
Form Methods Syst Des (2017) 50:1–38
DOI 10.1007/s10703-016-0266-3

Reachability computation for polynomial dynamical
systems

Tommaso Dreossi1 · Thao Dang2 · Carla Piazza3

Published online: 9 January 2017
© Springer Science+Business Media New York 2017

Abstract This paper is concernedwith the problemof computing the bounded time reachable
set of a polynomial discrete-time dynamical system. The problem is well-known for being
difficult when nonlinear systems are considered. In this regard, we propose three reachability
methods that differ in the set representation. The proposed algorithms adopt boxes, parallelo-
topes, and parallelotope bundles to construct flowpipes that contain the actual reachable sets.
The latter is a new data structure for the symbolic representation of polytopes. Our methods
exploit the Bernstein expansion of polynomials to bound the images of sets. The scalability
and precision of the presented methods are analyzed on a number of dynamical systems, in
comparison with other existing approaches.

Keywords Reachability · Polynomial dynamical systems · Bernstein coefficients

This work is partially supported by Toyota under the CHESS center, DARPA BRASS project,
ANR MALTHY project (ANR-12-INSE-003), and INdAM GNCS.

B Tommaso Dreossi
tommasodreossi@berkeley.edu

Thao Dang
thao.dang@imag.fr

Carla Piazza
carla.piazza@uniud.it

1 University of California, 253 Cory Hall #1770, Berkeley, CA 94720-1770, USA

2 Verimag, Centre Equation, 2, Avenue de Vignate, 38610 Gières, France

3 University of Udine, Via Delle Scienze, 206, 33100 Udine, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0266-3&domain=pdf

2 Form Methods Syst Des (2017) 50:1–38

1 Introduction

1.1 Dynamical systems

Dynamical systems are important mathematical models used to describe the evolution of a
system in time. They can be seen as a relationship between elements in a sequence (the states
of the system) that captures the changes of the terms from one period to another another
(time evolution). A dynamical system is said to be either discrete-time or continuous-time
depending on whether the changes take place in discrete time instants or in continuous
time, respectively. The common formalisms used to describe discrete- and continuous-time
dynamical systems are difference and differential equations. In this work we will focus on
discrete-time dynamical systems described by difference equations:

xk+1 = f(xk) (1)

where x ∈ R
n and f : R

n → R
n is a vector of n-variate polynomial functions.

The reasons why we focus on this class of systems are mainly two: (1) many real phenom-
ena can be observed only at discrete time events, aspect that makes discrete-time models,
such as difference equations, good candidates for the formalizations and the study of a vast
class of systems arising from the real world (see, e.g.,[4,36,44,51,52]); (2) discrete-time
dynamical systems can be the result of the discretization techniques applied on continuous-
time systems for which analytic solutions are intractable (or are not known) and thus discrete
numerical integration methods (such as Euler or Runge-Kutta) are necessary (for surveys on
numerical integration see, e.g., [28,43,53]).

1.2 The reachability problem

Formal verification of dynamical systems involves the rigorous and exhaustive study based on
mathematical techniques. The development of tools for the formal verification ismotivated by
the fact that formal guarantees on a system imply the reliability and robustness of themodeled
phenomenon. Formal verification is a quite general expression used to gather several problems
and methods all related to the same goal of formally proving some properties of a system.
Some examples of verification problems related to dynamical systems are the determination
of equilibrium points (i.e., states that stabilize the system), invariant sets (i.e., regions from
which the system does not escape), or periodic behaviors (i.e., evolutions that return to the
same points after a certain amount of time). The reachability problem, that often plays an
important role in questions as the above-mentioned ones, asks to determine all the states
reachable by the evolutions of a dynamical system starting from a set of initial conditions,
typically represented as compact infinite sets. Note that considering individual trajectories
would require an infinite number of simulations. Hence, some techniques to handle flows of
trajectories at the same time are required.

A common approach to the reachability computation problem is to represent the reachable
set as a sequence of sets X0, X1, X2, . . . , XT whose union, called flowpipe, contains all the
states reachable by the system. Such a sequence can be obtained by adopting a numerical
set-integration, which can be seen as a breath-first exploration of the reachable sets. The
usual key-steps of a set-based integrator, that are similar to the traditional integrators, are:

1. Fix a set of initial conditions X0;
2. Compute Xk+1 = f(Xk);
3. Repeat Step 2 until a condition is met.

123

Form Methods Syst Des (2017) 50:1–38 3

The halting conditions are typically defined in terms of thresholds on the maximum number
of reachable steps (in this case we speak of bounded-time reachability) or the achievement
of a fix-point checkable by the inclusion Xk+1 ⊆ Xk . From this scheme, we can see that
the key element of this kind of reachability algorithms is the computation of the image of
a set Xk+1 = f(Xk) (see Step 2). The hardness of this task depends on two factors: (1) the
kind of set Xk that has to be transformed, and (2) the transforming function f . For instance,
to obtain the image f(Xk) of a polytope with respect to a linear function, we can compute
the images of the vertices of Xk and, by the convexity preservation of linear functions, we
can determine Xk+1 as the convex hull of the obtained points. However, things become
more complicated when nonlinear functions, as the polynomials treated in this work, are
considered. In general, nonlinear functions do not preserve nice properties of sets such as
convexity, and thus approximation techniques are required.

A large part of this work is concerned with the transformation of polytopes with respect to
polynomial functions. If we define efficient methods to over-approximate polynomial images
of sets, we can also define algorithms for computing flowpipes that contain the reachable
sets of polynomial dynamical systems. Before stating the details of our contributions, let us
have an overview of the existing methods for both linear and nonlinear systems.

1.3 Related work

Linear systems Reachability computation set of linear systems is one of the most studied
problems related to formal verification of linear dynamical and hybrid systems. As previously
pointed out, this class of systems has useful properties, such as convexity preservation, that
simplify the computation of the transformation of sets. Not surprisingly, one of the most
adopted classes of sets are polytopes (often called convex polyhedra).

It has been shown how particular polytopes, such as boxes [76] and parallelotopes [49,50]
offer a good trade-off between systemdimension and precision.More complex polytopes, like
zonotopes [1,39,40], that have the only drawback of not being closed under intersection, have
also been successfully applied to linear systems. Different techniques based on a combination
of generic polytopes and optimization are [18–20,34,42,71,77].

Further approaches based on a symbolic representation of polytopes as support func-
tions [58,59] have been successfully applied to systems with hundreds of variables. Leaving
polytopes, we can findworks that use ellipsoids [10,54] or symbolic semialgebraic sets [2,57]
to represent and compute reachable sets.

Tools born from these ideas are CheckMate [20], HyTech [42], d/dt [3], MPT [56],
PHAVer [34], SpaceEx [35], and Ellipsoidal Toolbox (ET) [55].

Nonlinear systems If on the one hand linear reachability analysis has several efficient solu-
tions, on the other hand nonlinear reachability remains a rather open problem for which the
available methods are limited to restricted classes of systems with low dimensions (hardly
more than ten variables for nonlinear systems against hundreds of dimensions for linear
ones).

Some attempts for tackling nonlinearity have been made by considering subclasses of
nonlinear systems, such as multi-affine systems [6,7] (where each variable appears with
degree at most one) or by transforming the original systems into simpler ones using different
representations (such as Bézeir simplex or Bernstein basis) [23,68,73].

Some examples of more direct methods that aim to numerically compute reachable sets
are based on the manipulation of nonconvex sets, such as orthogonal polyhedra [11,27], or

123

4 Form Methods Syst Des (2017) 50:1–38

Taylor models [9,16]. A different family approaches based on symbolic manipulations of
formulas [5] includes approximated logic semantics [13,32,37] and differential algebraic
logics [64,65].

Examples of the tools based on these concepts are d/dt [3], Ariadne [5], KeYmaera [66],
pyHybrid Analysis [12], dReach [48], and Flow* [17].

It is important to point out that the available methods can handle, in the optimistic case,
systems with at most a dozen of variables.

1.4 Contributions

In this work we present new scalable methods for over-approximations of the reachable set
of polynomial discrete-time dynamical systems (note that this is a class of nonlinear systems
that has numerous applications inmodeling physical phenomena). The developed reachability
algorithms share at their core the transformation of polytopes with respect to polynomials,
an operation that, as we will discover later, can be computed by maximizing polynomials
over a polytopic domains.

The Bernstein expansion, born to represent polynomials in Bernstein basis [8,75], is
an efficient tool to bound polynomials over the unit box domain, i.e., the hyperrectangle
anchored at the origin having unit edge lengths. In order to be able to bound polynomials
over more generic domains, we propose a technique to make use of Bernstein coefficients
also on generic boxes and parallelotopes. Intuitively, the adaptation is made possible by the
transformation of the unit box into the set on which the polynomial has to be bounded. This
trick is the key ingredient for our set transformation methods.

Exploiting Bernstein coefficients over generic boxes and parallelotopes, we define some
methods to over-approximate the image of boxes and paralleltopes with respect to polyno-
mials. Later, we will also lift these approaches to the transformation of generic polytopes
represented with a new data structure that we call paralleltope bundle. A parallelotope bun-
dle is a finite set of parallelotopes whose intersection symbolically represents a polytope. In
order to obtain the transformation of a polytope, one can reason on its bundle representation,
considering separately each parallelotope, transforming it (with our predefined methods),
and then intersecting the obtained parallelotopes. The result is a new polytope that over-
approximates the image of the starting one. These three set image methods will be later used
to define our reachability algorithm for polynomial dynamical systems.

All the techniques presented in this work have been implemented in a C++ tool called
Sapo [30]. Our methods have been evaluated on several case studies arising from practical
dynamical systems. As we will see in the experimental section, we have been able to apply
our reachability algorithms on a quadcopter drone model composed by seventeen variables,
aspect that demonstrates the scalability and quality of the techniques proposed in this work.

To summarize, the contributions of this work are the following:

– The adaptation of the bounding properties of Bernstein coefficients of polynomials to
generic boxes and parallelotopes;

– A box-based set image over-approximation technique;
– A parallelotope-based set image over-approximation technique;
– The definition of parallelotope bundles for the symbolic representation of polytopes and

a parallelotope bundle-based set image over-approximation technique;
– The definition of a reachability algorithm for discrete-time polynomial dynamical sys-

tems based on boxes, parallelotopes, and parallelotope bundles;
– The implementation (in a tool called Sapo) and the experimental evaluation of our meth-

ods on several case studies.

123

Form Methods Syst Des (2017) 50:1–38 5

1.5 Paper structure

The paper is organized as follows. In Sect. 2 we introduce the reachability computation
problem for dynamical systems, highlighting its hardness whenever nonlinear dynamics
are involved. We will also introduce a common optimization-based technique for over-
approximating the images of sets using template polyhedra (Sect. 2.3). We will show how
Bernstein coefficients are good candidates to estimate these optima (Sect. 2.4) which how-
ever require some adaptation when applied to generic domains. In Sect. 3 we will show how
some Bernstein coefficients properties can be generalized to some polytopic domain and how
they can be used to define algorithms for the over-approximation of the images of sets with
respects to polynomials. In Sect. 3.1 we will reason on boxes, in Sect. 3.2 on parallelotopes,
and in Sect. 3.3 we will define and work with parallelotope bundles. Section4 is dedicated
to the experimental evaluation of our methods. In Sect. 4.1 we will apply our methods on
several dynamical systems of increasing complexity, while in Sect. 4.2 we will compare our
implementation with the current state-of-the-art tool for the reachability computation of non-
linear systems. Finally, Sect. 5 concludes the paper with a short summary and some insights
for future developments. Some additional details concerning the experimental evaluations
can be found in “Appendix”. The implementation of our tool and the experiments presented
in this paper can be found at the link [29].

2 Reachable set computation

2.1 Sets and reachability

A discrete-time dynamical system can be described by difference equations of the form:

xk+1 = f(xk) (2)

where x ∈ R
n is the vector of state variables and the dynamics f : R

n → R
n is a vector of n

multi-variate continuous functions of the form fi : R
n → R, for i ∈ {1, . . . , n}. The initial

conidtion (or initial state) x0 is inside some initial set X0 ⊂ R
n .

Given a set X ⊂ R
n , the image of X by f , denoted by f(X), is defined as:

f(X) = {(f1(x), . . . , fn(x)) | x ∈ X} (3)

The set Xk ⊂ R
n reachable at time k ∈ N can be obtained by the recurrence:

Xk+1 = f(Xk) (4)

where X0 is the initial set.

