∈ E . Intuitively, for process
p ∈ dom(λ(e)), the component ρ(e)p is the state that p reaches after executing e. Before we
specify when ρ is actually part of a run, let us define another mapping ρ− : E → S that also
satisfies ρ−(e) ∈ Sdom(λ(e)) for all e ∈ E . Here, the intuition is that ρ−(e) collects the current
source states of all processes that are involved in executing e.We let ρ−(e) = (sp)p ∈ dom(λ(e))

where

sp =
{

ιp if e is �p −minimal

ρ( f )p if f �p e .
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s0 s1 s2

a1|$ a1|$ b1|$

a1|$

t0 t1 t2

a2|$ a2|$ b1|$

a2|$

cc c c

Fig. 5 Nested-trace automaton C

Recall that, hereby,ρ( f )p denotes the p-th component ofρ( f ) ∈ Sdom(λ( f )). This component
indeed exists since p ∈ dom(λ( f )). Moreover, e is called�p-minimal (�p-maximal) if there
is no e′ ∈ Ep such that e′ �p e (respectively, e �p e′). Now, we call the pair (ρ, σ ), with
σ : Ecall ∪ Eret → Γ , a run of C on T if,

– for all (e, f ) ∈ �cr, we have σ(e) = σ( f ), and
– for all e ∈ E , it holds2

⎧
⎪⎨

⎪⎩

(
ρ−(e)p, λ(e), σ (e), ρ(e)p

) ∈ �call if e ∈ Ecall ∩ Ep(
ρ−(e)p, λ(e), σ (e), ρ(e)p

) ∈ �ret if e ∈ Eret ∩ Ep(
ρ−(e), λ(e), ρ(e)

) ∈ �int if e ∈ Eint .

To determine if run (ρ, σ ) is accepting, we look at the global final state reached at the end
of a run. It collects, for all p ∈ P , the local state associated with the �p-maximal event, or
ιp if Ep = ∅. Formally, let f = ( f p)p∈P ∈ SP be given by

f p =
{

ρ(e)p if e is �p −maximal

ιp if Ep = ∅ .

With this, we call (ρ, σ ) accepting if f ∈ F . Finally, we denote by L(C) the set of nested
traces over Σ̃ that have an accepting run of C.

Example 2 Again, we assume the distributed call-return alphabet Σ̃ from Example 1, with
P = {1, 2}. Consider the NTA C = ((Sp)p∈P , {$},�, ι, F) over Σ̃ depicted in Fig. 5. Its
components are given by S1 = {s0, s1, s2}, S2 = {t0, t1, t2}, ι = (s0, t0), F = {(s2, t2)}. The
new feature compared to sequential automata are the synchronizing transitions from �int,
which include ((si , ti ), c, (si , ti )) for all i ∈ {0, 1, 2} as well as ((s1, t1), c, (s2, t2)). Note that
C is eventually forced to execute “concurrent” occurrences of a1 and a2: when one process
moves on to s1 or t1, then executing c is no longer possible unless the other process catches

2 Here, we rather use ρ(e)p than ρ(e), since, strictly speaking, the latter is a tuple consisting of one state,
whereas �call and �ret refer to states.
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up. The nested trace T from Fig. 4 is accepted by C. Note that there are indeed concurrent
occurrences of a1 and a2.

A special case of NTAs is given in the case of a distributed alphabet, i.e., when Σ = Σint.
Then, an NTA is precisely an asynchronous automaton (also Zielonka automaton) [46], and a
nested trace is actually aMazurkiewicz trace. However, following our terminology, we rather
call it a trace automaton. Since, in that case, all actions from Σ have type int, the language
of a trace automaton may indeed be seen as a set of Mazurkiewicz traces.

3 Multiply nested words and their automata

AnNTA can be seen as amodel of a concurrent system, with physically distributed processes,
each of which has a local state space. On the specification side, on the other hand, it is natural
to allow for some global view of the system, which facilitates the specification of what
the system is supposed to do as a whole. This leads us to define nested-word automata.
As opposed to NTAs, nested-word automata have one single state space, albeit preserving
several stacks. Their behavior can be described as a set of nested wordswith multiple nesting
relations. In fact, a nested word can be defined as a total order, or linearization, put on top of
a given nested trace. Thus, it interleaves concurrent events performed by distinct processes.

Again, we fix a distributed call-return alphabet Σ̃ = (Σ, P, type, dom). However, note
that the concrete distribution of internal actions in terms of dom only matters when we
consider nested traces.

Definition 4 (Linearization) Let T = (E, (�p)p∈P ,�cr, λ) ∈ NTr(Σ̃). A linearization of
T is any structure of the form W = (E,�+1,�cr, λ) where �+1 is the direct-successor
relation of some total order on E such that

⋃
p∈P �p ⊆ (�+1)

∗. In particular, W and T
share the same call-return relation.

By lin(T ), we denote the set of all linearizations of T . Extending this to languages L ⊆
NTr(Σ̃), we let lin(L)

def= ⋃
T∈L lin(T ).

Now, the linearizations of nested traces are precisely what we call nested words. Formally,
the set of nestedwords is given byNW(Σ̃)

def= lin(NTr(Σ̃)).We do not distinguish isomorphic
linearizations/nested words.

Example 3 Consider the distributed call-return alphabet Σ̃ from Example 1. Figure 6 shows
a nested word over Σ̃ . It is a linearization of the nested trace from Fig. 4. Straight edges
represent the relation �+1, whereas curved edges represent �cr.

Now, we consider automata that are suitable to represent global specifications of multi-
threaded recursive programs. Though these automata use a set of stack symbols, they run,
similarly toNTAs, directly on nestedwords so that stacks are implicitly given and not referred
to explicitly (cf. [5]).

a1 c a2 a1 c a2 c b1 c b1 b2 b2
+1

Fig. 6 Nested wordW
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Definition 5 (NWA) A nested-word automaton (NWA) over Σ̃ is a tupleA = (S, Γ,�, ι, F)

where

– S is the nonempty finite set of states,
– Γ is the nonempty finite set of stack symbols,
– ι ∈ S is the initial state,
– F ⊆ S is the set of final states, and
– � = �call � �ret � �int is the transition relation, partitioned into

– �call ⊆ S × Σcall × Γ × S,
– �ret ⊆ S × Σret × Γ × S, and
– �int ⊆ S × Σint × S.

The behavior of an NWA is defined similarly to the behavior of an NTA. Let W =
(E,�+1,�cr, λ) be a nested word. Assume that E = {e1, . . . , en} with e1 �+1 e2 �+1
. . . �+1 en . A run ofA onW is a pair (ρ, σ ) of mappings ρ : E → S and σ : Ecall∪Eret →
Γ such that,

– for all (e, f ) ∈ �cr, we have σ(e) = σ( f ), and
– for every i ∈ {1, . . . , n} (letting ρ(e0) = ι),

{(
ρ(ei−1), λ(ei ), ρ(ei )

) ∈ �int if ei ∈ Eint(
ρ(ei−1), λ(ei ), σ (ei ), ρ(ei )

) ∈ �call ∪ �ret if ei ∈ Ecall ∪ Eret .

