
Form Methods Syst Des (2017) 50:249–288
DOI 10.1007/s10703-016-0263-6

Z3str2: an efficient solver for strings, regular expressions,
and length constraints

Yunhui Zheng1 · Vijay Ganesh3 · Sanu Subramanian3 · Omer Tripp2 ·
Murphy Berzish3 · Julian Dolby1 · Xiangyu Zhang4

Published online: 27 December 2016
© Springer Science+Business Media New York 2016

Abstract In recent years, string solvers have become an essential component inmany formal
verification, security analysis, and bug-finding tools. Such solvers typically support a theory
of string equations, the length function, and the regular-expression membership predicate.
These enable considerable expressive power, which comes at the cost of slow solving time,
and in some cases even non-termination. We present three techniques, designed for word-
based SMT string solvers, to mitigate these problems: (1) detecting overlapping variables,
which is essential to avoiding common cases of non-termination; (2) pruning of the search
space via bi-directional integration between the string and integer theories, enabling new

O. Tripp: The research leading to this manuscript, and earlier versions of the manuscript, were completed
while the author was at IBM Research.

B Yunhui Zheng
zhengyu@us.ibm.com

Vijay Ganesh
vganesh@uwaterloo.ca

Sanu Subramanian
ses@uwaterloo.ca

Omer Tripp
trippo@google.com

Murphy Berzish
mtrberzi@uwaterloo.ca

Julian Dolby
dolby@us.ibm.com

Xiangyu Zhang
xyzhang@cs.purdue.edu

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

2 Google, Mountain View, CA, USA

3 University of Waterloo, Waterloo, ON, Canada

4 Purdue University, West Lafayette, IN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0263-6&domain=pdf
http://orcid.org/0000-0002-6794-3199

250 Form Methods Syst Des (2017) 50:249–288

cross-domain heuristics; and (3) a binary search based heuristic, allowing the procedure to
skip unnecessary string length queries and converge on consistent length assignments faster
for large strings. We have implemented above techniques atop the Z3-str solver, resulting in
a significantly more robust and efficient solver, dubbed Z3str2, for the quantifier-free theory
of string equations, the regular-expression membership predicate, and linear arithmetic over
the length function. We report on a series of experiments over four sets of challenging real-
world benchmarks, where we compare Z3str2 with five different string solvers: S3, CVC4,
Kaluza, PISA and Stranger. Each of these tools utilizes a different solving strategy and/or
string representation (based e.g. on words, bit vectors or automata). The results point to the
efficacy of our proposed techniques, which yield dramatic performance improvement. We
also demonstrate performance improvements enabled by Z3str2 in the context of symbolic
execution for string-manipulating programs. We observe that the techniques presented here
are of broad applicability, and can be integrated into other string solvers to improve their
performance.

Keywords String constraint solver · SMT solver · String analysis

1 Introduction

Reasoning over strings is becoming increasingly important due to security threats imposed by
improper handling of untrusted string values [8,23,32]. In response, different powerful string
solvers have been developed, including HAMPI [23], Kaluza [33], PISA [35], Stranger [38],
CVC4 [26], S3 [36], Norn [6] and Z3-str [41]. These tools primarily solve the satisfiability
problem over string (aka word) equations, with some of them also providing support for
regular expression (RE)membership predicates and linear arithmetic over the length function
(e.g. [26,36]). While these tools have improved dramatically in recent years, the demand for
even more efficient solvers continues to grow unabated as software continues to grow in size
and complexity.

Motivated by this need for efficient string solvers, we present two new techniques to solve
combined string, regular expression, and integer constraints. These techniques are applicable
primarily to SMT solvers that treat strings without abstractions or representation conversions,
which we refer to collectively asword-based string solvers. Examples of such solvers include
the Z3-str, CVC4 and S3 string solvers.

For the sake of completeness, we compare and contrast our techniques against solvers that
use automata (e.g., PISA and Stranger) and bit-vector (e.g., Kaluza) string representations.
Word-based string solvers have several important advantages: First, unlike bit-vector-based
solvers, they can precisely model unbounded strings and string equalities without over-
approximation, a feature that is crucial to string analysis of web applications. Second, by
modeling strings and length in native domains, word-based string solvers can leverage the
state of the art in integer constraint solving, and further enable hybrid techniques via powerful
SMT engines. Finally, such solvers can take advantage ofwell-developed application-specific
rewrite rules.

At the same time, a fundamental problem of word-based string solvers (unlike those
based on bit vectors, which impose a finite domain) is that it is unclear, at present, whether
the satisfiability problem for the quantifier-free theory of word equations, regular-expression
membership predicate, and length function is decidable [28]. All current practical string
solvers suffer from incompleteness and nontermination. Addressing these problems is of

123

Form Methods Syst Des (2017) 50:249–288 251

primary importance, calling for new techniques to effectively explore the solution space. In
light of this motivation, we have developed three techniques that address the problems of
nontermination and search-space explosion.

First, a well-known reason for nontermination is overlapping variables [6,14,41], as we
illustrate with the equation a · X = X · b, where a, b are constant strings and X is a string
variable. Stated intuitively, the solution for X has to be in the form of a · X1 · b, where X1

is a string variable. The reduction step results in a · X1 = X1 · b, which is in the same
form as the original equation, and thus leads to nontermination. However, this equation is
obviously unsatisfiable. We revisit this example in Sect. 4, which highlights the need for a
robust procedure to detect overlapping variables.

The second technique, given the tight interplay between string and integer values (in index-
sensitive string operations), is bi-directional solver-level integration between the string and
integer theories. This can be leveraged to drastically reduce the search space for typical
constraints obtained from practical applications.

The last technique is a binary search based heuristic that helps to achieve faster conver-
gences in selecting consistent length assignment for large strings. As we observe, a huge
number of length assignment polling iterations are redundant. We adapt a binary search
algorithm and search the unbounded length space more efficiently.

We have implemented all of these techniques atop the Z3-str solver as the Z3str2 solver for
the satisfiability problem over a quantifier-free theory of word equations, regular-expression
membership predicate as well as the length function. We report on a comprehensive set
of experiments that validate the efficacy of our proposed techniques by comparing Z3str2
with Kaluza, PISA, Stranger, S3 and CVC4 over four sets of benchmarks derived from the
real world.1 Besides, we illustrate performance improvements in the context of symbolic
execution of string manipulating programs. We show that we are able to avoid exploring a
large number of execution paths while precisely capturing the semantics of common string
utility functions. We emphasize that our techniques are applicable also to other word-based
string solvers such as S3 and CVC4.
Contributions To summarize, this paper makes the following principal contributions:

1. Formal representation of solving word equations We use a boundary label based repre-
sentation to formally model the key steps of solving word equations.

2. Guided searchWe present three techniques designed for string solvers that treat strings as
primitive types. The first is a sound and complete method to detect overlapping variables,
which improves performance and avoids exploration of certain paths that may lead to
nontermination. The second technique is a two-way integration between the string and
integer theories, which enables effective pruning based on cross-domain heuristics. The
last one is a binary search based pruning heuristic that allows the procedure to skip
redundant string length assignment queries.

3. Z3-str integrationWe have integrated all of the aforementioned techniques into the core
solving algorithm of Z3-str. We describe the architecture of the resulting tool, Z3str2,
and prove its soundness.

4. Symbolic execution performance improvementsWe demonstrate that we can significantly
simplify the constraint encoding/solving procedure and improve the performance of sym-
bolic execution on string manipulating programs.

5. Experimental study To validate the efficacy of our techniques, we have conducted a com-
prehensive set of experiments where we compare Z3str2 against five solvers—namely,
S3, CVC4, Kaluza, PISA and Stranger—on four benchmark suites. The results show that

1 The Z3str2 code, as well as the data pertaining to our experiments, are all available at [1].

123

252 Form Methods Syst Des (2017) 50:249–288

Z3str2 is significantly faster than competing solvers (often by orders of magnitude) in all
but few cases.

2 Preliminaries

In this section, we briefly introduce the syntax and semantics of the quantifier-free theory of
word equations, regular expression membership, and length over integers. This theory will
be the basis of other formalizations presented in this paper.
Syntax of word equations, RE membership, and length We fix a disjoint two-sorted set of
variables var = varstr ∪ varint ; varstr consists of string variables, denoted X, Y, S, . . .

and varint consists of integer variables, denoted m, n, We also fix a two-sorted set of
constants Con = Constr ∪ Conint . Moreover, Constr ⊂ Σ∗ for some finite alphabet,
Σ , whose elements are denoted f, g, Elements of Constr will be referred to as string
constants or strings. Elements of Conint are nonnegative integers.2 The empty string is
represented by ε, and has length 0. Terms may be string terms or integer terms. A string
term is either an element of varstr , an element of Constr , or a concatenation of string terms
(denoted by the function concat or interchangeably by ·). An integer term is an element of
varint , an element of Conint , the length function applied to a string term, or an addition,
subtraction, multiplication, or division of two integer terms. The theory contains three types
of atomic formulas, namely, word equations, length constraints, and regular expression (RE)
membership predicates. REs are defined inductively, where constants and the empty string
form the base case, and the operations of concatenation, alternation, and Kleene star are
used to build up more complicated expressions (see details in [17]). REs may not contain
variables. Z3str2 supports a list of common string-related operators such as charAt, contains,
startswith, endswith, indexof, lastindexof, substring and etc. They are desugared to word
equations with length functions. Formulas are defined inductively over atomic formulas and
are quantifier-free. Figure 1 summarizes the syntax of the constraint language.
Semantics of word equations, RE membership, and length For a word w, len(w) denotes the
length of w. The universe of discourse for the str sort is the set of strings Σ∗, and for the int
sort it is the set of natural numbers. For a word equation t1 = t2, we refer to t1 as the left
hand side (LHS), and t2 as the right hand side (RHS). We fix a finite alphabetΣ of characters
over which strings are defined. Given a formula θ , an assignment for θ (with respect to Σ)

is a map from the set of variables in θ to Σ∗ ∪ N (where string variables are mapped to
strings and integer variables are mapped to numbers). Given such an assignment, θ can be
interpreted as an assertion about Σ∗ and N. If this assertion is true, then θ is satisfiable or
SAT. A formula with no satisfying assignment is unsatisfiable or UNSAT. Two formulas θ, φ

are equisatisfiable if the assertion “θ is SAT iff φ is SAT” holds. The satisfiability problem
for a set S of formulas is to decide whether any given formula in S is SAT or not.
Soundness, completeness, termination, decidability

A satisfiability procedure is sound if, whenever the procedure answers UNSAT, then the
input is indeed unsatisfiable. Conversely, a satisfiability procedure is complete if, whenever
the input is satisfiable, the procedure will answer SAT.

2 This restriction is made only for consistencywith the SMT-LIB standard [7] in a typical implementation. The
only integer literals allowed in the SMT-LIB syntax are 0 and positive integers. Note that both the SMT-LIB
standard and the syntax we give here still allow negative integer constants to be expressed as, for example,
(- 0 3) for −3.

123

Form Methods Syst Des (2017) 50:249–288 253

Term:bool ::= Var:bool
| true
| false
| (Contains Term:string Term:string)
| (StartsWith Term:string Term:string)
| (EndsWith Term:string Term:string)
| (RegexIn Term:string Term:regex)

Term:int ::= Var:int
| Number
| ({+, −, ×, ÷} Term:int Term:int)
| (Length Term:string)
| (IndexOf Term:string Term:string)
| (IndexOf2 Term:string Term:string Term:int)
| (LastIndexOf Term:string Term:string)

Term:string ::= Var:string
| ConstStr
| (Concat Term:string Term:string)
| (Substring Term:string Term:int Term:int)
| (Replace Term:string Term:string Term:string)
| (CharAt Term:string Term:int)

Term:regex ::= (Str2Regex ConstStr:string)
| (RegexStar Term:regex)
| (Term:regex)+
| (Term:regex)?
| (RegexConcat Term:regex Term:regex)
| (RegexUnion Term:regex Term:regex)

Expr:bool ::= Term:bool
| (= Term:bool Term:bool)
| (not Expr:bool)
| (and Expr:bool Expr:bool)
| (or Expr:bool Expr:bool)
| (ite Expr:bool Expr:bool Expr:bool)
| (implies Expr:bool Expr:bool)
| ({<, ≤,=, ≥, >} Term:int Term:int)
| (= Term:string Term:string)

Assertion ::= (assert Expr:bool)

Fig. 1 Constraint syntax

An algorithm is terminating if it returns an answer in finite time on every input.
A satisfiability procedure is a decision procedure if and only if it is sound, complete, and

terminating. The satisfiability problem for a set of formulas is decidable if and only if there
exists a decision procedure that solves its satisfiability problem.

3 Overview of the Z3str2 string solver

The Z3str2 solver is a string plug-in built into the Z3 SMT Solver [12], with an efficient
integration between the string plug-in and Z3’s integer solver. As can be seen from the archi-
tectural schematic of the Z3str2 string solver given in Fig. 2 (the algorithm is explained in
detail in Sect. 6.2.3), the first step is to purify the input into two parts, namely string con-
straints (word equations and RE membership) on the one hand, and integer linear arithmetic
constraints over the length function on the other hand. Next, the word equations and RE
constraints are given as input to the string plug-in. The plug-in may consult the Z3 core to
detect equivalent terms. The word equations are solved using an algorithm described in detail
in Sect. 4 below. The RE constraints are solved by unrolling as described also in Sect. 4. The
length constraints are converted into a system of pure integer linear arithmetic inequations

123

254 Form Methods Syst Des (2017) 50:249–288

Z3

Length constraints

SAT UNSAT UNKNOWN

Congruence closure core
SAT solver

String theory plug in: Z3 str2

Consistency check

Regex on demand unrolling
Overlapping detec�on

Reduc�on

Word equa�on & regex constraintsInput formula

…...Bit vector theory Arithme�c Theory

Fig. 2 Architecture of Z3str2

and solved using Z3’s integer solver. During the solving process, the string plug-in may
generate length constraints that are incrementally added on demand to Z3’s integer solver,
which are regularly checked for consistency with both the input length constraints and any
previously generated ones.