Example 1 Let us consider the SIR epidemic model [46] as running example. This is a well-
known dynamical system used to describe the evolution of a disease in a population. The
dynamics of the system are the following:

sk+1 = sk − βskik/N

ik+1 = ik + βskik/N − γ ik

rk+1 = rk + γ ik

(5)

The system considers a population of N ∈ R≥0 individuals partitioned in three compart-
ments: s is the group of susceptible individuals who have not been exposed to the disease, i

123

6 Form Methods Syst Des (2017) 50:1–38

Fig. 1 Evolutions of SIR dynamical system with different initial conditions. a Evolution of infected i indi-
viduals in time. b Evolution of susceptible s, infected i , and removed r individuals in space

is the class of infected individuals, and r are the removed individuals who recovered from the
disease. The migration of individuals between compartments is regulated by two parameters:
β is the probability for a susceptible individual to become infected once there is a contact
with an sick person, and 1/γ is the mean infection period, i.e., the time necessary for an
infected individual to migrate from the infected to the removed compartment. The values of
the parameters β and γ must be kept constant during the simulation of the model.

For simplicity, let us consider a normalized population, i.e., N = 1.0, and parameters
β = 0.35 and γ = 0.05. Let X0 = [0.80, 0.85] × [0.15, 0.20] × [0.0, 0.0] ⊂ R

3 be the
initial set, i.e., s0 ∈ [0.80, 0.85], i0 ∈ [0.15, 0.20], and r0 ∈ [0.0, 0.0]. Figure1 shows some
evolutions of the SIR system having initial conditions sampled from X0. From the figure we
can notice that different initial conditions lead to different trajectories.

The goal of this work is to compute (over-approximate) all the possible trajectories starting
from an initial set. In particular, we want to develop a reachability algorithm called reach

(Algorithm 1), that incrementally computes the sets reachable by a dynamical system in a
bounded amount of time.

Algorithm 1 Reachability
1: function reach(X0, tmax) � X0 ⊂ R

n initial set, tmax ∈ N

2: for i = 0, . . . , tmax do
3: Xi+1 ←reachStepXi
4: end for
5: end function

The algorithm receives in input an initial set X0 ⊂ R
n and a time horizon tmax ∈ N,

and computes a sequence of sets X0, X1, . . . , Xtmax , called flowpipe, whose union over-
approximates the reachable set of the considered dynamical system. At time i , the set Xi+1

is obtained by calling the function reachStepXi that implements a single reachability step.
As we will see, a concrete implementation of reachStep strongly depends on the adopted
set representation and the considered dynamics.

123

Form Methods Syst Des (2017) 50:1–38 7

2.2 Polytopes and template polyhedra

In general, the computation and representation of a set transformed by a nonlinear function is
hard. A common way to deal with this issue consists in over-approximating the transformed
set with simpler objects, such as polytopes and template polyhedra.

Definition 1 A polytope Q ⊂ R
n is a closed, compact, bounded subset of R

n such that there
is a finite set of half-spaces H = {h1, . . . , hm} whose intersection is Q, that is:

Q =
m⋂

i=1

hi (6)

where an half-space h = {x | dxT ≤ c} is a set characterized by a non-null normal vector
d ∈ R

n and an offset c ∈ R.

The linear constraints that generate the half-spaces can be organized in amatrix D ∈ R
m×n

called template and a vector c ∈ R
m called offset vector, in short offsets. The polytope

generated by the template D and the offset vector c is denoted by 〈D, c〉. Notice that not all
the pairs 〈D, c〉 define a nonempty polytope.

Template polyhedra [14,72] are a subclass of polytopes with fixed templates and variable
offsets. By varying the offsets c of a template polyhedron 〈D, c〉, it is possible to obtain a
infinite number of polytopes having D as template. The advantage of template polyhedra
over polytopes is that common geometric operations, such as intersection and union, can be
performed more efficiently. In the following we assume that the directions of the adopted
templates are given and fixed. In general, determining optimal directions for a template is a
hard problem that goes outside the scope of this work. Some works that considered the issue
of automatically finding ideal directions are, e.g., [15,74].

2.3 Single step reachability

A polytope-based reachability computation requires the ability of computing the image of a
polytope Q by the dynamics f . In the case of template polyhedra, where a template D ∈ R

m×n

is given, the set image over-approximation can be seen as the problem of finding an offset
vector c ∈ R

m such that:
f(Q) ⊆ 〈D, c〉 (7)

The continuity of f guarantees that f(Q) is a closed, bounded, and compact set for which
always exists an over-approximating polytope 〈D, c〉.

It is not difficult to see that this inclusion holds if Df(x) ≤ c holds for all the x ∈ Q.
This suggests that offsets c = (c1, . . . , cm) can be determined by solving the following
optimization problems:

ci = max
x∈Q Di f(x) (8)

where Di is the i th row of D and i ∈ {1, . . . ,m}. Whenever f are nonlinear functions, these
optimization problems require nonlinear and nonconvex optimization techniques that are in
general computationally expensive. A way to address this issue, is to relax the problem and
seek tight bounds that can be efficiently determined. For instance, if we are able to bound
a polynomial over a polytope, then we can develop a single step reachability algorithm for
polynomial dynamical systems.

123

8 Form Methods Syst Des (2017) 50:1–38

Algorithm 2 Single Step Reachability
1: function reachStep(X) � X = 〈D, c〉 ⊂ R

n polytope
2: for i ∈ {1, . . . ,m} do
3: c′i ←boundDi f(x), X
4: end for
5: return X ′ = 〈D, c′〉
6: end function

reachStep (Algorithm 2) implements this approach. It computes an over-approximation
set X ′ ⊇ f(X) bounding the functions Di f(x) over the polytope X = 〈D, c〉. With this setup,
the computation of the reachable sets depends on the ability of bounding a function over a
polytope. This task can be difficult for generic f and X .

In the next section we introduce a technique to bound polynomials over unit boxes exploit-
ing Bernstein coefficients (typically used to express polynomials in Bernstein form).

2.4 Bernstein basis and coefficients

Before defining Bernstein basis and coefficients, we introduce some notations useful to work
with polynomials.

A multi-index is a vector i = (i1, . . . , in) where each i j ∈ N. Given two multi-indices i
and d of the same length, we write i ≤ d (d dominates i) if for all j ∈ {1, . . . , n}, i j ≤ d j . We
denote the multi-index (i1/d1, . . . , in/dn) by i/d and the product of the binomial coefficients(
d1
i1

)
. . .

(
dn
in

)
by

(
d
i

)
.

A polynomial π(x) : R
n → R can be represented in the power basis as:

π(x) =
∑

i∈Iπ

aixi (9)

where i = (i1, i2, . . . , in) is a multi-index of size n ∈ N and xi denotes the monomial
xi11 x

i2
2 . . . xinn . The finite set Iπ is called the multi-index set of π . The degree d of π is the

smallest multi-index that dominates all the multi-indices of Iπ , i.e., for all i ∈ Iπ , i ≤ d.
The coefficients ai ∈ R range over the reals.

Example 2 Consider the polynomial π(x1, x2) = 1/3x21 − 1/2x2 + 1/4x1x2 + 1/2. The
multi-index set of π is Iπ = {(2, 0), (0, 1), (1, 1), (0, 0)}, the associated coefficients are
a(2,0) = 1/3, a(0,1) = −1/2, a(1,1) = 1/4, a(0,0) = 1/2, and the degree is d = (2, 1).

Bernstein basis polynomials of degree d are basis for the space of polynomials of degree
at most d over R

n . For x = (x1, x2, . . . , xn) ∈ R
n , the i-th Bernstein polynomial of degree

d is defined as:
B(d,i)(x) = βd1,i1(x1)βd2,i2(x2) . . . βdn ,in (xn) (10)

where, for a real number x ∈ R,

βd j ,i j (x) =
(
d j

i j

)
x i j (1 − x)d j−i j (11)

A polynomial π(x) : R
n → R can be represented using Bernstein basis as:

π(x) =
∑

i∈Iπ

biB(d,i)(x) (12)

123

Form Methods Syst Des (2017) 50:1–38 9

where for each i ∈ Iπ , the Bernstein coefficient bi, is defined as:

bi =
∑

j≤i

(i
j

)

(d
j

)aj (13)

Bernstein coefficients can be calculated from the coefficients of the monomials of the treated
polynomial in power basis. The (n + 1)-dimensional points (i/d,bi) ∈ R

n+1 are called
Bernstein control points.

Example 3 Consider the polynomial π(x1, x2) = 1/3x21 −1/2x2 +1/4x1x2 +1/2 of Exam-
ple 2. The Bernstein coefficient associated to the multi-index (1, 1) is:

b(1,1) =
(
(1,1)
(1,1)

)

(
(2,1)
(1,1)

)1/4 −
(
(1,1)
(0,1)

)

(
(2,1)
(0,1)

)1/2 +
(
(1,1)
(1,0)

)

(
(2,1)
(1,0)

)0 +
(
(1,1)
(0,0)

)

(
(2,1)
(0,0)

)1/2 = 0.125 (14)

Applying the same scheme to the other multi-indices, we obtain the Bernstein coefficients
b(0,0) = 0.5, b(0,1) = 0.0, b(1,0) = 0.5, b(1,1) = 0.125, b(2,0) = 0.834, and b(2,1) = 0.584.

2.4.1 Properties of Bernstein coefficients

Bernstein coefficients present several interesting properties. Here we expose two proper-
ties that will be exploited in our reachability techniques. For further properties see, for
instance [33,75].

Lemma 1 (Range Enclosing)

min
i∈Iπ

bi ≤ π(x) ≤ max
i∈Iπ

bi, (15)

for all x ∈ [0, 1]n, where bi, for i ∈ Iπ , are the Bernstein coefficients of π .

Lemma 2 (Sharpness)
bi = π(i/d) (16)

for all i ∈ Vd, where bi are the Bernstein coefficients of π and Vd is the set of vertices of the
box [0,d1] × [0,d2] × . . . [0,dn].

These two properties provide us some useful information about the image of the polyno-
mial π over the unit box [0, 1]n . In particular:

1. The range enclosing property (Lemma 1) states that the minimum and maximum Bern-
stein coefficients are a lower bound and an upper bound of the image of π over the unit
box domain, respectively;

2. The sharpness property (Lemma 2) says that the Bernstein coefficients at the vertices of
the box domain, match exactly the values of the polynomial at some points.

Example 4 Consider the polynomial π(x1, x2) = 1/3x21 − 1/2x2 + 1/4x1x2 + 1/2 and its
Bernstein coefficients (from Example 3). Figure2 shows the image of π over the unit box
(gray area) and its control points (black dots).

The coefficients b(1,1) = 0.125 and b(2,0) = 0.834 are a lower bound and an upper bound
of π([0, 1]2) (range enclosing property) and the control points lying on the vertices of the
unit box match exactly the values of π([0, 1]2) (sharpness property).

123

10 Form Methods Syst Des (2017) 50:1–38

Fig. 2 The polynomial π(x1, x2) = 1/3x21 − 1/2x2 + 1/4x1x2 + 1/2 over the unit box (in gray) and its
control points (in black). The coefficients b(1,1) = 0.125 and b(2,0) = 0.834 are a lower bound and an upper

bound of π([0, 1]2) (range enclosing property) and the control points lying on the vertices of the unit box
match exactly the values of π([0, 1]2) (sharpness property)

The following lemma [26] limits the error between the actual optimums and the bounds
provided by Bernstein coefficients.

Lemma 3 Let Cπ : R
n → R be the piecewise linear function defined by the Bernstein control

points of the polynomial π : R
n → R, with respect to the box [0, 1]n. For all x ∈ [0, 1]n

| π(x) − Cπ (x) |≤ max
x∈[0,1]n;i, j∈{1,...,n} | ∂i∂ jπ(x) | (17)

where | · | is the infinity norm on R
n.

Several convergent subdivision procedures for reducing the gap between bounds and
optimums have been proposed [38,61,62].

2.4.2 Computation of upper and lower bounds

The range enclosing property (Lemma 1) can be used to determine upper and lower bounds of
polynomials over the unit box. We now define the algorithm maxBernCoeff (Algorithm 3)
that implements this idea.

123

Form Methods Syst Des (2017) 50:1–38 11

Algorithm 3 Compute maximum Bernstein Coefficient
1: function maxBernCoeff(π) � π(x) : R

n → R

2: Bπ ←BernCoeffsπ � Compute Bernstein coefficients
3: b ← maxbi∈Bπ bi � Extract the maximum

4: return b
5: end function

Given a polynomial π : R
n → R, maxBernCoeff computes the set Bπ of the Bernstein

coefficients of π(x) [that can be obtained using Eq. (13)], scans all the coefficients, and
determines their maximum b that is an upper bound for the polynomialπ(x) over the unit box.