The run (ρ, σ ) is accepting if ρ(en) ∈ F (in particular, ι ∈ F if n = 0). The set of nested
words over Σ̃ for which there is an accepting run is denoted by L(A).

Example 4 An NWA A = ({s0, . . . , s5}, {$},�, s0, {s5}) over the distributed call-return
alphabet Σ̃ from Examples 1 and 3 is given in Fig. 7. The transitions are self-explanatory. For
example, the set �int contains (s3, c, s4), and �ret contains (s4, b2, $, s5), which is indicated
by the edge from s4 to s5 with label b2|$. Note that A accepts those nested words that (i)
contain an infix a1a2 or a2a1, (ii) have a call and a subsequent return phase, separated by
some action c, and (iii) schedule returns of process 1 before those of process 2. The nested
word over Σ̃ from Fig. 6 is accepted by A.

It is easy to see that NWAs (and NTAs) are closed under union and intersection. This
has to be seen in contrast to the fact that the class of context-free languages (CFLs) is
not closed under intersection. The intuitive reason for this is that, in CFLs, actions are no
longer “visibly”. Indeed, augmenting words by the nesting structure makes sure that, while
simulating two NWAs, the automaton for intersection performs push and pop operations at
the same positions of the input word.

s0

s1

s2

s3 s4 s5

a1|$
a2|$

c

a1|$
a2|$

c

b1|$
c

b2|$
c

a1|$

a2|$

a2|$

a1|$

c b2|$

Fig. 7 Nested-word automaton A
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Unfortunately, in the presence of at least two processes/stacks, most basic verification
problems for NWAs are undecidable, such as nonemptiness. The following result is folklore
(and, of course, carries over to NTAs):

Theorem 1 The following problem is undecidable:
Instance: A distributed call-return alphabet Σ̃ ; NWA A over Σ̃

Question: L(A) �= ∅?

In fact, one can easily simulate a two-counter machine based on two stacks, choosing Σ̃

such that |P| = 2. Note that the problem is decidable when |P| = 1, as then we deal with
(visibly) context-free languages.

4 Realizability of NWA specifications

We will now start studying the realizability problem. Given an NWA, we would like to
construct an NTA that represents the language of the NWA, but in a distributed environment.
Of course, we have to define what “represents” means here, and we will also have to identify
conditions under which a given NWA is realizable as an NTA at all.

Now, NTAs are a truly concurrent model as processes may evolve independently unless
they perform synchronizing actions from Σint. NWAs, on the other hand, possess one single
state space, and the global control may enforce an order even on a priori independent actions.
Yet, there are tight connections betweenNTAs andNWAs. In Sect. 4.1, we will formalize that
relation. Then, in Sect. 4.2, we consider realizability in a restricted, but well-known setting,
namely without calls and returns. Finally, in Sects. 4.3 and 4.4, we study the realizability
problem in full generality.

4.1 From traces to linearizations and back

Let W = (E,�+1,�cr, λ) be a nested word over Σ̃ . The call-return relation �cr is
uniquely determined by the other ingredients of W . Let us formalize this and assume
that E = {e1, . . . , en} with e1 �+1 e2 �+1 . . . �+1 en . The string of W is defined as
string(W )

def= λ(e1) . . . λ(en) ∈ Σ∗. For example, for the nested word W from Fig. 6, we
have string(W) = a1ca2a1ca2cb1cb1b2b2. Now, given any word w ∈ Σ∗, there is at most
one (up to isomorphism) nested wordW over Σ̃ such that string(W ) = w. If it exists, thenwe
denote it by nested(w). Note that, for any nested wordW , we have nested(string(W )) = W .
For languages L ⊆ NW(Σ̃), we set string(L) = {string(W ) | W ∈ L}.

Given W ∈ NW(Σ̃), there is a unique nested trace T ∈ NTr(Σ̃) such that W ∈ lin(T ).
We denote this trace by trace(W ). Again, this is extended to languages L ⊆ NW(Σ̃), and we
set trace(L) = {trace(W ) | W ∈ L}. The relation between the mappings string and nested
as well as lin and trace is illustrated in Fig. 8.

w
= string(W )
∈ Σ∗

W
= nested(w)
∈ lin(T )
∈ NW(Σ̃)

T
= trace(W )
∈ NTr(Σ̃)

nested

string

trace

lin

Fig. 8 Relation between strings, nested words, and nested traces
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Since nested(string(W )) = W for any nested word W , we may consider the set of lin-
earizations of T as a string language over Σ . This will facilitate some definitions when we
consider languages up to a congruence relation taking into account that some actions are
independent (those that do not share processes), while others are not (those that have at least
one process in common).

Independence relation Given Σ̃ , we consider the classical independence relation IΣ̃
def=

{(a, b) ∈ Σ × Σ | dom(a) ∩ dom(b) = ∅}. Note that IΣ̃ is irreflexive and symmetric. Its
complement is the dependence relation DΣ̃

def= (Σ × Σ)\IΣ̃ , which is then reflexive and
symmetric. With this, let ∼Σ̃ ⊆ Σ∗ × Σ∗ be the least congruence relation that satisfies
ab ∼Σ̃ ba for all (a, b) ∈ IΣ̃ .

For instance, if Σ̃ is the distributed call-return alphabet from Example 3, then the set
{a1a2cb1b2 , a2a1cb1b2 , a1a2cb2b1 , a2a1cb2b1} is an equivalence class of ∼Σ̃ .

The equivalence relation∼Σ̃ is lifted in the natural way to nested words: we letW ∼Σ̃ W ′
if string(W ) ∼Σ̃ string(W ′). Moreover, we say that L ⊆ NW(Σ̃) is ∼Σ̃ -closed if we have
L = [L]Σ̃ def= {W ∈ NW(Σ̃) | W ∼Σ̃ W ′ for some W ′ ∈ L}.

Realizability We will consider an NWA A to be a specification of a system, and we are
looking for a realization or implementation of A, which is provided by an NTA C such that
L(C) = trace(L(A)). Actually, specifications often have a “global” view of the system,
and the difficult task is to distribute the state space onto the processes, which henceforth
communicate in a restricted manner according to the predefined system architecture Σ̃ .
Note that, unlike lin(L(C)), the language L(A) of an NWA A is not necessarily ∼Σ̃ -closed.
However,Amay yet be considered as an incomplete specification so that we can still ask for
an NTA C such that L(C) = trace(L(A)).

Observe that it is easy to come up with an NWA recognizing the linearizations of the
nested traces recognized by a given NTA. Essentially, the state space of the NWA is the
Cartesian product of the local state spaces.

Lemma 1 Let C be an NTA over Σ̃ . There is an NWAA over Σ̃ such that L(A) = lin(L(C)).

