
Form Methods Syst Des (2017) 51:154–199
DOI 10.1007/s10703-017-0271-1

Predictive runtime enforcement

Srinivas Pinisetty1 · Viorel Preoteasa1 · Stavros Tripakis1,2 ·
Thierry Jéron3 · Yliès Falcone4 · Hervé Marchand3

Published online: 23 February 2017
© Springer Science+Business Media New York 2017

Abstract Runtime enforcement (RE) is a technique to ensure that the (untrustworthy) output
of a black-box system satisfies some desired properties. In RE, the output of the running
system, modeled as a sequence of events, is fed into an enforcer. The enforcer ensures that
the sequence complies with a certain property, by delaying or modifying events if necessary.
This paper deals with predictive runtime enforcement, where the system is not entirely black-
box, but we know something about its behavior. This a priori knowledge about the system
allows to output some events immediately, instead of delaying them until more events are
observed, or even blocking them permanently. This in turn results in better enforcement
policies. We also show that if we have no knowledge about the system, then the proposed
enforcement mechanism reduces to standard (non-predictive) runtime enforcement. All our
results related to predictive RE of untimed properties are also formalized and proved in the
Isabelle theorem prover. We also discuss how our predictive runtime enforcement framework
can be extended to enforce timed properties.

B Srinivas Pinisetty
srinu85.pinisetty@gmail.com

Viorel Preoteasa
viorel.preoteasa@aalto.fi

Stavros Tripakis
stavros.tripakis@aalto.fi

Thierry Jéron
thierry.jeron@inria.fr

Yliès Falcone
ylies.falcone@imag.fr

Hervé Marchand
Herve.Marchand@inria.fr

1 Aalto University, Espoo, Finland

2 University of California, Berkeley, Berkeley, CA, USA

3 INRIA Rennes - Bretagne Atlantique, Rennes, France

4 Laboratoire d’Informatique de Grenoble, Univ. Grenoble Alpes, Inria, LIG, 38000 Grenoble, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-017-0271-1&domain=pdf
http://orcid.org/0000-0001-7779-8231

Form Methods Syst Des (2017) 51:154–199 155

Keywords Runtime monitoring · Runtime enforcement · Automata · Timed automata ·
Monitor synthesis

1 Introduction

Runtime enforcement (RE) is a technique [10,13,25] to monitor the execution of a system at
runtime and ensure its compliance against a set of formal requirements. Using an enforcer, an
(untrustworthy) input execution (in the formof a sequence of events) ismodified into an output
sequence that complies with a property (e.g., a safety requirement). RE aims to ensure the
following properties: (i) the output sequence must comply with the property (soundness) and
(ii) if the input already complieswith the property, it should be left unchanged (transparency).

Context and objectives We focus on online enforcement of regular properties. For a given
propertyϕ, we synthesize an enforcer that operates at runtime. The general context is depicted
in Fig. 1, where an enforcer is placed between an event emitter and an event receiver. The
emitter and receiver execute asynchronously. An enforcer takes a sequence of events σ as
input and transforms it into a sequence of events o that is correct with respect to property ϕ.
The enforcer is equipped with an internal memory to store some events that are received as
input (and to release them as output only when some expected event occurs). For example,
consider a property formalizing somedesired transactional behavior. Then, the enforcer stores
and delays some input events (not releasing them immediately) as long as the transaction is
not properly completed.

In existing RE mechanisms (cf. [10,13,19,25]) there is no assumption on the input
sequence σ , which can be any sequence of events over some alphabet Σ , i.e., σ ∈ Σ∗.
This can be seen as considering the event emitter to be a black-box, i.e., its behavior is
completely unknown. In this paper, we study RE for grey box systems, i.e., when we know
something about the behavior of the event emitter. In particular, instead of letting σ range
over Σ∗, we suppose that it ranges over some given property ψ ⊆ Σ∗.

For example, in the domain of network security, one can use an enforcer as a firewall or a
Network IntrusionDetection (NID) system to detect and prevent some attacks. Some network
flows may not be interpreted in the same manner at different end-points, and may deceive
firewalls and NID’s. TCP/IP scrubber eliminates ambiguities from network flows enabling
firewall systems to correctly predict end-host response [14]. The knowledge of the system ψ

can be considered as a protocol scrubber such as a TCP/IP scrubber [14] that models well-
behaved protocol behavior. A model of a system may be already available (e.g., from design
models, or as statically verified properties or properties that the system is already known to
enforce). If not available, a model could be built, sometimes automatically, using techniques
such as static-analysis [7,8] and automata learning [22].

Event
Emitter Enforcer Event

Receiver

ψ, ϕ

σ ∈ ψ o ∈ ϕ

Fig. 1 Predictive runtime enforcement with an enforcer

123

156 Form Methods Syst Des (2017) 51:154–199

Motivations A priori knowledge of the system behavior may help to improve monitor-
ing mechanisms. We study how enforcement mechanisms can benefit from a model of
the system. For the enforcement of non-safety properties (i.e., non prefix-closed prop-
erties), input events are delayed (stored in the enforcer’s memory) until receiving all
the events that allow to satisfy the desired property. If we have some knowledge of the
system, we can sometimes react quickly (before receiving all the events that allow the
input to satisfy the property), if we can predict that the input will inevitably satisfy the
property in the future. Prediction thus allows to output events quickly (sometimes soon
after they are received), instead of buffering them in the enforcer’s memory. Predic-
tive enforcement is hence desirable because it provides better Quality of Service (QoS).
Moreover, in some particular scenarios where the actions in the input alphabet are depen-
dent, without prediction, blocking some events (in case of non-safety properties) will
lead the system into a deadlock situation, and thus non-safety properties can not be
enforced [6]. For example, a requirement such as “Every request should be followed by
an acknowledgement” can not be enforced in practice, and only having some knowl-
edge of the system will allow to enforce such requirements. Our predictive enforcement
framework allows to circumvent such situations and to enforce non-safety properties over
dependent actions. In Sect. 3.1, we elaborate on the motivations through more detailed
examples.

Problem definition Given two regular properties ϕ and ψ , we aim to study mechanisms that
take as input a word σ ∈ ψ and output a sequence o that (i) satisfies ϕ (soundness), and (ii)
is a prefix of input σ (transparency), as in standard RE [10,19,25]. In addition, we require
(iii) the notion of urgency, which states that the observed input sequence σ must be released
immediately (i.e., o = σ), if either σ already satisfies ϕ, or every possible extension of σ

(that can be obtained from the knowledge of ψ) will result in the input satisfying ϕ. We refer
to this problem as predictive runtime enforcement.

Contributions We introduce a framework for predictive runtime enforcement of regular prop-
erties. In our framework, the notions of soundness and transparency are similar to those used in
the standard RE frameworks [10,19,25]. However, in addition to soundness and transparency
we propose the new notion of urgency, to ensure that input events are released as soon as
possible, instead of being blocked or delayed until more input is observed. At an abstract
level, we model enforcers as functions that transform words. We define the constraints that
an enforcement function (for some property ϕ) should satisfy. Given a property ϕ, we present
a functional definition, describing the input–output behavior, and also prove that it satisfies
soundness, transparency, and urgency. Finally, we present algorithms describing how the
proposed enforcement functions can be implemented. All our results related to predictive
RE of untimed properties are formalized and proved in the Isabelle theorem prover [15].1

The proposed algorithms are implemented in Python to show the practical feasibility of our
approach, and we also discuss examples of practical applications. The performance of the
Python implementation has been evaluated using examples based on practical applications
(see Sect. 3.7).

Moreover, we also discuss how our predictive runtime enforcement framework can be
extended to enforce timed properties. Some earlier works [16–19], show how to synthesize
enforcers for timed properties, where the event emitter is considered as a black-box. When
we consider timed properties, in addition to the order of events, their occurrence time also

1 The Isabelle theories are available at: https://github.com/isabelle-theory/PredictiveRuntimeEnforcement.

123

https://github.com/isabelle-theory/PredictiveRuntimeEnforcement

Form Methods Syst Des (2017) 51:154–199 157

affects the satisfaction of the property. For real-time systems, prediction for enforcement of
timed properties is certainly advantageous since it allows to release events as output earlier
(in some cases). We extend the notion of urgency from the untimed setting to the timed
setting, and we define the predictive runtime enforcement problem for timed properties. We
also present a functional definition, and some issues related to implementability of a timed
predictive enforcer.

This paper extends the results of [20], and provides the following additional contributions:

– correctness proofs are included in “Appendix 1”;
– the independence of the constraints of the enforcementmechanism are proved in Sect. 3.3;
– discussion of some applications is elaborated via examples in Sect. 3.6;
– proposed algorithms are implemented in Python2 and discussed in Sect. 3.7.1;
– this implementation in Python has been evaluated using examples based on practical

applications, discussed in Sect. 3.7.2;
– preliminary results on predictive RE for timed properties are provided in Sect. 4.

Paper organization Section 2 presents preliminaries and notations. Section 3 is related to
predictive RE of untimed properties. Firstly, we motivate predictive RE via a set of examples
in Sect. 3.1, illustrating how an enforcer with some knowledge about the system behaves,
compared to an enforcer without any knowledge of the system. In Sect. 3.2, we define the
predictive RE problem formally, and the independence of the constraints of the enforcement
mechanism are proved in Sect. 3.3. We provide a solution to the predictive RE problem in
Sect. 3.4. Given two properties ϕ and ψ , we show how an enforcer can be defined as a
function that transforms words. In Sect. 3.5, we present an algorithm which computes the
output of the enforcement function incrementally (since we focus on online enforcement),
given deterministic automata recognizing ϕ and ψ . In Sect. 3.6 some example applications
are discussed, and in Sect. 3.7we discuss about an implementation of the proposed algorithms
and its evaluation using some examples.

Section 4 is related to predictive RE of timed properties. In Sect. 4.1, we first introduce
some results about runtime enforcement for timed properties without prediction. Later in
Sect. 4.2, we discuss some examples before we formally define the predictive RE problem for
timed properties in Sect. 4.3, and in Sect. 4.4, we define a predictive enforcement mechanism
as a function that transforms timed words.

Section 5 discusses related work, and Sect. 6 presents conclusions and open perspectives.

2 Preliminaries and notation

In Sect. 2.1, we describe preliminaries and notations related to the untimed notions. In
Sect. 2.2, we lift notations to the timed setting.

2.1 Untimed setting

Languages A (finite) word over a finite alphabet Σ is a finite sequence of elements of Σ .
The length of w, denoted as |w|, is the number of elements in w. The empty word over Σ

is denoted by εΣ , or ε when Σ is clear from the context. The sets of all words and all

2 The Python implementation is available for download at: https://github.com/SrinivasPinisetty/PredictiveRE.

123

https://github.com/SrinivasPinisetty/PredictiveRE

158 Form Methods Syst Des (2017) 51:154–199

non-empty words are denoted by Σ∗ and Σ+, respectively. A language or a property over
Σ is any subset L of Σ∗.

The concatenation of two words w and w′ is denoted by w · w′. A word w′ is a prefix of
a word w, denoted w′ � w, whenever there exists a word w′′ such that w = w′ · w′′, and
w′ ≺ w if additionally w′ �= w; conversely w is said to be an extension of w′.

The set pref(w) denotes the set of prefixes of w and, pref(L)
def= ⋃

w∈L pref(w) is the set
of prefixes of words in L. A language L is prefix-closed if pref(L) = L and extension-closed
if L · Σ∗ = L, where the concatenation operator naturally extends to sets of words.

For a word w and i ∈ [1, |w|], the i-th letter of w is denoted as w[i]. Given a word w and
two integers i, j , s.t. 1 ≤ i ≤ j ≤ |w|, the subword from index i to j is denoted as w[i ··· j],
and the suffix of word w starting from index i is denoted as w[i ···].

Given an n-tuple of symbols e = (e1, . . . , en), for i ∈ [1, n],Πi (e) is the projection of e

on its i-th element, i.e., Πi (e)
def= ei .

Deterministic and complete automata A deterministic and complete automatonA is a tuple
A = (Q, q0,Σ, δ, F) where, Q is the set of locations (also called states), q0 ∈ Q is the
initial location, Σ is the finite alphabet, δ : Q × Σ → Q is the (total) transition function
and F ⊆ Q is the set of accepting locations.

Any incomplete or non-deterministic automaton can be determinized and completed.
Hence, in this paper we consider only deterministic and complete automata and the term
“automaton” refers to “deterministic and complete automaton”.

The transition function δ is extended to words by setting δ(q, ε) = q , and δ(q, a · σ) =
δ(δ(q, a), σ), for any q ∈ Q, a ∈ Σ, σ ∈ Σ∗.

Languages of automata A word σ is accepted byA starting from location q if δ(q, σ) ∈ F ,
and σ is accepted by A if σ is accepted starting from the initial location q0.

The language ofA starting from location q is denotedL(A, q) and is the set of all accepted
words from location q: L(A, q) = {σ ∈ Σ∗ | δ(q, σ) ∈ F}. The language of A, denoted
L(A), is L(A, q0), i.e. the language of A from the initial location q0.

The next lemma relates accepted words and the states reached by their prefixes in an
automaton.

Lemma 1

∀σ, σ ′ ∈ Σ∗ : σ · σ ′ ∈ L(A) ⇐⇒ (σ ′ ∈ L(A, δ(q0, σ)))

Intuitively, Lemma 1 states that given any two words σ, σ ′ ∈ Σ∗, the word obtained by
concatenating them (σ · σ ′) belongs to the language of A if and only if the word σ ′ belongs
to the language accepted by A starting from the location reached by reading σ in A (i.e.,
from δ(q0, σ)).

Product and complementation of automata Let automata A = (Q, q0, Σ, δ, F) and
A′ = (Q′, q ′

0,Σ, δ′, F ′) be over the same alphabet Σ . The product of A and A′, denoted
A × A′, is defined as (Q × Q′, (q0, q ′

0),Σ, δ × δ′, F × F ′), where (δ × δ′)((q, q ′), a) =
(δ(q, a), δ′(q ′, a)). The complement of A denoted as A is defined as (Q, q0,Σ, δ, Q \ F).
For any states q ∈ Q , q ′ ∈ Q′, we have L(A × A′, (q, q ′)) = L(A, q) ∩ L(A′, q ′) and
L(A, q) = Σ∗ \ L(A, q).

Classification of properties A regular property is a language accepted by an automaton. In
the sequel, we consider only regular properties and we refer to them as properties.

123

Form Methods Syst Des (2017) 51:154–199 159

Safety (resp. co-safety) properties are sub-classes of regular properties.3 Informally, safety
(resp. co-safety) properties state that “nothing bad should ever happen” (resp. “something
good should happen within a finite amount of time”). Formally, safety properties are the
prefix-closed languages that can be accepted by an automaton. Co-safety properties are the
extension-closed languages that can be accepted by an automaton.

Thus, an automaton A = (Q, q0,Σ, δ, F) is:

– a safety automaton if ∀a ∈ Σ,∀q ∈ Q \ F : δ(q, a) /∈ F ,
– a co-safety automaton if ∀a ∈ Σ,∀q ∈ F : δ(q, a) ∈ F .

Note that the complement of a safety automaton is a co-safety automaton and vice-versa. In
these definitions we consider automata where Q contains only locations reachable from the
initial location q0.

2.2 Timed setting

Timed words and languages In a timed setting, the occurrence time of actions is also impor-
tant. For an enforcer in a timed setting, input (resp. output) sequences are seen as sequences
of events composed of a date and an action, where the date is interpreted as the absolute time
when the action is received (resp. released) by the enforcer.

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of actions.

An event is a pair (t, a), where date((t, a))
def= t ∈ R≥0 is the absolute time at which the

action act((t, a))
def= a ∈ Σ occurs.

In a timed setting, input and output sequences of enforcers are timed words. A timed word
over the finite alphabet Σ is a finite sequence of events σ = (t1, a1)· (t2, a2) · · · (tn, an),
where (ti)i∈[1,n] is a non-decreasing sequence in R≥0. We denote by start(σ)

def= t1 the

starting date of σ and end(σ)
def= tn its ending date (with the convention that the starting and

ending dates are null for the empty timed word ε).
The set of timed words over Σ is denoted by tw(Σ). A timed language is any set L ⊆

tw(Σ). Note that even though the alphabet (R≥0×Σ) is infinite in this case, previous notions
and notations defined in the untimed case (related to length, prefix, etc) naturally extend to
timed words.

When concatenating two timed words, one should ensure that the concatenation results
in a timed word, i.e., dates should be non-decreasing. This is guaranteed if the ending date
of the first timed word does not exceed the starting date of the second one. Formally, let
σ = (t1, a1) · · · (tn, an) and σ ′ = (t ′1, a′

1) · · · (t ′m, a′
m) be two timed words with end(σ) ≤

start(σ ′). Their concatenation is

σ · σ ′ def= (t1, a1) · · · (tn, an) · (t ′1, a′
1) · · · (t ′m, a′

m).

By convention σ · ε
def= ε · σ

def= σ . Concatenation is undefined when end(σ) > start(σ ′).
The untimed projection of σ is ΠΣ(σ)

def= a1 · a2 · · · an in Σ∗ (i.e., dates are ignored).