If needed, in a similar way, we can define the algorithm minBernCoeff that returns a
lower bound of π(x). minBernCoeff can be easily obtained by extracting the minimum
coefficient from the set Bπ . Note that we can also introduce a test for the sharpness property
(see Lemma 2) that checks whether the computed bound matches the exact optimum.

3 Bounding polynomials over polytopes

In the previous section we have seen how the over-approximation of the image of a set can
be reduced to a number of function optimizations. We have also introduced Bernstein coeffi-
cients, that can be used to bound polynomials exclusively on unit box domains. In this section
we will develop some methods that take advantage of the Bernstein coefficients properties
on different subclasses of polytopes, precisely on generic boxes (or hyperrectangles), par-
allelotopes (the generalization of parallelograms to higher dimensions), and parallelotope
bundles (a new data structure for representing polytopes). For each class of sets, the goal is to
develop an algorithm boundπ, X that returns an upper bound of the maximum of π over X .
This algorithm will be used by reachStep (Algorithm 2) to compute over-approximations
of images of sets and indirectly by reach (Algorithm 1) to compute the reachable set of
polynomial dynamical systems.

3.1 Boxes

We begin by considering the class of boxes, also known as hyperrectangles.

Definition 2 (Box) A set B ⊂ R
n is a box if and only if it can be expressed as the product

of n intervals, that is:

B = [x1, x1] × · · · [xn, xn] =
n∏

i=1

[xi , xi] (18)

where xi , xi ∈ R, for i ∈ {1, . . . , n}.
It is easy to see that a box B = [x1, x1]×· · · [xn, xn] is a polytope since it can be represented
by a template D ∈ R

2n×n and offsets c ∈ R
2n where:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0
...

. . .
...

0 . . . 1
−1 . . . 0
...

. . .
...

0 . . . −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

c =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xn
−x1

...

−xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

123

12 Form Methods Syst Des (2017) 50:1–38

3.1.1 Bounding over boxes

Let us now focus on the problem of extending the properties of Bernstein coefficients, that
are valid only for unit box domains, to generic boxes.

Let π : R
n → R be a polynomial and X = 〈D, c〉 = [x1, x1] × · · · × [xn, xn] be a box.

We begin by defining a linear transformation v(x) : R
n → R

n that maps the unit box to X .
Such a map can be defined as follows:

v(x) =

⎛

⎜⎜⎜⎝

x1 − x1 0 . . . 0
0 x2 − x2 . . . 0
...

...

0 . . . 0 xn − xn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠ (20)

Composing v(x) with π(x) we observe that the equality π(X) = π(v([0, 1]n)) holds,
which suggests that we can use the Bernstein coefficients of π(v(x)), to indirectly bound
π(x) over X . We recall the the Bernstein coefficients can be computed by maxBernCoeff

(Algorithm 3).
Let us formalize this procedure in the function bound (Algorithm 4) that receives in input

a polynomial π : R
n → R and a box X ⊂ R

n , and returns an upper bound b ∈ R of π(x)
such that b ≥ maxx∈[0,1]n π(v(x)) = maxx∈X π(x).

Algorithm 4 Bound polynomial over box
1: function bound(π, X) � X ⊂ R

n box
2: v(x) ←mapUnitBoxToX � Map [0, 1]n to X
3: b ←maxBernCoeffπ(v(x)) � Compute maximum coefficient
4: return b
5: end function

The algorithm bound, using the function mapUnitBoxTo based on Eq. (20), computes
the transformation v(x) that maps the unit box to the given box X . Then, it computes the
Bernstein coefficients of π(v(x)) and returns their maximum. This bounding algorithm is the
basic brick of our first box-based reachability algorithm.

Example 5 We now illustrate the computation of the single step reachability algorithm based
on boxes. We consider the SIR dynamical system introduced in Example 1. Let X ⊂ R

3

with s0 ∈ [0.80, 0.85], i0 ∈ [0.15, 0.20], and r0 ∈ [0.0, 0.0] be a box whose constraint
representation is X = 〈D, c〉 where:

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎠
c =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.85
0.20
0.00

−0.80
−0.15
0.00

⎞

⎟⎟⎟⎟⎟⎟⎠
(21)

The algorithm reachStep begins by composing the first direction D1 of D with the
system dynamics, obtaining the function:

D1f(s, i, r) = (
1 0 0

)
⎛

⎝
s − 0.35si
i + 0.35si − 0.05i
r + 0.05i

⎞

⎠ = s − 0.35si (22)

123

Form Methods Syst Des (2017) 50:1–38 13

Fig. 3 Box-based set image
approximation. The constructed
box (in white) and some
reachable points (in black)

Then it proceeds by bounding D1f(x) over X calling boundD1f(x), X that computes the
map v(x) from the unit box to X :

v(x) =
⎛

⎝
0.85 − 0.80 0 0

0 0.20 − 0.15 0
0 0 0.0 − 0.0

⎞

⎠

⎛

⎝
s
i
r

⎞

⎠ +
⎛

⎝
0.80
0.15
0.0

⎞

⎠ (23)

and composes it with the function to bound D1f(x), generating the polynomial:

D1f(v(x)) = s/20 − (7(i/20 + 3/20)(s/20 + 4/5))/20 + 4/5 (24)

Finally the set BD1f(v(x)) of Bernstein coefficients of D1f(v(x)) is computed:

D1f(v(x)) = {0.7580, 0.7440, 0.8054, 0.7905} (25)

and the maximum coefficient b = 0.8054 is returned. Fixing b as the offset c′
1 for the

direction D1, we obtain the first half-space of the new over-approximating box. Repeating
the procedure for all the directions of D we obtain the box X ′ = 〈D, c′〉 where:

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎠
c′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.8054
0.2495
0.0100

−0.7440
−0.1845
−0.0075

⎞

⎟⎟⎟⎟⎟⎟⎠
(26)

The constructed box X ′ is shown in Fig. 3 (in white) together with some reachable points
(in black) computed sampling initial conditions in X . Note how X contains all the sampled
reachable points.

3.2 Parallelotopes

In this section we extend our set image approximation method to parallelotopes, i.e., the
n-dimensional generalization of parallelograms. The use of parallelotopes makes the reach-

123

14 Form Methods Syst Des (2017) 50:1–38

x2

x1

S
D1x ≤ c1

D2x ≤ c2

D3x ≤ c3
D4x ≤ c4

x2

x1

S

q

m1u1

m2u2

(a) (b)
Fig. 4 A set S and two enclosing parallelotopes. a Constraint representation. b Generator representation

ability method more flexible as far as the choice of the initial set is concerned and it allows
one to obtain better approximations.

A parallelotope is a centrally symmetric convex polytope whose opposite facets are par-
allel. As all the polytopes, it can be represented as a collection of linear constraints.

Definition 3 (Parallelotope Constraint Representation) Let D ∈ R
2n×n be a template such

that Di = −Di+n for each i ∈ {1, 2, . . . , n}, and let c ∈ R
2n be an offset vector. The

parallelotope P ⊂ R
n generated by D and c is P = 〈D, c〉.

We refer to the above representation as the constraint representation (see Fig. 4a). Note
that a parallelotope is a polytope and that a box is a parallelotope [see Eq. (19)]. Another
way to characterize a parallelotope, similar to the one adopted for zonotopes [21], is to fix a
point of origin and use vectors to define it.

Definition 4 (Parallelotope Generator Representation) Let U = {u1, . . . ,un} be a set of n
linearly independent normalized vectors in [0, 1]n ,m ∈ R

n≥0, and q ∈ R
n . The parallelotope

P ⊂ R
n generated by U,m, and q is:

P = {y | y = γU (q,m, x), x ∈ [0, 1]n} (27)

where the function γU : R
n × R

n≥0 × R
n → R

n is defined as:

γU (q,m, x) = q +
n∑

j=1

m ju jx j (28)

This representation is called generator representation. The vectors u1, . . . ,un are the gen-
erators of the parallelotope, q is the base vertex, andm are themagnitudes of the generators.
Intuitively, the base vertex is the point on which the generators are anchored, the generators
defines the orientation of the parallelotope, while the magnitudes its scale (see Fig. 4b). This
notation emphasizes the aspect that a parallelotope can be seen as the affine transformation
of the unit box [note in Eq. (27) that x ∈ [0, 1]n]. This suggests that there might be a way to
combine Bernstein coefficients with parallelotopes.

Before discussing the parallelotope-based set image approximation technique, we show
how a parallelotope can be equivalently represented using constraints and generators. In our
reachability algorithm we will use one of the two representations depending on the operation
we want to perform.

123

Form Methods Syst Des (2017) 50:1–38 15

3.2.1 Representation conversion

From constraints to generators Given a parallelotope P = 〈D, c〉 in constraint represen-
tation, we want to find a generator set U , a base vertex q, and magnitudes m such that
γU (q,m, [0, 1]n) = 〈D, c〉. First, we rewrite the inequalities given by the template D and
offsets c in form:

− cn+i ≤ Dix ≤ ci (29)

for all i ∈ {1, . . . , n}. The based vertex q and the coordinates of the vertex ii that lies on
the straight line passing through the i-th generator vector applied to the vertex q, are the
solutions of the linear systems:

⎛

⎜⎝
D1
...

Dn

⎞

⎟⎠ x =
⎛

⎜⎝
−cn+1

...

−c2n

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

D1
...

Di
...

Dn

⎞

⎟⎟⎟⎟⎟⎟⎠
x =

⎛

⎜⎜⎜⎜⎜⎜⎝

−cn+1
...

ci
...

−c2n

⎞

⎟⎟⎟⎟⎟⎟⎠
(30)

Let gi be the vector anchored on the base vertex q that points to the vertex vi , i.e., gi = vi −q.
The generator ui and the magnitude mi such that gi = miui are given by mi = ‖gi‖ and

ui = gi

‖gi‖ .

From generators to constraints We now consider the inverse conversion: given a gener-
ator function γU (q,m, x), find a template D and an offset vector c such that 〈D, c〉 =
γU (q,m, [0, 1]n).

Let G = {gi | gi = miui ,mi ∈ x,ui ∈ U } be the set of generators scaled by their
correspondentmagnitudes.At first,we calculate the pointsp1, . . . ,pn that are traversed by the
hyperplanes correspondent to the constrains. Eachpi is obtained by adding the vector gi to the
base vertex q, i.e., pi = q+gi . The i-th constraint of the parallelotope lies on the hyperplane
(whose equation is hi = aix+ ci) passing through the points q,p1, . . . ,pi−1,pi+1, . . . ,pn .
The equation hi+n = ai+nx+ci+n of the hyperplane parallel to hi can be found by translating
the vertices used to compute hi by the vector gi , i.e., hi+n is the hyperplane passing through
the points q + gi ,p1 + gi , . . . ,pi−1 + gi ,pi+1 + gi , . . . ,pn + gi . Let ci and ci be defined
as ci = min{di , di+n} and ci = max{di , di+n}.

Since hi and hi+n are parallel it must hold ai = ai+n . Hence, the portion of the parallelo-
tope included between hi and hi+n is the solution of the inequalities ci ≤ aix ≤ ci , which
means that the i-th and (i + n)-th rows of the template matrix are Di = ai and Di+n = −ai ,
while the i-th and (i + n)-th offset elements are ci = ci and ci+n = −ci .

3.2.2 Bounding over parallelotopes

Let us now focus on the set image computation and in particular on the polynomial bound-
ing problem. Let X = 〈D, c〉 ⊂ R

n be a parallelotope in constraint representation whose
generator function is γU (q,m, x). We are interested in computing a parallelotope X ′ ⊂ R

n

such that X ′ ⊇ f(X). Adopting the template D of X , we can obtain X ′ by determining the
offsets c′ ∈ R

2n such that f(X) ⊆ 〈D, c′〉 = X ′. We recall that in order for a parallelotope
X ′ = 〈D, c′〉 to over-approximate the set f(X) it must hold that:

123

16 Form Methods Syst Des (2017) 50:1–38

c′
i ≥ max

x∈X Di f(x) (31)

for all i ∈ {1, . . . , 2n}.
This condition can be equivalently rewritten using the generator representation as:

c′
i ≥ max

x∈[0,1]n hi (x) (32)

for all i ∈ {1, . . . , 2n}, where hi (x) = Di f(γU (q,m, x)) for some fixed U ⊂ [0, 1]n ,
q ∈ R

n , andm ∈ R
n . Note that hi (x) is a polynomial function of x that we want to maximize

over the unit box. Therefore, we can use Bernstein coefficients to compute an upper bound
c′
i ∈ R of the function hi (x) for x ∈ [0, 1]n .
Let Bhi = {bj | j ∈ I hi } be the set of Bernstein coefficients of the function hi (x) and let

c′ = (c′
1, . . . , c

′
2n) be defined as:

c′
i = max{bj | j ∈ I hi } (33)

for all i ∈ {1, . . . , 2n}. It is easy to see that the vector c′ satisfies the inclusion f(X) ⊆ 〈D, c′〉.
This result follows directly from the range enclosing property of Bernstein coefficients
(Lemma 1) and the bounding condition of Eq. (32).