4.2 Realizability in the absence of stacks: well-known facts

Weare, however, interested in the other direction, i.e., to transform a givenNWA into anNTA.
As a preparation, we now recall two well-known theorems from Mazurkiewicz trace theory.
The first one, Zielonka’s celebrated theorem, applies to distributed call-return alphabets such
that Σ = Σint. Below, it will be lifted to general distributed call-return alphabets.

Theorem 2 ([46]) Suppose Σ = Σint. Let A be an NWA over Σ̃ such that L(A) is ∼Σ̃ -
closed. Then, there is an NTA C over Σ̃ such that L(C) = trace(L(A)).

Note that the theorem actually yields a deterministic automaton C (we omit the definition
of “deterministic”). The doubly exponential complexity (in the number of processes) of
Zielonka’s construction has later been reduced to singly exponential [16,19].

Moreover, again under the assumption Σ = Σint, closure of a word language under ∼Σ̃

is a decidable criterion:

Theorem 3 ([37,40]) The following decision problem is Pspace-complete:
Instance: Σ̃ such that Σ = Σint ; NWA A over Σ̃

Question: Is L(A) ∼Σ̃ -closed?
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4.3 Realizability in the presence of stacks

In Theorems 2 and 3, the givenNWAand theNTAdo not employ any stack so that we actually
deal with a finite and a Zielonka automaton, respectively. We can lift Zielonka’s theorem to
distributed call-return alphabets:

Theorem 4 Let A be an NWA over Σ̃ such that the language L(A) is ∼Σ̃ -closed. There is
an NTA C over Σ̃ such that L(C) = trace(L(A)).

Remark 1 The size of C is at most doubly exponential in |A| and triply exponential in |Σ |.
The proof is postponed to the next subsection. Theorem 4 demonstrates that NWAs,

though they have a global view of the system in terms of one single state space, are suitable
specifications for NTAs provided they recognize a ∼Σ̃ -closed language. Unfortunately, it is
in general undecidable if the language of a given NWA is ∼Σ̃ -closed.

Theorem 5 The following problem is undecidable:
Instance: Σ̃ ; NWA A over Σ̃

Question: Is L(A) ∼Σ̃ -closed?

Proof We proceed by a reduction from the undecidable emptiness problem (cf. Theorem 1).
Let Σ̃ = (Σ, P, type, dom) be the given distributed call-return alphabet and A =
(S, Γ,�, ι, F) be the given NWA over Σ̃ . We assume P = {1, 2}, as Theorem 1 already
holds when we restrict to two processes. Moreover, we assume that A has a single final
state f .

From the given Σ̃ , we first define a new distributed call-return alphabet Σ̃ ′ =
(Σ ′, P, type′, dom′) where we simply add two independent internal actions a and b that
do not occur in Σ . That is, Σ ′ = Σ � {a, b}, type′(a) = type′(b) = int, dom′(a) = {1}, and
dom′(b) = {2}. On letters from Σ , type′ and dom′ behave like type and dom, respectively.

Building on A, we then define an NWA A′ over Σ̃ ′. Essentially, A′ coincides with
A. However, being in f , we allow A′ to read ab and to then go into a new final state,
while f is no longer final. Formally, A′ = (S � {s1, s2}, Γ,�′, ι, {s2}) where �′ =
� ∪ {( f, a, s1), (s1, b, s2)}.

We will show that L(A′) is not ∼Σ̃ ′ -closed iff L(A) �= ∅. As the latter is undecidable
by Theorem 1, this will conclude the proof. Of course, L(A) = ∅ implies L(A′) = ∅ so
that L(A′) is trivially ∼Σ̃ ′ -closed. If, on the other hand, L(A) �= ∅, then f is reachable in
A (formally, there is a nested word with an accepting run that ends in f ). Thus, A′ accepts
some nested word whose associated string ends in ab. Since a and b do not occur elsewhere
in A′, the language L(A′) cannot be ∼Σ̃ ′ -closed. ��

Interestingly, closure of a context-free language is undecidable, too [43, Theorem 4.32].
This result is orthogonal to ours, as the problem is again decidable for visibly pushdown
languages (which can be shown by a simple adaptation of the proof from [37,40]).

4.4 Proof of Theorem 4

We now develop the proof of Theorem 4. The theorem is actually a corollary of the more
general Lemma2below,which uses the notion of a lexicographic normal formand is also used
to prove a different result on NWA realizability based on underapproximations (Theorem 12
in Sect. 5 below).
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Let us fix a strict total order<lex onΣ . Then,<lex naturally induces a strict lexicographic
order on Σ∗, which will also be denoted by <lex.

We say that a nested word W ∈ NW(Σ̃) is minimal if, for all nested words W ′ �= W that
are equivalent to W wrt. ∼Σ̃ , we have string(W ) <lex string(W ′). Given W ∈ NW(Σ̃), let
nflex(W ) denote its normal form, i.e., the unique minimal nested word W ′ ∈ NW(Σ̃) such
that W ∼Σ̃ W ′. We extend the mapping nflex to languages L ⊆ NW(Σ̃) as expected and let
nflex(L) = {nflex(W ) | W ∈ L}.
Theorem 6 ([38]) Suppose Σ = Σint and let L ⊆ NW(Σ̃) such that string(L) ⊆ Σ∗ is
regular and nf lex(L) = L. Then, there is an NWA A over Σ̃ such that L(A) = [L]Σ̃ (in
other words, [L]Σ̃ is a regular word language over the alphabet Σ).

We will use Theorems 2 and 6 to show the following crucial lemma:

Lemma 2 Let A be an NWA over Σ̃ such that nf lex(L(A)) ⊆ L(A). Then, there is an NTA
C over Σ̃ such that L(C) = trace(L(A)).

Proof We proceed in several steps. In a nutshell, we first interpret A as an NWA over a
distributed alphabet (without any call or return actions). This allows us to apply the Theorems
by Zielonka and Ochmański. Reinterpreting the resulting NTA over the modified alphabet
as an NTA over the original alphabet, gives the desired automaton.

Let A = (S, Γ,�, ι, F) be the given NWA with nflex(L(A)) ⊆ L(A). We define the
distributed alphabet as Ω̃ = (Ω, P, type′, dom′) where Ω = Σ × Γ and, for all (a, A) ∈
Σ × Γ , type′((a, A)) = int and dom′((a, A)) = dom(a). Note that Ω = Ωint. Now, we
proceed in several steps.

1. From the NWA A over Σ̃ , we build an NWA B over Ω̃ as follows. A transition
(s, a, A, s′) ∈ �call ∪ �ret in A is considered as a transition (s, (a, A), s′) in the new
NWA B, and a transition (s, a, s′) ∈ �int is translated to (s, (a, Aa), s′) with Aa ∈ Γ

arbitrary but fixed. The other components remain unchanged.
Note that ∼Σ̃ -closure of L(A) does not imply ∼Ω̃ -closure of L(B), since, in B, two
transitions executing the same call/return action do not necessarily use the same stack
symbol. To overcome this problem, we will go through lexicographic normal forms.

