
Form Methods Syst Des (2016) 49:272–323
DOI 10.1007/s10703-016-0260-9

A layered algorithm for quantifier elimination
from linear modular constraints

Ajith K. John1 · Supratik Chakraborty2

Published online: 7 December 2016
© Springer Science+Business Media New York 2016

Abstract Linear equalities, disequalities and inequalities on fixed-width bit-vectors, col-
lectively called linear modular constraints, form an important fragment of the theory of
fixed-width bit-vectors. We present a practically efficient and bit-precise algorithm for quan-
tifier elimination from conjunctions of linear modular constraints. Our algorithm uses a
layered approach, whereby sound but incomplete and cheaper layers are invoked first, and
expensive but complete layers are called onlywhen required.We then extend this algorithm to
workwith arbitrary Boolean combinations of linear modular constraints as well. Experiments
on an extensive set of benchmarks demonstrate that our techniques significantly outperform
alternative quantifier elimination techniques based on bit-blasting and linear integer arith-
metic.

Keywords Quantifier elimination · Linear modular arithmetic · Bit-precise verification ·
Decision diagrams · Layered algorithm

1 Introduction

Quantifier elimination (QE) is the process of converting a logic formula containing quantifiers
into a semantically equivalent quantifier-free formula. Formally, let F be a quantifier-free
formula over a set V of free variables in a first-order theory T. Consider the quantified
formula Q1x1 Q2x2 · · · Qnxn .F , where X = {x1, . . . xn} is a subset of V , and Qi ∈ {∃,∀}

This is an extended version of our earlier works in CAV 2011 [36] and TACAS 2013 [37].

B Ajith K. John
ajithkj.barc@gmail.com

Supratik Chakraborty
supratik@cse.iitb.ac.in

1 Homi Bhabha National Institute, BARC, Mumbai, India

2 Department of Computer Science and Engineering, IIT Bombay, Bombay, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0260-9&domain=pdf
http://orcid.org/0000-0002-7167-3435


Form Methods Syst Des (2016) 49:272–323 273

for i ∈ {1, . . . n}. QE involves computing a quantifier-free formula F ′ over variables in
V \ X such that F ′ is semantically equivalent to Q1x1 Q2x2 · · · Qnxn .F in theory T. QE
has a number of important applications in formal verification and analysis of hardware and
software systems. Example applications include image computation [13], computation of
strongest post-conditions [38] and computation of predicate abstractions [21].

This paper focuses on existential QE from formulas in an important fragment of theory
of bit-vectors [40] called linear modular arithmetic. Formulas in linear modular arithmetic
are Boolean combinations of linear equalities, disequalities and inequalities on fixed-width
bit-vectors. Let p be a positive integer constant, x1, . . . , xn be p-bit non-negative integer
variables, anda0, . . . , an be integer constants in {0, . . . , 2p−1}. A linear termover x1, . . . , xn
is a term of the form a1 · x1 + · · · an · xn + a0, where · denotes multiplication modulo 2p

and + denotes addition modulo 2p . A linear modular equality (LME) is a constraint of the
form t1 = t2 (mod 2p), where t1 and t2 are linear terms over x1, . . . , xn . Similarly, a linear
modular disequality (LMD) is a constraint of the form t1 �= t2 (mod 2p), and a linearmodular
inequality (LMI) is a constraint of the form t1 �� t2 (mod 2p), where �� ∈ {<,≤}. We will
use linear modular constraint (LMC) to refer to an LME, LMD or LMI. Conventionally 2p is
called the modulus of the LMC. Since every variable in an LMC with modulus 2p represents
a p-bit integer, it follows that a set of LMCs sharing a variable must have the same modulus.
Hence we will assume without loss of generality that whenever we consider a conjunction
of LMCs sharing a variable, all the LMCs have the same modulus.

The semantics of LMCs differs from that of linear constraints over integers in two aspects:

1. Wrap-around behaviour The successor of 2p − 1 in modular arithmetic is 0. Hence, if
x = 2p − 1, then x + 1 modulo 2p overflows and wraps to 0. Due to this wrap-around
behaviour, the formula (x = 3) ∧ (x + 1 ≤ 2) is satisfiable in linear modular arithmetic
with modulus 4 whereas it is unsatisfiable over integers.