At this point we have all the ingredients to define an algorithm that bounds a polynomial
(the hi (x) functions) over a parallelotpe (the set to be transformed). Let us formalize these
ideas overloading the algorithm bound already defined on boxes in Sect. 3.1. The function
bound (Algorithm 5) receives in input a polynomial π : R

n → R and a parallelotope
X = 〈D, c〉 in constraint representation, and returns an upper-bound b ∈ R of π(x) over X .

Algorithm 5 Bound polynomial over parallelotope
1: function bound(π, X) � X = 〈D, c〉 ⊂ R

n parallelotope
2: γU (q,m, x) ←con2genX � Compute generator function
3: b ←maxBernCoeffπ(γU (q,m, x) � Compute maximum coefficient
4: return b
5: end function

The first step for bound is to compute the generator function γU (q,m, x) for the par-
allelotope X as described in Sect. 3.2.1. The resulting function is composed with π , and
the Bernstein coefficients of π(γU (q,m, x)) are computed. Finally, the maximum Bernstein
coefficient, constituting an upper-bound of π over X , is returned.

Plugging the new algorithm bound into reachStep (Algorithm 2), which in turn is used
by reach (Algorithm 1), we obtain a parallelotope-based reachability algorithm.

Example 6 We now show a parallelotope-based single step reachability on the SIR epidemic
model of Example 1. Let X = 〈D, c〉 be the parallelotope in constraint representation with:

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 0
−1 −1 0
0 0 −1
1 0 0
1 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
c =

⎛

⎜⎜⎜⎜⎜⎜⎝

−0.80
−0.95
0.00
0.85
1.00
0.00

⎞

⎟⎟⎟⎟⎟⎟⎠
(34)

123

Form Methods Syst Des (2017) 50:1–38 17

Fig. 5 Parallelotope-based set
image approximation. The
constructed parallelotope (in
white) and some reachable points
(in black)

The algorithm reachStep picks the first direction D1 of the template D and, calling bound,
bounds the polynomial D1f(x) over X . The bounding function computes the generator func-
tion γU (q,m, x) of X , that is:

γU (q,m, x) =
⎛

⎝
q1 + 0.7070m1s
q2 − 0.7070m1s + m2i
q3 + rm3

⎞

⎠ (35)

with q = (0.80, 0.15, 0.00) and m = (0.0707, 0.0500, 0.0000). Composing D1f(x) with
γU (q,m, x), the algorithm generates the polynomial:

D1f(γU (q,m, x)) = ((q1+0.7070m1s)0.35(q1+0.7070m1s)(q20.7070m1s+m2i)) (36)

that instantiated on the base vertex q and magnitudesm, leads to the Bernstein coefficients:

BD1f(γU (q,m,x)) = {−0.7580,−0.7440,−0.7887,−0.7743,−0.8203,−0.8054} (37)

The maximum coefficient −0.7440 is the offset c′
1 that associated with the direction D1 gen-

erates the first over-approximating half-space D1x ≤ c′
1. Repeating the procedure for all the

directions, we obtain the offset vector c′ = (−0.7440,−0.9425,−0.0050, 0.8203, 0.9925,
0.0100) that coupled with the template D leads to the over-approximating parallelotope
X ′ = 〈D, c′〉 ⊇ f(X).

The constructed parallelotope X ′ and some reachable points computed sampling initial
conditions in X are shown in Fig. 5 (in white and black, respectively). Note how X ′ contains
all the computed reachable points.

3.3 Parallelotope bundles

Combining Bernstein coefficients with generic polytopes is hard, since it requires the trans-
formation of the unit box into a polytope. This can be done considering higher dimensional
unit boxes [74], but it sensibly increases the computation complexity of the procedure. What
we propose here is a new data structure called parallelotope bundles to symbolically repre-
sent polytopes as intersections of parallelotopes. The core idea behind parallelotope bundles

123

18 Form Methods Syst Des (2017) 50:1–38

h1
h2

h3

Q

P1

P2

h1
h2

h3

Q
P1

P2

(a) (b)
Fig. 6 Examples of parallelotope bundles. aA polytope Q and a possible decomposing bundle B = {P1, P2},
i.e., Q = I(B). b A bundle B = {P1, P2} in canonical form, i.e., B = S(B)

is to exploit the techniques previously developed on parallelotopes to define a bundle-based
image algorithm.

Definition 5 (Parallelotope Bundle) A parallelotope bundle B = {P1, . . . , Pb} is a finite set
of parallelotopes whose intersection, denoted by I(B) = ∩b

i=1Pi , generates a polytope.

The polytope I(B) represented by a parallelotope bundle B can be represented as the set of
all the templates and offsets of the parallelotopes that constitute B.

Lemma 4 (Polytope Decomposition) Any polytope Q ⊂ R
n defined by m constrains can be

represented by a bundle involving �m/n� parallelotopes.
Proof We first demonstrate that for any polytope Q ⊂ R

n there exists a parallelotope bundle
B such that Q = I(B). Any set of parallelotopes P1, . . . , Pb whose hyperplanes union is a
cover1 of the the hyperplanes of Q, is a bundle B = {P1, . . . , Pb} such that Q = I(B).

Next, we show that �m/n� parallelotopes are sufficient to decompose a polytope Q ⊂ R
n

defined by m constrains. Let HQ = {h1, . . . , hk} be the set of hyperplanes of Q and HB =
∪b
i=1{hi1, . . . , hi2n} = {h′

1, . . . , h
′
k′ } be the union of all the hyperplanes of the parallelotopes

of B, for some k′ ∈ N, k ≤ k′ ≤ b2n.
The polytope generated by B is then ∩b

i=1 ∩2n
j=1 h

i
j = ∩k′

i=1h
′
i . Since HB covers HQ , it

holds that {h′
1, . . . , h

′
k′ } = {h1, . . . , hk} and then ∩k′

i=1h
′
i = ∩k

i=1hi = Q.
A single parallelotope can match at least n hyperplanes of Q. Then, the total number of

sufficient parallelotopes to decompose Q is equal to the number of facets of Q divided by
the worst case maximum number of facet matchable by a single parallelotope, i.e., �m/n�.

Lemma 4 states that any polytope can be represented by a parallelotope bundle and estab-
lishes the maximum number of parallelotopes sufficient to represent a polytope.

Example 7 Figure6a depicts a polytope Q (in gray) together with a possible bundle B =
{P1, P2} such that Q = I(B). In this case m = 3 and n = 2, thus �3/2� = 2 are sufficient
to decompose Q (in our case P1 and P2).

A bundle representing a polytope may not be “minimal” in the sense that one or more
paralleloptopes can be shrunk while the resulting bundle still represents the same polytope

1 A set of nonempty subsets of X whose union contains the given set X is called a cover of X .

123

Form Methods Syst Des (2017) 50:1–38 19

(see, e.g., the parallelotopes of Fig. 6a). Thus we can define a shrinking process that removes
parts of parallelotopes that are not in the polytope. As we will see later, the shrinking reduces
the error when the image over-approximation is performed on shrunk parallelotopes.

Definition 6 (Shrinking) Let B = {P1, . . . , Pb} be a parallelotope bundle. The shrinking
B ′ = S(B) of B produces a parallelotope bundle B ′ = {P ′

1, . . . , P ′
b} such that for all

P ′
i = 〈D, c′〉 ∈ B ′ and Pi = 〈D, c〉 ∈ B it holds that:

c′
j = max

x∈I(B)
Djx (38)

for j ∈ {1, . . . , 2n}.

Roughly speaking, the shrinking places the hyperplanes of the parallelotopes of a bundle
tangent to its polytope. This operation can be done by solving 2n linear programs. A bundle
that remains unchanged after a shirking is said to be in canonical form.

Definition 7 (Canonical From) A bundle B is in canonical from if and only if S(B) = B.

A bundle in canonical form is a “minimal” representation of the polytope with respect
to a given set of directions, since all the offsets are shifted towards the constraints of the
polytope. The advantage of dealing with bundles in canonical form will become clearer on
image approximations.

Example 8 Figure6b shows the shrinking of the bundle of Fig. 6a. Note how all the
halfspaces of the parallelotopes are tangent to the polytope Q. The shown bundle is in
canonical form.

Note that after shrinking, the hyperplanes of different paralleloptopes might overlap
[specifically, those with the same directions, like for instance the hyperplane h2 of Fig. 6b
shared by P1 and P2). Moreover, the constraints of the paralleloptopes are pairwise parallel,
meaning that for a given hyperplane we can obtain the direction of its parallel one by revers-
ing the original direction sign. These observations suggest us that in a bundle there is a lot of
redundant information and instead of storing separately each parallelotope, we might think
of a data structure that compactly represents bundles in canonical form.

Definition 8 (Bundle Representation) A parallelotope bundle in canonical from can be com-
pactly represented by the tuple 〈D, c, c, T 〉 where:
– D ∈ R

k×n is the direction matrix that contains the directions used to build the parallelo-
topes. The i-th row Di of D represents a direction;

– c ∈ R
k is the upper offsets vector. The i-th element of c associated with the i-th direction

Di constitutes the halfspace Dix ≤ ci ;
– c ∈ R

k is the lower offsets vector. The i-th element of c associated with the i-th direction
Di constitutes the halfspace −Dix ≤ ci (note the change of sing in the direction);

– T ∈ {1, . . . , k}b×n is the template matrix. Each element in T refers to a direction in D
and some offsets in c and c. A row in T points to a set of halfspaces that generate a
parallelotope.

With a slight abuse of notation we write B = {P1, . . . , Pb} = 〈D, c, c, T 〉 to indicate that
the bundle B = {P1, . . . , Pb} is represented by the tuple 〈D, c, c, T 〉.

123

20 Form Methods Syst Des (2017) 50:1–38

Example 9 Consider the bundle B = {P1, P2} in canonical from of Fig. 6(b) where P1 =
〈D1, c1〉 and P2 = 〈D2, c2〉 with:

D1 =

⎛

⎜⎜⎝

1.6 1
0 1

−1.6 −1
0 −1

⎞

⎟⎟⎠ c1 =

⎛

⎜⎜⎝

10
3.1
−1
−1

⎞

⎟⎟⎠ D2 =

⎛

⎜⎜⎝

1.6 1
−0.5 1
−1.6 −1
0.5 −1

⎞

⎟⎟⎠ c2 =

⎛

⎜⎜⎝

10
1

−1
1.7

⎞

⎟⎟⎠ (39)

The bundle B = {P1, P2} can be represented by the tuple 〈D, c, c, T 〉 where:

D =
⎛

⎝
1.6 1
0 1

−0.5 1

⎞

⎠ c =
⎛

⎝
10
3.1
1

⎞

⎠ c =
⎛

⎝
−1
−1
1.7

⎞

⎠ T =
(
1 2
1 3

)
(40)

3.3.1 Bounding over bundles

Similarly to boxes and parallelotopes, also here we aim to use bundles to over-approximate
the image of polytopes. In particular, given a bundle B = 〈D, c, c, T 〉 and a polynomial
f : R

n → R
n , we want to find a vector c′ ∈ R

2k such that f(I(B)) ⊆ 〈D′, c′〉, where D′ is a
template, possibly composed by the directions of the bundle. Once we compute the polytope
〈D′, c′〉 we might want to decompose it into a new bundle. Let us start with the problem of
bounding a direction over the image of a bundle.