On any well-formed input, as described in Sect. 2, Z3str2 may return SAT, UNSAT or
UNKNOWN. Note that while Z3str2 can handle a boolean combination of atomic formulas,
we refer only to conjunctions of literals in the rest of paper without loss of generality. Z3str2,
like other competing solvers such as CVC4, is sound but not complete. If either Z3’s integer
solver or our string plug-in determines that their respective purified inputs are UNSAT, Z3str2
reportsUNSAT. If the stringplug-in detects that the input equations have complicatedoverlaps
that its heuristics cannot handle, it reports UNKNOWN. This is a source of incompleteness
in Z3str2’s implementation.

The third and only remaining possibility is that both Z3’s integer solver and the string plug-
in determine that their respective purified inputs are SAT. However, this does not necessarily
mean that the input is SAT. It could be that the solution produced by the integer solver is
inconsistent with the solution produced by the string solver, or vice versa. For example, the
integer solver may say that a particular string variable, say X, has length equal to 1, while
the string plug-in might produce a specific assignment for X that is of length equal to 2. One
way to overcome this problem is to iterate through all possible solutions until a consistent
one is found, assuming one exists. However, given that the domain of strings and natural
numbers is infinite, it is possible that such an iterative procedure may loop forever in the
event there are no consistent solutions to be found. In other words, if the input is indeed
SAT, the procedure discussed here will correctly establish consistency and determine that
the input is SAT. Unfortunately, it is possible that, when the input is in fact UNSAT, both the
integer solver and string plug-in may determine that their respective purified inputs are SAT
and may then loop forever searching for a combined consistent solution. They are obviously
not going to find a combined consistent solution in such cases given that the input is in fact
UNSAT, and hence the iterative procedure may not terminate.

The above-described problem of non-termination due to the interaction between the inte-
ger and string parts of the theory is not specific to Z3str2. In fact, the problem of deciding
the satisfiability problem for the quantifier-free theory of word equations and length func-
tion remains open after decades of research and is a major open problem in mathematical
logic [28]. In conclusion, if Z3str2 reports that the input is UNSAT, then indeed the input
is UNSAT (soundness). However, the converse is not necessarily true, i.e., just like all other
competing practical solvers, Z3str2 is not complete.

123

Form Methods Syst Des (2017) 50:249–288 255

4 Word equation sub-solver in Z3str2

In this subsection, we focus on the word equation solving component of Z3str2. Starting
with the work of Makanin [27], many decision procedures for word equations have been
proposed [19,30,34]. While most procedures are not accompanied by practical implementa-
tions, they are a rich source of ideas for all the solvers that have recently been implemented.
For example, the Z3str2 solver is based on the concepts of boundary labels, generalized word
equations and arrangements (discussed in greater detail in Sect. 6), that have their roots in
the very first decision procedure for word equations by Makanin.

The key technique used by Z3str2 to solve a word equation W is to recursively convert
W equisatisfiably into a disjunction of conjunctions of simpler equations, which we call
“arrangements”. These arrangements are computed by aligning the concatenation function
on the LHS and RHS of a given equation such that an occurrence of concatenation function
in the LHS (resp. RHS) may “split” or “cut” variables on the RHS (resp. LHS).

As an illustration, consider the following formula composed of three equations: Z =
X · Y ∧ Z = W · c ∧ c · Y = c · b · c, where X , Y , Z and W are string variables, and b
and c are characters. A simple rewriting is the following:

Z = X · Y �⇒ Z1 = X ∧ Z2 = Y [1.1]

Z = W · c �⇒ Z1 = W ∧ Z2 = c [1.2]

c · Y = c · b · c �⇒ Y = b · c [1.3]

Observe that Z is split into Z1 and Z2, which are constrained differently. However, this
rewriting is not satisfiable because Y = c from equations [1.1] and [1.2], and Y = b · c
from equation [1.3]. Now observe that the alignment described above is not the only one we
can consider. Below is a different alignment that leads to a new splitting and in fact yields a
satisfying assignment:

Z = W · c �⇒ Z1 = W [1.4]
1 ∧ Z2 = W2 · c [1.5]

The difference now is thatW is also split (intoW1 andW2), and hence this splitting yields
a satisfying assignment. In particular, from [1.1], [1.3] and [1.5], we haveW2 = b. Also note
that X , Z1 and W1 become free variables as they are all equivalent but not constrained by
any other variable.

What the above example highlights is that there are many different alignments of variable
boundaries in the LHS (resp. RHS) that can split variables in the RHS (resp. LHS). We
call every such alignment an arrangement. Here is the crucial fact about word equations:
every equation can be equisatisfiably rewritten into a finite set of arrangements, where each
arrangement is a finite set of word equations obtained from the splitting procedure described
above. The Z3str2 solver exploits this fact, and solves word equations by converting them into
finite sets of arrangements and inspecting each one individually to see if they are satisfiable.
The input word equation is SAT if and only if at least one arrangement is SAT. This in
a nutshell is how the word equations are solved by the Z3str2 solver, i.e., by recursively
converting equations into a disjunction of arrangements (where each arrangement is a simpler
set of equations) until a set of arrangements is derived where the satisfiability can determined
purely via inspection.

123

256 Form Methods Syst Des (2017) 50:249–288

5 Supporting regular expression membership predicates

AREmembership predicate X ∈ R is reduced toword equations by a transformation function
ρ(X,R), where X is a string variable andR is a regular expression. The function is defined
as follows:

ρ(X, s) ::= X = s, where s is a constant string
ρ(X,R1|R2) ::= ρ(X,R1) ∨ ρ(X,R2)

ρ(X,R1 · R2) ::= X = T1 · T2 ∧ ρ(T1,R1) ∧ ρ(T2,R2)

ρ(X,R∗) ::= X = unroll(R, n) ∧ n ≥ 0

where n is a fresh integer variable for each Kleene star operation; T1 and T2 are fresh string
variables; unroll(R, n) represents the expression obtained by unrolling R n times. After
the RE membership predicates are replaced by word equations, the string solver proceeds
as usual. When the solver explores various arrangements, the unroll() functions are further
simplified by the following rules.

X = unroll(R, n1) ::= if (n1 = 0) then {X = ε} else {X = T3 · unroll(R, n1 − 1) ∧ ρ(T3,R)}
X · Y = unroll(R, n1) ::= if (n1 = 0) then {X = ε ∧ Y = ε} else {X = unroll(R, n2) · T3

∧ Y = T4 · unroll(R, n3) ∧ n1 = n2 + n3 + 1 ∧ ρ(T3 · T4,R)}
Note that R is essentially unrolled once in the else branch of both rules. Just like in other
existing solvers that support RE, the unrolling process may not terminate, especially when
there are no length constraints associated with the involved variables. We hence rely on a
timeout mechanism.

6 Solving word equations and overlapping variable detection

In this section, we formally explain the key steps of solving word equations. While simple
and elegant for typical equations obtained from program analysis, the word equation solver
described here may fall into infinite loops under certain circumstances.

We first use two examples to show the challenges introduced by overlapping variables. In
fact, the problem of “overlapping” variables described below is recognized by logicians as
the crucial source of complexity in solving word equations. Then, we describe how we solve
word equations and avoid the nontermination brought by overlapping variables.

6.1 Examples that highlight the crucial overlap detection problem

Example 1 Formula reduction may fall into infinite loops. Consider the following formula
which was introduced in Sect. 1.

a · X = X · b
where X is a string variable.

In this example, X appears both as the LHS suffix and as the RHS prefix. This equation is
not satisfiable. However, if we solve it using theword equation procedure described in Sect. 4,
then the algorithm will not terminate. In particular, the equation has three arrangements. The
first arrangement is where X = ε, resulting in the equation a = b which is unsatisfiable. The
second arrangement is where the concatenation function in the LHS and RHS align exactly
such that we get X = a ∧ X = b. The third arrangement is where the LHS occurrence of X
cuts the RHS occurrence in the RHS illustrated in Fig. 3.

123

Form Methods Syst Des (2017) 50:249–288 257

X
X

a
X1

b

Fig. 3 Graphical representation of the input formula. The top row is the LHS and the bottom row is the RHS.
Each box represents a substring. The diagram means that the two occurrences of X overlap

Fig. 4 Graphical representation of one arrangement of the input formula in Example 2. Both X and Y occur
twice and they overlap in different ways

Note that the suffix of X that occurs in the RHS (bottom part of Fig. 3) of the equation
overlaps with the prefix of X in the LHS (top part of Fig. 3). We represent this overlapping
part with a new variable X1. By applying some simple rewrites we derive the following:

a · X = X · b �⇒ X = a · X [2.1]
1 ∧ X = X1 · b [2.2]

From [2.1] and [2.2], we can infer a · X1 = X1 ·b. Note this derived equation has the same
form as the input formula. As a result, the above-mentioned procedure will not terminate,
unless some steps are taken to detect such “overlaps” and determine their satisfiabilitywithout
computing arrangements ad infinitum. ��

One could imagine heuristics to detect and handle relatively simple overlaps described
above. However, in general, when many equations are involved with variables overlapping
indirectly, the problem is not easy to detect or decide.

Example 2 The previous example shows a simple non-terminating case. In practice, non-
terminating cases can be very complex, involving multiple equations. Consider the following
formula.

X · M = N · Y ∧ Y · K = L · X
where X , Y , M , N , K , and L are all string variables.

The following rewriting shows why a naive solving procedure will not terminate for such
an input.

Similarly to the arrangements presented in Example 1, Fig. 4 shows one possibility of both
equations. The following formulas are the derived equations corresponding to the graphical
representations in Fig. 4.

X · M = N · Y �⇒ X = N · Y [3.1]
1 ∧ Y = Y1 · M [3.2]

Y · K = L · X �⇒ Y = L · X [3.3]
1 ∧ X = X1 · K [3.4]

The smaller equations can be rewritten as follows.

[3.1] ∧ [3.4] �⇒ N · Y1 = X1 · K [3.5]

[3.2] ∧ [3.3] �⇒ L · X1 = Y1 · M [3.6]

Formula [3.7] and [3.8] can be derived from an arrangement of [3.5]. Similarly, [3.9] and
[3.10] represent one possible arrangement of [3.6].

[3.5] �⇒ X1 = N · Y [3.7]
2 ∧ Y1 = Y2 · K [3.8]

123

258 Form Methods Syst Des (2017) 50:249–288

Fig. 5 Definitions Formula := 1 ∧ 2 ∧ ... n

WordEquation := W1 = W2
Character c := {a, b, ...}
String V ariable X := {X,Y, ...}
Word W := Lε | LcW | LXW
Label l := { X

1
X
1

c
2

c
2, ...}

LabelSet L := P(Label)

[3.6] �⇒ Y1 = L · X [3.9]
2 ∧ X1 = X2 · M [3.10]

The following new equivalences are derived.

[3.7] ∧ [3.10] �⇒ X2 · M = N · Y [3.11]
2

[3.8] ∧ [3.9] �⇒ Y2 · K = L · X [3.12]
2

Observe that formula ([3.11] ∧ [3.12]) is in the exact same form as the input. Since
the loop appears after more than one round of reduction, we use the term “multiple layer
overlaps” to denote such cases. A key contribution of our procedure is to detect and handle
such overlaps. ��

In fact, overlapping variables get to the crux of the difficulty of solving word equations,
for otherwise simple rewrites can solve such equations. Hence, any solution to detecting
overlaps and deciding such equations is of universal value, and can be used as a subroutine
by different types of string solvers. In the following subsections, we discuss a solution to the
overlap detection problem.

6.2 Formal description

Here we formally describe the procedure for solving word equations.
Figure 5 recursively defines the formulas in the quantifier-free theory of word equations

that are input to the procedure we describe later. These definitions describe the syntax of
equations. A formula F is a conjunction of a set of word equations E.3 An equation in E

dictates the equivalence of two words. A wordW is a sequence of string variables (e.g. X) or
constant characters (e.g. c) delimited by label sets. Labels uniquely identify the boundaries
of an occurrence of a character or a variable. Note that a character (variable) may occur
multiple times in a formula. We use X

1 and �X
1 to describe the left and right labels of the first

occurrence of X respectively, following a pre-defined initial order. Below we show a sample
equation.

{a1}a{�a1 ,X
1 }X {�X

1 } = {X
2 }X {�X

2 ,b1}b{�b1} [E1]
Note that labels are introduced to facilitate formal definition of the procedure. The input

equations provided byusers donot contain any labels.Henceforth,we represent concatenation
explicitly through the ‘·’ operator or implicitly as in the definition of Word, if doing so does
not cause any misunderstanding.

3 While we do support AND–OR combination of word equations, without loss of generality it is sufficient to
describe the procedure only for a conjunction of word equations.

123

Form Methods Syst Des (2017) 50:249–288 259

6.2.1 Label arrangements

Boundary labels are particularly important for our technique. Intuitively, we leverage them
to reason about the relative positions of the sub-parts in words, such that we can reduce
the original equations to a set of smaller equations for the corresponding sub-parts until
the equations become so fine-grained that the solution can be directly inferred. The input
system of equations is UNSAT if none of the possible break-downs leads to valid solutions.
In this subsection, we explain how our technique manipulates labels. We discuss how to split
equations to smaller ones based on the arrangements and how to determine if equations are
in solvable form in the next subsection.

We now formalize the concept of label arrangement to facilitate our discussion. A label
arrangement, or arrangement in short, is a sequence of label sets as defined in Fig. 6. Each
label set may contain labels from multiple words, such as the LHS and RHS words of an
equation. Two labels in the same set imply the corresponding boundaries align. For example,
assume the following equation [E2].

{a1}a{�a1 ,Y1 }Y {�Y1 } = {X
1 }X {�X

1 ,b1}b{�b1} [E2]
One arrangement of its LHS and RHS words is the following.

{a1, X
1 } · {�a1, �X

1 , Y1 , b1} · {�Y1 , �b1} [A1]
The corresponding alignment (with the labels) can be graphically illustrated in Fig. 7a.