2. Finite domain Domain of variables in modular arithmetic has finite/bounded cardinality
unlike integer arithmetic where the variables are unbounded. Hence the formula (x =
3) ∧ (x < y) is unsatisfiable in linear modular arithmetic with modulus 4 whereas it is
satisfiable over integers.

Efficient techniques for QE from LMCs have applications in formal verification and anal-
ysis of hardware and software systems. Formal verification and analysis tools reason about
symbolic transition relations of hardware and software systems expressed as formulas in
appropriate logic. Symbolic transition relations of word-level RTL designs and embedded
programs involve constraints in linear modular arithmetic. LMEs arise from the assignment
statements, whereas LMDs and LMIs arise primarily from branch and loop conditions that
compare words/registers. Key operations such as image computation [13], computation of
strongest post-conditions [38] and computation of predicate abstractions [21] performed by
formal verification and analysis algorithms essentially reduce to QE from formulas involv-
ing symbolic transition relation. Symbolic transition relations of RTL designs and embedded
programs in general may involve signed variables with signed operations and comparisons
on them. There are standard techniques to convert constraints with signed semantics into
equisatisfiable constraints with unsigned semantics (for example, see page 2 of [29]). In the
remainder of this paper, we assume that all variables and all operations, comparisons are
unsigned.

Our primary motivation for studying QE from LMCs arises from bounded model check-
ing [3] of word-level RTL designs. As an example, consider the synchronous circuit shown in
Fig. 1, with the relevant part of its functionality described in VHDL. The circuit comprises a
controller and three 8-bit registers, A,B, andX. The controller switches between three states,

123



274 Form Methods Syst Des (2016) 49:272–323

...
if (clock’event and clock = ’1’) then
case state is
when "00" => A <= InA;

B <= InB; X <= x"00"; state <= "01";
when "01" => if (X + A <= B) then
X <= X+’1’; A <= x"02"*A;
elsif (X = B+’1’) then state <= "10";
else state <= "00"; end if;

when others => state <= "00";
end case;

end if;
....

Fig. 1 An example circuit

0, 1, and 2. In state 0, the values of A and B are read from inputs InA and InB respectively,
and are stored in corresponding registers. In addition, the value of X is initialized to 0, and
the control moves to state 1. State 1 implements the iterative algorithm: if X + A ≤ B, the
value of X is incremented, that of A is doubled, and the circuit continues to iterate in state 1.
If, however, X + A > B, the circuit checks if the value of X equals B + 1. If so, the control
moves to state 0 via state 2. Otherwise, the control moves directly to state 0 from state 1.

The symbolic transition relation, R, for this circuit can be obtained by conjoining the
following equality relations, where primed variables refer to values of the corresponding
unprimed variables after the next rising edge of the clock.

state′ = ite(state = 0, 1, ite(state = 1, ite(X + A ≤ B, 1, ite(X = B + 1, 2, 0)), 0))

A′ = ite(state = 0, InA, ite(state = 1, ite(X + A ≤ B, 2 · A,A),A))

B′ = ite(state = 0, InB,B)

X′ = ite(state = 0, 0x00, ite(state = 1, ite(X + A ≤ B,X + 1,X),X))

In the above equalities, A,A′,B,B′, InA, InB,X, and X′ are bit-vectors of width 8,
whereas state and state′ are bit-vectors of width 2. Furthermore, all operations and com-
parisons involving A,A′,B,B′, InA, InB,X, and X′ are unsigned operations modulo 28, and
those involving state and state′ are unsigned operations modulo 22. Since a = i te(b, c, d)

represents (b ∧ (a = c)) ∨ (¬b ∧ (a = d)), the transition relation R above is a Boolean
combination of LMCs.

The above circuit computes the smallest 8-bit non-negative integer X such that 2X · InA+
X > InB, where all the operations are modulo 28. If the smallest value of X thus computed
is InB + 1, the control enters state 2; otherwise it returns to state 0. For example, suppose
InA = 1 and InB = 150. Inside state 1, the value of A overflows to zero after 8 iterations and
remains as zero thereafter. The value of X is incremented in each iteration until it becomes
151. Now that X + A ≤ B is false and X = B + 1 is true, the control moves to state 2.
Observe that 151 is the smallest 8-bit non-negative integer X such that 2X · 1 + X > 150
modulo 28.