Let X = I(B) be the polytope represented by the bundle B = {P1, . . . , Pb} =
〈D, c, c, T 〉 and let D′ be a template. We recall that in order for a polytope X ′ = 〈D′, c′〉 to
over-approximate f(X) it must hold that:

c′
i ≥ max

x∈X D′
i f(x) (41)

for all i ∈ {1, . . . , 2k}.As pointed out in Sect. 2.3, since X is a generic polytope,wemaynot be
able to efficiently solve this optimization problem. However, since X = I({P1, . . . , Pb}) ⊆
Pi , for all i ∈ {1, . . . , b}, it holds that:

f(X) ⊆
b⋂

i=1

f(Pi) (42)

This means that for a given direction D′
i , it holds that:

max
x∈X D′

i f(x) ≤ max
x∈Pj

D′
i f(x) (43)

for all j ∈ {1, . . . , b}. In particular, we can obtain a tight upper-bound c′
i of maxx∈X D′

i f(x)
looking at the parallelotopes of a bundle:

c′
i = min

j∈{1,...,b}max
x∈Pj

D′
i f(x) (44)

Example 10 Let B = {P1, P2} be a bundle, X = I(B) be its polytope, and f : R
n → R

n be
a continuous function. Figure 7 depicts the transformations f(X), f(P1), and f(P2). Notice
that since X ⊆ P1 ∩ P2, the inclusion f(X) ⊆ f(P1) ∩ f(P2) holds. Let Di ∈ R

n be the
direction that we want to bound over f(X). Since we are not able to directly bound Di over
f(X), we bound Di over f(P1) and f(P2) and then we take the minimum bound. For instance,
let c1i ≥ maxx∈P1 Di f(x) and c2i ≥ maxx∈P2 Di f(x) (these bounds can be obtained with the
algorithm bound defined on parallelotopes in Sect. 3.2.2). Suppose that c2i ≤ c1i (as depicted

123

Form Methods Syst Des (2017) 50:1–38 21

Fig. 7 Bounding the direction
Di over the transformation of a
bundle B = {P1, P2}

f(P1)

f(P2)

f(X)

Dix ≤ c1i

Dix ≤ c2i

in Fig. 7). Then c2i is the best candidate to be associated with the direction Di that leads to
the hyperplane Dix ≤ c2i that tightly includes f(X).

From Example 10 it easy to see that we obtain hyperplanes that are closer to the polytope
image by considering more parallelotopes. Of course, this has a price in terms of compu-
tational complexity. Given a parallelotope bundle B = {P1, . . . , Pb} we might let the user
chose on which parallelotopes to bound a direction, specifying the correspondent indices.
Let us formalize the bounding algorithm.

Algorithm 6 Bound polynomial over parallelotope bundle
1: function bound(π, {P1, . . . , Pb}) � {P1, . . . , Pb} parallelotope bundle
2: for i ∈ {1, . . . , b} do
3: bi ←boundπ, Pi
4: end for
5: b ← min{b1, . . . , bb}
6: return b
7: end function

Let us overload the already defined algorithm bound on paralellotope bundles. The new
bound (Algorithm 6) takes in input a polynomial π : R

n → R
n and a parallelotope bundle

B = {P1, . . . , Pb}, and returns an upper-bound b̄ ∈ R ofπ(x) overI(B). For each parallelope
Pi with i ∈ {1, . . . , b}, the algorithm calls the function bound defined on parallelotopes
(Algorithm 5) that returns a bound bi of π(x) over Pi . Once that all the paralleloptopes have
been considered, the algorithm returns the minimum bound b̄ that is an upper-bound of π(x)
over the polytope I(B).

3.3.2 Bundle-based image over-approximation

The function bound can be used to over-approximate the image of a polytope represented
by a bundle. In particular, we can consider a template, bound its directions over the polytope
X = I(B), and then construct the over-approximation polytope X ′ ⊇ f(X). If we want
to reapply our bundle-based approximation scheme to X ′, we need to decompose X ′ in a
new bundle. Specifically, we have to define a new templates matrix that leads to X ′. In
order to use bundles in the reachability algorithm, we need to slightly adapt the reachStep
algorithm (Algorithm 2) considering two main aspects: (1) the directions to be bounded and
the parallelotopes of the bundle on which the directions have to be bounded, and (2) the
decomposition of the computed polytope into a new bundle. Let us begin by considering the
first issue.

Let B = {P1, . . . , Pb} = 〈D, c, c, T 〉 be the bundle to be transformed by f : R
n → R

n .
We assume that for the over-approximating polytope we use a template D′ composed by

123

22 Form Methods Syst Des (2017) 50:1–38

the same directions of B, i.e., D′ =
(

D
−D

)
. With these ingredients, the completest over-

approximation technique that we can develop consists in bounding all the directions of D′
over all the paralleloptopes {P1, . . . , Pb}. reachStep (Algorithm 7) formalizes this idea.
The algorithm takes in input a bundle B = 〈D, c, c, T 〉 and goes through all the directions
of D. The composition of each direction Di with the function f(x) (and its parallel version
−Di with f(x)) is bounded over all the parallelotopes of the bundle with the function bound

generating the offset vectors c′ and c′. At this point, the polytope 〈D′, c′〉, with c′ =
(
c′
c′

)

is an over-approximation of f(I(B)). We refer to this approach as the all-for-one (AFO)
transformation, since we bound all the directions on each single parallelope. This method
requires �(2kb) bounding computations.

Algorithm 7 Bundle-based reach step (AFO technique)
1: function reachStep(B) � B = {P1, . . . , Pb} bundle
2: for i ∈ {1, . . . , k} do
3: c′i ←boundDi f(x), {P1, . . . , Pb}
4: c′i ←bound−Di f(x), {P1, . . . , Pb}
5: end for
6: B′ ← decompose〈D, c′, c′, T 〉 � optional
7: return B′
8: end function

Since we might want to apply again a bundle-based image over-approximation, we should
decompose the polytope 〈D′, c′〉 into a new bundle B ′. A static (and fast) approach consists
in keeping the same parallelotope templates of B also for B ′, i.e., reachStep can return
the bundle B ′ = 〈D, c′, c′, T 〉 without any decomposition. Otherwise, we have to define the
composition function decompose.

Before focusing on the decomposition, we define a faster but rougher over-approximation
method. The technique consists in considering only a subset of parallelotopes when bounding
the directions of the bundle. Specifically, for each parallelope Pi , we bound only the direc-
tions that compose Pi over itself. This corresponds to independently over-approximate each
parallelotope by its own template. This method can be easily obtained by slightly modifying
Algorithm 7.We refer to this technique as one-for-one (OFO) transformation, since the direc-
tions of one parallelope are bounded only with respect to one parallelope. In doing so, the
number of bound computations is �(2nb). The OFO technique requires less optimizations
than AFO (note that k ≥ n) but it might produce coarser results. Note that the OFO over-
approximation can be seen as the independent over-approximation of each parallelotope of
the bundle that generates a new bundle which can be shrunk/canonized and then represented
with our data structure.

Example 11 Figure8 shows the AFO and OFO transformations using the directions of the
bundle of Fig. 6 and the transformed parallelotopes of Fig. 7. Figure8a depicts the AFO
transformation, where all the directions are bounded over all the parallelopes and the smallest
offsets are kept. The gray area is the polytope resulting from the AFO transformation.

Figure8b shows the OFO transformation, where the directions of each parallelotope are
bounded over the image of the parallelotope itself. The gray area is the polytope obtained by
shrinking the result of OFO transformation.

123

Form Methods Syst Des (2017) 50:1–38 23

f(P1)

f(P2)

f(X)

f(P1)

f(P2)

f(X)

(a) (b)
Fig. 8 AFO and OFO transformations. a AFO already shrunk. b OFO after shrinking

Note how the AFO over-approximation polytope (Fig. 8a) is included in the OFO one
(Fig. 8b).

Example 12 As an illustrative example, we now show a bunlde-based single step reachability
of the SIR epidemic model presented in Example 1. Let us consider the AFO transformation,
i.e., the approach in which each direction is bounded over each parallelotope of the bundle
(see Sect. 3.3.2).

Let X ⊂ R
n be a set represented by the bundle B = 〈D, c, c, T 〉 with:

D =

⎛

⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0.5

⎞

⎟⎟⎠ c =

⎛

⎜⎜⎝

0.8
0.2
0.0
1.0

⎞

⎟⎟⎠ c =

⎛

⎜⎜⎝

−0.79
0.19
0.0
0.0

⎞

⎟⎟⎠ T =
(
0 1 2
1 2 3

)
(45)

Intuitively, the set X = I(B) is the boxwith s ∈ [0.79, 0.80], i ∈ [0.19, 0.20], and r = 0.00.
We want to determine new offset vectors c′, c′ for a new paralleltope bundle B ′ such that
I(B ′) ⊇ f(X).

To do so, we apply the AFO transformation algorithm, that bounds all the directions of the
matrix D over the parallelotopes described by the templates matrix T , and keeps the tightest
bound. The bounding operations are carried out using the methods previously described
(see Sect. 3.2.2). For instance, by bounding the direction D3 over the two parallelotopes, we
obtain the upper-bounds 0.89 and 0.99, respectively. Thus, the algorithm keeps the tightest
bound that is the offset c′

3 = 0.89 for the over-approximating bundle under construction.
Repeating this operations for all the directions and parallelotopes, we obtain the offset vectors
c′ = (0.79, 0.20, 0.001, 0.89) and c = (−0.78,−0.19,−0.001,−0.88) that grouped with
the direction and template matrices constitute the new bundle B ′ = (D, c′, c′, T).

Figure 9a shows the parallelotopes that compose the new bundle (in white and
gray). Figure 9a shows the symbolic polytope generated by the intersection of the two
parallelotopes (in white) with some reachable points computed by sampling initial conditions
in X . Note how all the points fall in the computed bundle.

123

24 Form Methods Syst Des (2017) 50:1–38

Fig. 9 Bundle-based set image approximation. a The parallelotopes of the constructed bundle (in white and
gray). b The symbolic polytope (in white) and some reachable points (in black)

3.3.3 Polytope decomposition

As earlier pointed out, in our bundle-based over-approximation algorithm we may be inter-
ested in decomposing a polytope into a bundle (see Algorithm 7). Hence, we now define
the function decompose that receives in input a bundle B (whose polytope I(B) has to
be decomposed) and reorganizes its the templates matrix creating a new collection of par-
allelotopes around the polytope I(B). The goal of the decomposition is to create a set of
small parallelotopes whose intersection is I(B). There are two reasons why we want small
parallelotopes:

1. Smaller parallelotopes Pi lead to a smaller bundle image {f(P1), . . . , f(Pd)} and then to
a more accurate over-approximation of f(I(B));

2. The shorter the largest side length of Pi , the more accurate the over-approximation
introduced by the Bernstein coefficients (see Lemma 3).

Thus, the aspects to be taken into account in the construction of the parallelotopes are
volume and maximum side length. Moreover, we do not have to forget that the set of the
parallelotope directions must cover the directions of the polytope to be decomposed (see
Lemma 4). Finding the best decomposition in terms of volume and maximum length min-
imization is computationally expensive and might not be possible (recall that the set cover
problem is NP-hard [45]).

In order to efficiently find a good decomposition, we propose a heuristic that constructs
the parallelotopes while trying to minimize the volumes and maximum side lengths. The
proposed heuristic starts from a decomposition, applies a series of random changes to the
templates matrix, and keeps only the best one accordingly to an evaluation function that we
will soon define. The procedure is repeated until a fixed number of iterations is reached.

Given a bundle B = {P1, . . . , Pb}, the evaluation function should take into account the
volumes and side lengths of the parallelotopes Pi , for i ∈ {1, . . . , b}. The exact computation
of the volume of a parallelotope is rather expensive, since it is equal to the determinant of a
n × n matrix. To lighten the computation, we approximate the volume of P = 〈D, c〉 with
the product of the distances of its constraints:

ṽ(P) =
n∏

i=1

δ(Dix ≤ ci , Di+nx ≤ ci+n) (46)

123

Form Methods Syst Des (2017) 50:1–38 25

where δ(Dix ≤ ci , Di+nx ≤ ci+n) = |ci − ci+n |/‖Di‖ and ‖·‖ is the Euclidean norm.
The computation of the side lengths of a parallelotope passes inevitably through the

determination of its vertices, an operation that can be computationally expensive. Instead
of calculating the exact lengths, we opt for a faster heuristic that guesses the lengths of
a parallelotope from the angles of the directions of its constraints. Intuitively, in the two-
dimensional case, having fixed two parallel lines, the lengths of the edges not lying on the
two fixed lines are minimal when the added directions and the fixed ones are orthogonal.
Thus, we define the notion of orthogonal proximity θ(Di , Dj) = D̂i , Dj (mod π/2), where

D̂i , Dj is the angle between Di and Dj , i.e., D̂i , Dj = arccos
Di D j

‖Di‖‖Dj‖ . The orthogonal
proximity of a parallelotope P = 〈D, c〉 is defined as:

�(P) = max
i, j∈{1,...,2n} θ(Di , Dj). (47)

Exploiting the notions of approximated volume ṽ and orthogonal proximity �, we define
the evaluation function w for a bundle as:

w({P1, . . . , Pb}) = max
i∈{1,...,b} αṽ(Pi) + (1 − α)�(Pi) (48)

where α ∈ [0, 1] is a tunable parameter.