2. Fix any strict total order <′
lex such that a <lex b implies (a, A) <′

lex (b, B), for all
A, B ∈ Γ . We know that nflex(NW(Ω̃)) is recognized by some finite automaton/NWA
[38]. Thus, using a product construction, we find an NWA B′ over Ω̃ such that

L(B′) = L(B) ∩ nflex(NW(Ω̃)).

3. Since Ω = Ωint, we can now apply Theorem 6 to obtain, from B′, an NWA B′′ over Ω̃

such that

L(B′′) = [L(B) ∩ nflex(NW(Ω̃))]Ω̃ .

4. Next, we apply Theorem 2 to B′′ and get an NTA Ĉ over Ω̃ such that

L(Ĉ) = trace([L(B) ∩ nflex(NW(Ω̃))]Ω̃ ).

5. The final step is to reinterpret Ĉ as an NTA C over the original alphabet Σ̃ : Call or return
transition (s, (a, A), s′) becomes (s, a, A, s′), and an internal transition (s, (a, Aa), s′)
becomes (s, a, s′).

We show that L(C) = trace(L(A)).
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To prove the inclusion from left to right, let T = (E, (�p)p∈P ,�cr, λ) ∈ L(C). There is
an accepting run (ρ, σ ) of C on T . Recall that σ : Ecall ∪ Eret → Γ . Let λ̂ : E → Ω be
given by λ̂(e) = (λ(e), σ (e)) if e ∈ Ecall ∪ Eret, and λ̂(e) = (λ(e), Aλ(e)) if e ∈ Eint. By the
definition of C, the (un)nested trace T̂ = (E, (�p)p∈P ,∅, λ̂) over Ω̃ is contained in L(Ĉ).

Since L(Ĉ) = trace([L(B) ∩ nflex(NW(Ω̃))]Ω̃ ), there is a linearization Ŵ =
(E,�+1,∅, λ̂) of T̂ such that Ŵ ∈ L(B). Note that, as T̂ and T share the same underlying
partial order, (E,�+1,�cr, λ) ∈ NW(Σ̃) (with �cr and λ taken from T ) is a linearization
of T . Let ρ′ be an accepting run of the NWA B on Ŵ (as there are only internal actions, a run
does not need to map events to stack symbols). Since σ is part of a run of the NTA C on T , we
have σ(e) = σ( f ) for all (e, f ) ∈ �cr. Moreover, (ρ′(e), λ̂( f ), ρ′( f )) is a transition of B,
for all (e, f ) ∈ �+1. We deduce that (ρ′, σ ) is an accepting run of A on (E,�+1,�cr, λ).
We conclude that T = (E, (�p)p∈P ,�cr, λ) ∈ trace(L(A)).

For the converse direction, let T = (E, (�p)p∈P ,�cr, λ) ∈ trace(L(A)). Let W =
(E,�+1,�cr, λ) ∈ L(A) be the minimal linearization of T . Due to nflex(L(A)) ⊆ L(A),
we have W ∈ L(A). Let (ρ, σ ) be an accepting run of A on W and suppose σ ′ is the
extension of σ that maps every e ∈ Eint to Aλ(e). As W is in lexicographic normal form wrt.
<lex and <′

lex is a conservative extension of <lex, we have thatW ′ = (E,�+1,∅, (λ, σ ′)) is
in lexicographic normal form wrt. <′

lex. By the definition of B, we have W ′ ∈ L(B). Thus,
we obtain W ′ ∈ L(B′) = L(B) ∩ nflex(NW(Ω̃)).

This implies trace(W ′) = (E, (�p)p∈P ,∅, (λ, σ ′)) ∈ trace(L(B′)) = L(Ĉ). Let ρ′ be an
accepting run of Ĉ on trace(W ′). As σ ′(e) = σ ′( f ) for all (e, f ) ∈ �cr and, moreover, σ and
σ ′ coincide on Ecall ∪ Eret, (ρ′, σ ) is an accepting run of C on T = (E, (�p)p∈P ,�cr, λ).
We conclude T ∈ L(C). ��

Remark 2 We will now argue that the size of C is at most doubly exponential in the size |A|
of A, and triply exponential in |Σ |. Hereby, we define |A| as |S| + |Γ |.

First, according to [23], there is an NWAwith at most (|Σ |+1)!-many states recognizing
nflex(NW(Ω̃)). Thus, B′ is of size n def= |A| · (|Σ |+ 1)!. Note that the size of the construction
in [23] actually depends on |Σ | rather than |Ω|.

The NWA for nflex(NW(Ω̃)) and, therefore,B′ have the property of being loop-connected
[38]. The size of B′′ can therefore be bounded by N

def= (n2 · 2|Σ |)(n−1)(|Σ |+1)+1 [23,35].
From [19], we know that the size of Ĉ can be bounded by 2N

2·(|Σ |2+|Σ |)+2|Σ |4 . As Ĉ and C
have the same states, we conclude that the size of C is doubly exponential in |A| and triply
exponential in |Σ |.

Note that this upper bound is obtained via a series of reductions that all assume aworst-case
complexity without any optimization. It is unlikely that, in practice, each of these worst-cases
is encountered at the same time.

Now, Theorem 4 is a corollary from Lemma 2, since we have nflex(L(A)) ⊆ L(A)

whenever L(A) is ∼Σ̃ -closed.

5 Realizability of restricted specifications

Despite the extension of Zielonka’s theorem that we obtained in terms of Theorem 4, the
undecidability result stated in Theorem 5 is unsatisfactory. In this section, we will impose
restrictions on NWA specifications that allow us to combine a Zielonka-like theorem with
decidable criteria for realizability.
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5.1 Contexts, phases, scopes, and ordered stacks

In their seminal paper [41], Qadeer and Rehof exploited the fact that errors of recursive
programs typically occur already within a few contextswhere a context refers to an execution
involving only one process. Imposing a bound on the number of contexts indeed renders
many verification problems decidable. In other words, instead of looking at all possible
executions, we consider an underapproximation of the actual system behavior. This view
is particularly suitable when checking positive specifications: If a system A is required to
exhibit all behaviors given by a set Good, then it is sufficient to show that Good ⊆ L(U)

is true for a restricted version U of A such that L(U) ⊆ L(A). Thus, we are interested in
restrictions U of A such that the inclusion problem Good ⊆ L(U) is decidable and that we
may adjust incrementally so as to converge to L(A). On the other hand, given a negative
specification (or, safety property) Bad, we can also draw conclusions from L(U)∩Bad �= ∅,
while showing complete absence of bad behaviors would require an overapproximation of
the system behavior.