This circuit has the property that if it starts in state 0, then the value of A is always less
than 255 · X when it visits state 2. The value of A may exceed 255 · X and even overflow
during the modulo 28 multiplications in state 1. However, when it reaches state 2, A is less
than 255 ·X. To see why this is true, observe that in state 2, both X+A > B and X = B+ 1
are true; hence X + A > X + 255 is true, where 255 is the additive inverse of 1 in modulo
28. Note that since A ≤ 255, X + A > X + 255 implies X �= 0. Moreover, since A ≤ 255,
if the operation X + A overflows, then X + A ≤ X + 255 holds for X �= 0. But we have
X+A > X+255. Hence the operation X+A should not overflow. This implies that A is less

123



Form Methods Syst Des (2016) 49:272–323 275

than the additive inverse of X modulo 28. Since 255 · X is the additive inverse of X modulo
28, we have A < 255 · X.

Suppose we wish to verify this property for the first N time steps of operation of the
circuit using bounded model checking. This involves unrolling the transition relation N
times, conjoining the unrolled relation with the negation of the property, and feeding the
resulting formula to an SMT solver. Observe that R contains primed and unprimed versions
of all variables in the circuit. Hence, unrolling R a large number of times can give a formula
with a very large number of variables. While the number of variables in an SMT formula is
not the sole determinant of performance of SMT solving, formulas with large numbers of
variables typically lead to performance bottlenecks in SMT solving.

A common approach to circumventing this problem is to use an abstract transition relation
R′ that relates values of only a chosen subset of variables relevant to the property being
checked, while abstracting the relation between the other variables. In general, the set of
states reached using R′ overapproximates the exact set of reachable states. Therefore, if
N -step bounded model checking using R′ fails to give a counterexample, then the property
holds in N steps of operation of the circuit.

In our example, an abstract transition relation R′ can be obtained by computing
∃B.∃B′.∃InB. R. An equivalent quantifier-free version of R′ is given below.

((state = 0) ∧ (state′ = 1) ∧ (A′ = InA) ∧ (X′ = 0x00)) ∨
((state = 1) ∧ (state′ = 1) ∧ (A′ = 2 · A) ∧ (X′ = X + 1)) ∨
((state = 1) ∧ (state′ = 2) ∧ (A′ = A) ∧ (X′ = X) ∧ (X + A > X + 255)) ∨
((state = 1) ∧ (state′ = 0) ∧ (A′ = A) ∧ (X′ = X) ∧ ϕ) ∨
((state �= 0) ∧ (state �= 1) ∧ (state′ = 0) ∧ (A′ = A) ∧ (X′ = X))

where ϕ is the disjunction of the formulas (X + A �= 0) ∧ (X �= 1) and (X + A �= 0) ∧
(X �= 0) ∧ (X ≤ X + A + 255).

It can indeed be verified that bounded model checking using R′ (instead of R) suffices
to show that if the circuit starts in state 0, then the value of A is always less than 255 · X
when it visits state 2. Since R′ does not contain B, B′ or InB, the number of variables in
N unrollings of R′ is less than that in N unrollings of R. This is likely to lead to better
performance of SMT solving during bounded model checking using R′ than during bounded
model checking using R. In practice, this often translates to a problem being solved within
given time constraints, as opposed to timing out. Since transition relations of word-level
RTL designs involve Boolean combinations of LMCs, building an abstract transition relation
requires existentially quantifying variables from Boolean combinations of LMCs.

The above example illustrates the potential advantages of using an abstract transition rela-
tion obtained by existentially quantifying a subset of variables from the original transition
relation. However, the effectiveness of this approach depends crucially on the choice of vari-
ables to quantify, on the availability of efficient techniques to obtain a quantifier-free version
of the abstract transition relation, and on the quality of the abstract transition relation obtained.

For ease of computation, formal verification and analysis algorithms abstract variables
in the system to be verified as integers, and use QE techniques for integers [51]. However
the underlying system implementation often uses modular arithmetic, and as mentioned
earlier, the semantics of integer arithmetic differs from that of modular arithmetic. Hence, as
observed in [7], the results of verification and analysis by abstracting variables as integers and
using QE for integers may not be sound or complete if the underlying implementation uses
modular arithmetic. Therefore, developing bit-precise and practically efficientQE techniques
for LMCs is an important problem.