Example 1 Consider a set of actions Σ = {a, b, c} and σ1 = (1, a) · (2.3, b) · (3, a) · (4, c) a
timed word overΣ . Note that the occurrence dates of events in σ1 are increasing. The starting

3 Similarly to some monitoring frameworks [9,19,24], we consider safety and co-safety properties over finite
words.

123

160 Form Methods Syst Des (2017) 51:154–199

Fig. 2 Timed automaton:
example

l0 l1 l2

Σ \ {alloc}
alloc,
x := 0

Σ \ {alloc}

alloc, x ≥ 10,
x := 0

alloc,
x<10

Σ

date of σ1 is start(σ1) = 1 and the ending date is end(σ1) = 4. The untimed projection of σ1
isΠΣ(σ1) = a ·b ·a ·c. Consider twomore timed words overΣ, σ2 = (2, b) ·(2.3, b) ·(3, a),
and σ3 = (10, b) · (12, a). The concatenation σ1 · σ2 is undefined since start(σ2) is less than
end(σ1). The concatenation of σ1 and σ3 is σ1 · σ3 = (1, a) · (2.3, b) · (3, a) · (4, c) · (10, b) ·
(12, a).

2.2.1 Timed automata and timed properties

A timed automaton [1] is a finite automaton extended with a finite set of real-valued clocks.
Let X = {x1, . . . , xk} be a finite set of clocks. A clock valuation for X is an element of
R

X≥0, that is a function from X to R≥0. For χ ∈ R
X≥0 and τ ∈ R≥0, χ + τ is the valuation

assigning χ(x) + τ to each clock x of X . Given a set of clocks X ′ ⊆ X, χ[X ′ ← 0] is the
clock valuation χ where all clocks in X ′ are assigned to 0. G(X) denotes the set of guards,
i.e., clock constraints defined as conjunctions of simple constraints of the form x �� c with
x ∈ X, c ∈ N and �� ∈ {<,≤,=,≥,>}. Given g ∈ G(X) and χ ∈ R

X≥0, we write χ |� g
when g holds according to χ .

Timed automata syntax and semantics Before going into the formal definitions, we introduce
timed automata on an example. The timed automaton in Fig. 2 defines the requirement “In
every 10 time units, there cannot be more than 1 alloc action”. The set of locations is
L = {l0, l1, l2}, and l0 is the initial location.4 The set of actions is Σ = {alloc, rel}. There
are transitions between locations upon actions. A finite set of real-valued clocks is used to
model real-time behavior: set X = {x} in the example. On the transitions, there are i) guards
with constraints on clock values (such as x < 10 on the transition between l1 and l2 in the
considered example), and ii) resets of clocks. Upon the first occurrence of action alloc, the
automaton moves from l0 to l1, and the clock x is reset to 0. In location l1, if action alloc is
received, and if x ≥ 10, then the automaton remains in l1, resetting the value of clock x to 0.
It moves to location l2 otherwise.

Definition 1 (Timed automata) A timed automaton (TA) is a tupleA = (L , l0, X,Σ, Δ, F),
such that L is a finite set of locations with l0 ∈ L the initial location, X is a finite set of
clocks,Σ is a finite set of actions,Δ ⊆ L ×G(X)×Σ ×P(X)× L is the transition relation,
where P(X) is the powerset of X (the set of all subsets of X). F ⊆ L is a set of accepting
locations.

The semantics of a timed automaton is defined as a transition system where each state
consists of the current location and the current values of clocks. Since the possible values for
a clock are infinite, a timed automaton has infinitely many states. The semantics of a TA is
defined as follows.

4 We denote accepting locations using double circles.

123

Form Methods Syst Des (2017) 51:154–199 161

Definition 2 (Semantics of timed automata) The semantics of a TA is a timed transition
system [[A]] = (Q, q0, Γ,→, QF) where Q = L × R

X≥0 is the (infinite) set of states,
q0 = (l0, χ0) is the initial state where χ0 is the valuation that maps every clock in X to
0, QF = F ×R

X≥0 is the set of accepting states, Γ = R≥0 ×Σ is the set of transition labels,
i.e., pairs composed of a delay and an action. The transition relation →⊆ Q × Γ × Q is a

set of transitions of the form (l, χ)
(τ,a)−−→(l ′, χ ′) with χ ′ = (χ + τ)[Y ← 0] whenever there

exists (l, g, a, Y, l ′) ∈ Δ such that χ + τ |� g for τ ∈ R≥0.

In the following, we consider a timed automatonA = (L , l0, X, Σ,Δ, F)with its semantics
[[A]].A is said to be deterministicwhenever for any location l and any two distinct transitions
(l, g1, a, Y1, l ′1) and (l, g2, a, Y2, l ′2) with source l in Δ, the conjunction of guards g1 ∧ g2 is
unsatisfiable. A is said complete whenever for any location l ∈ L and any action a ∈ Σ , the
disjunction of the guards of the transitions leaving l and labeled by a evaluates to true (i.e., it
holds according to any valuation): (∀l ∈ L ,∀a ∈ Σ : ∨

(l,g,a,Y,l ′) g) = true. For example,
the TA in Fig. 2 is deterministic and complete.

In the remainder of this paper, we shall consider only deterministic and complete timed
automata. Note that not all non-deterministic timed automata are determinizable [2,12,26].

A run ρ of A from a state q ∈ Q triggered at time t ∈ R≥0 over a timed trace wt =
(t1, a1) · (t2, a2) · · · (tn, an) is a sequence of moves in [[A]] denoted as ρt = q

(τ1,a1)−−−−→
q1 · · · qn−1

(τn ,an)−−−−→ qn , for some n ∈ N, satisfying condition t1 = t+τ1 and ∀i ∈ [2, n], ti =
ti−1 + τi . To simplify notations, we note q

wt−→ qn in this case, and generalize it to q
wt−→ P

when qn ∈ P for a subset P of Q. The set of runs from the initial state q0 ∈ Q, starting at
t = 0 is denoted Run(A) and RunQF (A) denotes the subset of those runs accepted by A,
i.e., ending in an accepting state qn ∈ QF . We denote by L(A) the set of traces of Run(A).
We extend this notation to LQF (A) as the set of traces of runs in RunQF (A). We thus say
that a timed word is accepted by A if it is the trace of an accepted run.

Timed properties In the sequel, a timed property is defined by a timed language ϕ ⊆ tw(Σ)

that can be recognized by a complete and deterministic timed automaton. That is, we consider
the set of regular timed properties that can be defined as deterministic timed automata. Given
a timed word σ ∈ tw(Σ), we say that σ satisfies ϕ (noted σ |� ϕ) if σ ∈ ϕ.

3 Predictive runtime enforcement of untimed properties

This section introduces predictive runtime enforcement of untimed properties. In this section,
ϕ and ψ are properties defined by deterministic and complete automata. First, we motivate
predictive RE via examples in Sect. 3.1. Then, we formally introduce the predictive RE
problem in Sect. 3.2 and in Sect. 3.3 we prove the independence of the constraints of the
enforcementmechanism.We later provide a solution to the predictive RE problem in Sect. 3.4
defining a predictive enforcement mechanism as a function that transforms words. We also
present algorithms that implement the proposed enforcement function in Sect. 3.5. In Sect. 3.6
and Sect. 3.7, we briefly discuss some example applications, and an implementation of the
proposed algorithms.

123

162 Form Methods Syst Des (2017) 51:154–199

Fig. 3 Property to enforce: ϕ

l0 l1

l2

l3
a|b|c

!|?

a|b|c

!|?

Σ
Σ

Fig. 4 Possible input sequences:
ψ1 l0 l1

l5

l2 l3 l4
a|b|c

!|?

a|b|c

!|?

a|b|c

!|?

!

a|b|c|?

Σ

Σ

3.1 Motivating examples

Before formally defining the problem of predictive RE, let us motivate the usefulness of
prediction in runtime enforcement via some examples.

3.1.1 Enforcing file format requirements

Consider a scenario where an application writes to a file, using multiple write operations. At
the end of the sequence of writes, the file must obey a required format. The format might not
hold in the middle of the sequence of writes (so, the property is not prefix-closed).

Let us now consider a specific requirement. Consider a simple application (say application
1) that allows to write a non-empty string containing characters from the set {a, b, c}. We
also have special end-of-string characters {!, ?}: the string should end with one of these
characters, which cannot occur elsewhere in the string. The string is valid only if this required
format condition holds. The automaton in Fig. 3 defines this requirement ϕ. Its alphabet is
Σ = {a, b, c, !, ?}. Location l0 is initial, and the only accepting location is l3.

Consider another application (say application 2) that makes use of application 1. Without
any knowledge about the sequence of write operations performed by application 2 (where
each write operation writes a character), the enforcer for ϕ must buffer all the writes without
saving to disk until one of the special characters is received. Once it receives a special
character, it can “flush” its buffer.

Input ψ1. Suppose that we have some knowledge of application 2, and we know what strings
it can produce. Consider the automaton in Fig. 4 modeling strings that application 2 can
output (that will be given as input to the enforcer). So, we now know that the input sequence
that the enforcer receives is three characters (each of them belonging to {a, b, c}) ending
with the special character “!”. Thus, the input sequences that the enforcer will receive are
ψ1 = {abc!, aac!, . . .}. Suppose that the input is σ = abc!. Without prediction, the enforcer
will buffer events a, b, and c in its memory until it sees an “!” event. But with prediction,
each event will be output (written) immediately after it is read.
Input ψ2. In the predictive setting, it is not always possible to output events immediately, and
in some situations we may require to buffer some events in the memory of the enforcer. For
example, instead of ψ1, consider ψ2 (defined by the automaton in Fig. 5) defining possible
input sequences. If the second character is “a”, then the third character should also be an

123

Form Methods Syst Des (2017) 51:154–199 163

Fig. 5 Possible input sequences:
ψ2

l0 l1

l6

l2 l3 l4

l5 l7

a|b|c

!|?

b|c

!|?

a

b|c

a|!|?

!

a|b|c|?

Σ

a

Σ

Σ \ {a}
Σ

l0 l1

l2

req
Σ \ {req}

ack

add

req

Σ

(a) Property to enforce:ϕ

l0 l1

l2

l3

req

Σ \ {req}

add
ack

Σ \ {add}

Σ \ {ack}

Σ

(b) Input sequences:ψ

Fig. 6 Monitoring communication. a Property to enforce: ϕ. b input sequences: ψ

“a”, and a special character at the end is not necessary for such strings. Consequently, when
the enforcer sees the first character, it cannot output it immediately. It has to wait until it
receives the second character, and if the second character is not an “a”, then it outputs the
first character followed by the second character. If the third character is not an “a”, it can be
output immediately (without waiting for a special character as in the non-predictive case).

3.1.2 Monitoring communication

Let us consider another situation where two applications communicate with one another.
Application 1 can request a service from the other application by sending a request (req)
message, and application 2 acknowledges any request received from the other application by
sending an acknowledgement (ack) message.Message (add) corresponds to adding a request
to a processing queue. Consider a requirement that “Every request should be followed by an
acknowledgement”. The automaton in Fig. 6a formally defines this requirement. The set of
actions is Σ = {req, ack, add}, and location l0 is initial, and accepting.
Without prediction In approaches without prediction (cf. [10,13,19]), the enforcer outputs
events only after observing a sequence of events which satisfies the property. Consequently,
when the enforcer receives a request (req) from application 1, it will not release it, and will
keep waiting forever for an acknowledgement (ack) from application 2 which will be sent by
application 2 only after it receives a request. This will result in a deadlock situation. Thus, in
this particular scenario, actions (req) and (ack) are dependent, and thus the property cannot
be enforced without prediction.

123

164 Form Methods Syst Des (2017) 51:154–199

With prediction Now, consider that we have some knowledge regarding behavior of applica-
tion 2, defined by the automaton in Fig. 6b. Whenever application 2 receives a request (req)
message, it does some processing (such as adding this request to a processing queue (add)),
and it will send an acknowledgement (ack) message. If the enforcer has this knowledge
from ψ regarding what application 2 does upon receiving a request (req) message, it can
learn that it will receive an acknowledgment (ack) in the future. Thus, whenever it receives a
request (req) message from application 1, it can release it immediately. Consequently, with
prediction (given ψ also as input to the enforcer, that defines all possible input sequences),
property ϕ can be enforced. Moreover, note that in this particular example, ψ ⊆ ϕ, and thus
any input can be immediately released as output.

3.2 Predictive runtime enforcement

In this section, we formalize the predictive runtime enforcement problem. Roughly speaking,
the purpose of enforcement monitoring is to read some (possibly incorrect) sequence pro-
duced by a running system (input to the enforcer), and to transform it into an output sequence
that is correct w.r.t. a property ϕ that we want to enforce. At an abstract level, an enforcer can
be seen as a function that transforms words. An enforcement function for a given property ϕ

takes as input a word over Σ and outputs a word over Σ that is either empty or belongs to ϕ.
Now in the predictive case, instead of considering Σ∗ as the language of possible inputs,

we consider ψ ⊆ Σ∗, that defines the set of possible sequences that the enforcer receives
at runtime as input. As we discussed in the introduction, ψ may be already available (e.g.,
from designmodels, or as statically verified properties or properties that the system is already
known to enforce). If ψ is not available, it could also be built for instance from knowledge
obtained using static-analysis.

Similar to enforcement mechanisms in [10,13,19,25], several constraints are required on
how an enforcement function transforms words. Our enforcement mechanism cannot insert
(or suppress) events, and cannot change their order, but is allowed to block when a violation
is detected. The notions of soundness, transparency and monotonicity are similar to the ones
in the non-predictive case [10,25]. Soundness expresses that the output must satisfy property
ϕ, and transparency generally aims at preventing the input sequence from being modified
unnecessarily.

In our predictive setting, we introduce an additional requirement called urgency, express-
ing that if the input sequence received so far does not satisfy the property ϕ, it is still released
as output immediately if all possible input events that the enforcer will receive in the future
will allow to satisfy ϕ.

Definition 3 (Predictive enforcer) Given properties ψ, ϕ ⊆ Σ∗, a predictive enforcer for
ψ, ϕ is a function Eψ,ϕ : Σ∗ → Σ∗ satisfying the following constraints:

Soundness

∀σ ∈ ψ : Eψ,ϕ(σ) �= ε �⇒ Eψ,ϕ(σ) ∈ ϕ (Snd)

Transparency

∀σ ∈ Σ∗ : Eψ,ϕ(σ) � σ (Tr1)

∀σ ∈ Σ∗ : σ ∈ ϕ �⇒ Eψ,ϕ(σ) = σ (Tr2)

123

Form Methods Syst Des (2017) 51:154–199 165

Monotonicity

∀σ, σ ′ ∈ Σ∗ : σ � σ ′ �⇒ Eψ,ϕ(σ) � Eψ,ϕ(σ ′) (Mo)

Urgency

∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

�⇒ Eψ,ϕ(σ) = σ
(Ur)

As we shall show later in Sect. 3.4, for any ψ, ϕ, a predictive enforcer always exists
(Theorem 1), and can be computed using the algorithm described in Sect. 3.5.

Soundness (Snd) means that for any input word belonging to ψ , if the output of the enforcer
is non-empty (ε), then it must satisfy ϕ. Regarding soundness, notice that it is restricted to
input words that belong toψ . When the input word is inψ , it means that it may be a complete
input (with no extension) and we want to be sure that the output satisfies ϕ. However, when
the input is not in ψ , we do not require the output to be in ϕ, since we allow to predict and
output the observed input sequence immediately (irrespective of whether it belongs to ϕ), if
we know that every possible continuation of the observed input satisfies ϕ (see urgency).

Note that the condition stating that the output be non-empty is unavoidable. The output of
the enforcermay be ε, and ε may not belong to the language accepted by some properties such
as some non-safety properties. For example, ε does not belong to the language accepted by
the automaton in Fig. 3. If instead we had formalized soundness as ∀σ ∈ ψ : Eψ,ϕ(σ) ∈ ϕ,
then if the output for some non-safety property is ε, then this soundness condition cannot be
satisfied. For example, let the automaton in Fig. 3 define the property ϕ we want to enforce,
and the automaton in Fig. 5 define the set of input sequences. The sequence baa is a valid
input sequence. But, none of the prefixes of this sequence (including ε) satisfies the property
ϕ, and the output of the enforcer will be ε in such cases.

Transparency Transparency is similar to its version in the non-predictive setting [10,19]. It is
expressed as the conjunction of the two constraints (Tr1) and (Tr2). (Tr1) expresses that the
output of the enforcer should be a prefix of the input. This constraint corresponds to the fact
that the enforcer is allowed only to block events, but it is not allowed to insert (or suppress)
events, and also cannot change their order. (Tr2) expresses that, if the input word satisfies
the property, then the output should be equal to the input.

(Tr1) allows to block events. For some properties (e.g., safety), blocking everything (pro-
ducing ε as output for any input sequence) will satisfy both (Snd) and (Tr1) constraints.
(Tr2) is added to ensure that the enforcer should alter the input sequence minimally (i.e., if
the input sequence satisfies the property ϕ, then the enforcer should output it completely). As
it turns out, (Tr2) is a consequence of the urgency constraint, (Ur), and is therefore redundant
(see Lemma 2 that follows).

Monotonicity The monotonicity constraint means that the enforcer cannot undo what is
already released as output during the incremental computation. (Mo) expresses that the
output of the enforcer for an extended input word σ ′ of an input word σ , extends the output
produced by the enforcer for σ . This can be seen as a causality property.