LabelArrangement A := P(Label)

⊗ : LabelArrangement × LabelArrangement −→ P(LabelArrangement)

L1 · L2 · ... · Ln ⊗ R1 · R2 · ... · Rm := L1 ∪ R1 · (L2 · ... · Ln−1 ⊗ R2 · ... · Rm−1) · Ln ∪ Rm

L1 · L2 · ... · Ln ⊗ R1 · R2 · ... · Rm := L1 · (L2 · ... · Ln ⊗ R1 · ... · Rm)

(L1 ∪ R1) · (L2 · ... · Ln ⊗ R2 · ... · Rm)

R1 · (L1 · ... · Ln ⊗ R2 · ... · Rm)

⇓ : LabelArrangement × LabelArrangement −→ P(LabelArrangement)

A1 ⇓ A2 := {Ax = L1 · ... · Lr ∈ A1 ⊗ A2 | Ax satisfies the following conditions :

(i) [Neighboring] ∀ c
i

c
i ∈ c

i ∈ Lt → c
i ∈ Lt+1

(ii) [Consistency] ¬∃ c
i

c
i

d
j

d
j ∈ and c = d, s.t. { c

i
d
j } ⊂ Lt ∨ { c

i
d
j } ⊂ Lt

(iii) [Uniqueness] ¬∃ l ∈ , s.t. l ∈ Li ∧ l ∈ Lj ∧ i = j

(iv) [Non-overlapping] ¬∃ X
n

X
n

X
m

X
m ∈ and m = n, s.t X

n ∈ Li ∧ X
n ∈ Lk ∧ X

m ∈ Lj ∧ i < j < k

: Word LabelArrangement

(LcWt) := L · (Wt)

(LXWt) := L · (Wt)

(Lε) := L

↓ : LabelArrangement × StringV ariable −→ P(LabelArrangement)

↓X (L1 · ... · Ln) := {Lt · ... · Lt+m | ∃R1XR2 ∈ , s.t. R1 ∩ Lt = φ ∧ R2 ∩ Lt+m = φ }

Fig. 6 Arrangement primitives

123

260 Form Methods Syst Des (2017) 50:249–288

b

YX

a

X

a b

Y

b

YX

a b

Y X

a

(a) (b)

Fig. 7 Sample arrangements of [E2]

From this arrangement, we can easily derive two smaller equations X = a and Y = b,
which directly give a solution.
Arrangement production Given the LHS and RHS words of an equation, there are multiple
(finite) ways to arrange their labels. For example, the following represents another arrange-
ment of equation [E2].

{
a1, X

1

}
·

{
�a1, Y1

}
·

{
�X
1 , b1

}
·

{
�Y1 , �b1

}
[A2]

It corresponds to the following graphical alignment shown in Fig. 7b. In the graphical
representation, we can observe that the (left) boundary of Y “cut” the variable X into two
parts which are hence constrained differently. We refer to this by saying that “Y cuts X”. In
fact,we can consider the labels of aword in the initial formula to denote an initial arrangement.

Operation GETARRGMTFROMWORD(W) in Fig. 6 describes how the initial arrange-
ment ofW is recursively computed. It acquires the boundary label sets from left to right until
the terminal symbol ε is encountered.

Next, we define the product operation⊗ that produces a set of possible arrangements from
two arrangements. Intuitively, one can understand that given the initial arrangements of the
LHSandRHSwords of an equation, the operator produces the possible label set arrangements,
each denoting a possible alignment of the boundaries of the two words. According to the
definition in Fig. 6, the operator first unions the two left-most label sets and the two right-most
label sets, corresponding to aligning the word boundaries. Note that there is only one way
to align word boundaries. It then uses a recursive operator ⊗̃ to arrange the internal label
sets. The definition of ⊗̃ means that given the head label sets L1 and R1 in the two input
arrangements, respectively, the head label set of the resulting arrangement can be L1, R1, or
L1 ∪ R1.

For our aforementioned equation [E2], the product of the LHS and RHS word arrange-
ments

{a1} · {Y1 , �a1} · {�Y1 } ⊗ {X
1 } · {b1, �X

1 } · {�b1} = {A1,A2,A3}
with [A1] and [A2] the arrangements defined earlier and [A3] the following.

{a1, X
1 } · {�X

1 , b1} · {�a1, Y1 } · {�Y1 , �b1} [A3]
For ease of presentation, we assume none of the variables has the empty solution ε. All

the algorithms and theoretical results can be easily extended to handle ε solutions. Note that
if variables X and Y in [E2] could be ε, the ⊗ operator would produce more arrangements.
Valid arrangements Some of the arrangements produced by the ⊗ operator may not be valid,
violating intrinsic properties in the string domain. We hence define a new operator ⇓, called
arrangement merging, that filters out the invalid arrangements. According to the definition in

123

Form Methods Syst Des (2017) 50:249–288 261

W2

W1

W2

W1

(a) (b)

Fig. 8 The essence of overlapping arrangement. We omit the labels for readability

Fig. 6, the merge operator produces a subset of the arrangements generated by the⊗ operator,
pruning those that do not satisfy the four conditions listed:

– [Neighboring] condition states that the left boundary label and the right boundary label
of a character need to be in the neighboring label sets. Intuitively, it states that a character
cannot be cut/split by any boundary. As such, the arrangement [A3] for our previous
example is not valid as it suggests character a is cut and split by the right boundary of X .

– [Consistency] condition states that the left/right boundaries of different characters cannot
be in the same label set. Intuitively, different characters cannot align.

– [Uniqueness] condition specifies that a label can only appear once in an arrangement.
Recall that multiple occurrences of the same variable/character have different labels.

– [Non-Overlapping] condition is more complex and is discussed below.

An arrangement satisfying the first three conditions is also called a valid arrangement.
Non-overlapping arrangementsWehave discussed in Sect. 6.1, the formula reduction process
may get into an infinite loop. That is, the reduced equations (for the sub-parts of the original
equations) may have the same form of the original equations such that the reduction never
ends. While we will formally discuss the theorem in Sect. 6, the intuition can be explained
by Fig. 8. Figure (a) shows a boundary alignment of equation X · W1 = W2 · X . The two
instances of X overlap and hence variable X is cut by two boundaries, one is �X

1 (i.e. the
RHS label of the X on the left) and the other is X

2 . The two cuts may be at different positions
inside X . As such, in the next step, X is split to X1 · X2 · X3 with X1 = W2 and X3 = W1.
Figure (b) shows the new alignment after the split. Note that the reduction yields an equation
X2 · X3 = X1 · X2, which is essentially an re-occurrence of the form X · W1 = W2 · X ,
leading to infinite reduction.

As discussed in [41], overlapping solutions rarely happen in practice, especially in the
context of program related string analysis. One key design choice is hence to detect and
prune overlapping arrangements such that the procedure can avoid such non-terminations.
Condition [Non-overlapping] in the definition of ⇓ in Fig. 6 defines the non-overlapping
requirement.

Observe that the merge operation ⇓ generates a set of arrangements from two input
arrangements. Our procedure selects one to proceed. If the selection does not lead to a SAT
result, it is rolled back and a different selection will be taken. If none of the selections leads
to SAT, the procedure returns UNSAT or indicates the presence of overlapping arrangements
that have been pruned by the procedure. More details can be found in Sect. 6.2.3.
Per variable arrangement A variable may appear multiple times in multiple equations. The
label arrangements of multiple occurrences of the variable may suggest the variable being
cut differently and divided into different sub-parts. Such information essentially denotes the
constraints on the variable from multiple equations. For example, if a variable X aligns with
a character ‘a’ on its left boundary in one equation and aligns with a character ‘b’ on its right
boundary in another equation, we know that X must start with ‘a’ and end with ‘b’.

123

262 Form Methods Syst Des (2017) 50:249–288

X
1

X
1

X
1

Y
1

N
1

Z
1
T
1

M
1

Y
1

a
1

Z
1

X
1

Y
1

N
1

Y
1
M
1

T
1

Z
1

Z
1

a
1

X
1

Y
1

a
1

X
1
Z
1

M
1

Y
1

N
1

T
1

Z
1

X
1

Y
1
M
1

M
1

a
1

a
1
X
1

N
1

N
1

Z
1

T
1

X
1

T
1

X
1

Z
1

Y
1

(a)

(b) (c) (d)

Fig. 9 Example for variable arrangement

In general, the constraints for the same variable from multiple equations can be very
complex, requiring proper handling. For example, consider the following formula (the initial
labels can be inferred and hence omitted for readability).

X · a = Y · M ∧ N · X = T · Z [E3]

Note that X aligns with Y on their left boundaries in the first equation and aligns with
variable Z on their right boundaries in the second equation. We need to consider the relative
positions of Y and Z inside X because they lead to different constraints of the sub-parts of X .

Figure 9a shows a valid arrangement for [E3], which is generated by the aforementioned
step of merging the LHS and RHS words of the equations. Observe that in this arrangement,
X is cut by both Y and Z . Figures (b), (c), and (d) depict the three different relative positions
of Y and Z regarding X . Note that they represent different constraints such that we need
to generate different (smaller) equations in formula reduction. Particularly, in figure (b), Y
and Z overlap such that they constrain each other while both constrain part of X . In (c), Y
and Z covers X but they don’t overlap. In (d), Y and Z constrain the head and the tail of X ,
respectively. But the middle part of X is not constrained by either.

Another novel aspect of our procedure is the fusion of the different constraints for the
same variable from various equations. The observation is that if we denote the constraint
for a given variable from an equation as an arrangement, the variable arrangements from
different equations can be merged using the merge operation ⇓.

In Fig. 6, we define a variable arrangement projection operator: ↓X (A) acquires the parts
of the arrangement A related to variable X , that is, the set of subsequences of label sets that
start with the LHS label of X and terminate with the corresponding RHS label of X . They
contain all the boundaries that cut X in the given arrangement.

For example, let the arrangement of the equation on the left of Fig. 9 (a) be Aa1, ↓X

(Aa1) = {{X
1 , Y1 } · {�Y1 , M

1 } · {�X
1 , a1}}. In the definition of ↓ in Fig. 6, given an

arrangement L1 · · · · · Ln and a variable X , it identifies all the subsequences Lt · · · · · Lt+m ,

123

Form Methods Syst Des (2017) 50:249–288 263

: Word × (StringV ariable → LabelArrangement) Word

(L1cL2 · W, Avar[]) := L1cL2 · (L2W, Avar[])

(LlXLr · W, Avar[]) := Ll∪L1XL2
1 X2...Ln−1XLn∪Lr

n−1 · (Ln∪LrW, Avar[]),

in which Avar[X] = L1 · ... · Ln

(Lε, Avar[]) := Lε

: Equation × LabelArrangement × (StringV ariable → LabelArrangement) Formula

(W1 = W2, Aeq , Avar[]) := ((W1, Avar) = (W2, Avar), Aeq)

(LiWLj

1 · W2 =Lk WLl
3 · W4, L1 · L2 · A) := (LiWLj

1 =Lk WLl
3) ∧ (Lj W2 =Ll W4, L2 · A),

with (Li ∩ Lk ∩ L1 = φ) ∧ (Lj ∩ Ll ∩ L2 = φ)

: Formula Boolean

() :=
true iff ∀ ∈ , must have the form of “X = Y ” or “X = c”

false otherwise

Fig. 10 Formula transformation primitives

in which Lt share some common labels with the LHS label set of X in the formula and Lt+m

share some common labels with the corresponding RHS label set of X .
Once we get the arrangements for all the occurrences of a variable, we can use the arrange-

ment merge operator⇓ to merge them to generate all the possible (joint) arrangements inside
the variable. In the example in Fig. 9a, the projection of the arrangement of the equation
on the right, Aa2, yields ↓X (Aa2) = {{X

1 , �N
1 } · {�T1 , Z

1 } · {�X
1 , �Z

1 }}. The operation
(↓X (Aa1)) ⇓ (↓X (Aa2)) hence yields exactly the three arrangements in figures (b)–(d).

Again, the procedure selects one variable arrangement from the generated set to proceed.
Backtracking is allowed.

6.2.2 Formula transformation

In the previous subsection, we discuss how to generate arrangements from equations and gen-
erate arrangements for variables from equation arrangements. Once a variable arrangement
is selected, the constraints for its sub-parts (i.e. their alignments with other variables and
characters) are determined. Therefore, in this subsection, we discuss how to split equations
to represent the constraints on subparts.

The process consists of two steps.

– In the first step, a variable is split to a set of new variables according to the variable
arrangement. Each equation is rewritten by replacing eachvariablewith the split variables.

– In the second step, each equation is split to a set of new equations, each constraining
a sub-part of the original equation. This process is guided by determining the common
labels between the label sets of the LHS and RHS words of the equations generated in
the first step.

The REWRITEWD operator in Fig. 10 is for the first step. It takes a word and a mapping
from variables to their corresponding arrangements, and generates a new word with the split
variables. The operator is defined recursively. If the head of the word is a character, the
resulting word inherits the same character and its labels. The operator continues to rewrite
the remainder of the word. If the head of the word is a variable X , it splits the variable to
a set of n − 1 variables X1, …, Xn−1, where n is the number of label sets in the variable

123

264 Form Methods Syst Des (2017) 50:249–288

arrangement of X . This implies that X has n − 1 sub-parts, delimited by the label sets. Also,
the new variables inherit both the label sets Ll and Lr from the original word and the label
sets in the variable arrangement. These labels denote the boundaries that each new variable
aligns with.

The SPLITEQ operator denotes the second step. It takes an equation, the corresponding
equation arrangement, and the mapping for variable arrangements, and then generates a
formula, which is the conjunction of a set of equations. It first rewrites the LHS and RHS
words of the equation and then uses the RSPLITEQ operator to split the rewritten equation.
The RSPLITEQ operator takes the rewritten equation and the arrangement of the original
equation, and generates a conjunction of new equations. The splitting is directed by the label
sets of the original equation arrangement and the rewritten equation. In particular, given the
first two labels L1 · L2 of the original equation arrangement, it looks for the label sets in
the rewritten LHS and RHS words that share some common labels with L1 and L2. A new
equation is generated to denote the equivalence of sub-parts delimited by the aforementioned
label sets. The new equation is conjoined with the other new equations generated by applying
the operator to the remainder of the equation.

Example Consider the example in Fig. 9a. Assume the variable arrangement for X is the one
in Fig. 9b. In other words,

Avar [X] = {X
1 , Y1 , �N

1 } · {Z
1 , �T1 } · {�Y1 , M

1 } · {�X
1 , �Z

1 , a1}
The LHS word X · a of the first equation is rewritten as follows:

W ′
l = REWRITEWD({X

1 }X {�X
1 ,a1}a{�a1}, Avar)

= {X
1 ,Y1 ,�N

1 }X {Z
1 ,�T1 }

1 X
{�Y1 ,M

1 }
2 X

{�X
1 ,�Z

1 ,a1}
3 a{�a1}

Note that X is split to X1, X2, and X3 due to the cuts from Z and Y . Similarly, the RHS word
Y · M is rewritten as follows:

W ′
r = REWRITEWD({Y1 }Y {�Y1 ,M

1 }M {�M
1 }, Avar)

= {X
1 ,Y1 ,�N

1 }Y {�Y1 ,M
1 }M {�X

1 ,a1}
1 M

{�a1 ,�M
1 }

2

M is split to M1 and M2 due to the cut by X .
Therefore, we split the first equation as follows. Note that A = {X

1 , Y1 } · {�Y1 , M
1 } ·

{�X
1 , a1} · {�a1, �M

1 } is the equation arrangement.