123



276 Form Methods Syst Des (2016) 49:272–323

1.1 Contributions

There are two key technical contributions of this work.

1. We present a bit-precise and practically efficient algorithm for eliminating quantifiers
from conjunctions of LMCs. Our algorithm is based on a layered approach, whereby
sound but incomplete and cheaper layers are invoked first, and expensive but complete
layers are called only when required. While our algorithm uses a final layer of model
enumeration for the sake of theoretical completeness, extensive experiments indicate that
we do not need to invoke this layer on a wide range of benchmarks arising in practice.
Experiments also demonstrate the effectiveness of our algorithm over alternative QE
techniques based on bit-blasting and conversion to linear integer arithmetic.

2. We present approaches to extend this algorithm to eliminate quantifiers from Boolean
combinations of LMCs. We introduce a new decision diagram called Linear Modular
Decision Diagram (LMDD) that represents Boolean combinations of LMCs, and present
algorithms for QE from LMDDs. We then present an SMT solving based approach for
QE fromBoolean combinations of LMCs, and a hybrid approach that tries to combine the
strengths of the LMDD and SMT solving based approaches. Experiments demonstrate
the effectiveness of these approaches and utility of these approaches in bounded model
checking of word-level RTL designs.

2 Related work

Currently, the dominant technique for eliminating quantifiers from LMCs involves blasting
bit-vector variables into individual bits (also called bit-blasting [40]), followed by elimination
of the blasted bit-level variables using bit-level QE tools [53]. However, blasting involves a
bitwidth-dependent blow-up in the size of the problem. This can present scaling problems
in the usage of bit-level QE tools, especially when reasoning about wide words. Similarly, if
quantified variables and non-quantified variables appear as arguments of the same function or
predicate, then blasting quantified variables may transitively require blasting non-quantified
variables as well. This can cause the quantifier-eliminated formula to appear like a proposi-
tional formula on blasted bits, instead of being amodular arithmetic formula. Since reasoning
at the level of modular arithmetic is often more efficient in practice than reasoning at the
level of bits, QE using bit-blasting might not be the best option if the quantifier-eliminated
formula is intended to be used in further modular arithmetic level reasoning.

Another technique for eliminating quantifiers from LMCs is converting the LMCs to
equivalent constraints in linear integer arithmetic [8], and then using QE techniques for
linear integer arithmetic such as Omega Test [51]. Similarly, automata-theoretic approaches
for eliminating quantifiers from linear integer arithmetic constraints [28] can also be used.
However, this approach scales poorly in practice and destroys themodular arithmetic structure
of the problem. The resulting formula is a linear integer arithmetic formula and converting
this formula back to modular arithmetic is often difficult.

The problem of extending a QE algorithm for conjunctions of constraints to Boolean
combinations of constraints is encountered in other first order theories such as linear real
arithmetic and linear integer arithmetic as well. In the following, we first focus on existing
approaches to solve this problem for these theories. We then provide a brief account of the
existing complexity results on QE and related problems for LMCs. Note that the related
works we survey below arise from a range of applications. Some of these applications such

123



Form Methods Syst Des (2016) 49:272–323 277

as SMT solving, generation of Craig interpolants [17] etc., may not directly require QE.
Nevertheless these works are included here for completeness, since there is overlap between
the objectives of QE and what these works achieve.

2.1 Existing techniques for extending QE to Boolean combinations

Cavada et al.’s work [11] addresses the problem of existentially quantifying out all numeric
variables from formulas involving linear arithmetic constraints and Boolean variables. Their
workusesBDDs [10] to representBoolean structure of the formulas.QE is doneby recursively
traversing theBDD, carrying along each path, the linear arithmetic constraints encountered on
it so far (called the context). Paths with theory-inconsistent contexts are removed. Because
of the dependence of the result of a recursive call on the context, if the same BDD node
is encountered following two different paths, the results of the calls are not the same in
general. Hence this procedure is not amenable to dynamic programming usually employed
in the implementation of BDD operations. In particular, the number of recursive calls in the
worst-case is linear in the number of paths, and not the number of nodes, of the original BDD.