Next, we recall the notion of a context as well as similar notions that have been defined in
the literature. Let W = (E,�+1,�cr, λ) ∈ NW(Σ̃) be a nested word, and let ≤ def= (�+1)

∗,
with strict part <. An interval of W is a set I ⊆ E such that I = ∅ or I = [e, f ] def= {g ∈
E | e ≤ g ≤ f } for some e, f ∈ E . In a context, only one designated process is allowed to
call or return, while a phase only restricts return operations:

– A context of W is an interval I such that I ∩ (Ecall ∪ Eret) ⊆ Ep for some p ∈ P .
– A phase of W is an interval I such that I ∩ Eret ⊆ Ep for some p ∈ P .

Definition 6 (k-context word [41] and k-phase word [25]) Let W = (E,�+1,�cr, λ) be
a nested word and k ≥ 1. We say that W is a k-context word (k-phase word) if there are
contexts (phases, respectively) I1, . . . , Ik of W such that E = I1 ∪ . . . ∪ Ik .

Note that every context is a phase, while the converse does not hold in general. Therefore,
every k-context word is a k-phase word, but not the other way around. Two orthogonal
restrictions have been defined in terms of bounded scopes and ordered nested words, which
we consider next. A scope-bounded word restricts the number of contexts between a push
and the corresponding pop operation.

Definition 7 (k-scope word [28]) Let W = (E,�+1,�cr, λ) be a nested word and k ≥ 1.
We call W a k-scope word if, for all (e, f ) ∈ �cr, there exist contexts I1, . . . , Ik of W such
that [e, f ] = I1 ∪ . . . ∪ Ik .

Finally, in an ordered word, we refer to a fixed total ordering � on P (with irreflexive
part ≺). Then, a pop operation can only be performed by the process that is minimal among
all processes with a nonempty stack.

Definition 8 (Ordered word [6]) Let W = (E,�+1,�cr, λ) be a nested word. We call W
an ordered word (wrt. �) if, for all p, p′ ∈ P , e, f ∈ Ep , and f ′ ∈ Eret ∩ Ep′ such that
e �cr f and e < f ′ < f , we have p′ � p.

Example 5 (Continues Example 3) Figure 9 illustrates the concepts introduced above by
means of the nested word W from Fig. 6. The shadowed areas are dedicated to process 2.
Thus, W is a 6-context word, a 5-scope word, and a 2-phase word. All these bounds are
optimal. Moreover,W is an ordered word under the assumption 1 ≺ 2 (but not for 2 ≺ 1).
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Fig. 9 Illustration of context, phase, and scope

Table 1 Underapproximate decision problems

Context- Nonemptiness Scope- Nonemptiness

Instance: Σ̃ ; NWA A ; k ≥ 1 Instance: Σ̃ ; NWA A ; k ≥ 1

Question: Lk-cnt(A) �= ∅ ? Question: Lk-scp(A) �= ∅ ?

Phase- Nonemptiness Ord- Nonemptiness

Instance: Σ̃ ; NWA A ; k ≥ 1 Instance: Σ̃ ; NWA A
Question: Lk-ph(A) �= ∅ ? Question: Lord(A) �= ∅ ?

Let R
def= {k-cnt , k-ph , k-scp | k ≥ 1} ∪ {ord} be the set of possible “restrictions”. For

θ ∈ R, the set of θ -words is denoted by NWθ (Σ̃). In particular, by NWord(Σ̃), we denote
the set of ordered words, silently assuming a total order on P . Moreover, for an NWAA over
Σ̃ , we let Lθ (A)

def= L(A) ∩ NWθ (Σ̃).

Example 6 Consider the sample NWA A from Fig. 7. We have that L(A) = L2-ph(A) =
Lord(A). On the other hand, Lk-cnt(A) and Lk-scp(A) are strictly included in L(A), for all
k ≥ 1.

Let us consider the respective nonemptiness problems, given in Table 1. In all cases, we
assume that the parameter k is given in unary. Indeed, all problems are decidable, with varying
complexities. For a comparison between the effects of a unary and a binary encoding of k,
see [8].

Theorem 7 ([32,41]) Context- Nonemptiness is NP-complete.

Theorem 8 ([25,27]) Phase- Nonemptiness is 2-Exptime-complete.

Theorem 9 ([28]) Scope- Nonemptiness is Pspace-complete.

Theorem 10 ([1]) Ord- Nonemptiness is 2-Exptime-complete.

In [36], Madhusudan and Parlato give a uniform argument for decidability of the above
problems: For θ ∈ {k-cnt , k-ph | k ≥ 1} ∪ {ord}, the class of θ -words has bounded
tree-width. ByCourcelle’s theorem, this implies that nonemptiness ofNWAs and evenmodel-
checking of NWAs against MSO properties is decidable. It was then shown that scope-
bounded words have bounded tree-width, too [31].

An alternative unifying approach is given in [13] in terms of the notion of split-width.
Originally introduced for multiply nested words, split-width has also produced generaliza-
tions of the above-mentioned classes and other existing work on recursive message-passing
systems [4,14].
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We have seen that restricting the domain of nested words appropriately renders the
nonemptiness problem for NWAs decidable. These restrictions produce robust classes of
languages. The next theorem states that, under any of the restrictions introduced above,
NWAs are complementable:

Theorem 11 ([25,29,30]) Let θ ∈ R. For all NWAs A over Σ̃ , the following hold:

1. There exists an NWA A′ over Σ̃ such that L(A′) = NWθ (Σ̃)\L(A).
2. There exists an NWA A′ over Σ̃ such that L(A′) = NW(Σ̃)\Lθ (A).

5.2 Realizability of restricted specifications

In view of the undecidability result stated in Theorem 5, we will now consider realizability
modulo restrictions to θ -words, for suitable θ ∈ R. This will allow us to define decidable
sufficient criteria for the transformation of an NWA into an NTA. Moreover, there is a
Zielonka-like theorem that is tailored to underapproximations. In that theorem, we require
that an NWA represents the θ -words of a system, while the final implementation can produce
executions that do not fit into the θ -restriction.

A θ -representation is a set of nested words that does not distinguish between locally equiv-
alent θ -words. Here, two nested words W,W ′ ∈ NW(Σ̃) are said to be locally equivalent,
written W ∼loc

Σ̃
W ′, if there are u, v ∈ Σ∗ and (a, b) ∈ IΣ̃ such that string(W ) = uabv and

string(W ′) = ubav.

Definition 9 Let θ ∈ R and L ⊆ NW(Σ̃). We call L a θ -representation if L ⊆ NWθ (Σ̃)

and, for all W,W ′ ∈ NWθ (Σ̃) such that W ∼loc
Σ̃

W ′, we have W ∈ L iff W ′ ∈ L .

We do not know whether the decidability result presented below (Theorem 13) still holds
when considering a language L to be a θ -representation if L = [L]Σ̃ ∩ NWθ (Σ̃).

Next, we present our Zielonka theorem suited to θ -representations. Hereby, we require that
θ be a member of the setR− def= {k-cnt , k-ph | k ≥ 1}. The result relies on the definition of a
lexicographic normal form that allows one to apply Ochmański’s Theorem [38]. The crux is
that reordering independent events in order to obtain the lexicographic normal form shall not
affect membership in the given θ -representation. This, however, requires an extension of the
underlying distributed call-return alphabet. While we do this for context- and phase-bounded
executions, it is unclear whether it is possible for bounded-scope or ordered representations
and if the following results holds for these classes as well.