SPLITEQ(Xa = YM, A, Avar)

= RSPLITEQ(W ′
l = W ′

r , A)

= ({X
1 ,Y1 ,�N

1 }X {Z
1 ,�T1 }

1 X
{�Y1 ,M

1 }
2 = {X

1 ,Y1 ,�N
1 }Y {�Y1 ,M

1 })∧
RSPLITEQ(...X ...

3 a
... = ...M ...

1 M ...
2 , ...)

= ...

= (X1 · X2 = Y) ∧ (X3 = M1) ∧ (a = M2) [E4]
Note that we omit the labels in the last step for readability. The second equation is similarly
split to the following.

(N = T1) ∧ (T2 = X1) ∧ (X2 · X3 = Z) [E5]
��

123

Form Methods Syst Des (2017) 50:249–288 265

With the new set of equations, the procedure repeats the steps of (1) computing equation
arrangement; (2) computing variable arrangement; (3) splitting formula. As such, the equa-
tions represent equivalence between smaller and smaller portions of the original words. The
process terminates if the formula is in solvable form.
Solvable form As defined in Fig. 10, a formula (i.e. a conjunction of equations) is in solvable
form if each equation is either an equivalence between a variable and a character, or an equiv-
alence between two variables. For variables that are directly or indirectly (i.e. through other
variables) equivalent to a character, their solution is the character. Our solving processing,
namely the [Consistency] condition in arrangement production (Sect. 6.2.1), ensures that the
same variable is not equivalent to different characters. Variables that are not equivalent to
any character, directly or indirectly, are free variables such that we can assign any characters
to them.

6.2.3 Algorithm

The procedure is summarized in Algorithm 1. It takes a formula over word equationsQw and
the corresponding integer linear arithmetic constraintsQl over the length function, produces
SAT,UNSATorUNKNOWNresults. UNKNOWNmeans that the algorithmhas encountered
overlapping arrangements and pruned those arrangements, even though it did not find any
SAT solution.

The algorithm consists of three steps. In step one (lines 9–15), it generates the set of
possible arrangements for each equation and selects one from the set and stores it to Aeq

to proceed. Each invocation to the SELECT() function is similar to a choice point in model
checking, allowing back-tracking and selecting another option.

In step two (lines 16–17), variable arrangements for each variable are computed based
on the previously selected equation arrangements. Again, each variable may have multiple
arrangements.

Lines 18–25 denote the third step, in which the formula is split based on the selected
variable arrangements.

In lines 26–29, the algorithm checks an overlapping arrangement has ever detected and
pruned. If so, the procedure returns UNKNOWN, otherwise, it returns UNSAT.
Essence of the procedure The essence of the algorithm is to discover all the boundaries that
are correlated and search for a total order of them. We say boundaries are correlated if they
cut the same variable. Step one in the algorithm orders the boundaries within the LHS and
RHS words using the merge operator ⇓ . However, this does not discover all the correlated
boundaries because a variable may be constrained differently in other equations. Therefore,
in step two, it collects the ordered boundaries within a variable from all its occurrences and
generates all the possible orders of the boundaries. For example in Fig. 9a, from the equation
arrangement (step one), we only know Y cuts X . Through step two, we further know Z also
cuts X and hence need to order the two cuts.

However, this does not expose all related boundaries. For example, suppose an additional
equation Z = J · K is added to the formula. After the first round of the algorithm, [E5]
becomes

(N = T1) ∧ (T2 = X1) ∧ (... X
{�Y1 ,M

1 }
2 X3

... = ...Z
{�J

1 ,K
1 }

1 Z2
...) [E6]

In other words, the boundary between J and K cuts Z and hence cuts X . But it is not
identified as correlated to the other boundaries that cut X in the first round because the cut is
indirect (through Z). Fortunately, the correlation will be exposed and the boundaries will be

123

266 Form Methods Syst Des (2017) 50:249–288

Algorithm 1 A high-level description of Z3str2’s Algorithm
Input:Word equationsQw , and the corresponding integer linear arithmetic constraintsQl over the length
function
Output: SAT / UNSAT / UNKNOWN
Definition: ASeq /ASvar : mappings from equation/variable to set of label arrangements;

Aeq /Avar : mappings from equation/variable to arrangement.
1: procedure solveStringConstraint(Qw , Ql)
2: if equations inQw are all in solvable form then
3: if Qw is UNSAT orQl is UNSAT then
4: return UNSAT
5: if Qw andQl can be consistently determined as SAT together then
6: return SAT
7: ConvertQw equisatisfiably in disjunctive normal form (DNF) formulaQa
8: for each disjunct D in Qa do

/* Convert each equation in D to arrangements consistent with the length constraints */
9: for each equation E : W1 = W2 ∈ D do
10: ASeq [E] ← GETARRGMTFROMWORD(W1) ⇓ GETARRGMTFROMWORD(W2)
11: for A inASeq [E] do
12: Extract the length constraint implied byA.
13: if A has inconsistent length constraint then
14: RemoveA fromASeq [E]

/* SELECT(): Similar to a choice point in model checking,
allowing backtracking and selecting another option.*/

15: Aeq [E] ← SELECT(AS[E])
16: for each string variable X do

/* Merge per-equation arrangements to a set of possible global arrangements ASvar [X] */
/* Operator ⇓ detects and prunes arrangements with overlaps fromASvar [X]*/

17: ASvar [X] ← (↓X (Aeq [E1])) ⇓ ... ⇓ (↓X (Aeq [En]))
18: for each global arrangement combination selected fromASvar [X], …, for all variables X , ... do
19: Let D::=E1 ∧ ... ∧ Em

/* Split each variable to sub-variables according to the selected global arrangement */
20: D′ ← SPLITEQ(E1, Aeq [E1], Avar)

∧
...

∧
SPLITEQ(Em , Aeq [Em], Avar)

21: ConvertQw equisatisfiably to a system Q′
w of simpler equation based on D′

22: Q′
l is the corresponding new set of length constraints

23: r = SOLVESTRINGCONSTRAINT(Q′
w ,Q′

l)
24: if r ≡ SAT then
25: return SAT
26: if overlapping variables have ever been detected then
27: return UNKNOWN
28: else
29: return UNSAT

ordered in the second round of the algorithm when [E6] is reduced. The algorithm repeats
until all correlations are exposed and correlated boundaries are ordered.
Multiple layer overlaps In Sect. 6.1, we present an example of infinite reduction caused by a
multiple layer loop, that is, the loop contains multiple rounds of reduction. This is muchmore
difficult to detect and prevent compared to direct looping such as aX = Xb. However, we
observe the essence of such looping is still overlapping arrangement (Sect. 6.2.1) compared
to direct looping. The difference is that correlated boundaries are gradually exposed such
that the boundary labels that overlap may only manifest themselves after a few rounds of
reduction. Our algorithm can detect them through the [Non-overlapping] condition in the
merge operator ⇓ .

Example We revisit the third example in Sect. 6.1.

X · M = N · Y ∧ Y · K = L · X

123

Form Methods Syst Des (2017) 50:249–288 267

Fig. 11 The graphic representations ofA4 andA5

L

X

Y

K

K

X

Y

L

N

Y

N

Y

L

X

M

Y

X

M

X

M

Y

K

X

N

Fig. 12 The graphic representations ofAvar [X] and Avar [Y]

The equations with labels are

{X
1 }X {�X

1 , M
1 }M {�M

1 } = {N
1 }N {�N

1 , Y1 }Y {�Y1 } [E7]
{Y2 }Y {�Y2 , K

1 }K {�K
1 } = {L

1 }L{�L
1 , X

2 }X {�X
2 } [E8]

One arrangement of the LHS and RHSwords of [E7] and [E8] are [A4] and [A5] respectively.
Their graphic representations are shown in Fig. 11.

{X
1 , N

1 } · {�N
1 , Y1 } · {�X

1 , M
1 } · {�M

1 , �Y1 } [A4]
{Y2 , L

1 } · {�L
1 , X

2 } · {�Y2 , K
1 } · {�K

1 , �X
2 } [A5]

Now we apply the variable arrangement projection operator ↓ and get the arrangements
related to variable X and Y .

↓X (A4) = {A7}, A7 = {X
1 , N

1 } · {�N
1 , Y1 } · {�X

1 , M
1 }

↓X (A5) = {A8}, A8 = {�L
1 , X

2 } · {�Y2 , K
1 } · {�K

1 , �X
2 }

↓Y (A4) = {A9}, A9 = {�N
1 , Y1 } · {�X

1 , M
1 } · {�M

1 , �Y1 }
↓Y (A5) = {A10}, A10 = {Y2 , L

1 } · {�L
1 , X

2 } · {�Y2 , K
1 }

Then we can use the merge operator (⇓) to generate the arrangements in variables. One of
the arrangement combination generated by A7 ⇓ A8 and A9 ⇓ A10 is as follows. Figure 12
shows the corresponding graphic representations.

Avar [X] = {X
1 , N

1 , �L
1 , X

2 } · {�N
1 , Y1 } · {�Y2 , K

1 } · {�X
1 , M

1 , �K
1 , �X

2 }
Avar [Y] = {�N

1 , Y1 , Y2 , L
1 } · {�L

1 , X
2 } · {�X

1 , M
1 } · {�M

1 , �Y1 , �Y2 , K
1 }

The LHS word X · M and RHS word N · Y can be rewritten as follows.

WE7
l = REWRITEWD({X

1 }X {�X
1 ,M

1 }M {�M
1 }, Avar)

= {X
1 ,N

1 ,�L
1 ,X

2 }X {�N
1 ,Y1 }

1 X
{�Y2 ,K

1 }
2 X

{�X
1 ,M

1 ,�K
1 ,�X

2 }
3 M {�M

1 }

WE7
r = REWRITEWD({N

1 }N {�N
1 ,Y1 }Y {�Y1 }, Avar)

= {N
1 }N {�N

1 ,Y1 ,Y2 ,L
1 }Y {�L

1 ,X
2 }

1 Y
{�X

1 ,M
1 }

2 Y
{�M

1 ,�Y1 ,�Y2 ,K
1 }

3

The equation [E7] can be split as what is showed in Fig. 13.

123

268 Form Methods Syst Des (2017) 50:249–288

(XM = NY, A4, Avar)

= (W 7
l = W 7

r , A4)

= ({
X
1

N
1

L
1

X
2 }X

{ N
1

Y
1 }

1 ={ N
1 } N{ N

1
Y
1

Y
2

L
1 })

(...X...
2 X...

3 M ... = ...Y ...
1 Y ...

2 Y ...
3 , ...)

= ...

= (...X...
1 = ...N ...) ∧ (...M ... = ...Y ...

3) ∧

({
N
1

Y
1 }X

{ Y
2

K
1 }

2 X
{ X

1
M
1

K
1

X
2 }

3 ={ N
1

Y
1

Y
2

L
1 } Y

{ L
1

X
2 }

1 Y
{ X

1
M
1 }

2) [9]

Fig. 13 Splitting equation [E6]

Fig. 14 The graphic
representations ofAvar [X]

L

X

Y

K

K

X

Y

L

N

Y

L

X

M

Y

X

M

Y

K

X

N

For equation [E9], we can get its arrangements if we repeat the same procedure for [E7]
and [E8]. Among them, an interesting one is the following:

{Y1 , �N
1 , Y2 , L

1 } · {�L
1 , X

2 } · {�Y2 , K
1 } · {�X

1 , M
1 , �X

2 , �K
1 } [A11]

We further compute the arrangement projection to variable X . As shown in Fig. 14,
intuitively, the variable project is to determine the order between the boundaries in red,
which are created in the previous cycle.

If we project these arrangements back to variable X , we get Avar [X]:
{

X
1 , N

1 , �L
1 , X

2

}
·
{
Y1 , �N

1 , Y2 , L
1

}
·
{
�L
1 , X

2

}
·
{
�Y2 , K

1

}
·
{

�X
1 , M

1 , �X
2 , �K

1

}

The boxed labels violate the [Non-overlapping] condition. A loop is detected.

6.2.4 Soundness of the Z3str2 algorithm

In this section we sketch the soundness proof of Z3str2’s algorithm given in Algorithm 1. For
a detailed formal analysis we refer the reader to the associated tech-report. The soundness
property of any decision procedure in an SMT solving context can be stated as “If the
procedure returns UNSAT, then input formula is indeed UNSAT”.

Theorem 1 Algorithm 1 is sound, i.e., when Algorithm 1 reports UNSAT, the input constraint
is indeed UNSAT.

Proof To see that Z3str2 is sound, we show that the UNSAT returned at line 4 and line 29 are
both sound. First observe that line 4 returns an UNSAT if either string or integer constraints
are determined to be UNSAT. For string constraints, we use the algorithms described in [14]

123

Form Methods Syst Des (2017) 50:249–288 269

to decide the satisfiability of word (dis)equations in the solved form. The soundness of line
4 relies on the soundness of the procedure [14] and the integer solver (here Z3).

For the UNSAT returned at line 29, we show transformations impacting it are all
satisfiability-preserving. If a transformation is satisfiability-preserving, it means its output
formula is satisfiable if and only if its input formula is satisfiable. In particular, transforma-
tions at (i) line 7 (i i) line 10 (i i i) line 17 and (iv) lines 20–21 are satisfiability-preserving: (i)
The disjunctive normal form conversion at line 7 is obviously satisfiability-preserving. (i i)
The conversion in line 10 is probably the most involved in terms of establishing soundness.
This step is a variant of the idea of sound transformation of word equations to arrange-
ments mentioned in Makanin’s paper [27]. We can show that arrangement generation is
satisfiability-preserving because each arrangement is a finite set of equations implied by the
input system of equations. In addition, we extract length constraints from arrangements and
they may conflict with the existing integer constraints. If so, we drop inconsistent arrange-
ments based on the UNSAT results determined by the integer theory. Similarly, since we
assume the integer theory is sound, this step is also satisfiability-preserving. (i i i) At line 17,
we systematically enumerate all feasible orders among boundary labels according to the defi-
nition of the arrangement merge (Fig. 6). This step is satisfiability-preserving. (iv) In lines 20
and 21, this step derives simpler equations by a satisfiability-preserving rewriting. Please see
the technical report for proof details [40]. Note the REs are reduced to word equations so that
they can be handled by this same procedure. In addition, although we prune arrangements
at line 17, the answer can only be SAT or UNKNOWN once this happens. The algorithm is
still sound. Therefore, we return UNSAT exactly when we can prove this to be the case.