Chaki et al. [12] present a practically efficient algorithm forQE from formulas in the theory
of Octagons (a fragment of linear real arithmetic for which Fourier–Motzkin algorithm [20]
is sufficient for conjunction-level QE). Their work introduces decision diagrams for linear
arithmetic called LDDs. QE fromLDDsmakes use of a single variable elimination procedure
that recursively applies Fourier–Motzkin style elimination on the LDDnodes. This procedure
can be implemented with dynamic programming, which helps in achieving considerable
performance improvement as reported in [12].

Supposewewish to quantify a set of variables X from a formula F in linear real arithmetic.
A straightforward algorithm to compute ∃X.F is All-SMT algorithm (also called All-SMT
loop) that works as follows (versions of this algorithm can be found in [41,44]). An SMT
solver call is used to check if F is satisfiable. If F is unsatisfiable, then ∃X.F is false.
Otherwise, the solution of F is generalized to a conjunction C1 of constraints such that
C1 ⇒ F . The SMT solver is now called to check if F ∧ ¬C1 is satisfiable. If F ∧ ¬C1

is unsatisfiable, then ∃X.F is equivalent to ∃X.C1. Otherwise, the solution of F ∧ ¬C1 is
generalized to a conjunction C2 such that C2 ⇒ F . This loop is repeated until the formula
given to the SMT solver becomes unsatisfiable. Each iteration i of the loop generates a
conjunction Ci such that Ci ⇒ F , for 1 ≤ i ≤ n (Ci is also called implicant). Finally, ∃X.F
is equivalent to ∃X.C1 ∨ · · · ∨ ∃X.Cn .

The work by Lahiri et al. [41] improves the All-SMT algorithm by considering ¬Ci

as a conflicting clause and then performing conflict-driven back-jumping inside the SMT
solver. Monniaux [44] improves the All-SMT algorithm in the following ways. First, instead
of ¬Ci , ¬∃X.Ci is conjoined with the formula given to the SMT solver. This is called
“interleaving projection and model enumeration” in [44]. Secondly, an SMT solver based
procedure is used to further generalize the implicant Ci by dropping constraints from Ci

wherever possible, before ∃X.Ci is computed. It is observed in [44] that these optimizations
help in early termination of the algorithm, and yield significant performance improvements
on a wide range of benchmarks. The later work by Monniaux [45] and the work by Phan et
al. [50] improves this algorithm further in handling of quantifier alternations.

Techniques for finding generalized implicants are crucial in scalable application of the
All-SMT algorithm. Many interesting approaches are proposed recently for deriving such
generalized implicants from a given solution of an SMT formula. De Moura et al. [23]
present a variation of Boolean constraint propagation in order to identify constraints whose
truth values are not essential for determining the satisfiability of a formula. Déharbe et al. [25]

123



278 Form Methods Syst Des (2016) 49:272–323

present algorithms for generating prime implicants from solutions of formulae by iterative
removal of assignments that are not necessary. Niemetz et al. [47] present a dual propagation
based technique to extract partial solutions from “full” solutions of SMT formulas. Given a
solutionm of a formula F , the assignments to variables inm are presented as assumptions to
a dual solver which maintains ¬F . The assumptions that are inconsistent with ¬F identify
the assignments sufficient to satisfy F .

Test point based QE algorithms such as Ferrante and Rackoff’s algorithm [26], Loos
and Wiespfenning’s algorithm [42] for linear real arithmetic and Cooper’s Algorithm [16]
for linear integer arithmetic can be directly applied on arbitrary Boolean combinations of
constraints. However, scalability of these algorithms in practice often depends on underlying
representation of Boolean structure of the formulas and implementation heuristics used.

LinAIG tool [19] implements Loos and Wiespfenning’s algorithm using a data structure
called LinAIG. Boolean structure of the formulas is represented using FRAIGs [43], and
Craig interpolants are used to identify and remove redundant constraints generated during
application of Loos and Wiespfenning’s algorithm. Bjørner’s work in [4] avoids application
of substitutions in the formulation of Loos and Wiespfenning’s algorithm and Cooper’s
algorithm. The effect of substitutions is encoded as an additional constraint called pivot
which is conjoinedwith the input formula F . Satisfying assignments to F∧pivot are generated
using a DPLL(T ) framework, which are then generalized to disjuncts in the formulation of
Loos and Wiespfenning’s algorithm or Cooper’s algorithm. Nipkow’s work [48] provides
implementations of Ferrante and Rackoff’s algorithm, Loos and Wiespfenning’s algorithm,
and Cooper’s algorithm that are verified in the theorem prover Isabelle.