4 Experimental evaluation

In this section we experimentally evaluate the reachability techniques presented in this paper.
We take into account several dynamical systems and observe how different methods influence
flowpipe construction and computational times.As expected, the larger the number of adopted
templates and directions, the preciser the constructed flowpipe and the longer the computation
are.

Our methods have been gathered in the tool called Sapo [29].2 The tool is in C++ and
it requires two external libraries: GiNaC3 (GiNaC is Not a CAS) for handling symbolic
polynomials, and GLPK4 (GNU Linear Programming Kit) for solving linear programs. For
more details on Sapo, the reader can refer to [30].

The experimental evaluation begins with Sect. 4.1, where several dynamical systems,
sorted by increasing dimension, are presented. We will study the Van der Pol oscillator
(2d) [67], the Rössler attractor (3d) [69], the SIR epidemic model (3d) [46], a generalized
Lotka-Volterra model (5d) [79], a phosphorelay systems (7d) [47], and a quadcopter drone
model (17d) [22]. Each model will be analyzed focusing on different aspects that influence
the reachability computation, such as the number of bundle directions and templates used to
construct the flowpipes, or the set transformation method (OFO or AFO; see Sect. 3.3.2). All
the obtained computational times and details on models and reachability configurations are
summarized in Table1. For simplicity, the direction and template matrices used to construct
the bundles that constitute the computed flowpipes are collected in “Appendix”.

In Sect. 4.2 we compare our tool Sapo with Flow∗ [17], the state-of-the-art tool for the
reachability analysis on nonlinear dynamical and hybrid systems. We will discuss the main
differences of the results provided by the tools and their running times. The comparison is
summarized in Table1.

2 http://tommasodreossi.github.io/sapo/.
3 http://www.ginac.de.
4 https://www.gnu.org/software/glpk/.

123

http://tommasodreossi.github.io/sapo/
http://www.ginac.de
https://www.gnu.org/software/glpk/

26 Form Methods Syst Des (2017) 50:1–38

Table 1 Reachability methods evaluation on dynamical systems

Model Sapo Flow*

Name Vars Steps Dirs/Temps Trans Time TM ε Time

Van der Pol [67] 2 300 4/2 AFO 0.70 4 10−4 1.34

4/4 AFO 1.79

4/6 AFO 3.48

Rössler [69] 3 250 5/3 OFO 0.77 4 10−4 0.94

5/3 AFO 0.99

SIR [46] 3 300 3/1 AFO 0.19 4 10−4 1.54

5/3 AFO 1.78

Lotka–Volterra [79] 5 500 5/1 AFO 1.78 4 10−4 42.47

7/2 OFO 24.83

7/2 AFO 49.70

7/3 OFO 46.92

7/3 AFO 89.67

Phosphorelay [47] 7 200 7/1 AFO 0.85 4 10−1 –

8/2 AFO 2.75

9/2 AFO 6.56

10/3 AFO 15.51

Quadcopter [22] 17 300 17/1 AFO 5.67 4 10−1 –

18/2 AFO 12.29

Model: model’s name; Vars: model’s dimension; Steps: reachability steps; Dirs/Temps: number of used
directions and templates; Trans: bundle transformation method (OFO one-for-one, AFO all-for-one); Time:
computation time (in s)

All the experiments have been performed on a MacBook Pro (3.1 GHz, 16 GB DDR3
RAM).

4.1 Case studies

4.1.1 Van der Pol oscillator

The first studied model is the Van der Pol oscillator [67], an important two dimensional
nonlinear system that found application inmany physical and biologicalmodels.A commonly
used form of the discrete-time Van der Pol oscillator is given by the following dynamics:

xk+1 = xk + (yk)�

yk+1 = yk + (μ(1 − x2k)yk − xk)�
(49)

where μ is a scalar parameter indicating the nonlinearity and the strength of the damping of
the system, and � is the discretization step.

For our experiments we set μ = 0.5 and � = 0.02. The constructed bundles use four
directions and from one to six templates (for details, see “Appendix”). For each experiment,
we increase the number of templates that constitute the bundle. For instance, in the first
experiment, we consider a single template represented by the first direction of the templates
matrix, in the second, the first two directions, and so on.

123

Form Methods Syst Des (2017) 50:1–38 27

Fig. 10 Reachable sets of Van der Pol oscillator with increasing number of templates (350 steps). a 4 dirs/2
temps (0.70s). b 4 dirs/4 temps (1.79s). c 4 dirs/6 temps (3.48s)

The set of initial conditions is the box with x0 ∈ [0.00, 0.01] and y0 ∈ [1.99, 2.00]. We
computed the flowpipe for 300 steps, corresponding to a full cycle of the oscillator. Some
computed flowpipes are depicted in Fig. 10. In particular, Fig. 10a shows the computed flow-
pipe using 4 directions combined in 2 templates (0.70s), Fig. 10b 4 directions in 4 templates
(3.48s), and Fig. 10c 4 directions in 6 templates (1.79s). Notice how adding templates leads
to finer flowpipes at the expense of longer running times.

4.1.2 Rössler attractor

We now consider the Rössler attractor [69,70], a three dimensional nonlinear dynamical
system defined to study chaotic phenomena and that has found application in modeling
equilibria of chemical reactions. The dynamics of the attractor are the following:

xk+1 = xk + (−yk − zk)�

yk+1 = yk + (xk + ayk)�

zk+1 = zk + (b + zk(xk − c))�

(50)

where a, b, and c are scalar parameters and� is the discretization step.We chose the common
parameter values a = 0.1, b = 0.1, c = 14, and step � = 0.025. The considered bundles
are composed by five directions and three templates (for details, see “Appendix”).

We computed two flowpipes using the same bundle, but different transformation meth-
ods OFO and AFO (see Sect. 3.3.2). The set of initial conditions is the box with x0 ∈
[0.09, 0.10], y0 ∈ [4.99, 5.00], and z0 ∈ [0.09, 0.10] and the total number of steps is 250.

Figure 11a, b show the computed flowpipes using the OFO (0.77s) and AFO (0.99s)
transformations, respectively. As expected, the OFO transformation is faster than the AFO
one, but it interesting to notice that for this case the difference between the two computed
flowpipes is very small. However, it is important to remark that this is a lucky case. In general,
as we will see later, the difference between OFO and AFO can be sensible.

4.1.3 SIR epidemic model

Let us consider the running example adopted along this paper, that is the SIR epidemic
model [46], a three dimensional dynamical system that describes the evolution of a disease
in a population. We recall the dynamics of the system:

123

28 Form Methods Syst Des (2017) 50:1–38

Fig. 11 Reachable sets of Rössler attractor (5 dirs/3 temps, 250 steps). a OFO transformation (0.77s). bAFO
transformation (0.99s)

sk+1 = sk − (βskik/N)�

ik+1 = ik + (βskik/N − γ rk)�

rk+1 = rk + (γ ik)�

(51)

The model partitions a population of N ∈ R≥0 individuals in three compartments: sk the
people susceptible to the disease, ik the infected individuals, and rk the individuals removed
from the systems. The migrations of individuals between different compartments are reg-
ulated by the parameters β, that is the contraction rate, and γ , where 1/γ is the average
infection period.

For our experiments we fix the parameters β = 0.34, γ = 0.05, and � = 0.1. The set of
initial conditions is the box with s0 ∈ [0.79, 0.80], i0 ∈ [0.19, 0.20], and r0 ∈ [0.00, 0.00].

We perform two experiments: the first where the bundle consists in a single box template,
the second where five different directions are grouped in one box template and two paral-
lelotopic ones (for details, see “Appendix”). In both cases we computed 300 reachable steps
using the AFO transformation. The obtained flowpipes are depicted in Fig. 12a, b, respec-
tively. The box-based analysis required 0.19s against the 1.78s of the bundle-based one but,
also in this case, a more complex bundle leads to a sensibly finer result.

4.1.4 Generalized Lotka–Volterra model

Growing in dimension, we now consider a five-dimensional generalization of the well-known
Lotka–Volterra model [79] (sometimes called the predator-prey model [60,78]), that is an
important dynamical system used to describe the evolutions of biological systems in which
different species interact. The original model involves only two spices; here we model five
interacting spices [79]. The model’s dynamics are the following:

vk+1 = vk + (vk(1 − (vk + αwk + βzk)))�

wk+1 = wk + (wk(1 − (wk + αxk + βvk)))�

xk+1 = xk + (xk(1 − (xk + αyk + βwk)))�

yk+1 = yk + (yk(1 − (yk + αzk + βxk)))�

zk+1 = zk + (zk(1 − (zk + αvk + βyk)))�

(52)

123

Form Methods Syst Des (2017) 50:1–38 29

Fig. 12 Reachable sets of SIR epidemic model with increasing number of directions and templates (300
steps). a 3 dirs/1 temps (0.19s). b 5 dirs/3 temps (1.78s)

where α and β are the interaction parameters and � is the discretization step. We fix the
parameter values as α = 0.85, β = 0.50, and � = 0.01. The chosen set of initial conditions
is the box whit v0, w0, x0, y0, z0 ∈ [0.95, 1.00], i.e., each variable spans in the interval
[0.95, 1.00].

For this model we run several experiments, starting from a simple box template and
then adding constraints and parallelotopeic templates (for details, see “Appendix”). For the
multiple template experiment we apply both the OFO and AFO transformations (for the
single one, the two methods are equivalent). In all the cases we compute the reachable up to
500 steps. The obtained running times are exposed in Table1.

Surprisingly, the flowpipes constructed with different methods are the same, meaning that
for this model adding directions and templates does not improve the precision of the results.
However, this experiments gives us an idea of how our method scales in the bundle size on
a medium sized dynamical system.

4.1.5 Phosphorelay systems

Let us now consider a model arising from molecular biology that describes signal trans-
duction, i.e., the activation of a receptor located inside a cell or on its surface triggered by
an extracellular signal. Specifically, we study the phosphorelay signaling pathways system
presented in [47]. The discrete-time version of the system consists of the following seven
difference equations:

Sln1k+1 = Sln1k + (−k1 · Sln1k + k3 · Sln1APk · Y pd1k)�
Sln1HPk+1 = Sln1HPk + (k1 · Sln1k − k2 · Sln1HPk)�

Sln1APk+1 = Sln1APk + (k2 · Sln1HPk − k3 · Sln1APk · Y pd1k)�
Y pd1k+1 = Y pd1k + (k4 · Y pd1Pk · Ssk1k − k3 · Sln1APk · Y pd1k)�

Y pd1Pk+1 = Y pd1Pk + (−k4 · Y pd1Pk · Ssk1k + k3 · Sln1APk · Y pd1k)�
Ssk1k+1 = Ssk1k + (k5 · Ssk1Pk − k4 · Y pd1Pk · Ssk1k)�

Ssk1Pk+1 = Ssk1Pk + (−k5 · Ssk1Pk + k4 · Y pd1Pk · Ssk1k)�

(53)

123

30 Form Methods Syst Des (2017) 50:1–38

Fig. 13 Projections of seven dimensional biochemical model (200 steps) with increasing number of directions
and templates (7/1, 8/2, 9/3, 10/4 dirs/temps). Computation times (s): 0.85, 2.75, 6.56, 15.51, respectively. a
Sln1. b Sln1HP . c Sln1AP

where k1, k2, k3, k4, k5 are parameters and� is the discretization step.Weadopt the parameter
values proposed in [47], i.e., k1 = 0.4, k2 = 1.0, k3 = 5.0, k4 = 5.0, k5 = 0.5, and step
� = 0.01. The set of initial conditions is the box where all the variables span in the interval
[1.00, 1.01].

In this experiment we analyze the scalability of our methods applying always the AFO
transformation and increasing the number of directions and templates that compose the bundle
used to construct the over-approximation flowpipe. We compute the reachable set for 200
steps.

We perform four experiments, starting from seven directions grouped in a single box tem-
plate, and adding, at each time, a new direction and template. At the end, we will obtain
a bundle composed by ten directions and four parallelotopic templates (for details, see
“Appendix”).

Some illustrative projections of the constructed flowpipes are depicted in Fig. 13. Specif-
ically, the projections over time of the variables Sln1, Sln1HP , and Sln1AP are shown in
Fig. 13a–c, respectively. Each plot overlaps the projections of the flowpipes computed with
different directions and templates.

Differently from some previous experiments, each time we add a new direction and tem-
plate,weobtain afiner over-approximation (seeSect. 4.1.4).Of course this has a cost (between
7 directions in 1 template and 10 directions in 3 templates there is a gap of 15s) but the preci-
sion gained from additional parallelotopes is remarkable. All the running times are reported
in Table1.