7 String and integer theory integration

Basic length rules For strings X and Y , we assert the following: (1) |X | ≥ 0 (2) |X | = 0 ↔
X = ε (3) X = Y → |X | = |Y | (4) |X · · · · · Y | = |X | + · · · + |Y |.
String and integer theory integrationAs discussed in Sect. 3, finding a consistent solution for
both strings and integers can be expensive due to the infinite search space. The goal of string
and integer theory integration is to achieve synergy from the two such that the procedure can
converge faster. In particular, one theory will generate new assertions in the domain of the
other theory, and vice versa. Inside the string theory, the set of arrangements that is explored
is constrained by the assertions on string lengths, which are provided by the integer theory.
On the other hand, the string theory will derive new length assertions when it makes progress
in exploring new arrangements. These assertions are provided to the integer theory so that
the search space is pruned.

Consider X · Y = M · N , where X, Y, M and N are nonempty string variables. It has
three possible arrangements: [a1] X = M · T1 ∧ N = T1 · Y ; [a2] X = M ∧ N = Y ; [a3]
M = X · T2 ∧ Y = T2 · N . Assume the integer theory infers that |X | > |M | or |Y | < |N |.
Thus, only [a1] is consistent with the length conditions. The string solver only needs to
explore one arrangement instead of three. On the other hand, assume the string solver is
exploring arrangement [a1]. It generates a new assertion [a1] → |X | = |M · T1| ∧ |N | =
|T1 · Y | ∧ |X | > |M | ∧ |N | > |Y |, which in turn triggers the Z3 core to add an integer
assertion.

Note that different string solvers implement string and integer integrations in vastly dif-
ferent ways [8,26,36,39]. Bjørner et al. [8] focus on integration in a staged manner. Yu et
al. [39] focus on integration via automata manipulations. CVC4 [26], S3 [36], and Z3str2 are

123

270 Form Methods Syst Des (2017) 50:249–288

integrations within the DPLL(T) architecture, where the algorithm only solves parts of the
formula on demand and learns new constraints as it solves such that these implied constraints
often cut the search dramatically. Compared to CVC4 and S3, our integration is tighter,
powered by the bi-directional heuristics.

7.1 Search space pruning via binary search

In this subsection, we present a relatively new heuristic that is enabled by integration between
the string and integer theories, and the ability for the string theory solver to use information
directly from the integer solver, combine it with facts about strings, and generate new terms
that guide the search. Although this work is preliminary and requires further evaluation, we
have found it to be very promising and to demonstrate noticeable performance improvements.

We observed that Z3str2 runs slowly when the input constraints can only be satisfied by
very long strings. As mentioned in Algorithm 1, when a consistent global arrangement is
obtained, for each string variable that cannot be split further, Z3str2 tries to assign concrete
values to it. This is a two-step procedure: Z3str2 first tries to fix its length and makes sure
that no conflict will be triggered by this assignment. Next, Z3str2 proposes concrete values
from a pool of all possible constant strings whose lengths meet the requirement obtained in
the previous step.

Z3str2 already takes advantage of information from the integer theory to some extent
when performing this search. However, it is possible to refine this information and use it to
prune the search space much more effectively. In the following subsections, we discuss the
issues related to the previous search strategy, and then present a new search heuristic that
converges much more rapidly for cases where the previous strategy performs poorly.

7.1.1 Performance challenges imposed by solving long strings

The integer theory represents a variable’s possible value by a range, and gradually refines this
range during the search. After the problem’s satisfiability is established, it starts to construct
the model. In some sense, the integer theory decides variables’ assignments lazily. However,
this will block the string theory from making further progress: even though the string theory
can access the integer theory via the bi-directional integration, usually it cannot obtain an
assignment until a concrete length (instead of a range) has been fixed by the integer theory.

Therefore, the string theory in Z3str2 and integer theory in the Z3 core should work
together to find consistent string lengths. Z3-str does so using a naive linear search approach.
In particular, the string theory component continuously and incrementally queries the integer
theory to get a suitable length for each variable through Z3 core.

For a string variable X to be assigned, Z3str2 linearly samples the search space and adds
assertions for each value in the sample space. For this purpose, the first length axiom added is
of the form (|X | ≥ i ∗ k) → (|X | = i ∗ k)∨· · ·∨(|X | = (i+1) ∗ k−1)∨(|X | ≥ (i+1) ∗ k),
where k is a predefined non-negative integer representing the window size and i is a non-
negative integer denoting the number of iteration. The Z3 core picks one assertion from the
given set, verifies it against the existing context in the integer theory and backtracks if a
conflict is detected. If (|X | ≥ (i + 1) ∗ k) is selected and included in the context, the string
part goes to the next iteration and repeats the same procedure.

However, for constraints asserting large length, we found that the linear search consumes
a significant amount of solving time in proposing gradually increasing length values, and
such iterations impose unnecessary performance overhead on the whole decision procedure.

123

Form Methods Syst Des (2017) 50:249–288 271

Consider the constraint |X | ≥ 52000 that is derived from the current search context.
Assume k is set to 4. In the first iteration, the length query added is (|X | ≥ 0) → (|X | =
0) ∨ · · · ∨ (|X | = 3) ∨ (|X | ≥ 4). Suppose initially the core picks the assertion X = 2
but it is not consistent with the length constraint. Therefore, the core backtracks and tries
another assertion, for instance, |X | ≥ 4. Then, the string theory asserts the next length axiom,
(|X | ≥ 4) → (|X | = 4) ∨ · · · ∨ (|X | = 7) ∨ (|X | ≥ 8) and repeats the same procedure.
In essence, the string plug-in needs to add the assertion in a linear order till it finds a valid
one. The same process has to be done for all string variables, which significantly degrades
the performance.

7.1.2 Binary search based heuristics

As discussed above, gradually increasing the length introduces redundant length query iter-
ations as well as a large number of unnecessary length constraints for string variables.
Therefore, we designed a new search space pruning technique based on the binary search
with heuristic support for Z3 core’s backtracking functionality.

However, as the strings are unbounded, we cannot fix an upper bound on their lengths. So,
the traditional binary search based technique is not directly applicable. Instead, we design
new heuristics, driven by binary search and backtracking, to guide the search. In particular,
we chose a window with concrete lower and upper bound in which the size of the window
varies dynamically in each iteration depending on the search criteria. We perform the binary
search within the window while sliding the window from lower to higher values to find an
upper bound. In other words, the lower and upper boundaries of the window are modified
when the window slides. In addition, the window size expands or shrinks by the order of
two based on the feedback provided by the integer theory. The backtracking ability of the
heuristicshelps to guide the search and refine our choice of window.

Algorithm 2 Binary search based heuristics for string-integer solver
Input: A string variable X .
Output: The consistent assignment of the length of X (|X |)

1: procedure getLengthAssignment(X , low, high)
2: if |X | has a concrete assignment l in the integer theory then
3: return l
4: mid = low + (high − low)/2
5: assert an axiom: (|X | < mid) ∨ (|X | = mid) ∨ (|X | > mid)

6: query the integer theory and check the context
7: if (|X | > mid) is selected by the Integer theory then
8: return GETLENGTHASSIGNMENT(X,mid + 1, high × 2)
9: else if |X | = mid is selected by the Integer theory then
10: return mid
11: else
12: return GETLENGTHASSIGNMENT(X, low,mid − 1)

The binary search based heuristics for the theory of strings and integers is summarized
in Algorithm 2. It is a recursive procedure driven by the feedback obtained from the integer
theory. In turn, it also proposes possible ranges and advances the search inside the integer
theory. In lines 2–3, it checks whether the length of X has already been assigned by the
integer theory. If so, it directly returns the assignment found in the current context. Otherwise,
it asserts an additional axiom and starts a modified version of binary search. It probes the

123

272 Form Methods Syst Des (2017) 50:249–288

context and adjusts the search window accordingly based on the feedback. In particular, it
finds the middle element in the current window and asserts a length axiom at line 5. At line 6,
the string theory checks the outcome of the axiom just asserted and prunes the search space
in lines 7–12. Note that the higher bound is doubled if the lower half can be eliminated at line
8. This guarantees that the search can eventually cover a large string length in the unbounded
search space.

8 Enhancing symbolic execution of C/C++ string manipulating programs

Improper stringmanipulations are an important cause of software defects, whichmake them a
target for program analysis. A study [31] on concolic testing tools and their limitations shows
that string operations make up a significant proportion of system-level code. The difficulty of
analyzing these operations adds additional overhead to current symbolic execution engines.

In this section, we discuss how a constraint solver over string and integer theory can
provide significant performance improvement in the symbolic execution of string manipu-
lating programs written in C/C++. We compare the constraint expressiveness and the overall
procedure among existing tools and our software to show the enhancement enabled by Z3str2.

8.1 Limitations introduced by modeling strings as bit-vectors

In current symbolic execution techniques, there is a semantic gap between the high-level
notion of strings and low-level representation of program states and memory. Using a bit-
vector solver is useful for low-level program analysis as it captures constraints with bit-level
precision and efficiently reasons about arithmetic overflows andbitwise operations.Bit-vector
solvers also allow for reasoning about symbolic memory regions.

Symbolic execution engines (e.g., KLEE [9] and S2E [10]) collect constraints as bit-
vectors by accumulating branch predicates and solving for the branch conditions using
constraint solvers such as STP [13] and Z3 [12]. However, these engines perform poorly
on programs containing string functions as they don’t capture the high-level semantics of
strings in accordance with the low-level bit-vector representation of all program data [10].

In particular, current symbolic execution engines that track constraints at the bit-vector
level suffer from the path explosion problem. One of the main reason is that representing
strings with bit-vectors implies that string operations have to be modeled as loops that check
string values on character level. For example, commonly used string functions, such as strlen
or strcmp, mainly consist of loops that iterate over characters until either a particular condition
is met or the current character is the null terminator, marking the end of the string. To do so,
the symbolic execution engine usually forks a fresh state per each possible length, leading
to path explosion, especially when the string is unbounded.

For example, an invocation of the string library function strlen on a symbolic string S of
size N will generate a total of N +1 paths, one for each possible value of the length between
0 and N , regardless of how the length of the string is actually used throughout the rest of the
program. In essence, uninteresting regions of code are explored by enumerating each branch
without efficiently pruning the search space. Prior works from the S2E [10] group explained
these performance bottlenecks with strings in their symbolic analysis. These restrictions
could be lifted by applying string solvers that reason about strings as a primitive data type,
similar to integers and bit-vectors, in the context of symbolic execution.

Moreover, it is difficult to detect certain classes of security vulnerabilities arising from
certain overflow and underflow errors with state-of-the-art symbolic execution engines. For

123

Form Methods Syst Des (2017) 50:249–288 273

Fig. 15 Login method
demonstrating an overflow
vulnerability

bool check_login(char* username, char* password){
unsigned short len = strlen(username)+1;
if(len > 32){

invalid_login_attempt();
exit(-1);

}
char* _username= (char*) malloc(len);
strcpy(_username, username);
...

}

instance, if we analyze the history of integer-related overflows in CVE database, we observe
that operations on extremely long strings are one of the primary sources of integer overflow
vulnerabilities. Since the strings have to be converted to bit-vector representations, it requires
the symbolic execution engine to fix concrete string lengths well in advance of where the
strings are actually used. Essentially, the engine has to enumerate a large number of possible
string lengths without knowing if they are necessary from the point of view of the string the-
ory. As a result, existing symbolic execution engines powered by bit-vector-based solvers are
not able to reason efficiently about arithmetic overflow/underflow errors caused by improper
handling of string values. This important class of security vulnerabilities inspired us to pro-
pose a new theory combination for the underlying solver which allows it to efficiently reason
about arithmetic overflow/underflow errors andmemory corruption caused by incorrect string
operations.

We use a motivating example to explain the limitations of existing string solvers in the
context of low-level program analysis and the importance of the string-bitvector theory com-
bination. Consider the check_login() function shown in Fig. 15. Here, the program calculates
the length of the user-controlled input value username, and adds 1 to accommodate the trail-
ing null character. A new buffer is allocated for the resulting string and the program copies
username into it using the strcpy function. This code behaves as intended for normal-sized
input. However, an integer overflow occurs if the user submits a username that is 65,535 char-
acters long. The variable len is declared as unsigned short, which is a 16-bit integer
that can hold any value between 0 and 65,535. When a string of length 65,535 is submitted
as username, the result of strlen(username)+1 overflows to 0. This results in allocation of a
buffer of size 0 on the heap with the call to malloc(). Attempting to copy username into this
buffer results in memory corruption and the potential for an exploit.

8.2 Enhancements enabled by string-integer solvers in symbolic execution

Compared to bit-vector-based string constraint solving, modeling strings as a primitive type
and tight string-integer theory solver integration make constraint modeling more expressive,
as well as eliminating a significant number of unnecessary path enumerations in the context
of symbolic execution.

Language expressiveness Strings modeled as bit-vector arrays are inherently bounded,
whereas the length of strings modeled as a primitive type can be arbitrarily (finitely) large.
As a result of this, a bit-vector-based string solver cannot precisely encode the overflows
caused by a limited-precision type. Due to the upper bound on string length. bit-vector-based
encoding has difficulty reasoning about the overflow that occurs in the previous example.

Eliminating loops over characters Since the solver is able to handle strings of unbounded
length and reason about string operations at a high level, it is possible to abstract away low-

123

274 Form Methods Syst Des (2017) 50:249–288

level loops in some string-handling methods. For example, we can completely abstract away
loops over individual characters in the heavily-used strcmp() and strlen() functions, as the
solver has high-level knowledge of the semantics of thesemethods. As a result, by eliminating
the loops we also eliminate a large number of potential symbolic paths that would otherwise
be explored.