Urgency (Ur) expresses that, when the enforcer knows that the input σ followed by a prefix
(σ ′) of any continuation σcon (such that σ · σcon ∈ ψ) will satisfy the property (σ · σ ′ ∈ ϕ),
then the output of the enforcer after reading σ (which is Eψ,ϕ(σ)), should be σ .

123

166 Form Methods Syst Des (2017) 51:154–199

The urgency constraint is related to releasing events as output as soon as possible. It
expresses that if an input word (which may or may not belong toψ) satisfies ϕ, then it should
be output immediately without waiting for future input events. In case if the word received
so far does not satisfy ϕ, the enforcer should still output the input word immediately if all
possible future continuations of that (we can obtain from ψ) will satisfy ϕ.

Remark 1 (Online behavior and releasing events as soon as possible) Note that our enforcer
works in an online fashion (running in parallel with the system), and thus it does not have
the entire input sequence, and moreover its length is also unknown. For efficiency reasons,
the output should be built incrementally in a online fashion. Enforcer should output events as
soon as possible. Themonotonicity and urgency constraints are related to this online behavior
of the enforcer.

Lemma 2 (Tr2) is a consequence of (Ur).

(Ur) �⇒ (Tr2)

Proof When the input word σ belongs to ϕ, for every possible extension of the input σcon,
there is a prefix which is ε and σ · ε ∈ ϕ. Consequently, whenever σ ∈ ϕ (which is the
hypothesis of (Tr2)), the hypothesis of (Ur) will be true. Thus we can conclude that (Ur)
�⇒ (Tr2). ��
To see why (Mo) is needed, consider the following example. Let ϕ be the automaton in
Fig. 3, and let ψ = Σ∗. Consider the input sequence σ1 = abc!. Due to (Ur), and since the
hypothesis of (Ur) holds for σ1, Eψ,ϕ(σ1) should be abc!. Suppose that the input is extended
with a few more events and let the new input sequence be σ2 = σ1 · ab = abc!ab. When we
consider σ2, the hypothesis of (Ur) does not hold. Therefore, without (Mo), Eψ,ϕ(σ2) could
be either ε or abc!, since both these words satisfy (Snd), (Tr1), and (Ur). Constraint (Mo)
only allows to modify the output by appending more events to the output. Thus, together
with (Mo), the only possible output for the input word abc!ab is abc!, which is the maximal
prefix of abc!ab satisfying the hypothesis of (Ur).

For any ϕ,ψ , for any input word σ ∈ Σ∗, the output of any enforcer that satisfies the
constraints (Snd), (Tr1), (Ur) and (Mo) will be the maximal prefix of the input satisfying
the hypothesis of the (Ur) constraint.

Remark 2 (Alternative urgency constraint) A weaker definition of urgency could be:

∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σ · σcon ∈ ϕ)

�⇒ Eψ,ϕ(σ) = σ.
(Ur′)

The (Ur′) constraint expresses that, when the input σ followed by any continuation σcon
s.t. σ · σcon ∈ ψ satisfies property ϕ, then the output of the enforcer after reading σ (which
is Eψ,ϕ(σ)), should be σ .

Urgency constraint (Ur′) is weaker than urgency constraint (Ur). If σ · σcon ∈ ψ then there
is certainly a prefix of σcon (which is σcon in this case) such that σ followed by that prefix
satisfies ϕ. From transparency constraints, notice that the output can be a prefix of the input
sequence. Thus, our urgency constraint (Ur) is stronger, since we consider all the prefixes
of σcon instead of σcon only. Therefore, (Ur) results in avoiding unnecessary delaying of the
input which (Ur′) might have allowed (in some cases).

123

Form Methods Syst Des (2017) 51:154–199 167

Lemma 3 The alternative urgency constraint (Ur′) is weaker than the urgency con-
straint (Ur), i.e., (Ur) �⇒ (Ur′).

The proof of Lemma 3 is given in Appendix 1, section “Proofs: untimed setting”.

Remark 3 When we have no knowledge about the system (i.e., ψ = Σ∗), soundness and
transparency constraints reduces to the non-predictive case by replacing σ ∈ Σ∗ instead of
σ ∈ ψ . The notion of urgency in this case can be simplified as follows:

∀σ ∈ Σ∗ : σ ∈ ϕ �⇒ Eψ,ϕ(σ) = σ.

Lemma 4 Whenψ = Σ∗, the constraint (Ur) is equivalent to the following condition (which
is (Tr2) constraint):

∀σ ∈ Σ∗ : σ ∈ ϕ �⇒ Eψ,ϕ(σ) = σ.

The proof of Lemma 4 is given in Appendix 1, section “Proofs: untimed setting”.
Note, when ψ ⊆ ϕ, then the enforcer immediately outputs any word received as input.

The output of the enforcement function is always equal to the input.

Lemma 5 ψ ⊆ ϕ �⇒ (∀σ ∈ Σ∗ : Eψ,ϕ(σ) = σ).

The proof of Lemma 5 is given in Appendix 1, section “Proofs: untimed setting”.

3.3 Independence of the constraints

We prove that the constraints (Snd), (Tr1), (Ur) and (Mo) are independent. We prove their
independence by showing that all combinations of three of these constraints together with
the negation of the fourth have models. If Σ = {•}, where • is a letter, then the following
four lemmas show the independence of the constraints.

Lemma 6 If ψ = {•}∗, ϕ = {•}, and (∀σ : Eψ,ϕ(σ) = σ) then

¬(Snd) ∧ (Tr1) ∧ (Ur) ∧ (Mo)

Lemma 7 If ψ = {•}∗, ϕ = {•}, and (∀σ : Eψ,ϕ(σ) = •) then

(Snd) ∧ ¬(Tr1) ∧ (Ur) ∧ (Mo)

Lemma 8 If ψ = {•}∗, ϕ = {•}, (∀σ �= • : Eψ,ϕ(σ) = ε), and Eψ,ϕ(•) = • then

(Snd) ∧ (Tr1) ∧ (Ur) ∧ ¬(Mo)

Lemma 9 If ψ = {•}∗, ϕ = {•}∗, and (∀σ : Eψ,ϕ(σ) = ε) then

(Snd) ∧ (Tr1) ∧ ¬(Ur) ∧ (Mo)

The proofs of these lemmas follow easily using Lemma 4 (∀σ ∈ Σ∗ : σ ∈ ϕ �⇒
Eψ,ϕ(σ) = σ).

123

168 Form Methods Syst Des (2017) 51:154–199

3.4 Functional definition

In this section, we provide a definition of a predictive enforcer as a function that incrementally
builds the output. This functional definition provides an abstract view, describing how to
transform an input word according to the property ϕ. We also prove that this functional
definition satisfies all the constraints of a predictive enforcer defined in Sect. 3.2.

Definition 4 (Enforcement function) Given properties ψ, ϕ ⊆ Σ∗, where ψ is the property
of possible input sequences, and ϕ is the property that we want to enforce, the enforcement
function Eψ,ϕ : Σ∗ → Σ∗ is defined as:

Eψ,ϕ(σ) = Π1

(
storeψ,ϕ(σ)

)
.

where

– storeψ,ϕ : Σ∗ → Σ∗ × Σ∗ is defined as:

storeψ,ϕ(ε) = (ε, ε)

storeψ,ϕ(σ · a)=
{

(σs · σc · a, ε) if κψ,ϕ(σs · σc · a),

(σs, σc · a) otherwise

with (σs, σc) = storeψ,ϕ(σ).
– κψ,ϕ(σ) is defined as:

κψ,ϕ(σ) = (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ).

The enforcement function takes a word over Σ as input, and produces a word over Σ as
output. Function store takes a word over Σ as input, and computes a pair of words over Σ .
The first component of the output of function store (extracted by Π1) is the output of the
enforcement function.

The first element of the output of function store is a prefix of the input that will be the
output of the enforcement function (the property ϕ is satisfied by this prefix followed by any
continuation of the input including ε); the second element is the suffix of the input which
the enforcer cannot output yet. Function store is defined inductively: initially, for an empty
input, both elements are empty; if σ is read, storeψ,ϕ(σ) = (σs, σc), and another new event
a ∈ Σ is observed, there are two possible cases based on whether κψ,ϕ holds or not.

κψ,ϕ is a Boolean function (predicate) that takes a word over Σ as input and returns a
Boolean as output. This function tests the hypothesis of the urgency constraint, (Ur). κψ,ϕ

returns true if for every continuation σcon such that σ · σcon ∈ ψ , there is a prefix σ ′ of σcon
such that σ · σ ′ ∈ ϕ. Thus, if the sequence σ provided as input to this function satisfies ϕ,
then this condition will be satisfied since for every continuation σcon, ε is a prefix of σcon
such that σ · ε ∈ ϕ. The function κψ,ϕ returns false if the input sequence σ does not satisfy
ϕ, and there is a continuation of σ that will not allow to satisfy ϕ.

Remark 4 Note that when ψ = Σ∗, following Lemma 4, the function κψ,ϕ(σ) can be
simplified, and defined as follows:

κψ,ϕ(σ) = (σ ∈ ϕ)

Lemma 10 introduces some properties of the enforcement function, and auxiliary function
κψ,ϕ that will be used in proving that the enforcement function satisfies the soundness,
transparency, urgency, and monotonicity constraints.

123

Form Methods Syst Des (2017) 51:154–199 169

Lemma 10 For all σ, σ ′, σs, σc ∈ Σ∗ we have

1. storeψ,ϕ(σ) = (σs, σc) �⇒ σ = σs · σc
2. Eψ,ϕ(σ) �= ε �⇒ κψ,ϕ(Eψ,ϕ(σ))

3. κψ,ϕ(σ) ∧ σ � σ ′ �⇒ σ � Eψ,ϕ(σ ′)
4. σ ∈ ϕ �⇒ κψ,ϕ(σ)

The proof of Lemma 10 is given in Appendix 1, section “Proofs: untimed setting”. These
properties are also proved in Isabelle. They are proved by induction on σ or the length of σ .

Property 1 of Lemma 10 states that for any input sequence σ , if storeψ,ϕ(σ) = (σs, σc),
the concatenation of the two output words of storeψ,ϕ which is σs · σc is equal to the input
word σ .

Property 2 of Lemma 10 states that for any input sequence σ , if the output of the enforce-
ment function Eψ,ϕ(σ) is not ε, then κψ,ϕ(Eψ,ϕ(σ)) holds. This means that the sequence
that is released as output Eψ,ϕ(σ), will certainly be extended in the future to satisfy ϕ.

Property 3 of Lemma 10 states that for any two sequences σ and σ ′, if κψ,ϕ(σ) holds and
if σ is a prefix of σ ′, then σ is also a prefix of the output of the enforcement function for
σ ′. This means that if the input σ allows to satisfy ϕ (for every possible future extension of
it), then σ should be a prefix of the output of the enforcement function for a longer input
sequence σ ′.

Finally, property 4 of Lemma 10 states that for any input sequence σ , if σ belongs to
property ϕ, then the function κψ,ϕ for input σ returns true.

Theorem 1 (Soundness, transparency, monotonicity, and urgency) Given two properties ψ ,
and ϕ, the enforcement function Eψ,ϕ as per Definition 4 is a predictive enforcer satisfying
constraints (Snd), (Tr1), (Tr2), (Mo), and (Ur).

According to Theorem 1, for any two properties ψ and ϕ, a predictive enforcer always
exists.

Proof This theorem can be proved using Definitions 3 and 4 and Lemma 10. The properties
(Tr1), (Tr2), (Ur), and (Mo) are immediate consequences of the definitions and Lemma 10.

We show here the proof of the soundness (Snd) constraint:

∀σ ∈ ψ : Eψ,ϕ(σ) �= ε �⇒ Eψ,ϕ(σ) ∈ ϕ.

Let us consider σ ∈ ψ and Eψ,ϕ(σ) �= ε, and prove that Eψ,ϕ(σ) ∈ ϕ.
From (Tr1), we have Eψ,ϕ(σ) � σ , implying that there is a σ ′ such that σ = Eψ,ϕ(σ) ·σ ′.

From Lemma 10.2 we have also κψ,ϕ(Eψ,ϕ(σ)), and by expanding the definition of κψ,ϕ , we
obtain:

κψ,ϕ(σ) = (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ
)

Consequently, for σcon = σ ′, we obtain σ ′′ � σ ′ such that Eψ,ϕ(σ) · σ ′′ ∈ ϕ. From
Eψ,ϕ(σ) · σ ′′ ∈ ϕ, using Lemma 10.4, we have κψ,ϕ(Eψ,ϕ(σ) · σ ′′). We prove now that
σ ′′ = ε:

true
⇔ {proved property}

σ ′′ � σ ′
⇒ {property of word concatenation}

Eψ,ϕ(σ) · σ ′′ � Eψ,ϕ(σ) · σ ′
⇔ {property σ = Eψ,ϕ(σ) · σ ′}

123

170 Form Methods Syst Des (2017) 51:154–199

Eψ,ϕ(σ) · σ ′′ � σ

⇒ {Lemma 10.3 and κψ,ϕ(Eψ,ϕ(σ) · σ ′′)}
Eψ,ϕ(σ) · σ ′′ � Eψ,ϕ(σ)

⇒ {properties of concatenation and prefix}
σ ′′ = ε

Because σ ′′ = ε, from Eψ,ϕ(σ) · σ ′′ ∈ ϕ we obtain the conclusion Eψ,ϕ(σ) ∈ ϕ. ��
Theorem 1 is also proved in Isabelle.

Table 1 Example illustrating
incremental computation by the
enforcement function

σ σs σc Eψ,ϕ(σ)

ε /∈ ψ ε ε ε /∈ ϕ

a /∈ ψ ε a ε /∈ ϕ

ab /∈ ψ ab ε ab /∈ ϕ

abc /∈ ψ abc ε abc /∈ ϕ

abc! ∈ ψ abc! ε abc! ∈ ϕ

Maximal output For any input word σ ∈ Σ∗, the output of the enforcement function Eψ,ϕ

as per Definition 4 is the maximal prefix of the input word σ that satisfies the hypothesis of
the urgency constraint (Ur). In fact any other prefix σ ′ of σ that satisfies κψ,ϕ(σ ′) is a prefix
of Eψ,ϕ(σ), and this property is expressed in Lemma 10.3.

Remark 5 (Safety properties) Usingψ and predicting future extensions of the input is useful
when ϕ is not prefix closed. In case if the property ϕ is a safety property (i.e. prefix closed),
every prefix of the output sequence should satisfy the property ϕ. Thus, once ϕ is violated,
no continuation will allow to satisfy the property in the future. Decision to output an event
should be taken immediately after the event is received (also when ψ = Σ∗).

Example 2 (Incremental computation by the enforcement function) Let the property to
enforce ϕ be represented by the automaton in Fig. 3, and let the input property ψ be
represented by the automaton in Fig. 5. Table 1 illustrates how the enforcement function
incrementally builds the output when the input word is abc!.
3.5 Enforcement algorithm

In Sect. 3.4, we provided an abstract view of our predictive enforcement monitoring mech-
anism, defining it as a function that transforms words. However, it is not immediate to see
how this function can be implemented. In particular, how the component function κψ,ϕ can
be implemented is not straightforward. In this section, we provide algorithms that implement
κψ,ϕ , as well as the overall enforcement function.

Let automaton Aψ = (Qψ, qψ,Σ, δψ, Fψ) define property ψ = L(Aψ, qψ), and
automaton Aϕ = (Qϕ, qϕ,Σ, δϕ, Fϕ) define property ϕ = L(Aϕ, qϕ). We recall that ψ

models the property of possible input sequences, and ϕ models the property that we want to
enforce.

We devise an on-line algorithm, with input Aψ and Aϕ , which is an infinite loop that
waits for input events (letters of the alphabet). We know that any input sequence that we
get satisfies ψ eventually. An iteration of the algorithm is triggered by an input event. If the

123

Form Methods Syst Des (2017) 51:154–199 171

Fig. 7 Automaton Bϕ

l0 l1

l2

l3
Σ \ {!, ?}

!|?

Σ \ {!, ?}

!|?

Σ

Σ

sequence of events obtained already followed by the current event does not satisfy κψ,ϕ then
we hold this event. Otherwise we output all events held by earlier iterations.

We start by implementing function κψ,ϕ .

Implementation of κψ,ϕ We first introduce an automaton Bϕ based on Aϕ . Let Bϕ =
(Qϕ, qϕ,Σ, δ′

ϕ, Fϕ), where δ′
ϕ is defined as

δ′
ϕ(q, a) =

{
δϕ(q, a) if q /∈ Fϕ,

q otherwise .

In Bϕ , we retain all the transitions in Aϕ that are from non-accepting locations. Any tran-
sition from an accepting location in Aϕ is directed to the same accepting location. Thus, in
automaton Bϕ , we will not have transitions from accepting to non accepting locations.

Intuitively, a word σ is accepted by Bϕ starting from q ∈ Qϕ if it is an extension of a
word accepted by Aϕ starting also from q . We can see also that the property L(Bϕ, q) is a
co-safety property.5

Lemma 11 If q ∈ Qϕ and σ ∈ Σ∗ then

σ ∈ L(Bϕ, q) ⇐⇒ (∃σ ′ ∈ Σ∗ : σ ′ � σ ∧ σ ′ ∈ L(Aϕ, q)
)
.