Theorem 12 Let θ ∈ R− be a restriction and let A be an NWA over Σ̃ such that Lθ (A) is
a θ -representation. Then, there is an NTA C over Σ̃ such that L(C) = trace(Lθ (A)).

Proof Like in the proof of Theorem4,we use Lemma 2.However, we cannot apply it directly,
as it is in general not possible to define <lex in such a way that nflex(L(A)) ⊆ L(A) when
L(A) is a θ -representation, with θ ∈ R− = {k-cnt , k-ph | k ≥ 1}. Our trick is to extend the
given distributed call-return alphabet Σ̃ by a component that indicates the current context
or phase of a word position. An appropriate definition of a lexicographic ordering over this
extended alphabet will then allow us to apply Lemma 2.

Suppose Σ̃ = (Σ, P, type, dom). For any restriction θ ∈ R−, we define a new distributed
call-return alphabet Ω̃θ = (Ω, P, type′, dom′) as well as a lexicographic order in terms of a
total order <θ

lex on Ω .

– Ω̃k-cnt is given as follows: Let Ω = Σint ∪ ((Σcall ∪ Σret) × {1, . . . , k}). Intuitively,
the additional component will keep track of the current context in a nested word. For
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a ∈ Σint, we set type′(a) = type(a) = int and dom′(a) = dom(a). For a ∈ Σcall ∪ Σret
and i ∈ {1, . . . , k}, we let type′((a, i)) = type(a) and dom′((a, i)) = dom(a). Finally,
let <k-cnt

lex ⊆ Ω × Ω be any strict total order such that (a, i) <k-cnt
lex (b, j) whenever

i < j .
– Ω̃k-ph is given as follows: LetΩ = Σcall∪Σint∪(Σret×{1, . . . , k}). Here, the additional

component will keep track of the current phase. Therefore, it is only recorded for return
events. For a ∈ Σcall ∪ Σint, we set type′(a) = type(a) and dom′(a) = dom(a). For
a ∈ Σret and i ∈ {1, . . . , k}, we set type′((a, i)) = type(a) and dom′((a, i)) = dom(a).
Again, let<k-ph

lex ⊆ Ω×Ω be any strict total order such that (a, i) <
k-ph
lex (b, j)whenever

i < j .

For contexts and phases, we will now define the canonical, “greedy” division of a nested
word into intervals. Given W = (E,�+1,�cr, λ) ∈ NW(Σ̃), we define a mapping phW :
E → N inductively as follows: If e is theminimal event ofW (wrt.≤), thenwe letphW (e) = 1
and we set Ie = {e}. Suppose e �+1 f . If Ie ∪ { f } is a phase, then let phW ( f ) = phW (e)
and I f = Ie ∪ { f }. Otherwise, set phW ( f ) = phW (e) + 1 and I f = { f }. The mapping
ctW : E → N for contexts is defined accordingly. Note that W with maximal event e is a
k-phase word iff phW (e) ≤ k. The corresponding statement holds for contexts.

Next,we define amapping hθ : NWθ (Σ̃) → NWθ (Ω̃θ ). Thismappingwill add to a nested
word additional information in terms of the extended alphabet (i.e., the context/phase).

– For a nested word W = (E,�+1,�cr, λ) ∈ NWk-cnt(Σ̃), we define hk-cnt(W ) as
(E,�+1,�cr, λ

′) where λ′(e) = λ(e) for all e ∈ Eint, and λ′(e) = (λ(e), ctW (e)) for
all e ∈ Ecall ∪ Eret. Note that hk-cnt(W ) is indeed a k-context word over Ω̃k-cnt.

– Accordingly, for W = (E,�+1,�cr, λ) ∈ NWk-ph(Σ̃), we let hk-ph(W ) =
(E,�+1,�cr, λ

′)where λ′(e) = λ(e) for all e ∈ Ecall∪Eint, and λ′(e) = (λ(e), phW (e))
for all e ∈ Eret. Clearly, hk-ph(W ) is a k-phase word over Ω̃k-ph.

In the remainder of the proof, we proceed uniformly for all restrictions θ ∈ R−. Let
A = (S, Γ,�, ι, F) be the givenNWAover Σ̃ such that Lθ (A) is a θ -representation.One can
easily construct an NWA B over Ω̃θ such that L(B) = {hθ (W ) | W ∈ Lθ (A)} ⊆ NWθ (Ω̃θ ).
To do so, we just remember the current context/phase and its “type”. When reading a letter
that does not correspond to the current type, the context/phase counter is increased.

Weclaim thatnflex(L(B)) ⊆ L(B) (where themappingnflex refers to<θ
lex). In otherwords,

L(B) contains, for every W ∈ L(B), the normal form of W wrt. <θ
lex. Let gθ : Ω → Σ

define the projection that removes any additional labeling if it exists (i.e., gθ ((a, i)) = a)
and which is canonically extended to nested words/traces and languages. Now,<θ

lex has been
chosen in such a way that the following holds, for all W ∈ L(B). We obtain the normal
form W ′ ∈ NW(Ω̃θ ) of W by successively reordering two independent neighboring events,
without swapping the order of events with labels (a, i) and (b, j) such that i < j . Note that
this implies W ′ ∈ NWθ (Ω̃θ ) and hθ (gθ (W ′)) = W ′. Since Lθ (A) is a θ -representation, the
reordering also preserves containment in L(B). Thus, nflex(L(B)) ⊆ L(B).

By Lemma 2, there is an NTA C over Ω̃θ such that L(C) = trace(L(B)). It is easily seen
that NTAs are closed under projection (which was shown in [25] for NWAs). In particular,
applying gθ to an NTA language over Ω̃θ yields an NTA language over Σ̃ . Thus, there is
an NTA C′ over Σ̃ such that L(C′) = gθ (trace(L(B))). As we have gθ (trace(L(B))) =
trace(gθ (L(B))) = trace(Lθ (A)), we are done. ��
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5.3 Deciding realizability

To complete this section, we show that, given anNWAA over Σ̃ and a restriction θ ∈ R (now
including “bounded scope” and “ordered”), we can decide both whether Lθ (A) is∼Σ̃ -closed
and whether Lθ (A) is a θ -representation.

Theorem 13 The following problems are decidable in elementary time:
Instance: Σ̃ ; θ ∈ R ; NWA A over Σ̃

Question 1: Is Lθ (A) ∼Σ̃ -closed?
Question 2: Is Lθ (A) a θ -representation?

Proof The proof is inspired by [37,40] where analogous problems are addressed in a finite-
state setting.