4.1.6 Quadcopter drone

As last case study, we consider a seventeen dimensional model of a quadcopter drone. The
goal of this study is to show the scalability of our methods in terms of system’s dimension.
Moreover, we will see how a single additional template can lead to a fine flowpipe. The
studied quadcopter drone model [22] is composed by 17 variables, 13 of which represent the
drone plant and 4 the drone controller. The plant state variables include the inertia position
of the drone (pn, pe, h), its linear velocities (u, v, w), the drone orientation described by
Euler angles expressed using quaternions (q0, q1, q2, q3), and the angular velocities (p, q, r).
The controller variables (hI , uI , vI , ψI) involve some parameters of position, speed, and
orientation. For a given reference height hr , horizontal speeds ur , vr , and nose orientation
ψr , the task of the controller is to stabilize the drone from a configuration to the one specified

123

Form Methods Syst Des (2017) 50:1–38 31

Fig. 14 Projections of seventeen dimensional quadcopter model (300 steps) with increasing number of direc-
tions and templates (17/1, 18/2 dirs/temps). Computation times (s): 5.67, 12.29, respectively. a Height (h). b
Vertical speed (w). c Controller height (hI)

by the reference values. The quadratic dynamics of the model and its detailed description
can be found in [22]. The parameter chosen for our experiments, like mass, axis moment
of inertia, propeller masses, etc.) are taken from the real quadcopter CrazyFlie Nano by
Bitcraze.5

The chosen set of initial conditions is the boxh0 ∈ [0.20, 0.21],q0 = 1.00, and all the other
variables set to zero. The reference height is hr = 1.00 and speed and orientation are null, i.e.,
ur = vr = ψr = 0. We computed the reachable set for 300 steps with a discretization step
� = 0.01, corresponding to 3s of flight. Twoexperiments have been carried one: in thefirstwe
adopted a single box template, in the secondwe added a parallelotopewhose non-axis aligned
hyperplanes are not aligned with the dimensions that more vary during the flight, such as
height, vertical speed, angle quaternions, and controller height (for details, see “Appendix”).
Both the computed flowpipes have been calculated using the AFO transformation method.
The first experiment involving 17 directions and 1 template took 5.67s, the second experiment
based on 18 directions and 2 templates took 12.29s.

Figure14 shows some projections over time of the computed flowpipes. In particular,
Fig. 14a depicts the height h, Fig. 14b the vertical speed w, and Fig. 14c the height hI com-
puted by the controller. The figures highlight the gain of precision provided by a single
additional direction and template. Note how the projections of the second flowpipe are sen-
sibly thinner than the first ones and the wrapping effect is notably reduced.

4.2 Comparison

To conclude, we compare our tool Sapo with Flow∗ [17], the state-of-the-art tool for the
computation of reachable set of nonlinear dynamical and hybrid systems. Flow∗ represents
and computes flowpipes as the integration of finite sets of Taylor models [9]. Making a
fair comparison between Sapo and Flow∗ is difficult since, for instance, the latter gives the
possibility to specify error bounds on the computed flowpipes, feature that Sapo does not
have yet. However, Sapo’s errors can be bounded by Lemma 3 and reduced by exploiting
convergent subdivision techniques [38,62]. In the following experiments no subdivision or
splitting techniques have been applied by Sapo. Another important difference between Sapo
and Flow∗ is that the first works only with discrete-time dynamical systems, while the second
deals with continuous-time ones. To make the comparison as fair as possible, we discretized

5 https://www.bitcraze.io/.

123

https://www.bitcraze.io/

32 Form Methods Syst Des (2017) 50:1–38

(a)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

(b)
Fig. 15 Reachable sets of Van der Pol oscillator obtained with about the same computational times. a Sapo
(3.48s). b Flow∗ (1.34s)

the original continuous dynamical systems with the Euler method with a fixed size step. The
discretized models have been given in input to Sapo, while the continuous ones, together
with the chosen discretization step, have been given in input to Flow∗. For details on the
discretization steps, see the model descriptions in Sect. 4.1.

As a benchmark, we run both the tools on the dynamical systems presented in Sect. 4.1. In
particular, for each model, Sapo has been tested using the different configurations (described
in Sect. 4.1 and “Appendix”), while Flow∗ parameters has been fixed as suggested by
the user manual. Specifically, fixed orders = 4, cutoff threshold = 10−10,
precision= 53, andidentity precondition. TheTaylormodelfixedorders
andreminder estimationvary depending on the experiment as shown inTable1.Also,
the schemes for polynomial ODEs are poly ode 1 for systems with a at most 3 variables,
poly ode 2 with at most 5, and poly ode 3 for more than 5.

Table1 summarizes the obtained experimental results. For each case study, the table reports
the model’s name (Name), the model’s dimension in number of variables/dynamics (Vars),
and the total number of computed reachable steps (Steps). For Sapo, the table indicates
the number of adopted directions and templates used to construct the parallelotope bundles
(Dirs/Temps), the kind of bundle transformation (Trans), and the running time. For Flow∗,
the table reports the Taylor model order (TM), the reminder estimation (ε), and the running
times. All the computational times are in seconds.

From the experiments, we can see how for large models Sapo is overall faster than Flow∗.
With the chosen configuration, Flow∗ was not able to compute the reachable set of models
with more than seven variables (the error message returned after some reachablility steps
was: “The reminder estimation is not large enough”). Again, this com-
parison does not take into account the precision of the results provided by the tools. However,
juxtaposing the flowpipes produced by the tools on the Van der Pol oscillator (see Fig. 15),
we can get an idea of how they behave on small models using the same amount of time.
From the figure, we can observe that the flowpipes are similar, even if for longer rechable
computations, Sapo is more likely to accumulate over-approximation error. On the other
hand, the strength of Sapo is that it can be applied to models whose dimensions are double
the size of those handled by Flow∗ and it can still produce reasonably fine flowpipes (see,
e.g., Sect. 4.1.6).

123

Form Methods Syst Des (2017) 50:1–38 33

5 Conclusion

5.1 Summary

Thiswork presents threemethods for the computation of bounded time reachable sets of poly-
nomial dynamical systems. The goal of the developed algorithms is to produce a flowpipe
that over-approximates the reachable set of a dynamical system starting from a set of initial
conditions. The three methods differ from the basic sets used to construct the flowpipes. We
developed algorithms for the reachability computation based on boxes (i.e., hyperrectangles),
parallelotopes (i.e., n-dimensional parallelograms), and parallelotope bundles (i.e., polytopes
represented as symbolic intersections of parallelotopes). All these methods are based on the
idea of fixing a template for the over-approximation set and lifting the template’s constraints
as close as possible to the actual (possibly non-convex) reachable set. Whenever nonlinear
dynamical systems are involved, this operation consists in solving a nonlinear optimization
problem. We propose to determine upper bounds to these optimization problems using a
particular property of Bernstein coefficients of polynomials. Intuitively, instead of involving
nonlinear optimizations, one can compute the Bernstein coefficients of a polynomial and
extract their maximum, that, for a specific property of Bernstein coefficients, is an upper
bound of the polynomial. However, this property holds only for unit box domains. A con-
sistent part of our work was to lift this property to more generic domains, such as boxes,
parallelotopes, and symbolic polytopes. From this basic operation, we defined algorithms to
over-approximate the image of boxes, parallelotopes, and parallelotope bundles with respect
to polynomials, which eventually led us to the definition of a reachability algorithm for
polynomial dynamical systems.

All our techniques have been gathered in a C++ tool called Sapo and tested on several case
studies. Considering dynamical systems from two to seventeen dimensions, we got an idea of
how our techniques scale in terms of both system dimension and complexity of the adopted
templates. Moreover, we compared Sapo to Flow∗, the state-of-the-art tool for nonlinear
reachability analysis.

5.2 Future work

We intend to improve and extend the methods presented in this work in different direc-
tions. First of all, we plan to have a better control on the wrapping effect introduced by the
over-approximations during the reachability computation. This task can be achieved in two
manners: by improving the upper bounds provided by Bernstein coefficients and by select-
ing set templates that better wrap the real reachable sets. Several subdivision techniques for
obtaining tighter bounds from Bernstein coefficients already exist [38,62]. It is our intention
to integrate and automatize these techniques in our algorithms. The selection of good tem-
plates is well-known for being a hard problem. However, form our experiments, we observed
that the definition of directions with non-null components in the dimensions that more vary
during the evolution of the system, generally increases the precision of the computed flow-
pipes. Hence, we intend to better investigate the relationship between the system’s dynamics
and the template definition.

There are also interestingways inwhichweplan to extend thiswork.Anatural continuation
could be towards hybrid automata, that are models that describe systems characterized by
the alternation of continuous and discrete behaviors. The set image techniques developed
in this work can be adapted for the reachability analysis of hybrid automata. Moreover,

123

34 Form Methods Syst Des (2017) 50:1–38

in our works [24,25,31] we considered the parameter synthesis problem for polynomial
dynamical systems, that is the problem of finding sets of parameters under which the system
satisfies a given specification. The methods that we developed are based only on boxes and
parallelotopes. Thus, we intend to study the parameter synthesis problem also involving
paralleltope bundles with the goal of obtaining less restrictive sets of parameters. Note that
these techniques can also be exploited to synthesize inputs, which differ from parameters
since they can vary during the evolution of the system. Indeed, it is our intention to consider
also the input synthesis problem for polynomial dynamical systems. Finally, we want to
emphasize that several components of our algorithms can be easily parallelized. For instance
the Bernstein coefficients of different dynamics can be independently computed as well as
the different parallelotopes of a bundle can be independently transformed at each reachable
step. It might be interesting to investigate a parallel version of our algorithms exploiting
ad-hoc tools for parallel computation [41,63].

Appendix: Experiment details

Van der Pol

D =

⎛

⎜⎜⎝

1 0
0 1

−1 1
1 1

⎞

⎟⎟⎠ T =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1
2 3
0 2
1 3
0 3
1 2

⎞

⎟⎟⎟⎟⎟⎟⎠
(54)

Rössler attractor

D =

⎛

⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0.5 0
0.5 0 0.5

⎞

⎟⎟⎟⎟⎠
T =

⎛

⎝
0 1 2
1 2 3
2 3 4

⎞

⎠ (55)

SIR epidemi model

D =

⎛

⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0.5 0
0.5 0 0.5

⎞

⎟⎟⎟⎟⎠
T =

⎛

⎝
0 1 2
1 2 3
2 3 4

⎞

⎠ (56)

Generalized Lotka–Volterra model

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 0 0

−1 0 0 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =
⎛

⎝
0 1 2 3 4
1 2 3 5 6
2 3 4 5 6

⎞

⎠ (57)

123

Form Methods Syst Des (2017) 50:1–38 35

Phosphorelay systems

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛

⎜⎜⎝

0 1 2 3 4 5 6
0 1 2 4 5 6 7
0 1 2 5 6 7 8
0 1 2 5 6 7 9

⎞

⎟⎟⎠ (58)

Quadcopter drone

D(i,i) = i D(17, j) = (0 0 0.5 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.25) (59)

for i, j = 0, 1, . . . , 16 and

T(i, j) =
{
17 if i = 1 and j = 5

i otherwise
(60)

for i = 0, 1, . . . , 16 and j = 0, 1.