9 Experimental results

In this section, we describe the implementation of Z3str2, as well as experiments to vali-
date the efficacy of the first two new techniques proposed in this paper, namely, overlapping
variable detection and deeper string/integer theory integration in Sect. 9.1. However, typical
benchmarks used to evaluate search space pruning techniques rarely involve large strings. To
demonstrate the effectiveness of the optimized search heuristics, in Sect. 9.2, we compare the
performance of the binary search and the linear search heuristics using a set of benchmarks
that systematically cover different string length settings. We also compare with other solvers
on a set of constraints requiring large strings. Finally, we evaluate the enhancements in the
context of symbolic execution enabled by a constraint solver over string and integer theories
in Sect. 9.3.

9.1 Evaluating search space pruning techniques

Both techniques improve solver efficiency in isolation, as well as when used simultaneously.
We report both combined and isolated contributions.

1. Detection of overlapping variables During solving, Z3str2 prunes away arrangements
with overlapping variables, leading to a smaller search space. Thus, if the technique is
effective, we would be able to observe that other solvers time out on the cases reported as
UNKNOWN by Z3str2. In Z3str2, an UNKNOWN result is returned when at least one
arrangement with overlapping variables is found (and pruned), and no satisfying solution
can be found over all arrangements with non-overlapping variables.

2. Evaluating string and integer theory integration The contribution of string-integer the-
ory integration will be illustrated by demonstrating improvement in the performance of
solving both SAT and UNSAT instances, in comparison with other solvers.

9.1.1 Experimental setting

We compare Z3str2 against five state-of-the-art string solvers, namely, CVC4 [26], S3 [36],
Kaluza [33], PISA-MONA [35], and Stranger [38] across four different suites of bench-
marks obtained from Kudzu/Kaluza [33], PISA [35], AppScan Source [2] and Kausler’s [22]
projects. Given the rich and diversified landscape of string problems, we chose to validate
our approach using benchmarks from real-world applications with different characteristics.
Additionally, the total number of tests on which we compared Z3str2 with other solvers is
approximately 69,000.

Table 1 summarizes the experimental settings. Z3str2 and CVC4 both accept constraints
in similar formats, and so we run Z3str2 and CVC4 on all suites. PISA-MONA and Stranger
can only be invoked by APIs. Although S3 and Kaluza accept input from a file, the input
language they understand has limited expressiveness. Therefore, we compare Z3str2 to them
using the benchmarks over which those solvers were originally evaluated.

123

Form Methods Syst Des (2017) 50:249–288 275

Table 1 Comparison study settings

Z3str2 Z3str2 w/o
integration

CVC4 S3 Kaluza PISA-MONA Stranger

Kaluza suite
√ √ √ √ √

PISA suite
√ √ √

AppScan suite
√ √

Kausler suite
√ √ √

Kaluza benchmark suite The Kaluza constraints were generated by a JavaScript symbolic
execution engine [33], where length, concatenation and (finite) RE membership queries
occur frequently. Despite the redundancy across many of the problems, it is still a “classical”
test suite over which string solvers are commonly benchmarked. Both CVC4 and S3 were
originally evaluated only on this suite, which consists of approximately 50,000 problems in
the Kaluza format. The CVC4 team selected 47,284 of them, and translated them into the
CVC4 format. The S3 team did the translation to S3 format.Wewrote translators fromCVC4
to Z3str2, and from Z3str2 to CVC4. The timeout threshold for comparison over this suite
was set at 20 s per problem, which was the threshold used in CVC4 [26].

PISA benchmark suiteWhile the Kaluza suite is large and includes string problems of varying
sizes, it only contains a small subset of string operations. To make the comparison more
comprehensive, we included constraints from real-world Java sanitizer methods that were
used in the evaluation of the PISA system [35]. Sanitizers cleanse user input to remove the
threat of an injection attack. They are usually complex and utilize various primitive string
operations. We generated two groups of constraints: First, as in the PISA paper, we encode
the semantics of the sanitizers and check the return value(s) against predefined attack patterns
(such as cross-site scripting (XSS)). In the second group, we also encode input constraints
per the application defining the sanitizer. For the PISA suite, we set a timeout of 200s due
to its higher complexity.

AppScan benchmark suite The third suite of benchmarks is derived fr om security warnings
output by IBM Security AppScan Source Edition [2], an application sold commercially by
IBM. These reflect potentially vulnerable information flows, represented as traces of program
statements, which yieldmore representative real-world constraints than focusing on sanitizers
only. We ran AppScan on popular websites to obtain traces. Similar to the PISA benchmarks,
the AppScan constraints also utilize a rich set of string operators. As with PISA, the timeout
here was also set at 200s per benchmark.

Kausler benchmark suite The final suite is extracted from eight Java programs by Scott
Kausler [22]. They represent path conditions obtained from dynamic symbolic execution,
and are pure string constraints [21]. Unlike other benchmarks, Kausler’s suite does not dump
string constraints to file but instead calls the solvers via an API. The suite contains 174 path
condition encoding files, and the resulting constraints are input to the solvers in-memory via
their APIs. The comparison [22] was originally done using a driver interface [3]. However,
we observed bugs ranging from JNI issues for Stranger to generation of invalid constraints for
Z3str2. We made our best attempt to compare Z3str2 with Stranger using modified interfaces
[1] patched by both the Stranger team and us.

We performed all the experiments on a workstation running Ubuntu 12.04 with an Intel
i7-3770 CPU and 8GB of RAM memory. For reproducibility, we have made the Z3str2

123

276 Form Methods Syst Des (2017) 50:249–288

Table 2 Results on Kaluza suite [33]

Z3str2 Z3str2 w/o integration CVC4 S3 Kaluza

√ × √ × √ × √ × √ ×
sat 34,859 0 32,752 0 33,190 0 32,503 488 21,651 n/a

unsat 11,799 0 11,313 0 11,625 0 11,351 412 12,099 10,909

unknown 626† 395† 0 0 0

Timeout 0 2824 2469 989 340

Tool reports error 0 0 0 2 2285

Crash 0 0 0 1539 0

Total time (s) 4288.8(1x) 61,232.8(14.3x) 52,478.8 (12.2x) 22,543.4 (5.3x) 46,753.9 (10.9x)

† ‘unknown’ indicates Z3str2 detected and avoided overlapping arrangements

source code publicly available.4 For the other solvers, we used V1.5-prerelease of CVC4;
the version of S3 from the original paper [36]; the Kaluza version from the CVC4 paper with
“var” as the query string; and Stranger from [4].

9.1.2 Performance results

Kaluza suite In Table 2, “tool reports error” counts the number of inputs on which the solver
reports an error. “crash”, instead, refers to runtime errors such as segfaults. For “sat” and
“unsat”,× denotes the number of provably incorrect results (either an “unsat” responsewhere
the problem has a verified solution or a “sat” response with an infeasible solution, as defined
in [26]), and

√
the rest. The comparison involves Z3str2 without bidirectional string-integer

theory integration, CVC4 and S3, but not PISA, as PISA cannot model string lengths or
symbolic arithmetic operations which are intensive in the suite.

According to Table 2, neither Z3str2 nor CVC4 report any provably incorrect result,
though Z3str2 is more effective and can solve more cases (46,658 compared to 44,815)
without timeouts. Though Z3str2 additionally has 626 unknown cases, CVC4 times out on
all these cases. Z3str2 without bidirectional integration solves 2593 fewer cases and times
out more often. S3 has errors in both directions, as well as a total of 989 timeouts, while
Kaluza suffers from fewer timeouts (340) but has many sat-as-unsat errors (10,909). Kaluza
therefore is unsound. Since Kaluza only provides assignments for variables matching the
query, SAT answers are not verifiable. Both S3 and Kaluza also have tool errors (2 and
2285, respectively). In addition, S3 crashes on 1539 cases. To compare performance on
the sat and unsat Kaluza cases across the different solvers, we created the cactus plots in
Figs. 16a (sat) and 17a (unsat). The vertical axis measures solving time on a logarithmic
scale; the horizontal axis counts the total number of instances that (individually) took at most
the indicated time to be solved. Incorrect results are excluded. In both categories, Z3str2
and CVC4 have comparable performance, while Z3str2 solves more cases and is faster on
complex cases. S3 and Z3str2 without string-integer integration are slower. Kaluza has the
worst performance.

PISA suite Table 3 presents the results on the PISA benchmarks. The “string operators stats”
column lists the involved operations and their number of occurrences. In addition, we also

4 https://sites.google.com/site/z3strsolver/.

123

https://sites.google.com/site/z3strsolver/

Form Methods Syst Des (2017) 50:249–288 277

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Lo
g1

0(
se

co
nd

s)
SAT

Z3str
Z3str w/o integra�on
CVC4
S3
Kaluza

Fig. 16 Cactus plots for the Kaluza benchmark (w/o incorrect results): SAT instances

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Lo
g1

0(
se

co
nd

s)

UNSAT
Z3str
Z3str w/o integra�on
CVC4
S3
Kaluza

Fig. 17 Cactus plots for the Kaluza benchmark (w/o incorrect results): UNSAT instances

count the number of variables and predicates for each format. In this comparison, we included
CVC4 and PISA, but not S3 and Kaluza, as we were not able to model popular string opera-
tions such as indexof using their language. Besides, for PISA, while one group of constraints
is equivalent to the MONA program generated by PISA, enabling proper comparison, the
other group requires changes to the PISA translation algorithm (to fix the input constraints
as well as the negative output constraints), and thus the respective comparisons were not

123

278 Form Methods Syst Des (2017) 50:249–288

possible. From Table 3, we have the following observations. First, Z3str2 reports 8 sat cases
compared to 6 by CVC4 and 2 timeouts. For the 6 sats in common, Z3str2 solves them in
1.069s while CVC4 requires 51.394s. Second, MONA and Z3str2 are in agreement. MONA
runs faster on the sat cases, though it cannot generate satisfying string assignments, and has
comparable performance to Z3str2 on the unsat cases.
AppScan suite The results of the third comparison over the AppScan benchmarks appear in
Table 4. Correlation between variables is relatively high, as demonstrated by the “var” and
“pred” columns. As shown in the table, Z3str2 reports sat on 8 cases while CVC4 agrees on 4
and times out on the rest. The performance gap between the solvers on sat cases in agreement
is significant: Z3str2 completes in 0.707s, whereas the CVC4 solving time is 154.852s.
Kausler suite Table 5 shows the average solving time of the instances generated by the
constraint generation tool in the Kausler suite. We were able to run the Stranger tool on five
sets in this suite. Both CVC4 and Z3str2 are faster than Stranger on two of these sets, while
Stranger is faster than Z3str2 and CVC4 on the remaining three.

However, these findings in the comparisons with Stranger should be qualified. First,
Stranger crashes or hangs on 98 files. Z3str2 neither crashes nor hangs nor times out on any of
the generated instances. We have omitted these 98 files from our comparison. Additionally,
Stranger over-approximates disequalities (�=operator) among variables that can represent
multiple strings [5]. We observe that such cases commonly exist in all sets (the percentages
of instances with �= operators in each set are 83.4, 61.7, 79.0, 96.0 and 95.0% respectively,
and many fall into this category of disequalities among variables that represent multiple
strings). This implies that Stranger produces unsound results. We believe that some of these
constraints are easy for Stranger thanks to this over-approximation. By contrast Z3str2 cor-
rectly implements all operators and predicates in its input language. Finally, Stranger requires
that integers occurring as indices and length bounds be constant, whereas Z3str2 and most
other competing solvers support integers symbolically thus providing expressive power that
is essential in practice.

The results also show that CVC4 and Z3str2 have comparable performance on three
sets but CVC4 is faster than Z3str2 on the other two. A closer look at the constrains in
mathParser and naturalCLI suggests that CVC4 usually has better performance when the
variables are loosely constrained. We plan to introduce heuristics for such cases to improve
Z3str2’s performance in future versions.

The general trend, across all benchmark suites, is that CVC4 has comparable performance
to Z3str2 although CVC4 times out far more often than Z3str2, whereas S3 is significantly
slower. These results establish the efficacy of both techniques presented in this paper.

Detection of overlapping variables Z3str2 can decide either sat or unsat on 98.7, 100
and 100 of the instances in the Kaluza, PISA and AppScan suites, respectively. CVC4, in
comparison, achieves 94.8, 50 and 50%. For unknowns reported by Z3str2 on the Kaluza
instances, which occur in merely 1.3% of the cases, CVC4 times out on all of them. This
lends support to our design choice of purposely pruning away parts of the solution space
(those with overlapping arrangements) to avoid nontermination.

String and integer theory integration As the comparisons between Z3str2 versions with
and without the integration clearly demonstrate, there is significant gain thanks to tightening
the integer and string theory integration, which enables generation of implied constraints
in both domains for more aggressive elimination of assignments unsatisfying for combined
string-integer constraints.