Consider first Question 1. Using Theorem 11, we first transform the given NWA A =
(S1, Γ1,�1, ι1, F1) into anNWAA′ = (S2, Γ2,�2, ι2, F2) for the complement, i.e., such that
L(A′) = NW(Σ̃)\Lθ (A). Now,we build anNWAB recognizing all nestedwordsW ∈ L(A)

where string(W ) is of the form uabv such that (a, b) ∈ IΣ̃ and ubav = string(W ′) for
some W ′ ∈ L(A′). Then, Lθ (A) is not ∼Σ̃ -closed iff Lθ (B) �= ∅. The latter is decidable
due to Theorems 7–10. To solve Question 2, the only difference is that we build A′ such
that L(A′) = NWθ (Σ̃)\L(A) (again, using Theorem 11). In that case, Lθ (A) is not a
θ -representation iff Lθ (B) �= ∅.

For convenience, we will write an internal transition (s, a, s′) ∈ �i , i ∈ {1, 2}, as
(s, a, Ai

a, s
′) where Ai

a ∈ Γi is an arbitrary fixed stack symbol. The set of states of B
is S1 × S2 × ({0, 1} ∪ (IΣ̃ × Γ2 × Γ2)). The first two components of a state are used
to simulate A and A′, respectively. The third component starts in 0. In states of the form
(s1, s2, 0), both automata proceed synchronously: Reading a ∈ Σ , B applies a-transitions
(s1, a, A1, s′

1) ∈ �1 and (s2, a, A2, s′
2) ∈ �2 to the first and the second component, respec-

tively, resulting in a global step ((s1, s2, 0), a, (A1, A2), (s′
1, s

′
2, 0)). Note that the stack

alphabet is extended to Γ1 × Γ2 to take into account that A1 and A2 are in general dis-
tinct.

When reading an input word, A should eventually perform an action sequence ab with
(a, b) ∈ IΣ̃ , whileA′ executesba. So supposeB is about to simulate transitions (s1, a, A1, s′

1)

followed by (s′
1, b, B1, s′′

1 ) in A and transition (s2, b, B2, s′
2) followed by (s′

2, a, A2, s′′
2 ) in

A′. The global automaton B will produce this transition sequence “crosswise”. It will first
read the a and apply the transition involving A1 ∈ Γ1 to the first component. At the same
time, the second component only changes its local state into s′

2. As the stack symbol B2

cannot be applied directly, it is stored in the third component of the subsequent global state
of B, which is of the form (s′

1, s
′
2, ((a, b), B2, A2)). Observe that A2, which is associated to

executing a in A′, must be applied together with reading a so that (A1, A2) acts as the stack
symbol. In fact, since a corresponding local transition (s′

2, a, A2, s′′
2 ) has to follow inA′, the

stack symbol A2 needs to be stored as well. The formal description of this step can be found
below (2). Now, being in the global state (s′

1, s
′
2, ((a, b), B2, A2)), B will, according to the

local transition (s′
1, b, B1, s′′

1 ), perform a b and apply (B1, B2) to the designated stack. Again,
A′ will only change its local state into s′′

2 . However, the local transition has to conform to
action a and the symbol A2 that had been stored. This step corresponds to rule (3) below. We
are now in a global state of the form (s′′

1 , s′′
2 , 1). In states with 1 in the third position, A and

A′ are again simulated in sync (rule (1)).
Formally, B = (S, Γ,�, ι, F) is given by S = S1 × S2 × ({0, 1} ∪ (IΣ̃ × Γ2 × Γ2)),

Γ = Γ1 × Γ2, ι = (ι1, ι2, 0), and F = F1 × F2 × {1}.
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Towards the transition relation �, we first define a relation �′ ⊆ S×Σ × (Γ1 ×Γ2)× S.
To obtain� from�′, we then simply replace every transition of the form (s, a, (A1, A2), s′),
a ∈ Σint, by (s, a, s′).

(1) For (s1, a, A1, s′
1) ∈ �1, (s2, a, A2, s′

2) ∈ �2, and β ∈ {0, 1}, the relation �′ contains

((s1, s2, β), a, (A1, A2), (s
′
1, s

′
2, β)) .

(2) For (a, b) ∈ IΣ̃ , (s1, a, A1, s′
1) ∈ �1, (s2, b, B2, s′

2) ∈ �2, and A2 ∈ Γ2, the relation �′
contains

((s1, s2, 0), a, (A1, A2), (s
′
1, s

′
2, ((a, b), B2, A2))) .

(3) For (a, b) ∈ IΣ̃ , (s1, b, B1, s′
1) ∈ �1, (s2, a, A2, s′

2) ∈ �2, and B2 ∈ Γ2, the relation �′
contains

((s1, s2, ((a, b), B2, A2)), b, (B1, B2), (s
′
1, s

′
2, 1)) .

Finally, we obtain � from �′ as described above.
Since the constructions from Theorem 11 can be done in at most doubly exponential time,

and since the decision problems from Theorems 7–10 are at most doubly exponential, too,
we obtain elementary procedures for both Question 1 and Question 2. ��

6 Realizability of MSO specifications

In this section, we give a short introduction into monadic second-order (MSO) logic over
nested traces. The logic is built over countably infinite supplies {x, y, x1, x2, . . .} of first-
order and {X, Y, X1, X2, . . .} of second-order variables. First-order variables are interpreted
as events, second-order variables as sets of events. As usual, the predicates available in MSO
logic depend on the signature of a structure, which is given in terms of the distributed call-
return alphabet Σ̃ = (Σ, P, type, dom).

Definition 10 The formulas from ntMSO(Σ̃) are built according to the following grammar:

ϕ ::= a(x) | x �p y | x �cr y | x = y | x ∈ X |
¬ϕ | ϕ1 ∨ ϕ2 | ∃x .ϕ | ∃X.ϕ

where a ∈ Σ , p ∈ P , x, y are first-order variables, and X is a second-order variable.

A formula ϕ from the logic ntMSO(Σ̃) is interpreted over a nested trace T =
(E, (�p)p∈P ,�cr, λ) ∈ NTr(Σ̃) wrt. a mapping I. The purpose of the latter is to interpret
free variables. It maps any first-order variable x to an event I(x) ∈ E and any second-order
variable X to a set of events I(X) ⊆ E . We write T |�I ϕ if formula ϕ is evaluated to true
when the free variables of ϕ are interpreted according to I. In particular, we have T |�I a(x)
if λ(I(x)) = a, T |�I x �p y if I(x) �p I(y), and T |�I x �cr y if I(x) �cr I(y). The
remaining operators are interpreted as usual. When ϕ is a sentence, i.e., a formula without
free variables, we omit the index I and simply write T |� ϕ. The language L(ϕ) is then
defined as {T ∈ NTr(Σ̃) | T |� ϕ}.

For a thorough introduction to MSO logic on (classical) words and its semantics, we refer
the reader to [45].