Example 3 (An example automatonBϕ) Let us now further understand howBϕ is constructed
for any givenAϕ via a simple example. Consider the automaton in Fig. 3 asAϕ . In Fig. 7, we
can see the automatonBϕ thatwe obtain fromAϕ . The only transition inAϕ from an accepting
to a non-accepting location is the transition from location l3 to location l2. In automaton Bϕ

this transition is replaced with a self-loop in location l3. All the other transitions that are in
Aϕ remain in Bϕ .

The implementation of function κψ,ϕ is given by the next theorem.

Theorem 2 If σ ∈ Σ∗, p = δψ(qψ, σ), and q = δϕ(qϕ, σ) then

κψ,ϕ(σ) ⇐⇒ L(Aψ × Bϕ, (p, q)) = ∅.

Proof We have:

κψ,ϕ(σ)

⇔ {Definition of κψ,ϕ, ψ = L(Aψ, qψ), and ϕ = L(Aϕ, qϕ)}

∀σ ′′ ∈ Σ∗: σ · σ ′′ ∈ L(Aψ, qψ) �⇒ (∃σ ′ � σ ′′ : σ · σ ′ ∈ L(Aϕ, qϕ))

⇔ {Lemma 1, p = δψ(qψ, σ), and q = δϕ(qϕ, σ)}

∀σ ′′ ∈ Σ∗ : σ ′′ ∈ L(Aψ, p) �⇒ (∃σ ′ � σ ′′ : σ ′ ∈ L(Aϕ, q))

5 Co-safety properties are extension-closed languages by definition.

123

172 Form Methods Syst Des (2017) 51:154–199

⇔ {Lemma 11}

∀σ ′′ ∈ Σ∗ : σ ′′ ∈ L(Aψ, p) �⇒ σ ′′ ∈ L(Bϕ, q)

⇔ {Properties of sets and automata}

L(Aψ × Bϕ, (p, q)) = ∅ ��
Theorem2 shows that testing κψ,ϕ(σ) reduces to checking emptiness of a regular language.

Enforcement algorithm Let us now see the algorithm in detail, that requires automata Aψ

andAϕ as input. AlgorithmEnforcer (see Algorithm 1) is an infinite loop that scrutinizes the
system for input events. In the algorithm, p holds the current state of automaton Aψ and q
holds the current state ofAϕ . Initially p, q are assigned the initial states of automataAψ and
Aϕ , respectively. Sequence σc corresponds to σc in the functional definition, and contains
the sequence of events that are already received, and not released as output yet. Automaton
C is the product of the automata Aψ , and Bϕ . Primitive await_event is used to wait for a
new input event. Function release takes a sequence of events, and releases them as output
of the enforcer.The algorithm proceeds as follows. The memory σc is initialized to ε, and the
current state information of Aϕ and Aψ are initialized with their initial states. It then enters
an infinite loop where it waits for an input event. Upon receiving an event a, the current
states of Aψ and Aϕ are updated, with the state that we reach in these automata, from their
current state, reading event a. Later, the algorithm checks whether the language accepted
by the automaton C from state (p, q) is empty.6 If the language accepted by the automaton
C from state (p, q) is empty, then all the events that are in the memory of the enforcer σc
followed by the received event a are released as output, and the memory of the enforcer is
emptied (σc is set to ε). Otherwise the event a is added to the memory of the enforcer.

The next lemma shows that this algorithm implements an on-line version of the function
Eψ,ϕ .

Algorithm 1 Enforcer
1: σc ← ε

2: p, q ← qψ, qϕ

3: C ← Aψ × Bϕ

4: while true do

5: a ← await_event()

6: p, q ← δψ(p, a), δϕ(q, a)

7: if L(C, (p, q)) = ∅ then

8: release(σc · a)

9: σc ← ε

10: else

11: σc ← σc · a

6 The language accepted by the automaton C from state (p, q) is empty if no accepting state is reachable from
state (p, q) in C.

123

Form Methods Syst Des (2017) 51:154–199 173

Lemma 12 If σ is the sequence of events received so far by the enforcement algorithm, and
if σ1, · · · , σk are the sequences released by the algorithm for σ , then

Eψ,ϕ(σ) = σ1 · · · · · σk and σ = Eψ,ϕ(σ) · σc

where σc corresponds to σc in the algorithm, equivalent to σc in the definition of Eψ,ϕ .

Lemma 12 states that for input σ , if we concatenate the output sequences released by the
enforcement algorithm, it will be equal to the output of the enforcement function Eψ,ϕ(σ).
The input sequence σ is equal to the output of the enforcement function Eψ,ϕ(σ) followed
by the sequence in the memory of the enforcer σc.

The proof of Lemma 12 is given in Appendix 1, section “Proofs: untimed setting”.

Remark 6 (Complexity) The predictive runtime enforcement method has an off-line and an
on-line component. In particular, the product automaton C computed in line 3 of Algorithm 1
can be computed off-line, before the actual on-line monitoring starts. In fact, the test for
emptiness in line 7 of the algorithm can also be computed off-line, for every possible pair of
states (p, q) in the product (how to check emptiness is well-known in automata theory). Then
the results can be stored in a table with size the number of states in the product state space,
i.e., the product of the states inAψ and in Bϕ . This results in quadratic space complexity, but
constant time complexity for the on-line emptiness check. The 1-step reaction implemented
in line 6 can also be done in constant time, by storing the transition tables of the two automata
(these can be stored separately for each automaton, therefore requiring less space than the
product). Overall, this gives a constant time on-line complexity for Algorithm 1.

3.6 Applications of predictive RE

In this section, we will discuss another application of predictive RE. In Sect. 3.1, we already
discussed few abstract examples related to enforcing file format requirements, and monitor-
ing communication. Related to monitoring communication, let us now consider a specific
communication protocol.

Communication protocol in multi-agent systems AMulti-agent system (MAS) [28] is a sys-
tem composed of multiple intelligent agents that interact with each other. Each agent is
considered to be an autonomous entity such as a software program. Agents are asynchronous,
and communicate via message passing.

Consider some agents working together in an environment. Whenever an agent makes
some change to the environment, it informs the other agents to have a common perception
of the environment, and the agents use the datasync protocol [21] for this purpose. In the
area of multi-agent systems, automata have been used widely to represent communication
protocols such as the continuous update protocol and the datasync protocol [21].

The datasync protocol as an automaton is illustrated in Fig. 8. In this example, we consider
two agents a1 and a2. Agent a1 informs the other agent of changes to the environment by
sending an a1.inform action. Agent a2 can respond by sending back an acknowledgement
a2.ack if it accepts the change or correct it by responding with an a2.inform message. The
set of actions is Σ = {a1.inform, a2.inform, a1.ack, a2.ack}.

Consider that the enforcementmechanismon agenta1 has someknowledge of thedatasync
protocol (ψ defined by the automaton in Fig. 8). We can synthesize enforcers for properties
such as:

ϕ1 Every inform action from agent a1 (i.e., every a1.inform action) should eventually end
with an ack action from agent a1 or a2 (i.e., an action from {a1.ack, a2.ack}). In between

123

174 Form Methods Syst Des (2017) 51:154–199

l0 l1 l2

l3

a1.inform a2.inform

a2.ack a1.inform

a1.ack

Σ \ {a1.inform}

a1.inform|a1.ack

a2.inform|a2.ack

Σ

Fig. 8 Datasync protocol model: ψ

l0 l1

a1.inform
Σ \ {a1.inform} a2.inform|a1.inform

a2.ack |a1.ack

(a) Property ϕ1

l0 l1

l2

a1.inform

Σ \ {a1.inform}

Σ \ a1.inform

a1.inform

Σ

(b) Property ϕ2

Fig. 9 Properties ϕ1 and ϕ2. a Property ϕ1. b Property ϕ2

inform and ack there can be some inform actions. This property is defined by the automa-
ton in Fig. 9a.

ϕ2 Agent a1 cannot send two consecutive inform messages. This property is defined by the
automaton in Fig. 9b.

Without knowledge of ψ and without prediction, when the enforcer for property ϕ1 receives
an inform action it will not release it and it will keep waiting for an ack, resulting in a
deadlock situation. Thus, without prediction, properties such as ϕ1 cannot be enforced in
practice. Using predictive RE, from the provided knowledge of the datasync protocol, the
enforcer learns that it will eventually receive an ack action upon receiving an inform action
from agent a1.

3.7 Implementation and evaluation

In this section, we will discuss about an implementation of Algorithm 1 in Sect. 3.7.1, and
the evaluation of its performance using examples from different applications in Sect. 3.7.2.

3.7.1 Implementation

The predictive enforcement monitoring algorithm described in Sect. 3.5 is implemented in
500 lines of code in Python. The functionality is divided into two modules as shown in

123

Form Methods Syst Des (2017) 51:154–199 175

sequence
of actions
σ ∈ Σ∗

sequence
of actions
o ∈ Σ∗

automata ψ,ϕ
set of actions Σ

set of states Q

initial state q0

final state F

transition function δ

Enforcer

DFA

Fig. 10 Implementation overview

Fig. 10. The DFA module contains all the functionality related to defining automata, oper-
ations on automata such as negation and product, and checking emptiness. The Enforcer
module implements the predictive enforcement algorithm described in Sect. 3.5. The imple-
mentation with documentation and some examples are available for download at: https://
github.com/SrinivasPinisetty/PredictiveRE.

The enforcer method in the module Enforcer is invoked with two automata defining ψ

and ϕ, and a sequence of events. In order to use the enforcer method, the properties ψ and
ϕ should be described in the intended format using the DFA module. Figure 11 presents the
automaton in Fig. 3 described in the intended format using the DFA module. A complete
example illustrating how the enforcer method is invoked is presented in “Appendix 2”.

3.7.2 Evaluation

Using some example properties based on real applications, we evaluated the performance of
the Python implementation. As we discussed in Remark 6, the product automaton C in line 3
of Algorithm 1 is computed off-line. Moreover, the emptiness check for every state (p, q)

in the product automaton C is also computed off-line [i.e., before entering the infinite loop
(line 4 in Algorithm 1)] and the results are stored in a table.

We will focus on benchmarking the total off-line time required (i.e., the time taken for
computing the automaton C from Aψ and Aϕ plus the time taken for computing the table
containing the results of the emptiness checks for each state in C). We will also measure the
space used for storing the emptiness check table. We will consider examples varying in the
number of states in the automata Aψ and Aϕ and measure the performance of the Python
implementation. Experiments were conducted on an Intel Core i5-4210U at 1.70 GHz CPU,
with 4 GB RAM, and running on Windows 7. The reported numbers are mean values over
1000 runs.

Examples Results of the performance analysis for examples considered from different appli-
cation domains are presented in Table 2.

– Examples FileFormat1 and FileFormat1 are related to enforcing file format
requirements described in Sect. 3.1.

– Examples DataSync1 and DataSync1 are related to monitoring communication, in
particular the datasync protocol example described in Sect. 3.6, where the automaton
Aψ in both these examples is the property ψ (described by the automaton in Fig. 8). The
automaton Aϕ in DataSync1 is the property ϕ1 (defined by the automaton in Fig. 9a),

123

https://github.com/SrinivasPinisetty/PredictiveRE
https://github.com/SrinivasPinisetty/PredictiveRE

176 Form Methods Syst Des (2017) 51:154–199

Fig. 11 Example: definition of
automaton in Fig. 3

Table 2 Performance analysis

Example States (Aψ) States (Aϕ) Time (s) Size (entries) (Bytes)

FileFormat1 1 4 0.000139 4 115

FileFormat2 5 4 0.000616 20 397

DataSync1 4 3 0.000473 12 253

DataSync2 4 9 0.001445 36 806

TCP1 7 6 0.003868 42 868

TCP2 7 18 0.014691 126 2678

TCP3 7 54 0.055115 378 8386

TrafficLight1 11 3 0.001077 33 702

TrafficLight2 11 9 0.003653 99 2049

TrafficLight3 11 27 0.012255 297 6260

TrafficLight4 11 81 0.049394 891 19,430

TrafficLight5 11 243 0.224003 2673 61,521

and in DataSync2 the automatonAϕ is the property obtained by taking the conjunction
of properties ϕ1 and ϕ2 (i.e., the automaton obtained by taking the conjunction of the
automata in Fig. 9a, b).

– Examples TCP1, TCP2 and TCP3 are related to using the enforcer as a firewall or a NID
to detect and prevent some attacks. The automaton defining the input propertyψ in these
examples models the TCP connection status, described in [27], and different properties

123

Form Methods Syst Des (2017) 51:154–199 177

to enforce are considered such as “Each connection should start with S. At most 4
consecutive S actions are allowed.”, and “Data transfer can occur only after connection
is established.”. In each example, the number of properties enforced is incremented,
resulting in an increase in the number of states of the automaton defining ϕ.

– Examples TrafficLight1 to TrafficLight5 are related to the traffic light con-
troller application. In this example, the input property ψ defines a simple traffic light
controller model, and different properties to enforce are considered such as “No two
consecutive red signals.” and “A red signal should be immediately followed by a green
signal.”. In each example, the number of properties to enforce is incremented.

Results In Table 2, entry Example is the name of the example, States (Aψ) is the number of
states in the automatonAψ and States (Aϕ) is the number of states in the automatonAϕ . The
entry Time (Sec.) presents the total (off-line) time (time required to compute the automaton
C fromAψ andAϕ , and the table containing results of emptiness check for every state in C).
The number of entries in the emptiness check table (which is equal to the number of state in
C) is presented in the entry Size (Entries), and the entry Size (Bytes) shows the size of this
table in bytes.

FromTable 2, we can notice that the number of entries in the emptiness check table (which
is equal to the number of states in the automaton C = Aψ × Bϕ) increases with increase in
the number of states inAψ and (or)Aϕ . The size of the table in bytes increases linearly with
increase in the number of entries in the emptiness check table. Regarding the off-line time,
as expected we can notice that it increases with increase in the number of states in Aψ and
(or)Aϕ (resulting in increase in the number of states in the automaton C). We can notice that
the time increase is not linear because the time required to compute emptiness check is not
linear on the number of states of C.

4 Predictive runtime enforcement of timed properties

We extend the predictive RE framework presented in Sect. 3 to enforce timed properties.
In this section, ϕ and ψ are timed properties defined as deterministic and complete timed
automata Aϕ (with semantics [[Aϕ]]) and Aψ (with semantics [[Aψ]]) respectively. Inputs
and outputs of an enforcer are now timed words.

Wefirst recall some results on runtime enforcement for timed propertieswithout prediction
in Sect. 4.1, where the system beingmonitored is considered as a black-box. Later in Sect. 4.2,
we motivate via examples the interests and advantages of having prediction for runtime
enforcement in the timed setting. The soundness, monotonicity7 and transparency constraints
from the non-predictive case can be adapted in a straightforward manner. For predictive
runtime enforcement, similar to the untimed case, we need an additional constraint, namely
urgency which is not straightforward to adapt from the untimed setting to the timed setting.
We formally describe the predictive runtime enforcement problem of timed properties in
Sect. 4.3. Later in Sect. 4.4, we provide a solution to the predictive RE problem, defining an
enforcement mechanism as a function that transforms timed words, and finally in Sect. 4.5
we discuss about an implementation of the predictive RE problem for timed properties.

7 In some earlier works [17,19], constraint monotonicity is called a physical constraint.

123

178 Form Methods Syst Des (2017) 51:154–199

4.1 Runtime enforcement of timed properties without prediction

Timed properties are more precise to specify desired behaviors of systems since they allow to
explicitly state how time should elapse between events. When we consider timed properties
(over finite sequences), in addition to the order of events, their occurrence time also affects
the satisfaction of the property. Enforcement monitors for timed properties can be useful
in various application domains [16]. For instance, in the context of security monitoring,
enforcers can be used as firewalls to prevent denial of service attacks by ensuring a minimal
delay between input events (carrying some request for a protected server).

Some earlier endeavors [11,16–19], describe how to synthesize enforcers for timed proper-
ties. Timed automaton is themodel used to formally define a property fromwhich an enforcer
is synthesized. All regular timed properties specified by deterministic timed automata are
supported in the framework proposed in [17,19]. The considered enforcement mechanisms
are time retardants, i.e., their main enforcement primitive consists in delaying the received
events.

In the timed setting [19], an enforcement mechanism should be sound, which means that
it should correct input words according to the property ϕ if possible, and otherwise produce
an empty output. Second, it should be transparent, which means that it is only allowed to
shift events in time while keeping their order (such behavior is referred to as time retardants).
Third, it should satisfy the monotonicity constraint reflecting the streaming of events: the
output sequence can only be modified by appending new events to its tail.

4.2 Motivating examples

Let us now see how prediction (using some knowledge of the system behavior) will help
in the timed setting. For real-time systems, it is certainly advantageous if it is possible to
release events as output earlier. Moreover, in the timed setting some properties that become
non-enforceable because of holding some events in the buffer (and delaying them) can be
enforced by predicting future input events and releasing events as output earlier.

Remark 7 (Completeness) Regarding completeness of timed automata examples, for read-
ability we omit a trap location (i.e, a non-accepting location with a self-loop over all actions)
and its incoming transitions. If no transition can be triggered upon receiving an event, a TA
implicitly moves to a non-accepting trap location.