Komuravelli et al. [39] introduce model based projection that involves computing model-
based under-approximations of existentially quantified formulas. Their work also gives
procedures for computing such under-approximations for existentially quantified formulas
in linear arithmetic as disjuncts in the formulation of Loos and Wiespfenning’s algorithm
or Cooper’s algorithm. Bjørner et al. [6] give an algorithm that makes use of model based
projections for deciding the satisfiability of quantified linear arithmetic formulas. Their algo-
rithm conceptually works as a two-player satisfiability game and can be extended for QE
from linear arithmetic formulas.

The work by Veanes et al. [56] focuses on automatically constructing monadic decompo-
sitions of formulas in quantifier free fragments of first order logic. Monadic decomposition
involves transforming a given formula into an equivalentBoolean combination of unary predi-
cates. Veanes et al. give an algorithm for constructingmonadic decompositions in Disjunctive
Normal Form (DNF). Once such a decomposition is constructed, QE can be achieved by dis-
tributing the existential quantifiers over disjunctions in the DNF. This effectively reduces
the problem of eliminating quantifiers from a general formula to the problem of eliminating
quantifiers from conjunctions involving only unary predicates.

2.2 Complexity results on LMCs

The satisfiability problem for a conjunction of LMEs is known to be polynomial-time [27].
However, the satisfiability problem for conjunctions of even very limited fragments of LMDs
or LMIs are proved to be NP-hard as discussed below.

Jain et al. [35] prove that the satisfiability problem for a conjunction of LMDs is NP-
hard even when the modulus is fixed to 4. Bjørner et al.’s work [7] introduces Modular
Difference Logic (MDL) constraints. MDL constraints are a fragment of LMIs of the form
x1 + k1 ≤ x2 + k2 (mod 2p), where x1, x2 are variables, and k1, k2 are constants. Bjørner
et al. prove that the satisfiability problem for conjunctions of MDL constraints of the form

123



Form Methods Syst Des (2016) 49:272–323 279

x1 + 1 ≤ x2 (mod 2p) or of the form x1 ≤ x2 + 2p − 1 (mod 2p) with 2p ≥ 4 is NP-
hard.

Gange et al.’s work [29] proves that the satisfiability problem for conjunctions of LMIs
involving LMIs of the form x1 − x2 ≥ 1 (mod 2p) and x1 − x2 ≤ 2 (mod 2p) is NP-hard,
where 2p ≥ 4 and −x2 represents additive inverse of x2 modulo 2p . Since x1 − x2 ≥ 1
(mod 2p) is equivalent to x1 �= x2 (mod 2p), this result also implies that the satisfiability
problem for conjunctions of LMCs involving LMDs of the form x1 �= x2 (mod 2p) and
LMIs of the form x1 − x2 ≤ 2 (mod 2p) with 2p ≥ 4 is NP-hard.

Since the satisfiability problem is a special case of QE problem (checking satisfiability
of a formula is equivalent to existentially quantifying all free variables in the formula), the
above results imply that QE problem for a conjunction of LMCs is NP-hard in general.

2.3 Decision procedures and interpolation procedures for LMCs

There are several techniques (see [33,54]) on solving conjunctions of LMEs using variants
of Gaussian elimination. Müller-Olm et al. [46] and Huang et al. [34] give Gaussian elimina-
tion based algorithms for deriving “solved form” for conjunctions of LMEs. A solved form
captures all possible solutions of a given conjunction of LMEs. Ganesh et al. [27] give a
solve-and-substitute algorithm to derive a solved form for a conjunction of LMEs.