Again, we will recall a well-known result for concurrent programs without stacks, and
then lift it to the recursive setting.
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Theorem 14 ([44]) Suppose Σ̃ satisfies Σ = Σint, and let L ⊆ NTr(Σ̃). The following
statements are effectively equivalent:

1. There is an NTA C over Σ̃ such that L(C) = L.
2. There is a sentence ϕ ∈ ntMSO(Σ̃) such that L(ϕ) = L.

Note that this theorem cannot be lifted to nested traces without imposing any restriction.
This is due to the fact that NWAs (and, therefore, NTAs) are not complementable [12], while
MSO logic is closed under negation. However, it will turn out that restricting to k-context/k-
phase traces also helps in this case.

Of course, given a restriction θ ∈ R, we first have to clarify what we mean by a θ -trace.
There are at least two reasonable possibilities. For example, we may call a nested trace T
a θ -trace if all linearizations of T are θ -words. Alternatively, we may require that some
linearization of T is a θ -word. We will choose the latter, existential, definition, as it captures
more nested traces. Note that there are similar options and definitions in the setting ofmessage
sequence charts under channel bounds [18,24].

Formally, we call T ∈ NTr(Σ̃) a θ -trace if lin(T ) ∩ NWθ (Σ̃) �= ∅. We adopt other
notations from nested words and letNTrθ (Σ̃) be the set of θ -traces. Moreover, for an NTA C,
we let Lθ (C)

def= L(C) ∩ NTrθ (Σ̃). For a sentence ϕ ∈ ntMSO(Σ̃), the set Lθ (ϕ) is defined
accordingly.

Example 7 The nested trace T from Fig. 4 is a 2-phase trace (it admits the 2-phase lin-
earization W from Fig. 6), a 4-context trace, a 3-scope trace, and an ordered trace (since its
linearization W is ordered).

As a preparation of a logical characterization of NTAs, we show that they are comple-
mentable for some restrictions of nested traces. This is an analogue of Theorem 11 for NWAs.
As we rely on Theorem 12, we have to restrict to the set R− = {k-cnt , k-ph | k ≥ 1}, i.e.,
to boundedly many contexts or phases.

Lemma 3 Let θ ∈ R− and let C be an NTA over Σ̃ . Then, there is an NTA C′ such that
L(C′) = NTrθ (Σ̃)\L(C).

Proof From the given NTA C, we get, using Lemma 1 and Theorem 11, an NWA A over
Σ̃ such that L(A) = NWθ (Σ̃)\lin(L(C)). Observe that L(A) is a θ -representation. By
Theorem 12, there is an NTA C′ over Σ̃ such that L(C′) = trace(L(A)). One easily verifies
that L(C′) = NTrθ (Σ̃)\L(C). ��

In particular, Lemma 3 implies that there is an NTA recognizing the set NTrθ (Σ̃). The
following theorem constitutes a generalization of Theorem 14 adapted to θ -traces, where
θ ∈ R−.

Theorem 15 The following implications are effective:

1. For every NTA C over Σ̃ , there is a sentence ϕ ∈ ntMSO(Σ̃) such that L(ϕ) = L(C).
2. Let θ ∈ R−. For every sentence ϕ ∈ ntMSO(Σ̃), there is an NTA C over Σ̃ such that

L(C) = Lθ (ϕ).

Proof The proof of 1. follows the standard construction for the translation of automata into
logic.One guesses an assignment of states and stack symbols to events in terms of existentially
quantified second-order variables. Then, a first-order kernel checks if the assignments actually
correspond to an accepting run.
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For the proof of 2., we proceed by structural induction. Hereby, the only critical case is
negation, which will be taken care of by Lemma 3. For simplicity, we suppose that there are
no free variables. To get an automaton for ¬ϕ, suppose that we already have an NTA C such
that L(C) = Lθ (ϕ). By Lemma 3, there is an NTA C′ such that L(C′) = NTrθ (Σ̃)\L(C). We
have L(C′) = Lθ (¬ϕ) so that we are done. ��

We conclude this section stating that model checking NTAs against MSO properties is
decidable (albeit of inherently nonelementary complexity):

Theorem 16 The following problem is decidable:
Instance: Σ̃ ; NTA C over Σ̃ ; sentence ϕ ∈ ntMSO(Σ̃) ; θ ∈ R

Question: Lθ (C) ⊆ L(ϕ)?

Proof The proof does not rely on Theorem 15, since this would only allows us to show the
result for restrictions from R−. Instead, we give a direct reduction to linearizations, i.e., to
the case of nested words, where underapproximate model checking is decidable.

By Lemma 1, we can construct an NWAA over Σ̃ such that L(A) = lin(L(C)). Secondly,
we translate the sentence ϕ ∈ ntMSO(Σ̃), inductively, into an MSO formula ϕ̃ over nested
words such that L(ϕ̃) = lin(L(ϕ)). We omit the formal definition of MSO over nested
words. The only interesting case is x �p y, which is translated to p(x) ∧ p(y) ∧ x <

y∧¬∃z(p(z)∧ x < z < y)where p(x)
def= ∨

a∈Σp
a(x) and< refers to the (MSO-definable)

total order induced by a nested word.
Now, we have Lθ (C) ⊆ L(ϕ) iff Lθ (A) ⊆ L(ϕ̃). The latter problem is decidable, which

follows from Theorems 7–10 and the MSO characterizations of NWAs given in [25,29,30].
��

The model-checking problem has been addressed in [7] for the phase-restriction and
propositional dynamic logic (PDL) as specification language. Its complexity drops to EXP-
TIMEwhen the bound on the number of phases is fixed.MSO-definable temporal logics have
been considered in [10,34] for various restrictions in a sequential setting. It is shown that the
model-checking problem is still elementary even when the restriction (e.g., the bound on the
number of phases) is part of the input.

7 Conclusion

Most results presented in this paper rely on specific restrictions of the domain of nested
words. It will be worthwhile to study a more generic setting by bounding the tree-width or
split-width. The model-checking question has been well-studied in [4,13,34], but not much
is known about realizability.

Note that some realizable specifications will inevitably yield implementations in terms
of NWAs that are nondeterministic and suffer from deadlocks. One should, therefore, study
classes of NWAs that are arguably more “realistic” meaning, in particular, that they are deter-
ministic and/or deadlock-free [2,11,42]. A natural question is then to ask for a specification
formalism that guarantees such realistic implementations.

It also remains to study realizability in the realm of recursive processes communicating
through FIFO channels [20,26]. Here, the model-checking question is by now well under-
stood, in particular thanks to the split-width technique [4,14]. To the best of our knowledge,
realizability questions for such communicating recursive processes have not been considered
yet. The quest for controllers, whose study has been initiated in [3], seems to be closely
related.
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Recently, visibly pushdown trace languages have been characterized in terms of cer-
tain cooperating distributed systems (CD-systems) [39]. There, the dependence relation is
independent of any partitioning into call, return, and internal actions. It would actually be
interesting to see towhich extentmore general distributed call-return alphabets can be adopted
in our setting.

Acknowledgements We are grateful to the reviewers for the careful reading and for the many pertinent
suggestions, which helped to improve the presentation of the paper considerably.
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