4.2.1 Example 1: Reduce output dates with prediction

Let us consider the situation where a process accesses a resource via three interactions with
the resource: acquisition (acq), release (rel), and a specific operation (op). Consider the
following requirement with timing constraints (extracted from examples described in [11]),
defined by the automaton in Fig. 12. “The process should behave in a transactional manner,
where each transaction consists of an acquisition of the resource, at least one operation on
it, and then a release of it. After the resource is acquired by a process, the operations on the
resource by that process should be done within 10 time units. After the resource is acquired,
it should not be released by the process before 10 time units. There should be no more than
10 time units without any ongoing transaction.”

Without prediction Let us consider the input sequence σ1 = (1, acq) · (2, op) · (2.4, op) ·
(3, rel) (where each event is composed of an action, and a date indicating the time instant

123

Form Methods Syst Des (2017) 51:154–199 179

Fig. 12 TA defining property to
enforce: ϕ

l0

l1

l2

x ≤ 10
acq

x := 0

x ≤ 10
op

x ≤ 10
op

x ≥ 10
rel

x := 0

Fig. 13 TA defining possible
input sequences: ψ1

l0 l1 l2

l3

x ≤ 1
acq

x ≤ 6
op

x ≤ 7
op

x = 10
rel

x := 0

at which the action is received as input). The enforcer receives the first action acq at t = 1,
followed by op at t = 2, etc.

According to the enforcement mechanism for timed properties proposed in [19], at
t = 1, 2, 2.4, when the enforcer receives the actions, it cannot release them as output but
memorizes them since, upon each reception, the sequence of actions it received so far cannot
be delayed to satisfy the property ϕ. At t = 3, upon the reception of action rel, the sequence
received so far can be delayed to satisfy the property ϕ. Thus, the date associated with the first
action acq is set to 3. The output of the enforcer for σ1 is (3, acq) · (3, op) · (3, op) · (13, rel).
To satisfy the timing constraint on release actions after acquisitions, the date associated to
the last event rel is set to 13.

Consider another input sequence σ2 = (0, acq) · (2, op) · (2.4, op) · (10, rel). The enforcer
observes the required sequence of actions only at t = 10. Thus, the date associated with the
first action acq is set to 10. The next two op actions are also released as output at t = 10.
The date associated to the last event rel is set to 20 (to satisfy the timing constraint that there
should be a delay of at least 10 time units between acquisition and release of a resource).
Thus, the output for σ2 will be (10, acq) · (10, op) · (10, op) · (20, rel).

With prediction (property ϕ, input property ψ1) Now, assume that the enforcer has some
knowledge of the behavior of the processes defined by the automaton in Fig. 13. The enforcer
knows that all the input sequences that it receives satisfyψ1.Consider again the input sequence
σ2 = (0, acq) · (2, op) · (2.4, op) · (10, rel). Notice that σ2 ∈ ψ1. Now, instead of waiting
until 10 time units to start releasing events, after observing the first event acq at 0 time units,
from ψ1, the enforcer knows for sure that within 10 time units, it will receive two op actions
followed by a rel action. Thus, the enforcer can release acq as output immediately at 0 time
units. The next two op actions can be also released at time instants when they are received
(2 and 2.4 respectively). The enforcer also knows that rel will be received exactly at 10 time
units. Thus, the last action rel also can be released as output at the same time instant. The
output of the enforcer will be (0, acq) · (2, op) · (2.4, op) · (10, rel). Since ψ1 ⊆ ϕ, given any
input sequence that belongs to ψ1, predictive enforcer for ϕ can release any event as output
immediately after receiving it.

123

180 Form Methods Syst Des (2017) 51:154–199

Fig. 14 TA defining possible
input sequences: ψ2

l0 l1 l2

l3

x ≤ 5
acq

x ≤ 6
op

x ≤ 7
op

x ≤ 9
rel

x := 0

time

actions

acq

op

op

rel

Output predictionInput Output

Fig. 15 Property ϕ, input propertyψ2: input word σ1 (red, circle), non-predictive enforcer output (blue, star),
predictive enforcer output (green, diamond). The diamonds are shifted upwards not to overlap with the circles.
(Colour figure online)

With prediction (property ϕ, input property ψ2). Now, consider ψ2 (Fig. 14) instead of ψ1.
The enforcer knows that all the input sequences that it receives satisfyψ2. Consider the input
sequence σ1 = (1, acq) · (2, op) · (2.4, op) · (3, rel). Now, instead of waiting until 3 time
units to start releasing events, after observing the first event acq at 1 time units, from ψ2, the
enforcer knows for sure that within 9 time units, it will receive two op actions followed by a
rel action. Thus, the enforcer can release acq as output immediately at 1 time units. The next
two op actions can be also released at time instants when they are received (2 and 2.4). Only
the last event rel needs to be delayed for some additional time (in order to satisfy the timing
constraint). The output of the enforcer will be (1, acq) · (2, op) · (2.4, op) · (11, rel). Notice
that the output sequence (1, acq) · (2, op) · (2.4, op) · (11, rel) belongs to ϕ but it does not
belong to ψ2. This is because of introducing additional delays between some actions. Such
a situation can never occur in the untimed setting. We never change the input sequence and
only block when it is not possible to output (thus the output is a prefix of the input). In the
untimed case, if all the events are released as output, the input and output sequences will be
equal and it belongs to both ψ and ϕ. In the timed case, blocking affects the absolute time
(modifying the date at which the event is released as output).

Figure 15 illustrates the enforcement mechanism behavior without and with prediction
(given ψ2) when correcting the input sequence σ1 (dates in abscissa and actions in ordinate).
The dashed curve in red color represents the input sequence, the solid curve in blue color rep-
resents the output sequence without prediction, and the solid curve in green color represents
the output sequence with prediction.

123

Form Methods Syst Des (2017) 51:154–199 181

Fig. 16 TA defining possible
input sequences: ψ3

l0 l1 l2

l3

x ≤ 5
acq

x ≤ 6
op

x ≤ 7
op

x ≤ 15
rel

x := 0

Remark 8 Notice that the untimed projections of the output (considering only the sequence
of actions, ignoring dates) are identical with and without prediction in this example. But
prediction allows to output some events earlier (output dates of some events can be less).
In this particular example, notice that the dates of all the events in the output are less with
prediction, compared to the output without prediction.

4.2.2 Example 2: Enforce more properties with prediction

Consider again the property ϕ defined by the automaton in Fig. 12.

Without prediction For some non-safety timed properties such as the property defined by
the automaton in Fig. 12, the enforcement mechanism in [19] fails from preserving correct
sequences. Such properties are described as non-enforceable properties in [19].8

For example, consider the input sequence σ3 = (2.4, acq) · (6, op) · (7, op) · (13, rel).
We shall see that though σ3 satisfies ϕ, the output of the enforcer will be ε. The enforcer
observes actions acq followed by two op actions and a rel action only at 13 time units. Thus,
without prediction, the date associated with the first action acq should be at least 13 time
units. However, if the enforcer chooses a date greater than 10 for the first action acq, the
timing constraint cannot be satisfied. Consequently, the output of the enforcer will be ε for
the considered input sequence. The enforcer without prediction cannot release any event as
output, since it has to wait until it receives action rel to start releasing the previous received
actions (acq and op), that affects the date of the first action, falsifying the timing constraint.

With prediction Let ψ3 (defined by the TA in Fig. 16) define the set of input sequences. The
enforcer knows that all the input sequences that it receives satisfyψ3. Consider again the same
input sequence σ3 = (2.4, acq) · (6, op) · (7, op) · (13, rel). Now, instead of waiting until 13
time units to start releasing events, after observing the first event acq at 2.4 time units, from
ψ3, the enforcer knows for sure that within 7 time units, it will receive two op, and within 15
time units the resource will be released (the enforcer will receive a rel action). The enforcer
can thus release acq as output immediately at 2.4 time units. The next two op actions and rel
action can be also released at time instants when they are received (6, 7 and 13 respectively).
The output of the enforcer will be equal to the input (2.4, acq)·(6, op)·(7, op)·(13, rel). Thus
the property becomes enforceable given that the input word of the enforcer for ϕ belongs to
ψ3. Figure 17 illustrates the enforcement mechanism behavior without and with prediction
(given ψ3) when correcting the input sequence σ3 to enforce property ϕ.

4.2.3 Preliminaries to RE of timed properties

In addition to the prefix order �, we will use the following partial orders on timed words.

8 Remark 3 in [19] describes non-enforceable timed properties.

123

182 Form Methods Syst Des (2017) 51:154–199

time

actions

acq

op

op

rel

Input

Output =

Output Prediction

Fig. 17 Property ϕ, input propertyψ3: input word σ3 (red, circle), non-predictive enforcer output (blue, star),
predictive enforcer output (green, diamond). The diamonds are shifted upwards not to overlap with the circles.
(Colour figure online)

Delaying order ≥d : For σ, σ ′ ∈ tw(Σ), σ ′ ≥d σ iff they have the same untimed projection
but the dates of events in σ ′ are greater than or equal to the dates of corresponding events in σ .

In other words, sequence σ ′ is obtained from σ by keeping all actions, but with a potential
increase in dates. Formally:

σ ′ ≥d σ
def= ΠΣ(σ) = ΠΣ(σ ′) ∧ ∀i ∈ [1, |σ |] : date(σ[i]) ≤ date(σ ′[i]).

For example, (4, a) · (7, b) · (9, c) ≥d (3, a) · (5, b) · (8, c).

Delaying prefix order �d : For σ, σ ′ ∈ tw(Σ), σ ′ delays σ (denoted as σ ′ �d σ) iff the
untimed projection of σ ′ is a prefix of the untimed projection of σ , but the dates of events in
σ ′ may exceed the dates of corresponding events in σ .

In other words, sequence σ ′ is obtained from σ by keeping a prefix of actions, but with a
potential increase in dates of the considered prefix. Formally:

σ ′ �d σ
def= ΠΣ(σ ′) � ΠΣ(σ) ∧ ∀i ∈ [1, |σ ′|] : date(σ[i]) ≤ date(σ ′[i]).

For example, (4, a) · (7, b) �d (3, a) · (5, b) · (8, c).
We have that σ ′ ≥d σ if and only if σ ′ �d σ ∧ |σ ′| = |σ |.

4.3 Predictive enforcement monitoring of timed properties

Similar to the untimed setting in Sect. 3.2, several constraints are required on how an enforce-
ment function transforms words. Input and output are timed words over Σ . The input timed
word σ belongs to the input property ψ ⊆ tw(Σ) and the property to enforce is ϕ ⊆ tw(Σ).
Our enforcer can only introduce some delays between events if necessary, and block when a
violation is detected. Similar to the untimed setting in Sect. 3.2, it cannot insert (or suppress)
events, and cannot change their order.

Definition 5 (Constraints on an enforcement mechanism) Given properties ψ, ϕ ⊆ tw(Σ),
an enforcement function Eψ,ϕ : tw(Σ) → tw(Σ), should satisfy the following constraints:

123

Form Methods Syst Des (2017) 51:154–199 183

– Soundness:

∀σ ∈ ψ : Eψ,ϕ(σ) �= ε �⇒ Eψ,ϕ(σ) ∈ ϕ. (SndT)

– Transparency:

∀σ ∈ tw(Σ) : Eψ,ϕ(σ) �d σ. (TrT)

– Monotonicity:

∀σ, σ ′ ∈ tw(Σ) : σ � σ ′ �⇒ Eψ,ϕ(σ) � Eψ,ϕ(σ ′). (MoT)

– Soundness (SndT) means that for any input word belonging to ψ , if the output of the
enforcer is not ε, then it must satisfy ϕ. This constraint is similar to the soundness
constraint in the untimed setting.

– Transparency (TrT) expresses that for any input timed word, the output timed word is a
delayed prefix of the input. Note that in the untimed setting, the output word is a prefix
of the input word. But, in the timed setting, delaying some events affects the output dates
of those events as we saw in some examples in Sect. 4.2. Thus, in the timed setting, the
enforcement mechanism is allowed to increase dates of events while preserving their
order.

– Themonotonicity constraint is based on the fact that, over time, the enforcement function
outputs a continuously-growing sequence of events. The constraint (MoT) means that
the output produced for an extension σ ′ of an input timed word σ extends the output
produced for σ . The output for a given input can be modified by only appending new
events (with greater dates).

The soundness, transparency, and monotonicity constraints are similar to non-predictive
enforcement of timed properties [19]. For prediction, similar to the untimed setting in
Sect. 3.2, we should introduce another additional constraint, namely urgency. However, it
is not straightforward to adapt urgency from the untimed setting to the timed setting. Let
us now see some alternatives for urgency starting from a straightforward adaptation of the
urgency constraint from the untimed setting.

Remark 9 (UrgencyT1)

∀σ ∈ tw(Σ) : (∀σcon ∈ tw(Σ) : σ · σcon ∈ ψ �⇒
∃σ ′ ∈ tw(Σ) : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

�⇒ Eψ,ϕ(σ) = σ

The constraint UrgencyT1 is a straightforward adaptation of the urgency constraint Ur in
the untimed setting, where we consider timed words over tw(Σ) instead of words over Σ .

This straightforward adaptation works for some simple cases. For example, let the TA
in Fig. 12 define ϕ, and the TA in Fig. 13 define ψ . Consider again the input sequence
σ2 = (1, acq) · (2, op) · (2.4, op) · (10, rel). For input σ2, UrgencyT1 allows to output each
event immediately after it is received as described in Sect. 4.2.2.

However, it is easy to see that UrgencyT1 does not take into account all cases. It is not
always possible to release each event immediately after it is received, and we may have to
delay some events (for example to satisfy the timing constraints). For example, let the prop-
erty to enforce ϕ be the TA in Fig. 12, and let ψ be the TA in Fig. 14. If we consider the
input sequence σ1 = (1, acq) · (2, op) · (2.4, op) · (3, rel), also with prediction, as discussed
in Sect. 4.2, we should delay the last action rel. Upon each event, not all continuations σcon
according toψ may allow to satisfyϕ. But, if we consider delaying some events in σcon, it may

123

184 Form Methods Syst Des (2017) 51:154–199

allow to satisfy ϕ. In this particular example, at t = 1, when we receive acq, fromψ we know
thatwewill receive two op actions and a rel action before t = 9. Thus at t = 1, not all continu-
ations allow to satisfyϕ, but ifwe consider delaying some events of all continuations (delaying
the last event rel in this example), we know at t = 1 that every continuation allows to satisfyϕ.

Remark 10 (UrgencyT2) In this alternative urgency constraint, instead of prefixes of all σcon,
we consider delayed prefixes of all σcon.

∀σ ∈ tw(Σ) : (∀σcon ∈ tw(Σ) : σ · σcon ∈ ψ �⇒
∃σ ′ ∈ tw(Σ) : σ ′ �d σcon ∧ σ · σ ′ ∈ ϕ)

�⇒ Eψ,ϕ(σ) = σ

For all the examples with prediction that we discussed in Sect. 4.2, UrgencyT2 constraint
allows to release events as expected.

For example, let us again consider the situation that did not work with UrgencyT1, where
the property to enforce ϕ be the TA in Fig. 12, andψ be the TA in Fig. 14. Consider again the
input sequence σ1 = (1, acq) · (2, op) · (2.4, op) · (3, rel). Upon each event, all continuations
σcon according to ψ , have a delayed prefix that allows to satisfy ϕ. Thus, the UrgencyT2
constraint is satisfactory here.

However, UrgencyT2 is also not sufficient since the transparency constraint also allows
to increase the dates of events, and the enforcer should build the output incrementally. Thus
the input sequence that is already corrected (and released as output) may not be a prefix of
the entire observed input sequence.

For example let us again consider the property to enforce ϕ be the TA in Fig. 12, and ψ

be the TA in Fig. 14. Consider the input sequence σ = (1, acq) · (2, op) · (2.4, op) · (3, rel) ·
(6, acq) · (7, op) · (8, op) · (9.5, rel). As we discussed in Sect. 4.2, the date associated to the
first rel in the output is increased to 11 to satisfy the property ϕ. At t = 6, the input sequence
observed (1, acq) · (2, op) · (2.4, op) · (3, rel) · (6, acq) (followed by a delayed prefix of
every continuation) does not belong to ϕ, but a delayed version of the input sequence (for
example (1, acq) · (2, op) · (2.4, op) · (11, rel) · (11, acq)), followed by a delayed prefix of
any continuation, satisfies ϕ.

We are interested in online enforcement mechanism, and thus the output should be built
incrementally in a streaming fashion. An enforcement function does not have the entire input
sequence, and also the length of the input is unknown. Enforcement mechanisms should take
decision to release input events as soon as possible.Onlywhen there is no possibility to correct
the input (also using the knowledge of all possible input continuations), the enforcement
mechanism should wait to receive more events.

We now formulate Urgency focusing on deciding to release events as output as soon as
possible using knowledge from ψ , instead of waiting to observe more events.

Definition 6 (Urgency) Given properties ψ, ϕ ⊆ tw(Σ), an enforcement function Eψ,ϕ :
tw(Σ) → tw(Σ), that satisfies soundness, transparency andmonotonicity constraints should
also satisfy the following urgency constraint:

∀σ ∈ tw(Σ),∀t ≥ end(σ),∀a ∈ Σ :
(∃w ∈ tw(Σ) : Eψ,ϕ(σ) · w ≥d σ · (t, a) ∧ start(w) ≥ t ∧

∀σcon ∈ tw(Σ) : σ · (t, a) · σcon ∈ ψ �⇒
∃σ ′ ∈ tw(Σ) : σ ′ �d σcon ∧ Eψ,ϕ(σ) · w · σ ′ ∈ ϕ)

�⇒ ΠΣ(Eψ,ϕ(σ · (t, a))) = ΠΣ(σ · (t, a)).