Most SMT solvers decide the satisfiability of conjunctions of LMDs and/or LMIs by
bit-blasting followed by SAT solving. However, asmentioned earlier, because of the bitwidth-
dependent blow-up during bit-blasting, this approach suffers from scaling problems for
problem instances with large moduli. Hadarean et al. [32] proposes an extension of the
congruence closure algorithm [40] for deciding the satisfiability of conjunctions of LMDs.
Their work also proposes an algorithm to decide the satisfiability of conjunctions of a special
class of MDL constraints that do not have the wrap-around behaviour, viz. constraints of the
form x1 � x2 (mod 2p) where � ∈ {<,≤}. Gange et al. [29] propose a sound heuristic
to check the satisfiability of MDL constraints that makes use of wrapped intervals [30] to
represent over-approximations of the relations between variables.

Modern SMT solvers, such as, Z3 [24] and theorem-provers such as PVS [49] use special-
ized heuristics [57] to solve quantified bit-vector formulas by Skolemization followed by use
of appropriate choices of Skolem functions. The use of p-adic expansions [1,15] is explored
in [2,55] to solve non-linear modular equations. Bruttomesso et al. [9] present a polynomial
time algorithm for solving conjunctions of constraints in the core bit-vector theory consisting
of only equalities, extractions and concatenations. Their algorithm first generates an equi-
satisfiable conjunction of equalities on non-overlapping slices of variables involved in the
constraints. Congruence closure algorithm is then used for checking the satisfiability of this
conjunction of equalities on non-overlapping slices. Similar slicing based ideas for solving
conjunctions of bit-vector constraints can be found in [5,18].

Jain et al. [35] give a polynomial-time algorithm for computing Craig interpolants for
conjunctions of LMEs. Griggio [31] presents a layered framework for computing interpolants
for bit-vector formulas that tries to keep the word-level structure of the problem as much as
possible. The cheaper layers use interpolation in EUF (equality + uninterpreted functions)
and interpolation by equality substitution. Themore expensive layers use conversion to linear
integer arithmetic and bit-blasting. Their layered framework has similarity to our layered
approach. However the individual layers used are different.

123



280 Form Methods Syst Des (2016) 49:272–323

3 QE for conjunctions of LMCs

The problemwewish to solve in this section can be formally stated as follows. Let A denote a
conjunction of LMCs over a set of variables V . We wish to compute a Boolean combination
of LMCs ϕ, such that ϕ ≡ ∃X.A, where X ⊆ V . We present a layered algorithm called
Project to solve this problem. In the following, after the notation and preliminaries, we give
an overview of the techniques used in each layer; details of these techniques are presented
in the following subsections.

Wewill initially focus on the simpler problem of existentially quantifying a single variable
from a conjunction of LMCs. We use x to denote the variable to be quantified. For clarity
of exposition, in most of the lemmas and propositions presented in this section, we give
illustrative examples before presenting the detailed proofs.

3.1 Notation and preliminaries

We assume that all LMCs have modulus 2p for some positive integer p, unless stated other-
wise. For notational clarity, we will henceforth omit mentioning “ (mod 2p)” with LMCs.
We use letters x , y, z, x1, x2, . . . to denote variables, use a, a1, a2, . . ., b, b1, b2, . . . to denote
constants, and use s, s1, s2, . . . , t, t1, t2, . . . to denote linear terms. The letters d, d1, d2, . . .
are used to denote LMDs, l, l1, l2, . . . are used to denote LMIs, and c, c1, c2, . . . are used
to denote LMCs. Furthermore, we use D, D1, D2, . . . to denote conjunctions of LMDs,
I, I1, I2, . . . to denote conjunctions of LMIs, and C,C1,C2, . . . , A, A1, A2, . . . to denote
conjunctions of LMCs. For a linear term t , we use −t to denote the additive inverse of t
modulo 2p .

Proposition 1 (t1 < t2) is equivalent to both (t1 ≤ 2p − 2) ∧ (t1 + 1 ≤ t2) and (t2 ≥
1) ∧ (t1 ≤ t2 − 1).

Proof of Proposition 1 is obvious from the definition of t1 < t2 and the fact that the
operations aremodulo 2p . Proposition 1 implies that there is no loss of generality in assuming
that LMIs are restricted to be of the form t1 ≤ t2. However, for clarity of exposition, we allow
LMIs of the form t1 < t2, whenever convenient.

Proposition 2 An LME or LMD t1 �� t2, where �� ∈ {=, �=}, can be equivalently expressed
as 2μ · x �� t , where t is a linear term free of x, and μ is an integer such that 0 ≤ μ ≤ p.