123

Form Methods Syst Des (2017) 50:249–288 279

Ta
bl
e
3

R
es
ul
ts
on

co
ns
tr
ai
nt
s
ge
ne
ra
te
d
fr
om

sa
ni
tiz
er
s
de
te
ct
ed

by
PI
SA

[3
5]

In
pu

t
St
ri
ng

op
er
at
or
s
st
at
s
(o
m
itt
in
g
eq

an
d
di
s-
eq
)

Z
3s
tr
2

C
V
C
4

PI
SA

-M
O
N
A

va
r

pr
ed

R
es
ul
t

T
im

e
(s
)

va
r

pr
ed

R
es
ul
t

T
im

e
(s
)

va
r

pr
ed

R
es
ul
t

T
im

e
(s
)

pi
sa
-0
00

.s
m
t2

co
nt
ai
ns

(3
),
in
de
xo

f
(1
),
su
bs
tr
in
g
(1
)

4
12

sa
t(

√)
0.
16

4
4

12
sa
t(

√)
0.
26

4
9

30
1

sa
t(
?+

)
0.
02

9

pi
sa
-0
01

.s
m
t2

co
nt
ai
ns

(1
),
in
de
xo

f
(1
),
su
bs
tr
in
g
(1
)

4
9

sa
t(

√)
0.
11
4

4
9

sa
t(

√)
0.
03

2
–+

–
+

–
+

–
+

pi
sa
-0
02
.s
m
t2

co
nt
ai
ns

(4
)

2
10

sa
t(

√)
0.
11

4
2

10
sa
t(

√)
50

.8
71

–
–

–
–

pi
sa
-0
03

.s
m
t2

co
nt
ai
ns

(3
),
co
nc
at
(1
)

3
11

un
sa
t(

√)
0.
06

4
3

11
tim

eo
ut

20
0.
00

–
–

–
–

pi
sa
-0
04

.s
m
t2

co
nt
ai
ns

(2
),
in
de
xo

f
(1
),
le
ng

th
(1
),

7
22

un
sa
t(

√)
0.
03

8
10

32
tim

eo
ut

20
0.
00

9
33

1
un

sa
t

0.
04

1

la
st
In
de
xo

f†
(1
),
su
bs
tr
in
g
(2
)

(√)
pi
sa
-0
05

.s
m
t2

in
de
xo

f
(1
),
la
st
In
de
xo

f†
(1
),
le
ng

th
(1
),

7
23

sa
t(

√)
0.
11

5
10

33
sa
t(

√)
0.
16

5
–

–
–

–

su
bs
tr
in
g
(2
),

pi
sa
-0
06

.s
m
t2

in
de
xo

f
(1
),
la
st
In
de
xo

f†
(1
),
le
ng

th
(1
),

7
24

un
sa
t(

√)
0.
03

9
11

36
tim

eo
ut

20
0.
00

9
33

1
un

sa
t

0.
03

8

su
bs
tr
in
g
(2
),
co
nt
ai
ns

(1
)

(√)
pi
sa
-0
07

.s
m
t2

in
de
xo

f
(2
),
la
st
In
de
xo

f†
(1
),
le
ng

th
(1
),

8
26

un
sa
t(

√)
0.
04

2
11

36
tim

eo
ut

20
0.
00

9
32

4
un

sa
t

0.
03

9

su
bs
tr
in
g
(2
),
co
nt
ai
ns

(1
)

(√)
pi
sa
-0
08

.s
m
t2

re
pl
ac
e
(5
),
co
nt
ai
ns

(2
)

6
13

sa
t(

√)
0.
21

4
6

13
tim

eo
ut

20
0.
00

9
28

3
sa
t(
?+

)
0.
03

1

pi
sa
-0
09

.s
m
t2

re
pl
ac
e
(2
),
co
nc
at
(1
),
co
nt
ai
ns

(2
)

3
8

sa
t(

√)
0.
44
7

3
8

sa
t(

√)
0.
04

6
9

29
2

sa
t(
?+

)
0.
05

4

pi
sa
-0
10
.s
m
t2

re
pl
ac
e
(2
),
co
nc
at
(1
)

3
6

sa
t(

√)
0.
16

5
3

6
tim

eo
ut

20
0.
00

–
–

–
–

pi
sa
-0
11
.s
m
t2

re
pl
ac
e
(1
),
co
nc
at
(2
)

3
6

sa
t(

√)
0.
11
5

3
6

sa
t(

√)
0.
01

6
–

–
–

–

+
W
e
co
ul
d
no
tg

en
er
at
e
co
ns
tr
ai
nt
s
w
ith

ou
tc
ha
ng
in
g
PI
SA

.N
o
st
ri
ng

so
lu
tio

ns
ar
e
ge
ne
ra
te
d
so

it’
s
no
tv

er
ifi
ab
le
.

†
C
V
C
4
do

es
n’
tp

ro
vi
de

op
er
at
or

‘l
as
tI
nd

ex
of
’.
W
e
en
co
de

it
w
ith

op
er
at
or
s
“c
on

ca
t”
,“
le
ng

th
”
an
d
“c
on

ta
in
s”

123

280 Form Methods Syst Des (2017) 50:249–288

Ta
bl
e
4

R
es
ul
ts
on

co
ns
tr
ai
nt
s
de
ri
ve
d
fr
om

A
pp
Sc
an

tr
ac
es

[2
]

in
pu

t
st
ri
ng

op
er
at
or
s
st
at
s
(o
m
itt
in
g
eq

an
d
di
s-
eq
)

Z
3s
tr
2

C
V
C
4

va
r

pr
ed

re
su
lt

tim
e
(s
)

va
r

pr
ed

re
su
lt

tim
e
(s
)

t0
1.
sm

t2
in
de
xo

f
(4
),
su
bs
tr
in
g
(3
)

7
37

sa
t(

√)
0.
26

5
7

37
tim

eo
ut

20
0.
00

t0
2.
sm

t2
co
nc
at
(3
),
m
em

be
rs
hi
p
(1
),
re
ge
xC

on
ca
t(
2)
,

5
47

sa
t(

√)
0.
21

5
5

33
sa
t(

√)
0.
02

6

re
ge
xU

ni
on

(1
4)
,s
tr
2R

eg
ex

(1
7)
,l
en
gt
h
(1
)

t0
3.
sm

t2
co
nc
at
(3
),
m
em

be
rs
hi
p
(1
),
re
ge
xC

on
ca
t(
2)
,

5
46

sa
t(

√)
2.
51

9
5

32
tim

eo
ut

20
0.
00

re
ge
xU

ni
on

(1
4)
,s
tr
2R

eg
ex

(1
7)
,l
en
gt
h(
1)

t0
4.
sm

t2
co
nc
at
(5
),
m
em

be
rs
hi
p
(1
),
re
ge
xC

on
ca
t(
2)
,

6
50

sa
t(

√)
4.
57

4
6

35
tim

eo
ut

20
0.
00

re
ge
xU

ni
on

(1
4)
,s
tr
2R

eg
ex

(1
7)
,l
en
gt
h(
1)

t0
5.
sm

t2
co
nc
at
(3
),
m
em

be
rs
hi
p
(1
),
re
ge
xC

on
ca
t(
2)
,i
nd

ex
of

(1
)

8
56

sa
t(

√)
2.
77

0
8

42
tim

eo
ut

20
0.
00

re
ge
xU

ni
on

(1
4)
,s
tr
2R

eg
ex

(1
7)
,l
en
gt
h
(2
),
su
bs
tr
in
g
(1
)

t0
6.
sm

t2
co
nc
at
(1
),
in
de
xo

f
(3
),
en
ds
W
ith

(5
)

5
33

sa
t(

√)
0.
21

4
5

33
sa
t(

√)
3.
02

1

t0
7.
sm

t2
co
nc
at
(6
),
re
ge
xS

ta
r
(2
),
st
r2
R
eg
ex

(4
),
en
ds
W
ith

(2
)

8
32

sa
t(

√)
0.
11

4
8

29
sa
t(

√)
0.
11

5

re
ge
xU

ni
on

(2
),
m
em

be
rs
hi
p
(2
),
st
ar
ts
W
ith

(2
)

t0
8.
sm

t2
co
nc
at
(2
),
re
ge
xS

ta
r
(2
),
st
r2
R
eg
ex

(4
),
en
ds
W
ith

(2
)

5
23

sa
t(

√)
0.
16

4
5

22
sa
t(

√)
15

1.
66

3

re
ge
xU

ni
on

(2
),
m
em

be
rs
hi
p
(2
),
st
ar
ts
W
ith

(2
)

123

Form Methods Syst Des (2017) 50:249–288 281

Table 5 Average solving time per constraint instance generated from Kausler suite

Instance # Stranger (ms) CVC4 (ms) Z3str2 (ms)

beasties 7230 51.8 6.4 6.4

jerichoHTMLParser 1275 5.9 9.5 10.7

mathParser 9138 1.4 12.8 39.9

mathQuizGame 21 9.4 8.5 7.1

naturalCLI 2367 3.0 10.0 23.4

9.2 Evaluating binary search based heuristics for large strings

The binary search based approach with backtracking functionality helps to prune the search
space efficiently when the input contains operations on very long strings. We used the string-
integer solver for the comparison and performance evaluation of the binary search approach.
We performed two sets of experiments for this evaluation, which are discussed below.

9.2.1 Performance evaluation of string lengths in Z3str2

The first set of experiments demonstrates the inefficiency of the linear search heuristic in
the previous version of Z3str2. For this purpose, we chose a simple constraint set containing
only the length function. The constraints we chose are of the form lengthstr = l, where the
choice of l is as described in Table 6. We performed a series of 11 tests and used 200s as the
timeout for each test case. The stable release of the Z3str2 solver in the linear search mode
solved constraints of length up to 5000, but timed out on all larger instances. The solver took
more than 12h to terminate when the length is on the order of 105. However, the solver in
the binary search mode performed very efficiently and solved all instances for l up to and
including 106. A comparison of solving time for the two search heuristics in Z3str2 is shown
in Table 6 and the cactus plots in Fig. 18.

Table 6 Performance of Z3str2
over string lengths

Benchmark Length (l) Binary search (s) Naive search (s)

test1 10 0.042 0.040

test2 50 0.045 0.041

test3 100 0.039 0.051

test4 500 0.041 0.254

test5 1000 0.055 0.928

test6 5000 0.056 46.699

test7 10, 000 0.088 Timeout

test8 50, 000 0.323 Timeout

test9 100, 000 0.842 Timeout

test10 500, 000 21.084 Timeout

test11 1, 000, 000 105.636 Timeout

123

282 Form Methods Syst Des (2017) 50:249–288

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Lo
g1

0(
se

co
nd

s)
SAT

Z3str2(Binary Search)

Z3str2(Naive Search)

Fig. 18 Cactus plots for the length test

Table 7 Performance on benchmark suite

Z3str2 (binary search) Z3str2 (naive search) CVC4

SAT 169 138 126

UNSAT 34 34 19

UNKNOWN 2 2 0

Timeout 0 31 60

Tool reports error 0 0 0

Crash 0 0 0

Total time (factor) 41.697 (1x) 9569.639 (x229) 12,014.893 (x264)

† ‘unknown’ indicates Z3str2 detected and avoided overlapping arrangements

9.2.2 Evaluation on benchmark suite

To measure the efficacy of our approach, we designed a benchmark suite containing 205 test
cases, containing handcrafted constraints involving operations on large strings. The bench-
mark consists of constraints on various string operations supported by Z3str2 such as Length,
Concat, Indexof, Substring, EndsWith, StartsWith, Replace , etc. Furthermore, we translated
the constraints into the CVC4 input language and compared the performance of the bench-
marks against CVC4 version 1.5. We used 200s as the timeout for each constraint input.

The results of the comparison are presented in Table 7. The SAT and UNSAT column
denotes the number of SAT and UNSAT answers respectively. According to Table 7, Z3str2
with binary search solves all test instances very quickly compared to the others. Z3str2 with
linear search timed out after 200s on 31 test cases, whereas CVC4 timed out on 60 test
cases. The Z3str2 solver detects overlapping arrangements in both search modes and reports
“UNKNOWN” in several cases. However, neither of these solvers crashed or reported errors
in any of the test instances.

123

Form Methods Syst Des (2017) 50:249–288 283

-3

-2

-1

0

1

2

3

Lo
g1

0(
se

co
nd

s)
SAT

Z3str2(Binary Search)

Z3str2(Naive Search)

CVC4

Fig. 19 Cactus plots: SAT instances

-2.5

-2

-1.5

-1

-0.5

0

Lo
g1

0(
se

co
nd

s)

UNSAT

Z3str2(Binary Search)

Z3str2(Naive Search)

CVC4

Fig. 20 Cactus plots: UNSAT instances

The cactus plots for the sat and unsat results are presented in the Figs. 19 and 20 respec-
tively. Comparing the time taken by each solver, Z3str2 with the binary search heuristic
exhibits the best overall performance. The overall time of the binary search based approach
is 41.7s for these 205 test cases, whereas the linear search method used a total of 9569.6s
and CVC4 needed 12,014.9 s. The binary search based approach used by the new version
of Z3str2 is about 229 times faster than the linear search approach of Z3str2 and 288 times
faster than CVC4.

123

284 Form Methods Syst Des (2017) 50:249–288

9.3 Evaluating improvements in the context of symbolic execution

We demonstrate the performance improvements enabled by a string constraint solver for the
combined string-integer theory with respect to the example shown in Fig. 15 by applying
both our technique and KLEE, a state-of-the-art symbolic execution engine, to this code.
The goal was to detect the heap corruption threat in that code. We faithfully encoded the
program snippet in check_login() as string/bit-vector constraints. We then checked whether
the buffer pointed to by _username is susceptible to overflow.

Notice that len is an unsigned short variable, and thus ranges from 0 to 216−1(65,535).
As it represents the buffer size, it determines the number of concrete execution paths KLEE
has to enumerate, as well as the search space for library-aware solving. By contrast, the
constraints generated by a library-aware SMT solver declaratively model strlen as part of
the SMT solver logic.

To characterize performance trends, we consider two different precision settings for string
length: 8-bit and 16-bit. We used 120m as the timeout value. There was no need to go beyond
16 bits since KLEE was already significantly slower at 16 bits relative to the library-aware
SMT solver. Note that KLEE performs poorly on this test because it has to explore a large
number of paths, not because the individual path constraints are difficult to solve (as illustrated
in Fig. 21).

The results are provided in Table 8. Under both precision settings, KLEE is consistently
and significantly slower than the library-aware solving technique. In particular, ifwe represent
numeric values using 16 bits, then KLEE is not able to find a path that triggers the bug in
120min, while Z3str2 with binary search heuristics can find a satisfying solution in 787.6 s.

……

……

lensym= strlen(S1sym)

lensym<32

strcpy(S2sym, S1sym)

|S1sym|+1
paths

|S1sym|+1
paths

S1sym = username
S2sym = _username

lensym= strlen_bv(S1)

lensym<32

strcpy(S2sym,S1sym)

length(S2sym)
<length(S1sym)

….

S1sym = username
S2sym = _username

(a) Driven by a Bit-Vector Solver (b) Driven by a String-Integer Solver

Fig. 21 Comparison between symbolic execution driven by a bit-vector solver (KLEE) and a string solver
over the string and integer theories

Table 8 Vulnerability detection using KLEE (solving bit-vector constraints) and Z3str2

Precision Upper bound String-integer theory KLEE (bit-vector)

Z3str2 (binary search) Z3str2 (linear search)

8-bit 255 1.1 s 167s 300s

16-bit 65,535 787.6 s Timeout (7200s) Timeout (7200s)

123

Form Methods Syst Des (2017) 50:249–288 285

The benefit thanks to native modeling of strings is clear. Suppose both username and
_username are symbolic string variables. In Fig. 21a, as KLEE forks a new state for each
character, an invocation of strlen on a symbolic string S1sym of size |S1sym |will generate
and check |S1sym | + 1 path constraints (one per each possible length value between 0 and
|S1sym |). In Fig. 21b, in contrast, the constraint encoding essentially captures the semantics
of the program without explicitly handling the loops in strlen and strcmp. Thus, only one
query is needed to check whether the length S2sym can be smaller than the length S1sym .