(UrT)

The urgency constraint (UrT) expresses that the enforcer should decide to output events as
soon as possible without waiting to observe more events. For any input timed word σ , the

123

Form Methods Syst Des (2017) 51:154–199 185

output of the enforcer Eψ,ϕ(σ) is a delayed prefix of σ . The suffix of σ that the enforcer is
unable to decide to output after reading σ is σ[|Eψ,ϕ(σ)|+1···]. Consider a timed word of length
|σ +1| (i.e., σ is extended with one more additional input event (t, a) at time t). The urgency
constraint expresses whether the enforcer decides to output the events that remained from σ

followed by the event (t, a) (i.e., σ[|Eψ,ϕ(σ)|+1···] · (t, a)) at time t .
The constraint (UrT) means that when we consider a timed word of length |σ + 1| with

one more additional event (t, a), the enforcer decides to output all the remaining events from
σ · (t, a) (which is σ[|Eψ,ϕ(σ)|+1···] · (t, a)) immediately at appropriate minimal dates if

– there exists a timed word w which is an extension of Eψ,ϕ(σ) starting at or after time t
such that Eψ,ϕ(σ) · w is a delayed word of the input σ · (t, a), and

– for every continuation σcon of σ · (t, a), if there is a delayed prefix σ ′ of σcon such that
Eψ,ϕ(σ) · w · σ ′ ∈ ϕ.

Thus if the hypothesis of this urgency condition holds, we know for sure that ΠΣ(Eψ,ϕ(σ ·
(t, a))) = ΠΣ(σ · (t, a)). The enforcer will not wait to receive more events to decide to
output events in σ · (t, a).

Definition 7 (Timed predictive enforcer) Given propertiesψ, ϕ ⊆ tw(Σ), a timed predictive
enforcer for ψ, ϕ is a function Eψ,ϕ : tw(Σ) → tw(Σ), satisfying the constraints (SndT),
(TrT), (MoT), and (UrT).

As we shall show later in Sect. 4.4, for any ψ, ϕ, a timed predictive enforcer always exists
(Theorem 3).

Remark 11 (Uniqueness)The urgency constraint (UrT) is related to deciding to output events
as soon as possible, and if the hypothesis of this constraint holds, we know for sure that all
the events will be released as output (i.e., the untimed projection of the input and output of
the enforcer will be equal). The timed predictive enforcer for some given properties ψ, ϕ is
generally not unique since there can be different choices regarding the exact dates at which
the events will be released as output. For example, let the property ψ be the TA in Fig. 14
and the property ϕ be the TA in Fig. 12. Let the input sequence be σ = (1, acq) · (2, op) ·
(2.4, op) · (3, rel). After observing the first event acq at 1 time units, the hypothesis of the
urgency constraint (UrT)will be satisfied, and we know that the event acq can be released as
output without waiting to observe more events. However, there are several possible choices
regarding the exact date at which the event acq will be released as output. It can be released
at the time instant when the event is observed (1 time units) or later (for example at 1.15
time units). As described in the following remark, our enforcement function defined later in
Sect. 4.4 always chooses minimal possible output dates.

Remark 12 (Optimal output dates) Whenever the enforcer decides to output some events, it
should choose optimal (minimal) possible output dates for those events with respect to the
current situation, releasing events as output as soon as possible. Once the enforcer decides
to output some events, the output dates for those events cannot be modified in the future.

4.4 Functional definition

In this section, we provide a definition of a timed predictive enforcer as a function that builds
the output incrementally, taking decisions to output events as soon as possible. Whenever the
enforcement function decides to release some events as output, it computes minimal possible
output dates for those events.

123

186 Form Methods Syst Des (2017) 51:154–199

The definition of the enforcement function shall use the set CanD(σ) of candidate delayed
sequences of σ , independently of the properties ψ and ϕ.

CanD(σ) = {w ∈ tw(Σ) | w ≥d σ ∧ start(w) ≥ end(σ)} .

CanD(σ) is the set of timed words w that delay σ , and start at or after the ending date of σ

(which is the date of the last event of σ).
Given ψ, ϕ, the enforcement function Eψ,ϕ defines how an input sequence σ is trans-

formed, such that the output of Eψ,ϕ satisfies ϕ. The enforcement function Eψ,ϕ : tw(Σ) →
tw(Σ) is defined as Eψ,ϕ(σ) = Π1

(
storeψ,ϕ (σ)

)
where storeψ,ϕ (σ) = (σs, σc). Sequence

σs is a delayed prefix of the input that is to be released as output. σc is a suffix of the input
sequence for which the dates at which these events can be released as output cannot be
computed yet (i.e., at date end(σ)).

Let us now see the definition of the enforcement function Eψ,ϕ in detail.

Definition 8 (Enforcement function)Givenψ, ϕ, the enforcement function Eψ,ϕ : tw(Σ) →
tw(Σ) is defined as:

Eψ,ϕ(σ) = Π1
(
storeψ,ϕ (σ)

)
,

where storeψ,ϕ : tw(Σ) → tw(Σ) × tw(Σ) is defined as

storeψ,ϕ(ε) = (ε, ε)

storeψ,ϕ(σ · (t, a)) =
{

(σs · σsn, ε) if κψ,ϕ(σn, σs, σ
′
c) �= ∅,

(σs, σ
′
c) otherwise,

with σ ∈ tw(Σ), t ∈ R≥0, a ∈ Σ,

(σs, σc) = storeψ,ϕ(σ), σ ′
c = σc · (t, a),

σsn = min�lex,end κψ,ϕ(σn, σs, σ
′
c)

and σn = σ · (t, a)

where

κψ,ϕ(σn, σs, σ
′
c)

def= CanD(σ ′
c) ∩ Sureψ,ϕ(σn, σs)

and

Sureψ,ϕ(σn, σs)
def= {w ∈ tw(Σ) | ∀σcon ∈ tw(Σ) :

σn · σcon ∈ ψ �⇒ ∃σ ′ ∈ tw(Σ) :
σ ′ �d σcon ∧ σs · w · σ ′ ∈ ϕ}

Function Sureψ,ϕ takes two timed words as input. Input timed word σn = σ · (t, a), cor-
responds to the entire input sequence, and σs which is a delayed prefix of σn is the output
of the enforcement function after reading σ . Function Sureψ,ϕ returns all the timed words
w, such that there is a delayed prefix σ ′ for every future extension of σn , such that what is
already decided to be released as output by the enforcer σs concatenated with w · σ ′ satisfies
the property ϕ.

Note that CanD(σ ′
c) computes all the delayed timed words of σ ′

c that start at or after
end(σ ′

c). Thus the set κψ,ϕ(σn, σs, σ
′
c) which is CanD(σ ′

c) ∩ Sureψ,ϕ(σn, σs) is non-empty if
and only if the hypothesis of the UrT constraint is satisfied.

Theorem 3 (Soundness, transparency, urgency, and monotonicity constraint) Given two
properties ψ , and ϕ, the enforcement function Eψ,ϕ as per Definition 8 is a timed predictive
enforcer satisfying constraints (SndT), (TrT), (MoT), and (UrT).

123

Form Methods Syst Des (2017) 51:154–199 187

According to Theorem 3, for any two properties ψ , and ϕ, a timed predictive enforcer
always exists. Proof of Theorem 3 is given in “Proofs: timed setting” section.

Remark 13 In the untimed case, for a given input σ ∈ ψ , the final output o after reading σ

completely will be the same with or without prediction. But in the timed setting, the output
sequences may not be equal (since we may output some events earlier with prediction).
Moreover, even if we restrict our attention to untimed projections of outputs, those may
differ with or without prediction (see examples in Sect. 4.2).

4.5 Algorithm

In the untimed case, the output word is a prefix of the input word, and if the input word
satisfies the property ϕ, the output will be equal to the input. But, in the timed case, delaying
events affects the output dates, thus modifying the output words (though all the events are
released as output). Thus, in the timed setting, the output timed word may not be a prefix of
the input timed word belonging to ψ (as illustrated via examples in Sect. 4.2).

There are several aspects that need to be investigated regarding if and how the enforcement
function (specifically the function κψ,ϕ) can be computed in the timed setting.

For example, in the untimed setting, from the automaton Aψ = (Qψ, qψ,Σ, δψ, Fψ)

(that defines the input property ψ) and the observed input word σ , the state reached upon
reading σ is q = δ(Aψ, qψ). The automaton that recognizes all the continuations of the
observed input σ , is the automaton Aψ starting from the state q .

In the timed setting, from the current observed input σ and the TA defining ψ , we need to
first build a finite construction that accepts all the delayed timed words of the timed words
w that are continuations of σ such that σ · w ∈ ψ . To obtain the TA that recognizes all
continuations of σ , similar to the untimed setting, in the TA Aψ we treat the state reached
upon reading σ as the initial state. Now, we need to find some construction that accepts all the
delayed words of this timed automaton. One possible construction is discussed in Remark 14.
However, this construction is not finite. How to obtain such a finite construction for a given
TA is indeed an interesting problem on itself, and we leave the algorithm for computing the
enforcement function in the timed case as future work.

Remark 14 (Delayed version of a timed automaton) Given a timed automatonA, we want to
obtain a construction C , that accepts all the delayed timed words of timed words belonging
to L(A). Consider a FIFO queue F of infinite capacity. Whenever a transition is triggered in
A, the action triggering this transition is sent to F instead of writing it to the output. Consider
another untimed automaton B, where its only possible action is to dequeue actions from the
queue F at arbitrary times. C = A× F × B recognizes all the delayed timed words of timed
words belonging to L(A).

5 Related work

Runtime enforcement was initiated by the work of Schneider [25] and has been extensively
studied from then onwards. According to how a monitor is allowed to correct the input
sequence, several models of enforcers (enforcement monitors) have been proposed. Security
automata [25] focused on safety properties, and blocked the execution as soon as an illegal
sequence of actions (not compliantwith the property) is recognized. Later, several refinements
have been proposed such as suppression automata [13] that allowed to suppress events from
the input sequence, insertion automata [13] that allowed to insert events to the input sequence,

123

188 Form Methods Syst Des (2017) 51:154–199

and edit-automata [13] or so-called generalized enforcement monitors [10] that allowed to
perform any of these primitives. In all these approaches, the system is considered as a black-
box. In our approach, we make use of (any) available knowledge of the system, and we do
not allow to suppress or insert events.

Recently, Bloem et al. [3] presented a framework to synthesize enforcement monitors
for reactive systems, called shields, from a set of safety properties. This work focuses on
reactive systems, and it is not possible to block actions and to release them later (or to halt
the system). The shield must always act instantaneously (upon erroneous input, some output
must be produced instantaneously). In some cases, when a property violation is unavoidable,
the shield allows deviation for k consecutive steps. In case if a second violation occurs within
k steps, then the shield enters a fail-safe mode, where it ensures only correctness, and no
longer minimizes deviation. In our approach, when it is not possible to act instantaneously,
we allow to buffer input events. Moreover, we release some events as output only after being
sure that the property will be satisfied eventually with subsequent output events.

Another recent approach byDolzehnko et al in [6] introducesMandatory Result Automata
(MRAs). MRAs extend edit-automata [13] by refining the input-output relationship of an
enforcementmechanismand thus allowamoreprecise descriptionof the enforcement abilities
of an enforcementmechanism in concrete application scenarios such as the scenario described
in Sect. 3.1.2. In order to handle such scenarios, their approachmakes use of knowledge about
the actions and their effect on themonitored system (i.e., the input alphabet is split into actions
and results). Moreover, the MRAmodel assumes synchronizable actions (i.e., after receiving
an action another action cannot be received until the previous action returned a result). In
our approach, we consider actions that are transmitted between (asynchronous) event emitter
and receiver and hence do not consider the effect of actions.

All the previously mentioned approaches do not consider any model of the system (the
system is considered as a black-box). In [29], Zhang et al. propose predictive semantics
for runtime verification, enabling the verification monitor to foresee property satisfaction or
violation before the observed execution satisfies or violates it.

Some recent work by Chabot et al. [5] uses knowledge of the program to extend
enforcement. In their approach, the monitor’s enforcement power is extended by giving
it access to statically gathered information about the program’s possible behavior. The
approach of [5] works for safety properties, but, as the authors explicitly state, there is
no guarantee that it would work for non-safety properties. Our approach works for any
regular property. Moreover, as discussed in Remark 5, having knowledge of the input
has no advantage for safety properties. Furthermore, we also make use of knowledge of
the system to also predict possible futures, and to output events earlier whenever possi-
ble.

Ourwork is related to supervisory control [4], where a new “controlled” system is obtained
by composing a system with a controller in closed-loop. The controlled system must meet a
given specification and does not produce illegal actions as output. In supervisory control the
controller controls the system, because it feeds-back into the system, in closed loop. But in
our case, the loop remains open. The enforcer does not feed-back into the system. Moreover,
it is not mandatory to have a model of the system in our approach. Remark 3 discusses that
our constraints reduce to non-predictive case when ψ = Σ∗.

In some earlier works [16–19], we presented runtime enforcement for timed properties. In
[18] we introduced runtime enforcement for timed properties, proposing enforcement moni-
tor synthesis for timed safety and co-safety properties.We later generalized our framework to
synthesize an enforcement monitor for any regular timed property [17,19]. We also extended
our work to parametric timed properties, where events are parameterized, allowing events to

123

Form Methods Syst Des (2017) 51:154–199 189

carry some data values from themonitored system [16]. In all these works, enforcement mon-
itors work as delayers, i.e., their main enforcement primitive consists in delaying the received
events, to correct the input sequence of timed events according to the property. Whenever
the input sequence received cannot be corrected, the monitor blocks those events until it
receives more events. In all these works, the system is considered as a black-box. Recently
in [23] we considered runtime enforcement for timed properties with some uncontrollable
events. An uncontrollable event cannot be blocked/delayed by an enforcement monitor. The
system is still considered as a black-box, but we assume here that the enforcement monitor
has knowledge about actions that are not controllable.

6 Conclusion and future work

This paper extends existing work in runtime enforcement by proposing a predictive RE
framework. The framework generalizes RE from black-box to grey-box systems, that is,
systems for which some a-priori knowledge is available. We show how knowledge about a
system’s behavior can benefit enforcement, by allowing a enforcer to anticipate (“predict”)
future input events and as a result become more responsive at its output. Compared to earlier
works on enforcement, this is achieved by introducing an additional constraint called urgency.
Urgency ensures that enforcers react as soon as possible, often outputting events immediately
after they are received, instead of buffering them indefinitely. The property to be enforced as
well as the knowledge about the system are modeled as deterministic automata (i.e., regular
languages). We show how to synthesize enforcement mechanisms for any regular property
and provide algorithms implementing thesemechanisms in polynomial memory and constant
online time. We also implemented the proposed algorithms in Python. For real-time systems,
if it is possible to output earlier (using prediction), it is certainly beneficial. We extended the
predictive RE problem to real-time properties.

Several interesting extensions and alternatives remain to be explored in the future. As we
discussed in Sect. 4.5, how to compute the enforcement function in the timed setting remains
to be explored. In the untimed case, we implemented the proposed algorithms, and we also
briefly discussed some example applications. In the future, we also plan to extend our work
experimentally, and further study the feasibility of applying our approach in some particular
scenarios.

Acknowledgements This work was supported in part by the Academy of Finland and the U.S. National
Science Foundation (Awards #1329759 and #1139138). Thierry Jéron and Yliès Falcone acknowledge the
support of the COST Action ARVI IC1402, which is supported by COST (European Cooperation in Science
and Technology).

Appendix 1: Proofs

Proofs: untimed setting

In this section, we will discuss proofs of lemmas and theorems in Sect. 3. ψ and ϕ

in this section are regular properties that are defined by automata Aψ and Aϕ . To ease
understanding, for some Lemmas, we provide manual proofs with some explanations. A
document with all Isabelle proofs can be accessed from: https://github.com/isabelle-theory/
PredictiveRuntimeEnforcement.

123

https://github.com/isabelle-theory/PredictiveRuntimeEnforcement
https://github.com/isabelle-theory/PredictiveRuntimeEnforcement

190 Form Methods Syst Des (2017) 51:154–199

Proof (of Lemma 3) We shall prove that the urgency constraint (Ur′) is weaker than the
urgency constraint (Ur), i.e.,

∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒
∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ) �⇒ Eψ,ϕ(σ) = σ

�⇒
∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σ · σcon ∈ ϕ)

�⇒ Eψ,ϕ(σ) = σ.

Assume (Ur) and for σ ∈ Σ∗ assume that (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σ · σcon ∈ ϕ)

holds. We need to show that Eψ,ϕ(σ) = σ . We have

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σ · σcon ∈ ϕ)

⇔ {σcon � σcon is true}

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σcon � σcon ∧ σ · σcon ∈ ϕ)

⇒ {Existential quantifier introduction}

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

Therefore the hypothesis of (Ur) is true, so we obtain Eψ,ϕ(σ) = σ . ��
Proof (of Lemma 4) We shall prove that given properties ψ, ϕ ⊆ Σ∗, when ψ = Σ∗, the
constraint (Ur) is equivalent to the following:

∀σ ∈ Σ∗ : σ ∈ ϕ �⇒ Eψ,ϕ(σ) = σ.