References

1. Althoff M, Le Guernic C, Krogh BH (2011) Reachable set computation for uncertain time-varying linear
systems. In: Hybrid systems: computation and control, HSCC. ACM, pp 93–102

2. Anai H, Weispfenning V (2001) Reach set computations using real quantifier elimination. In: Hybrid
systems: computation and control, HSCC, pp 63–76

3. Asarin E, Bournez O, Dang T, Maler O (2000) Approximate reachability analysis of piecewise-linear
dynamical systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 20–31

4. AshrafQ,GalorO (2011) Cultural diversity, geographical isolation, and the origin of thewealth of nations.
Technical report, National Bureau of Economic Research

5. Balluchi A, Casagrande A, Collins P, Ferrari A, Villa T, Sangiovanni-Vincentelli AL (2006) Ariadne: a
framework for reachability analysis of hybrid automata. In:Mathematical theory of networks and systems,
MTNS. Citeseer

6. Batt G, Yordanov B, Weiss R, Belta C (2007) Robustness analysis and tuning of synthetic gene networks.
Bioinformatics 23(18):2415–2422

7. Berman S, Halász Á, Kumar V (2007) Marco: a reachability algorithm for multi-affine systems with
applications to biological systems. In: Hybrid systems: computation and control, HSCC. Springer, pp
76–89

8. Bernstein SN (1912) Démonstration du théorème de weierstrass fondée sur le calcul des probabilités.
Commun Soc Math Kharkov 21(4/5):1–2

9. Berz M, Makino K (1998) Verified integration of odes and flows using differential algebraic methods on
high-order taylor models. Reliab Comput 4(4):361–369

10. Botchkarev O, Tripakis S (2000) Verification of hybrid systems with linear differential inclusions using
ellipsoidal approximations. In: Hybrid systems: computation and control, HSCC. Springer, pp 73–88

11. Bournez O, Maler O, Pnueli A (1999) Orthogonal polyhedra: representation and computation. In: Hybrid
systems: computation and control, HSCC. Springer, pp 46–60

12. Casagrande A, Dreossi, T (2013) pyhybrid analysis: a package for semantics analysis of hybrid systems.
In: Digital system design, DSD, pp 815–818. doi:10.1109/DSD.2013.143

123

http://dx.doi.org/10.1109/DSD.2013.143

36 Form Methods Syst Des (2017) 50:1–38

13. Casagrande A, Dreossi T, Fabriková J, Piazza C (2014) ε-semantics computations on biological systems.
Inf Comput 236:35–51. doi:10.1016/j.ic.2014.01.011

14. Chen L, Miné A, Wang J, Cousot P (2009) Interval polyhedra: an abstract domain to infer interval linear
relationships. In: Static analysis symposium, SAS, pp 309–325

15. ChenX,ÁbrahámE(2011)Choice of directions for the approximationof reachable sets for hybrid systems.
In: International conference on computer aided systems theory, EUROCAST. Springer, pp 535–542

16. Chen X, Abraham E, Sankaranarayanan S (2012) Taylor model flowpipe construction for non-linear
hybrid systems. In: Real-time systems symposium, RTSS. IEEE, pp 183–192

17. Chen X, Ábrahám E, Sankaranarayanan S (2013) Flow*: an analyzer for non-linear hybrid systems. In:
Computer aided verification, CAV, pp 258–263

18. Chutinan A, Krogh BH (1998) Computing polyhedral approximations to flow pipes for dynamic systems.
In: Conference on decision and control, CDC, vol 2. IEEE, pp 2089–2094

19. Chutinan A, Krogh BH (1999) Computing approximating automata for a class of linear hybrid systems.
In: Hybrid systems V. Springer, pp. 16–37

20. Chutinan A, Krogh BH (1999) Verification of polyhedral-invariant hybrid automata using polygonal flow
pipe approximations. In: Hybrid systems: computation and control, HSCC. Springer, pp 76–90

21. Coxeter HSM (1973) Regular polytopes. Courier Corporation, North Chelmsford
22. da Cunha AEC (2015) Benchmark: quadrotor attitude control. In: Applied verification for continuous and

hybrid systems, ARCH
23. Dang T (2006) Approximate reachability computation for polynomial systems. In: Hybrid systems: com-

putation and control, HSCC. Springer, pp 138–152
24. Dang T, Dreossi T, Piazza C (2014) Parameter synthesis using parallelotopic enclosure and applications

to epidemic models. In: Hybrid systems and biology, HSB, pp 67–82
25. Dang T, Dreossi T, Piazza C (2015) Parameter synthesis through temporal logic specifications. In: Formal

methods, FM, pp 213–230
26. Dang T, Testylier R (2012) Reachability analysis for polynomial dynamical systems using the Bernstein

expansion. Reliab Comput 17(2):128–152
27. Dang TXT (2000) Verification and synthesis of hybrid systems. PhD thesis, Institut National Polytech-

nique de Grenoble-INPG
28. Davis PJ, Rabinowitz P (2007)Methods of numerical integration. Courier Corporation, North Chelmsford
29. Dreossi T (2016) Sapo. http://tommasodreossi.github.io/sapo/
30. Dreossi T (2016) Sapo: A tool for the reachability computation and parameter synthesis of polynomial

dynamical systems. HSCC (in press)
31. Dreossi T, Dang T (2014) Parameter synthesis for polynomial biological models. In: Hybrid systems:

computation and control, HSCC, pp 233–242
32. Eggers A, Ramdani N, Nedialkov NS, FränzleM (2012) Improving the sat modulo ode approach to hybrid

systems analysis by combining different enclosure methods. Softw Syst Model 14(1):121–148
33. Farouki RT (2012) The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des

29(6):379–419
34. Frehse G (2005) Phaver: algorithmic verification of hybrid systems past hytech. In: Hybrid systems:

computation and control, HSCC. Springer, pp 258–273
35. Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang T, Maler O

(2011) Spaceex: scalable verification of hybrid systems. In: Computer aided verification, CAV. Springer,
pp 379–395

36. Galor O (2007) Discrete dynamical systems. Springer Science & Business Media, Berlin
37. Gao S (2012) Computable analysis, decision procedures, and hybrid automata: a new framework for the

formal verification of cyber-physical systems. PhD thesis, PhD thesis, Carnegie Mellon University
38. Garloff J, Smith AP (2001) Investigation of a subdivision based algorithm for solving systems of poly-

nomial equations. Nonlinear Anal Theory Methods Appl 47(1):167–178
39. Girard A (2005) Reachability of uncertain linear systems using zonotopes. In: Hybrid systems: compu-

tation and control, HSCC. Springer, pp 291–305
40. Girard A, Le Guernic C, Maler O (2006) Efficient computation of reachable sets of linear time-invariant

systems with inputs. In: Hybrid systems: computation and control, HSCC. Springer, pp 257–271
41. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the mpi

message passing interface standard. Parallel Comput 22(6):789–828
42. Henzinger TA, Ho PH, Wong-Toi H (1997) Hytech: a model checker for hybrid systems. In: Computer

aided verification, CAV. Springer, pp 460–463
43. Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation, North Chelmsford
44. Jódar L, Villanueva RJ, Arenas AJ, González GC (2008) Nonstandard numerical methods for a mathe-

matical model for influenza disease. Math Comput Simul 79(3):622–633

123

http://dx.doi.org/10.1016/j.ic.2014.01.011
http://tommasodreossi.github.io/sapo/

Form Methods Syst Des (2017) 50:1–38 37

45. Karp RM (1972) Reducibility among combinatorial problems. Springer, Berlin
46. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. R Soc

Lond A Math Phys Eng Sci 115:700–721
47. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2008) Systems biology in practice: concepts,

implementation and application. Wiley, New York
48. Kong S, Gao S, Chen W, Clarke E (2015) dreach: δ-reachability analysis for hybrid systems. In: Tools

and algorithms for the construction and analysis of systems, TACAS. Springer, pp 200–205
49. Kostousova E (1998) State estimation for dynamic systems via parallelotopes optimization and parallel

computations. Optim Methods Softw 9(4):269–306
50. Kostousovat EK (2001)Control synthesis via parallelotopes: optimzation and parallel compuations.Optim

Methods Softw 4(14):267–310
51. Kot M (1992) Discrete-time travelling waves: ecological examples. J Math Biol 30(4):413–436
52. Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80(1):109–136
53. Krommer AR (1994) Numerical integration: on advanced computer systems, vol 848. Springer Science

& Business Media, Berlin
54. Kurzhanski AB,Varaiya P (2000) Ellipsoidal techniques for reachability analysis: internal approximation.

Syst Control Lett 41(3):201–211
55. Kurzhanskiy AA, Varaiya P, et al (2006) Ellipsoidal toolbox. EECSDepartment, University of California,

Berkeley, Technical report UCB/EECS-2006-46
56. Kvasnica M, Grieder P, Baotić M, Morari M (2004) Multi-parametric toolbox (mpt). In: Hybrid systems:

computation and control. HSCC, Springer, pp 448–462
57. Lafferriere G, Pappas GJ, Yovine S (2001) Symbolic reachability computation for families of linear vector

fields. J Symb Comput 32(3):231–253
58. Le Guernic C (2009) Reachability analysis of hybrid systems with linear continuous dynamics. PhD

thesis, Université Joseph-Fourier-Grenoble I
59. Le Guernic C, Girard A (2010) Reachability analysis of linear systems using support functions. Nonlinear

Anal Hybrid Syst 4(2):250–262
60. Lotka AJ (1925) Elements of physical biology. Williams & Wilkins Company
61. Mourrain B, Pavone JP (2009) Subdivision methods for solving polynomial equations. J Symb Comput

44(3):292–306. doi:10.1016/j.jsc.2008.04.016
62. Nataraj P, Arounassalame M (2007) A new subdivision algorithm for the Bernstein polynomial approach

to global optimization. Int J Autom Comput 4(4):342–352
63. Nvidia CUDA (2008) Programming guide, Nvida
64. Platzer A (2007) Differential dynamic logic for verifying parametric hybrid systems. In: Automated

reasoning with analytic tableaux and related methods, TABLEAUX, pp 216–232
65. Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reason 41(2):143–189. doi:10.

1007/s10817-008-9103-8
66. Platzer A, Quesel J (2008) Keymaera: a hybrid theorem prover for hybrid systems (system description).

In: International joint conference on automated reasoning, IJCAR, pp 171–178
67. Van der Pol B (1926) Lxxxviii. On “relaxation-oscillations”. Lond Edinb Dublin Philos Mag J Sci

2(11):978–992
68. Prabhakar P, ViswanathanM (2011) A dynamic algorithm for approximate flow computations. In: Hybrid

systems: computation and control, HSCC, HSCC ’11. ACM, New York, NY, USA, pp 133–142. doi:10.
1145/1967701.1967722

69. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398
70. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71(2):155–157
71. SankaranarayananS,DangT, Ivančić F (2008) Symbolicmodel checking of hybrid systems using template

polyhedra. In: Tools and algorithms for the construction and analysis of systems, TACAS. Springer, pp.
188–202

72. Sankaranarayanan S, Sipma HB, Manna Z (2005) Scalable analysis of linear systems using mathematical
programming. In: Verification, model checking, and abstract interpretation, VMCAI, pp 25–41

73. Sassi MAB, Sankaranarayanan S (2015) Bernstein polynomial relaxations for polynomial optimization
problems. arXiv preprint arXiv:1509.01156

74. SassiMAB,Testylier R,DangT,GirardA (2012)Reachability analysis of polynomial systems using linear
programming relaxations. In: Automated technology for verification and analysis, ATVA, pp 137–151

75. Shisha O (1966) The Bernstein form of a polynomial. J Res Natl Bur Stand Math Math Phys B 70:79
76. Stursberg O, Krogh BH (2003) Efficient representation and computation of reachable sets for hybrid

systems. In: Hybrid systems: computation and control, HSCC. Springer, pp 482–497
77. Varaiya P (2000) Reach set computation using optimal control. In: Inan M, Kurshan R (eds) Verification

of digital and hybrid systems, NATO ASI series, vol 170. Springer, Berlin, pp 323–331

123

http://dx.doi.org/10.1016/j.jsc.2008.04.016
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1145/1967701.1967722
http://dx.doi.org/10.1145/1967701.1967722
http://arxiv.org/abs/1509.01156

38 Form Methods Syst Des (2017) 50:1–38

78. Volterra V (1927) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C Ferrari
79. Wildenberg J, Vano J, Sprott J (2006) Complex spatiotemporal dynamics in lotka-volterra ring systems.

Ecol Complex 3(2):140–147

123

	Reachability computation for polynomial dynamical systems
	Abstract
	1 Introduction
	1.1 Dynamical systems
	1.2 The reachability problem
	1.3 Related work
	1.4 Contributions
	1.5 Paper structure

	2 Reachable set computation
	2.1 Sets and reachability
	2.2 Polytopes and template polyhedra
	2.3 Single step reachability
	2.4 Bernstein basis and coefficients
	2.4.1 Properties of Bernstein coefficients
	2.4.2 Computation of upper and lower bounds

	3 Bounding polynomials over polytopes
	3.1 Boxes
	3.1.1 Bounding over boxes

	3.2 Parallelotopes
	3.2.1 Representation conversion
	3.2.2 Bounding over parallelotopes

	3.3 Parallelotope bundles
	3.3.1 Bounding over bundles
	3.3.2 Bundle-based image over-approximation
	3.3.3 Polytope decomposition

	4 Experimental evaluation
	4.1 Case studies
	4.1.1 Van der Pol oscillator
	4.1.2 Rössler attractor
	4.1.3 SIR epidemic model
	4.1.4 Generalized Lotka–Volterra model
	4.1.5 Phosphorelay systems
	4.1.6 Quadcopter drone

	4.2 Comparison

	5 Conclusion
	5.1 Summary
	5.2 Future work

	Appendix: Experiment details
	Van der Pol
	Rössler attractor
	SIR epidemi model
	Generalized Lotka–Volterra model
	Phosphorelay systems
	Quadcopter drone

	References