10 Related work

The theory considered in this paper—namely the quantifier-free (QF) theory Twlr over word
equations,membership predicate overREs, and length function—is amulti-sorted theorywith
string (str) and numeric (num) sorts.Makaninwas the first to show, in 1977, that theQF theory
of word equations is decidable [27]. Since, many have improved upon this seminal result [19,
20,29,30,34]. In particular, Plandowski proved that this problem is in PSPACE [30]. Despite
decades of effort, the satisfiability problem for Twlr remains open [14,19,27,30]. Still, many
practical solvers have been proposed.
Automata-based solvers Regular languages (or automata), as well as context-free grammars
(CFGs), can be used to represent strings and handling regex-related operations. JSA [11]
computes CFGs for string variables in Java programs. Hooimeijer et al. [16] suggest an
optimizationwhereby automata are built lazily. A primary challenge faced by automata-based
approaches, which we do not suffer from, is to capture the connections between strings and
other domains, e.g., integers. To overcome this limitation, refinements have been proposed.
JST [15] extends JSA. It asserts length constraints in each automaton, and handles numeric
constraints after conversion. PISA [35] encodes Java programs into M2L formulas that it
discharges to the MONA solver to obtain path- and index-sensitive string approximations.
PASS [24,25] combines automata and parametrized arrays for efficient treatment of unsat
cases. Stranger is a powerful extension of string automata with arithmetic automata [38,39].
Bit-vector based solvers Another group of solvers converts string constraints to constraints
into other domains such as integers or bit-vectors. HAMPI [23] is an efficient solver that
represents strings as bit-vectors, though it requires the user to provide an upper bound on
string lengths. Early versions of Kaluza [33] extended both STP [13] and HAMPI to support
mixed string and numeric constraints represented as bit-vector. A similar approach powers
Pex [8], though strings are reduced to integer abstractions.
Word-based string solvers CVC4 [26] handles constraints over the theory of unbounded
strings with length and RE membership. Solving is based on multi-theory reasoning backed
by the DPLL(T) architecture combined with existing SMT theories. The Kleene star operator
in RE formulas is dealt with via unrolling as in Z3str2. S3 [36] is another word-based solver,
and it can be viewed as an extension of an early version of Z3-str. Roughly speaking, CVC4,
S3 and Z3str2 embody similar approaches, and hence CVC4 and S3 can also benefit from
the techniques proposed in this paper.

11 Conclusion and future work

We have described three techniques that dramatically improve the efficiency of word-based
string solvers: (1) a sound and complete procedure to detect overlapping variables, thereby

123

286 Form Methods Syst Des (2017) 50:249–288

automatically identifying and avoiding sources of nontermination; (2) tight bi-directional
integer/string theory integration, which prunes a vast array of inconsistent search candidates;
and (3) further optimization of the string length search strategy based on a binary search
heuristic.

We have implemented these techniques on top of Z3-str as Z3str2.We show the efficacy of
these techniques through an extensive set of experiments, comparing Z3str2 with the CVC4,
S3, Kaluza, PISA and Stranger solvers over four benchmark suites derived from real-world
applications. In addition, we empirically show the performance improvements enabled by
Z3str2 in the context of symbolic execution of string manipulation programs. We compare
the performance of symbolic execution powered by a bit-vector solver and Z3str2. We also
evaluate our ability to capture the semantics of string library functions without having to
explore a huge number of program execution paths in order to enumerate all possible string
lengths.

The technique we present for sound and complete detection of overlapping variables is
applicable to other word-based string solvers in addition to Z3str2. As we discussed, the
problem of overlapping variables is a key difficulty in reasoning about strings and a source
of non-termination in existing tools. The solution we present can be used to avoid these
potentially infinite search paths and allow the solve to continue; in future we plan to explore
additional heuristics that give the solver the ability to reason about a fragment of cases with
overlapping variables in an efficient manner.

Bi-directional integration between the string and integer theory solvers is an extension
beyond the classicalDPLL(T)model for SMTsolvers,which limits the ability for independent
theory solvers to communicate. Our experiments have shown that this technique is highly
effective at pruning the search space for the solver and preliminary evidence suggests that the
binary search heuristic enabled by this integration can improve performance further when
dealing with very long strings. We plan to leverage this technique further, and investigate
more ways to share information with other theory solvers and additional methods by which
our theory solver can guide the search.

While summary-based symbolic execution has been studied previously (e.g. as part of the
S-Looper tool [37]), we are not aware of existing work in which SMT solvers are extended
with first-class support for programming-language library functions declaratively as part of
their logic. One recent application of a similar concept is discussed in [18], in which models
of design patterns are abstracted into a symbolic execution engine. The ability to perform a
similar analysis at the level of detail of individual library methods can enhance library-aware
symbolic execution as part of a library-aware SMT solver. We intend to explore this idea
further in the future to broaden its applicability beyond the current context.

References

1. Z3str2 String Constraint Solver. https://sites.google.com/site/z3strsolver/
2. IBM Security AppScan Source. http://www-03.ibm.com/software/products/en/appscan-source
3. Kausler Suite. https://github.com/BoiseState/string-constraint-solvers
4. LibStranger. https://github.com/vlab-cs-ucsb/LibStranger
5. Personal communications with the Stranger team. 2015
6. Abdulla PA, Atig MF, Chen Y-F, Holík L, Rezine A, Rümmer P, Stenman J (2014) String constraints for

verification. In: Proceedings of the 26th international conference on computer aided verification, CAV’14,
pp 150–166

7. Barrett C, Fontaine P, Tinelli C (2016) The Satisfiability Modulo Theories Library (SMT-LIB). http://
www.SMT-LIB.org

123

https://sites.google.com/site/z3strsolver/
http://www-03.ibm.com/software/products/en/appscan-source
https://github.com/BoiseState/string-constraint-solvers
https://github.com/vlab-cs-ucsb/LibStranger
http://www.SMT-LIB.org
http://www.SMT-LIB.org

Form Methods Syst Des (2017) 50:249–288 287

8. Bjørner N, Tillmann N, Voronkov A (2009) Path feasibility analysis for string-manipulating programs.
In: Proceedings of the 15th international conference on tools and algorithms for the construction and
analysis of systems, TACAS ’09, pp 307–321

9. Cristian C, Daniel D, Dawson E (2008) Klee: Unassisted and automatic generation of high-coverage tests
for complex systems programs. In: Proceedings of the 8th USENIX conference on operating systems
design and implementation, OSDI’08. USENIX Association, Berkeley, pp 209–224

10. Chipounov V, Kuznetsov V, Candea G (2011) S2e: a platform for in-vivo multi-path analysis of software
systems. In: Proceedings of the sixteenth international conference on architectural support for program-
ming languages and operating systems. ASPLOS XVI. ACM, New York, pp 265–278

11. ChristensenAS,MøllerA, SchwartzbachMI (2003) Precise analysis of string expressions. In: Proceedings
of the 10th international conference on static analysis, SAS’03, pp 1–18

12. De Moura L, Bjørner N (2008) Z3: an efficient smt solver. In: Proceedings of the theory and practice
of software, 14th international conference on Tools and algorithms for the construction and analysis of
systems, TACAS’08, pp 337–340

13. Ganesh V, Dill DL (2007) A decision procedure for bit-vectors and arrays. In: Proceedings of the 19th
international conference on computer aided verification, CAV’07, pp 519–531

14. Ganesh V, Minnes M, Solar-Lezama A, Rinard M (2012) Word equations with length constraints: what’s
decidable? In: HVC’12

15. Ghosh I, Shafiei N, Li G, Chiang W-F (2013) JST: an automatic test generation tool for industrial java
applications with strings. In: Proceedings of the 2013 international conference on software engineering,
ICSE ’13, pp 992–1001

16. Hooimeijer P, Weimer W (2010) Solving string constraints lazily. In: Proceedings of the IEEE/ACM
international conference on automated software engineering, ASE ’10, pp 377–386

17. Hopcroft JE,Motwani R, Ullman JD (2007) Introduction to automata theory, languages, and computation.
Pearson/Addison Wesley, Reading

18. Jeon J, Qiu X, Fetter-Degges J, Foster JS, Solar-Lezama A (2016) Synthesizing framework models for
symbolic execution. In: Proceedings of the 38th international conference on software engineering, ICSE
’16. ACM, New York, pp 156–167

19. Jeż A (2013) Recompression: word equations and beyond. In: Developments in language theory, Lecture
Notes in Computer Science, pp 12–26

20. Karhumäki J, Mignosi F, Plandowski W (2000) The expressibility of languages and relations by word
equations. J ACM 47(3):483–505

21. Kausler S (2014) Evaluation of string constraint solvers using dynamic symbolic execution. Master’s
Thesis, Boise State University

22. Kausler S, Sherman E (2014) Evaluation of string constraint solvers in the context of symbolic execution.
In: Proceedings of the 29th ACM/IEEE international conference on automated software engineering, ASE
’14. ACM, New York, pp 259–270

23. Kiezun A, Ganesh V, Guo PJ, Hooimeijer P, Ernst MD (2009) Hampi: a solver for string constraints. In:
Proceedings of the eighteenth international symposium on software testing and analysis, ISSTA ’09, pp
105–116

24. Li G, Andreasen E, Ghosh I (2014) SymJS: automatic symbolic testing of javascript web applications.
In: Proceedings of the 22Nd ACM SIGSOFT international symposium on foundations of software engi-
neering, FSE 2014, pp 449–459

25. Li G, Ghosh I (2013) PASS: string solving with parameterized array and interval automaton. In: 9th
international Haifa verification conference, HVC ’13, pp 15–31

26. Liang T, Reynolds A, Tinelli C, Barrett C, Deters M (2014) A dpll(t) theory solver for a theory of
strings and regular expressions. In: Proceedings of the 26th international conference on computer aided
verification, CAV’14, pp 646–662

27. Makanin GS (1977) The problem of solvability of equations in a free semigroup. Math Sbornik 103:147–
236 (1977). English transl. in Math USSR Sbornik 32

28. Matiyasevich Y (2007) Word equations, Fibonacci numbers, and Hilbert’s tenth problem. In: Workshop
on Fibonacci words

29. Plandowski W (2004) Satisfiability of word equations with constants is in pspace. J ACM 51(3):483–496
30. Plandowski W (2006) An efficient algorithm for solving word equations. In: Proceedings of the 38th

annual ACM symposium on theory of computing, STOC ’06, pp 467–476
31. QuX,RobinsonB (2011)A case study of concolic testing tools and their limitations. In: 2011 international

symposium on empirical software engineering and measurement (ESEM). IEEE Computer Society, pp
117–126

123

288 Form Methods Syst Des (2017) 50:249–288

32. Redelinghuys G, Visser W, Geldenhuys J (2012) Symbolic execution of programs with strings. In: Pro-
ceedings of the South African Institute for computer scientists and information technologists conference,
SAICSIT ’12, pp 139–148

33. Saxena P, Akhawe D, Hanna S, Mao F, McCamant S, Song D (2010) A symbolic execution framework
for javascript. In: Proceedings of the 2010 IEEE symposium on security and privacy, SP ’10, pp 513–528

34. Schulz K (1992) Makanin’s algorithm for word equations-two improvements and a generalization. In:
Schulz K (ed) Word equations and related topics, Lecture Notes in Computer Science, vol 572. Springer,
Berlin, pp 85–150

35. Tateishi T, Pistoia M, Tripp O (2013) Path- and index-sensitive string analysis based on monadic second-
order logic. ACM Trans Softw Eng Methodol 22(4):33:1–33:33

36. Trinh M-T, Chu D-H, Jaffar J (2014) S3: a symbolic string solver for vulnerability detection in web
applications. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications
security, CCS ’14, pp 1232–1243

37. Xie X, Liu Y, Le W, Li X, Chen H (2015) S-looper: automatic summarization for multipath string loops.
In: Proceedings of the 2015 international symposium on software testing and analysis, ISSTA2015. ACM,
New York, pp 188–198

38. YuF,AlkhalafM,BultanT (2010)Stranger: an automata-based string analysis tool for php. In: Proceedings
of the 16th international conference on tools and algorithms for the construction and analysis of systems,
TACAS’10, pp 154–157

39. Yu F, Bultan T, Ibarra OH (2009) Symbolic string verification: combining string analysis and size analysis.
In: Proceedings of the 15th international conference on tools and algorithms for the construction and
analysis of systems, TACAS ’09, pp 322–336

40. Zheng Y, Ganesh V, Subramanian S, Tripp O, Dolby J, Zhang X (2015) Effective search-space pruning
for solvers of string equations, regular expressions and length constraints. Technical report. https://sites.
google.com/site/z3strsolver/publications

41. Zheng Y, Zhang X, Ganesh V (2013) Z3-str: a z3-based string solver for web application analysis. In:
Proceedings of the 2013 9th joint meeting on foundations of software engineering, ESEC/FSE 2013, pp
114–124

123

https://sites.google.com/site/z3strsolver/publications
https://sites.google.com/site/z3strsolver/publications

	Z3str2: an efficient solver for strings, regular expressions, and length constraints
	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of the Z3str2 string solver
	4 Word equation sub-solver in Z3str2
	5 Supporting regular expression membership predicates
	6 Solving word equations and overlapping variable detection
	6.1 Examples that highlight the crucial overlap detection problem
	6.2 Formal description
	6.2.1 Label arrangements
	6.2.2 Formula transformation
	6.2.3 Algorithm
	6.2.4 Soundness of the Z3str2 algorithm

	7 String and integer theory integration
	7.1 Search space pruning via binary search
	7.1.1 Performance challenges imposed by solving long strings
	7.1.2 Binary search based heuristics

	8 Enhancing symbolic execution of C/C++ string manipulating programs
	8.1 Limitations introduced by modeling strings as bit-vectors
	8.2 Enhancements enabled by string-integer solvers in symbolic execution

	9 Experimental results
	9.1 Evaluating search space pruning techniques
	9.1.1 Experimental setting
	9.1.2 Performance results

	9.2 Evaluating binary search based heuristics for large strings
	9.2.1 Performance evaluation of string lengths in Z3str2
	9.2.2 Evaluation on benchmark suite

	9.3 Evaluating improvements in the context of symbolic execution

	10 Related work
	11 Conclusion and future work
	References