(Ur)

⇔ {Definition of Ur}

∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ) �⇒
Eψ,ϕ(σ) = σ

⇔ {ψ = Σ∗}
∀σ ∈ Σ∗ : (∀σcon ∈ Σ∗ : ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ) �⇒ Eψ,ϕ(σ) = σ

⇔ {Sub-derivation: (∀σcon ∈ Σ∗ : ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ) ⇔ σ ∈ ϕ}

• (∀σcon ∈ Σ∗ : ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

⇒ {Universal quantifier elimination}

(∃σ ′ ∈ Σ∗ : σ ′ � ε ∧ σ · σ ′ ∈ ϕ)

⇔ {σ ′ can only be ε}

σ ∈ ϕ

• σ ∈ ϕ

⇔ {Properties of words}

(∀σcon ∈ Σ∗ : ε � σcon) ∧ σ · ε ∈ ϕ

⇔ {Logic}

(∀σcon ∈ Σ∗ : ε � σcon ∧ σ · ε ∈ ϕ)

⇒ {Existential quantifier introduction}

(∀σcon ∈ Σ∗ : ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

... ∀σ ∈ Σ∗ : σ ∈ ϕ ⇒ Eψ,ϕ(σ) = σ

123

Form Methods Syst Des (2017) 51:154–199 191

⇔ {Definition}

∀σ ∈ Σ∗ : σ ∈ ϕ �⇒ Eψ,ϕ(σ) = σ

��
Proof (of Lemma 5) We shall prove that give properties ψ, ϕ ⊆ Σ∗, when ψ ⊆ ϕ, for any
word σ ∈ Σ∗, the output of the enforcement function is σ (Eψ,ϕ(σ) = σ). Assume ψ ⊆ ϕ,
then we have:

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ ∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

⇐ {Existential quantifier introduction}

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σcon � σcon ∧ σ · σcon ∈ ϕ)

⇔ {Properties of words}

(∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒ σ · σcon ∈ ϕ)

⇔ {Assumption ψ ⊆ ϕ}

true

From this, using urgency (Ur), we obtain Eψ,ϕ(σ) = σ . ��
Proof (of Lemma 10) We shall prove the following properties of the enforcement function,
and auxiliary functions storeψ,ϕ and κψ,ϕ .

For all σ, σ ′ ∈ Σ∗ we have

1. storeψ,ϕ(σ) = (σs, σc) �⇒ σ = σs · σc
2. Eψ,ϕ(σ) �= ε �⇒ κψ,ϕ(Eψ,ϕ(σ))

3. κψ,ϕ(σ) ∧ σ � σ ′ �⇒ σ � Eψ,ϕ(σ ′)
4. σ ∈ ϕ �⇒ κψ,ϕ(σ)

Proof (of property 1 of Lemma 10) Let us prove Property 1 using induction on the input
sequence σ .

Induction basis. If σ = ε, from the definition of the enforcement function (Definition 4),
Eψ,ϕ(σ) = ε. From the definition of storeψ,ϕ, storeψ,ϕ(ε) = (ε, ε). Since ε = ε · ε, this
property holds for σ = ε.

Induction step. Assume that for every σ ∈ Σ∗ of some length n ∈ N, storeψ,ϕ(σ) =
(σs, σc) �⇒ σ = σs · σc.

We now prove that for any a ∈ Σ , property 1 holds for σ · a. We have the following two
possible cases:

– Case κψ,ϕ(σ ·a) = true. Since κψ,ϕ(σ ·a) is true, according to the definition of storeψ,ϕ ,
we will have storeψ,ϕ(σ · a) = (σs · σc · a, ε). From the induction hypothesis, we have
σs · σc = σ . So, we have σs · σc · a · ε = σ · a. Thus, the property holds.

– Case κψ,ϕ(σ ·a) = false. Since κψ,ϕ(σ ·a) is false, according to the definition of storeψ,ϕ ,
we will have storeψ,ϕ(σ · a) = (σs, σc · a). Using induction hypothesis, we will have
σs · σc · a · ε = σ · a. Thus, the property holds. ��

Proof (of property 2 of Lemma 10) Let us prove Property 2 using induction on the input
sequence σ .

Induction basis. If σ = ε, from the definition of the enforcement function (Definition 4),
Eψ,ϕ(ε) = ε. Since Eψ,ϕ(ε) = ε, property Eψ,ϕ(σ) �= ε �⇒ κψ,ϕ(Eψ,ϕ(σ)) trivially
holds for σ = ε.

123

192 Form Methods Syst Des (2017) 51:154–199

Induction step. Assume that for every σ of some length n ∈ N, Eψ,ϕ(σ) �= ε �⇒
κψ,ϕ(Eψ,ϕ(σ)). Let storeψ,ϕ(σ) = (σs, σc). According to Definition 4, we know that

Eψ,ϕ(σ) = Π1

(
storeψ,ϕ(σ)

)
= σs .

We now prove that for any a ∈ Σ , Property 2 also holds for σ · a. We have the following
two possible cases:

– Case Eψ,ϕ(σ · a) = ε. The property trivially holds in this case.
– Case Eψ,ϕ(σ · a) �= ε. We can also notice from Definition 4 that there are two possible

cases based on whether κψ,ϕ(σ · a) is either true or false.

– Case κψ,ϕ(σ · a) = true. In this case, Eψ,ϕ(σ · a) = σs · σc · a = σ · a (from
Property 1). Also, κψ,ϕ(σ · a) is true in this case. Thus the property holds for σ · a.

– Case κψ,ϕ(σ · a) = f alse. In this case, Eψ,ϕ(σ · a) = Eψ,ϕ(σ), and using the
induction hypothesis, we can conclude that the property holds also for σ · a. ��

Proof (of property 3 of Lemma 10) Let us prove Property 3 using induction on the length of
σ ′.
Induction basis. If σ ′ = ε, then σ = ε. From the definition of the enforcement function
(Definition 4), Eψ,ϕ(σ) = ε. Since ε � ε, property 3 trivially holds for σ = ε.

Induction step.Assume that for every σ ′ ∈ Σ∗ of some length n ∈ N, κψ,ϕ(σ)∧σ � σ ′ �⇒
σ � Eψ,ϕ(σ ′) holds.

Let storeψ,ϕ(σ ′) = (σ ′
s, σ

′
c). According to Definition 4, we know that Eψ,ϕ(σ ′) =

Π1

(
storeψ,ϕ(σ)

)
= σ ′

s . From property 1, we have σ ′ = σ ′
s · σ ′

c.

We now prove that for any a ∈ Σ , Property 3 holds for σ ′ · a. We have the following two
possible cases:

– Case κψ,ϕ(σ ′ ·a) = true. Since κψ,ϕ(σ ·a) is true, according to the definition of storeψ,ϕ ,
we will have storeψ,ϕ(σ ′ ·a) = (σ ′

s ·σ ′
c ·a, ε). Consequently, Eψ,ϕ(σ ′ ·a) = σ ′

s ·σ ′
c ·a =

σ ′ · a.
We now have two subcases based on whether σ = σ ′ · a or not.

– Case σ = σ ′ ·a.We already saw that κψ,ϕ(σ ′ ·a) is true, and Eψ,ϕ(σ ′ ·a) = σ ′ ·a = σ .
Consequently, we have σ � Eψ,ϕ(σ ′ ·a). Thus the property κψ,ϕ(σ)∧σ � σ ′ ·a �⇒
σ � Eψ,ϕ(σ ′ · a) holds in this case.

– Case σ � σ ′. From the induction hypothesis, we have σ � Eψ,ϕ(σ ′) = σ ′
s . In this

case, we already showed that Eψ,ϕ(σ ′ · a) = σ ′
s · σ ′

c · a. Since σ � σ ′
s , we also have

σ � σ ′
s · σ ′

c · a = Eψ,ϕ(σ ′ · a). Thus the property κψ,ϕ(σ) ∧ σ � σ ′ · a �⇒ σ �
Eψ,ϕ(σ ′ · a) holds in this case.

– Caseκψ,ϕ(σ ′·a) = false. Sinceκψ,ϕ(σ ′·a) is false, according to the definitionof storeψ,ϕ ,
we will have storeψ,ϕ(σ ′ · a) = (σ ′

s, σ
′
c · a). In this case, Eψ,ϕ(σ ′ · a) = σ ′

s = Eψ,ϕ(σ ′).
We again have two subcases here based on whether σ = σ ′ · a holds or not.

– Case σ = σ ′ · a. Since κψ,ϕ(σ ′ · a) is false, the property trivially holds in this case.
– Case σ � σ ′. From the induction hypothesis, we have σ � Eψ,ϕ(σ ′) = σ ′

s . Since
Eψ,ϕ(σ ′ ·a) = Eψ,ϕ(σ ′), consequently we have σ � Eψ,ϕ(σ ′ ·a). Thus the property
κψ,ϕ(σ) ∧ σ � σ ′ · a �⇒ σ � Eψ,ϕ(σ ′ · a) holds in this case. ��

Proof (of property 4 of Lemma 10) We shall prove that given properties ϕ,ψ ⊆ Σ∗, and for
any word σ ∈ Σ∗, the following property holds:

123

Form Methods Syst Des (2017) 51:154–199 193

σ ∈ ϕ �⇒ κψ,ϕ(σ).

Assume that σ ∈ ϕ. Function κψ,ϕ(σ) is defined as follows:

κψ,ϕ(σ) = (∀σcon ∈ Σ∗ : σ · σcon ∈ ψ �⇒
∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

• σ ∈ ϕ

⇒ {Propositional calculus}

(∃σcon ∈ Σ∗ : σ · σcon ∈ ψ) ⇒ σ ∈ ϕ

⇔ {Predicate calculus}

∀σcon ∈ Σ∗ : σ · σcon ∈ ψ ⇒ σ ∈ ϕ

⇔ {Properties of words}

∀σcon ∈ Σ∗ : σ · σcon ∈ ψ ⇒ ε � σcon ∧ σ · ε ∈ ϕ

⇒ {Existential quantifier introduction}

∀σcon ∈ Σ∗ : σ · σcon ∈ ψ ⇒ (∃σ ′ ∈ Σ∗ : σ ′ � σcon ∧ σ · σ ′ ∈ ϕ)

⇔ {Definition}

κψ,ϕ(σ) ��
Proof (of Lemma 12) We shall prove that the Algorithm 1 implements the enforcement func-
tion Eψ,ϕ (Definition 4).

That is, we shall prove that if σ = a1 · · · an is the sequence of events received so far by
the enforcement algorithm, and if σ1, · · · , σk are the sequences released by the algorithm
for σ , then

Eψ,ϕ(σ) = σ1 · . . . · σk and σ = Eψ,ϕ(σ) · σc

where σc corresponds to σc in the algorithm, equivalent to σc in the definition of Eψ,ϕ .
Let us prove this lemma using induction on the length of the input sequence σ .

Induction basis. If σ = ε, from the definition of the enforcement function (Definition 4),
storeψ,ϕ(ε) = (σs, σc) = (ε, ε), and Eψ,ϕ(σ) = ε.

Regarding the enforcement algorithm, σc in the algorithm is initialized to ε, since no event
is received yet, this corresponds to the first iteration of the while loop, where the process is
waiting for an event in line 5. Thus statement release in the algorithm is never executed yet.
Concatenation of the output sequences released by the algorithm is thus ε. Consequently,
Lemma 12 holds for σ = ε.

Induction step. Assume that for every σ ∈ Σ∗ of some length n ∈ N, Lemma 12 holds.

Regarding the enforcement function storeψ,ϕ(σ) = (σs, σc), and Eψ,ϕ(σ)

= Π1

(
storeψ,ϕ(σ)

)
= σs . After receiving σ, p = δψ(qψ, σ), and q = δϕ(qϕ, σ). Let

σc be equal to σc in the algorithm, and let the concatenation of output sequences released by
the algorithm be equal to Eψ,ϕ(σ) = σs .

We now prove that for any a ∈ Σ , Lemma 12 holds for σ · a. We have the following two
possible cases:

– Case κψ,ϕ(σ · a) = true. Regarding the enforcement function, since κψ,ϕ(σ · a) is true,
according to the definition of storeψ,ϕ , we will have storeψ,ϕ(σ · a) = (σs · σc · a, ε).
Consequently, Eψ,ϕ(σ · a) = σs · σc · a = σ · a.

123

194 Form Methods Syst Des (2017) 51:154–199

Regarding the enforcement algorithm, upon receiving event a, after executing step 6 of
the algorithm, p = δψ(qψ, σ · a), and q = δϕ(qϕ, σ · a). Since κψ,ϕ(σ · a) = true,
using Theorem 2, L(C, (p, q)) = ∅ and statement 8 (release(σc · a)) will be executed.
Statement 9 will also be executed in this case resetting σc in the algorithm to ε. Using
the induction hypothesis, we know that the concatenation of output sequences released
by the algorithm is equal to σs . The new sequence released is σc ·a = Eψ,ϕ(σ ·a). Thus,
Lemma 12 holds in this case.

– Case κψ,ϕ(σ · a) = false. Regarding the enforcement function, since κψ,ϕ(σ · a) is
false, according to the definition of storeψ,ϕ , we will have storeψ,ϕ(σ · a) = (σs, σc · a).
Consequently, Eψ,ϕ(σ · a) = σs = Eψ,ϕ(σ).
Regarding the enforcement algorithm, upon receiving event a, after executing step 6 of
the algorithm, p = δψ(qψ, σ · a), and q = δϕ(qϕ, σ · a). Since κψ,ϕ(σ · a) is false,
using Theorem 2, L(C, (p, q)) �= ∅. Consequently, statements 8, and 9 of the algorithm
will not be executed, and statement 11 will be executed before going back to statement 3
(next iteration of the while loop). Using the induction hypothesis, Lemma 12 holds for
σ · a in this case. ��

Proofs: timed setting

In this section, we will discuss the proof of Theorem 3. ϕ and ψ in this section are regular
timed properties that are defined by deterministic TA Aϕ and Aψ .

Proof (of Theorem 3) We shall prove that given two properties ψ , and ϕ, the enforcement
function Eψ,ϕ as per Definition 8 is a timed predictive enforcer satisfying constraints (SndT),
(TrT), (MoT), and (UrT).

Let us recall the definition of the enforcement function.

Eψ,ϕ(σ) = Π1
(
storeψ,ϕ (σ)

)
,

where storeψ,ϕ : tw(Σ) → tw(Σ) × tw(Σ) is defined as

storeψ,ϕ(ε) = (ε, ε)

storeψ,ϕ(σ · (t, a)) =
{

(σs · σsn, ε) if κψ,ϕ(σn, σs, σ
′
c) �= ∅,

(σs, σ
′
c) otherwise,

with σ ∈ tw(Σ), t ∈ R≥0, a ∈ Σ,

(σs, σc) = storeψ,ϕ(σ), σ ′
c = σc · (t, a),

σsn = min�lex,end κψ,ϕ(σn, σs, σ
′
c)

and σn = σ · (t, a)

where

κψ,ϕ(σn, σs, σ
′
c)

def= CanD(σ ′
c) ∩ Sureψ,ϕ(σn, σs)

and

Sureψ,ϕ(σn, σs)
def= {w ∈ tw(Σ) | ∀σcon ∈ tw(Σ) :

σn · σcon ∈ ψ �⇒ ∃σ ′ ∈ tw(Σ) :
σ ′ �d σcon ∧ σs · w · σ ′ ∈ ϕ}

The proof of constraint (MoT) follows the same reasoning of proof of Property 3 of
Lemma 10 in the untimed setting.

123

Form Methods Syst Des (2017) 51:154–199 195

Regarding constraints (SndT), we prove that the enforcement function Eψ,ϕ satisfies the
following condition:

∀σ ∈ tw(σ) : σ ∈ ψ �⇒ (Eψ,ϕ(σ) = ε ∨ Eψ,ϕ(σ) |� ϕ)

Regarding constraint (TrT), we prove a slightly stronger property:

∀σ ∈ tw(Σ) : Eψ,ϕ(σ) � σ

Let us also recall the constraint (UrT):

∀σ ∈ tw(Σ),∀t ≥ end(σ),∀a ∈ Σ :
(∃w ∈ tw(Σ) : Eψ,ϕ(σ) · w ≥d σ · (t, a) ∧ start(w) ≥ t ∧

∀σcon ∈ tw(Σ) : σ · (t, a) · σcon ∈ ψ �⇒
∃σ ′ ∈ tw(Σ) : σ ′ �d σcon ∧ Eψ,ϕ(σ) · w · σ ′ ∈ ϕ)

�⇒ ΠΣ(Eψ,ϕ(σ · (t, a))) = ΠΣ(σ · (t, a)).

We also prove that for any timed word σ ∈ tw(σ), the function storeψ,ϕ satisfies the follow-
ing:

ΠΣ(σs · σc) = ΠΣ(σ)

We shall prove it by an induction on the length of the input timed word σ .

Induction basis. If σ = ε, from the definition of the enforcement function (Definition 8),
Eψ,ϕ(σ) = ε. Since Eψ,ϕ(σ) = σ = ε, constraints (SndT) and (UrT) trivially holds. Since
ε � ε, Eψ,ϕ(σ) � σ holds for σ = ε, and thus constraint (TrT) holds. Since storeψ,ϕ(ε) =
(ε, ε), for σ = ε the condition ΠΣ(σs · σc) = ΠΣ(σ) holds.

Induction step. Assume that for every σ ∈ tw(σ) of some length n ∈ N, Eψ,ϕ satisfies
constraints (SndT), (TrT), and (UrT).

Let storeψ,ϕ(σ) = (σs, σc). According to Definition 8, we know that Eψ,ϕ(σ) =
Π1

(
storeψ,ϕ(σ)

)
= σs . Let ΠΣ(σs · σc) = ΠΣ(σ).

We now prove that for any a ∈ Σ , and t ≥ end(σ), Eψ,ϕ satisfies constraints (SndT),
(TrT), and (UrT) for σ · (t, a). We have the following two possible cases:

– Case κψ,ϕ(σ · (t, a), σs , σc · (t, a)) �= ∅.
From the definition of storeψ,ϕ , we have storeψ,ϕ(σ · (t, a)) = (σ ′

s, ε) where σ ′
s =

Eψ,ϕ(σ · (t, a)) = σs · min�lex,end κψ,ϕ(σ · (t, a), σs , σc · (t, a)). We also know that
ΠΣ(σs · σc) = ΠΣ(σ), and thus we have ΠΣ(Eψ,ϕ(σ · (t, a))) = ΠΣ(σ ′

s · ε) =
ΠΣ(σ · (t, a)).
Note that CanD(σc · (t, a)) computes all the delayed timed words of σc · (t, a) that start
at or after t . Thus we have Eψ,ϕ(σ · (t, a)) �d σ · (t, a), and consequently we have
Eψ,ϕ(σ · (t, a)) �d σ · (t, a). Thus (TrT) holds in this case.
According to the definition of Sureψ,ϕ(), the set κψ,ϕ(σ · (t, a), σs , σc · (t, a)) which
is CanD(σc · (t, a)) ∩ Sureψ,ϕ(σ · (t, a), σs) is non-empty if and only if the hypothesis
of the (UrT) constraint is satisfied. We already showed that ΠΣ(Eψ,ϕ(σ · (t, a))) =
ΠΣ(σ · (t, a)) in this case. Thus the constraint (UrT) holds.
Regarding constraint (SndT), we have the following two cases based onwhether σ ·(t, a)

belongs to ψ or not.

– Case σ · (t, a) /∈ ψ . Constraint (SndT) trivially holds in this case.

123

196 Form Methods Syst Des (2017) 51:154–199

– Case σ · (t, a) ∈ ψ . Since κψ,ϕ(σ · (t, a), σs, σc · (t, a)) is non-empty, we know
that Sureψ,ϕ(σ · (t, a), σs) is non-empty. In this case, since σ · (t, a) ∈ ψ , one
possible continuation σcon is ε, and thus all the timed words w that belong to the
set Sureψ,ϕ(σ · (t, a), σs) are the timed words satisfying the condition σs · w ∈ ϕ.
Since κψ,ϕ(σ · (t, a), σs, σc · (t, a)) is CanD(σc · (t, a))∩Sureψ,ϕ(σ · (t, a), σs), and
Eψ,ϕ(σ · (t, a)) = σs · min�lex,end κψ,ϕ(σ · (t, a), σs, σc · (t, a)), we can conclude
that Eψ,ϕ(σ · (t, a)) ∈ ϕ satisfying constraint (SndT).

– Case κψ,ϕ(σ · (t, a), σs , σc · (t, a)) = ∅. From the definition of storeψ,ϕ , we have
storeψ,ϕ(σ · (t, a)) = (σs, σc · (t, a)), and consequently we have Eψ,ϕ(σ · (t, a)) =
σs = Eψ,ϕ(σ). Using the induction hypothesis, we can conclude that the constraints
(SndT) and (TrT) also hold for σ · (t, a). Also ΠΣ(σs · σc · (t, a)) = ΠΣ(σ · (t, a))

holds. Regarding constraint (UrT), from the definition of κψ,ϕ() and Sureψ,ϕ() since
κψ,ϕ(σ · (t, a), σs, σc · (t, a)) = ∅, we can conclude that the hypothesis of the constraint
(UrT) does not hold in this case. Thus, the constraint (UrT) trivially holds in this case.

��

Appendix 2: Implementation details

The predictive enforcement monitoring algorithm described in Sect. 3.5 is implemented
in Python. Source files and examples can be downloaded from: https://github.com/
SrinivasPinisetty/PredictiveRE.

Module Automata.py contains all the functionality related to defining automata and
operations on automata. Module Enforcer.py contains an implementation of the predic-
tive enforcement algorithm described in Sect. 3.5. Using these modules is simple, and only
requires Python. Let us now see an example illustrating how to describe the automata ψ, ϕ,
and how to invoke the enforcer method.

In addition to the Python system module, import both the modules Automata and
Enforcer.

import sys
sys.path.append("../")
import copy
import Enforcer
import Automata

Describe automata ψ , and ϕ. In this example, ψ is the automaton in Fig. 4, and ϕ is the
automaton in Fig. 3.

psi = Automata.DFA(
[‘a’, ‘b’, ‘c’ , ‘?’, ‘!’],
[‘l0’, ‘l1’, ‘l2’, ‘l3’, ‘l4’, ‘l5’],
’l0’,
lambda q: q in [’l4’],
lambda q, x: {

(‘l0’, ‘a’) : ‘l1’,
(‘l0’, ‘b’) : ‘l1’,
(‘l0’, ‘c’) : ‘l1’,
(‘l0’, ‘?’) : ‘l5’,
(‘l0’, ‘!’) : ‘l5’,

123

https://github.com/SrinivasPinisetty/PredictiveRE
https://github.com/SrinivasPinisetty/PredictiveRE

Form Methods Syst Des (2017) 51:154–199 197

(‘l1’, ‘a’) : ‘l2’,
(‘l1’, ‘b’) : ‘l2’,
(‘l1’, ‘c’) : ‘l2’,
(‘l1’, ‘?’) : ‘l5’,
(‘l1’, ‘!’) : ‘l5’,
(‘l2’, ‘a’) : ‘l3’,
(‘l2’, ‘b’) : ‘l3’,
(‘l2’, ‘c’) : ‘l3’,
(‘l2’, ‘?’) : ‘l5’,
(‘l2’, ‘!’) : ‘l5’,
(‘l3’, ‘a’) : ‘l5’,
(‘l3’, ‘b’) : ‘l5’,
(‘l3’, ‘c’) : ‘l5’,
(‘l3’, ‘?’) : ‘l5’,
(‘l3’, ‘!’) : ‘L4’,
(‘l4’, ‘a’) : ‘l5’,
(‘l4’, ‘b’) : ‘l5’,
(‘l4’, ‘c’) : ‘l5’,
(‘l4’, ‘?’) : ‘l5’,
(‘l4’, ‘!’) : ‘l5’,
(‘l5’, ‘a’) : ‘l5’,
(‘l5’, ‘b’) : ‘l5’,
(‘l5’, ‘c’) : ‘l5’,
(‘l5’, ‘?’) : ‘l5’,
(‘l5’, ‘!’) : ‘l5’,
}[(q, x)]

)

phi = Automata.DFA(
[‘a’, ‘b’, ‘c’ ,‘?’,‘!’],
[‘l0’, ‘l1’, ‘l2’, ‘l3’],
’l0’,
lambda q: q in [’l3’],
lambda q, x: {

(‘l0’, ‘a’) : ‘l1’,
(‘l0’, ‘b’) : ‘l1’,
(‘l0’, ‘c’) : ‘l1’,
(‘l0’, ‘?’) : ‘l2’,
(‘l0’, ‘!’) : ‘l2’,
(‘l1’, ‘a’) : ‘l1’,
(‘l1’, ‘b’) : ‘l1’,
(‘l1’, ‘c’) : ‘l1’,
(‘l1’, ‘?’) : ‘l3’,
(‘l1’, ‘!’) : ‘l3’,
(‘l2’, ‘a’) : ‘l2’,
(‘l2’, ‘b’) : ‘l2’,
(‘l2’, ‘c’) : ‘l2’,
(‘l2’, ‘?’) : ‘l2’,
(‘l2’, ‘!’) : ‘l2’,

123

198 Form Methods Syst Des (2017) 51:154–199

(‘l3’, ‘a’) : ‘l2’,
(‘l3’, ‘b’) : ‘l2’,
(‘l3’, ‘c’) : ‘l2’,
(‘l3’, ‘?’) : ‘l2’,
(‘l3’, ‘!’) : ‘l2’,
}[(q, x)]

)

The enforcermethodwith automataψ, ϕ, and some test input sequence can be invoked
as follows:

Enforcer.enforcer(psi,phi,
[‘a’, ‘a’, ‘b’, ‘!’])

We provide other examples in the directories examplesUsage and examples
Additional. All the examples used for evaluation (see Sect. 3.7) are available in the direc-
tory examplesAdditional. To run the examples in the directories examplesUsage
and examplesAdditional via command prompt, navigate to the directory, and invoke
each script in the directory. For example if test1.py is under the examplesUsage
directory, you can invoke it using the command python test1.py.

References

1. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235. doi:10.1016/0304-
3975(94)90010-8

2. Baier C, Bertrand N, Bouyer P, Brihaye T (2009) When are timed automata determinizable? In: Albers
S, Marchetti-Spaccamela A, Matias Y, Nikoletseas SE, Thomas W (eds) 36th international colloquium
on automata, languages and programming, ICALP 2009, Rhodes, Greece, July 5–12, 2009, proceedings,
part II. Lecture notes in computer science, vol 5556. Springer, pp 43–54. doi:10.1007/978-3-642-02930-
1_4

3. BloemR,Könighofer B, Könighofer R,WangC (2015) Shield synthesis: runtime enforcement for reactive
systems. In: TACAS. LNCS, vol 9035. Springer, Berlin

4. Cassandras CG, Lafortune S (2006) Introduction to discrete event systems. Springer, Secaucus
5. Chabot H, Khoury R, Tawbi N (2011) Extending the enforcement power of truncation monitors using

static analysis. Comput Secur 30(4):194–207
6. Dolzhenko E, Ligatti J, Reddy S (2015) Modeling runtime enforcement with mandatory results automata.

Int J Inf Secur 14(1):47–60. doi:10.1007/s10207-014-0239-8
7. D’Silva V, Kroening D, Weissenbacher G (2008) A survey of automated techniques for formal software

verification. IEEE Trans CAD Integr Circuits Syst 27(7):1165–1178. doi:10.1109/TCAD.2008.923410
8. EvansD, Larochelle D (2002) Improving security using extensible lightweight static analysis. IEEESoftw

19(1):42–51. doi:10.1109/52.976940
9. Falcone Y, Fernandez J, Mounier L (2012)What can you verify and enforce at runtime? STTT 14(3):349–

382
10. Falcone Y, Mounier L, Fernandez JC, Richier JL (2011) Runtime enforcement monitors: composition,

synthesis, and enforcement abilities. Form Methods Syst Des 38(3):223–262
11. Falcone Y, Jéron T, Marchand H, Pinisetty S (2016) Runtime enforcement of regular timed properties by

suppressing and delaying events. Sci Comput Program 123:2–41
12. Finkel O (2006) Undecidable problems about timed automata. In: Asarin E, Bouyer P (ed) Formal

modeling and analysis of timed systems: 4th international conference, FORMATS 2006, Paris, France,
September 25–27, 2006. Springer, Berlin, pp 187–199

13. Ligatti J, Bauer L, Walker D (2009) Run-time enforcement of nonsafety policies. ACM Trans Inf Syst
Secur 12(3):19:1–19:41

14. Malan GR, Watson D, Jahanian F, Howell P (2000) Transport and application protocol scrubbing. In:
Proceedings IEEE INFOCOM 2000, Israel, pp 1381–1390

15. Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL—a proof assistant for higher-order logic. In:
LNCS, vol 2283. Springer, Berlin

123

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-642-02930-1_4
http://dx.doi.org/10.1007/978-3-642-02930-1_4
http://dx.doi.org/10.1007/s10207-014-0239-8
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/52.976940

Form Methods Syst Des (2017) 51:154–199 199

16. Pinisetty S, Falcone Y, Jéron T, Marchand H (2014) Runtime enforcement of parametric timed
properties with practical applications. In: Lesage J, Faure J, Cury JER, Lennartson B (eds) 12th inter-
national workshop on discrete event systems, WODES 2014. International federation of automatic
control, pp. 420–427. http://www.ifac-papersonline.net/Discrete_Event_Systems/12th_International_
Workshop_on_Discrete_Event_Systems__2014_/index.html

17. Pinisetty S, Falcone Y, Jéron T, Marchand H (2014) Runtime enforcement of regular timed properties.
In: Proceedings of the ACM symposium on applied computing (SAC-SVT). ACM, pp 1279–1286

18. Pinisetty S, Falcone Y, Jéron T, Marchand H, Rollet A, Timo OLN (2012) Runtime enforcement of timed
properties. In: Qadeer S, Tasiran S (eds) Proceedings of the third international conference on runtime
verification (RV 2012). Lecture notes in computer science, vol 7687. Springer, Berlin, pp 229–244

19. Pinisetty S, Falcone Y, Jéron T, Marchand H, Rollet A, Nguena Timo O (2014) Runtime enforcement of
timed properties revisited. Form Methods Syst Des 45(3):381–422

20. Pinisetty S, Preoteasa V, Tripakis S, Jéron T, Falcone Y, Marchand H (2016) Predictive runtime enforce-
ment. In: Proceedings of the ACM symposium on applied computing (SAC-SVT). ACM (to appear)

21. Pitt J, Mamdani EH (1999) A protocol-based semantics for an agent communication language. In: Dean
T (ed) Proceedings of the sixteenth international joint conference on artificial intelligence, IJCAI 99,
Stockholm, Sweden, July 31–August 6, 1999, 2 vol. Morgan Kaufmann, pp 486–491

22. Raffelt H, Steffen B, Berg T, Margaria T (2009) Learnlib: a framework for extrapolating behavioral
models. Int J Softw Tools Technol Transf 11(5):393–407. doi:10.1007/s10009-009-0111-8

23. RenardM, FalconeY,RolletA, Pinisetty S, JéronT,MarchandH (2015)Enforcement of (timed) properties
with uncontrollable events. In: Leucker M, Rueda C, Valencia FD (eds) 12th international colloquium
on theoretical aspects of computing–ICTAC 2015, Cali, Colombia, October 29–31, 2015, proceedings.
Lecture notes in computer science, vol 9399. Springer, Berlin, pp 542–560

24. Rosu G (2012) On safety properties and their monitoring. Sci Ann Comput Sci 22(2):327–365
25. Schneider FB (2000) Enforceable security policies. ACM Trans Inf Syst Secur 3(1):30–50. doi:10.1145/

353323.353382
26. Tripakis S (2006) Folk theorems on the determinization and minimization of timed automata. Inf Process

Lett 99(6):222–226. doi:10.1016/j.ipl.2006.04.015
27. Tuglular T, Belli F (2009) Protocol-based testing of firewalls. In: 2009 fourth south-east European work-

shop on formal methods (SEEFM), pp 53–59
28. Wooldridge M (2009) An introduction to multiagent systems, 2nd edn. Wiley Publishing, New York
29. ZhangX, LeuckerM,DongW (2012) Runtime verificationwith predictive semantics. In: 4th international

symposium on NASA formal methods. LNCS, vol 7226. Springer, Berlin, pp 418–432

123

http://www.ifac-papersonline.net/Discrete_Event_Systems/12th_International_Workshop_on_Discrete_Event_Systems__2014_/index.html
http://www.ifac-papersonline.net/Discrete_Event_Systems/12th_International_Workshop_on_Discrete_Event_Systems__2014_/index.html
http://dx.doi.org/10.1007/s10009-009-0111-8
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1016/j.ipl.2006.04.015

	Predictive runtime enforcement
	Abstract
	1 Introduction
	2 Preliminaries and notation
	2.1 Untimed setting
	2.2 Timed setting
	2.2.1 Timed automata and timed properties

	3 Predictive runtime enforcement of untimed properties
	3.1 Motivating examples
	3.1.1 Enforcing file format requirements
	3.1.2 Monitoring communication

	3.2 Predictive runtime enforcement
	3.3 Independence of the constraints
	3.4 Functional definition
	3.5 Enforcement algorithm
	3.6 Applications of predictive RE
	3.7 Implementation and evaluation
	3.7.1 Implementation
	3.7.2 Evaluation

	4 Predictive runtime enforcement of timed properties
	4.1 Runtime enforcement of timed properties without prediction
	4.2 Motivating examples
	4.2.1 Example 1: Reduce output dates with prediction
	4.2.2 Example 2: Enforce more properties with prediction
	4.2.3 Preliminaries to RE of timed properties

	4.3 Predictive enforcement monitoring of timed properties
	4.4 Functional definition
	4.5 Algorithm

	5 Related work
	6 Conclusion and future work
	Acknowledgements
	Appendix 1: Proofs
	Proofs: untimed setting
	Proofs: timed setting

	Appendix 2: Implementation details
	References