Example All LMCs in this example have modulus 8. Consider the LME 7x + 4y = x + z.
Rearranging the terms modulo 8, we get 7x − x = z − 4y. Simplifying modulo 8, we get
6x = 4y+z, which can bewritten as 21 ·3x = 4y+z.Multiplying by 3 (multiplicative inverse
of 3 modulo 8) and simplifying gives, 21x = 4y + 3z. Similarly, the LMD 7x + 4y �= x + z
with modulus 8 can be equivalently expressed as 21x �= 4y + 3z.

For every linear term t1 and variable x , we define κ(x, t1) to be an integer in {0, . . . , p}
such that t1 is equivalent to 2κ(x,t1) · b · x + t , where t is a linear term free of x , and b is
an odd number. Note that if t1 is free of x , then κ(x, t1) = p. The definition of κ(x, ·) can
be extended to (conjunctions of) LMCs as follows. Let c be an LME/LMD equivalent to
2μ · x �� t , where �� ∈ {=, �=} and t is free of x . We define κ(x, c) to be μ in this case. If
t1, t2 are linear terms, then κ(x, t1 ≤ t2) is defined to be min(κ(x, t1), κ(x, t2)). Finally, if
c1, . . . , cm are LMCs, then κ(x,

∧m
i=1(ci )) is defined to be minmi=1(κ(x, ci )). Observe that if

C is a conjunction of (possibly one) LMCs and if κ(x,C) = k, then only the least significant
p − k bits of x affect the satisfaction of C . We will say that x is in the support of C if
κ(x,C) < p.

123



Form Methods Syst Des (2016) 49:272–323 281

3.2 Overview of layers in Project

The first layer of Project (Layer1) involves simplification of the given conjunction of LMCs
using the LMEs present in the conjunction. For example, consider the problem of computing
∃x .((6x+ y = 4)∧(2x+z �= 0))withmodulus 8. Note that (6x+ y = 4) can be equivalently
expressed as (2x = 5y+4) in modulo 8 using modular arithmetic operations. The variable x
can be eliminated from the conjunction by replacing the occurrences of 2x in the conjunction
by 5y + 4. Layer1 performs elimination of quantifiers by simplifications as above using
LMEs present in the conjunction.

The second layer (Layer2) makes use of an efficient combinatorial heuristic to identify
unconstraining LMIs and LMDs that can be dropped from the problem instance. For example,
consider the problem of computing ∃x .((2x = 5y + 4) ∧ (x + y ≤ 3)) with modulus 8.
Note that x , y are 3-bit variables here. The LME (2x = 5y + 4) is independent of the most
significant bit of x , denoted as x[2]. It can be observed that every solution of (2x = 5y + 4)
can be “adapted” by possibly modifying the value of x[2] to become a solution of (2x = 5y+
4)∧ (x + y ≤ 3). This means that ∃x .((2x = 5y+4)) ⇒ ∃x .((2x = 5y+4)∧ (x + y ≤ 3)).
The converse, i.e., ∃x .((2x = 5y + 4) ∧ (x + y ≤ 3)) ⇒ ∃x .((2x = 5y + 4)) obviously
holds. Hence (x + y ≤ 3) is unconstraining in ∃x .((2x = 5y + 4) ∧ (x + y ≤ 3)) and it
can be dropped. Layer2 computes sufficient and polynomial time computable conditions that
identify such unconstraining LMDs and LMIs and drops them.

The cases that are not computed by the application of the above computationally cheap
layers are handled by expensive but more complete techniques in the third layer (Layer3).
Layer3 primarily involves a variant of Fourier–Motzkin algorithm adapted to work for LMIs.
First the LMIs in the problem instance are converted to a “coefficient-matched” form a·x �� t ,
where �� ∈ {≤,≥}, and t is a linear term free of x . Then a Fourier–Motzkin style variable
elimination algorithm is applied on the coefficient-matched LMIs to eliminate the quantified
variable. For example, consider the problem of computing ∃x .((y ≤ 4x) ∧ (4x ≤ z)) with
modulus 16. Note that ∃x .((y ≤ 4x) ∧ (4x ≤ z)) expresses the condition under which there
exists a multiple of 4 between y and z, where y ≤ z. Our algorithm computes ∃x .((y ≤
4x) ∧ (4x ≤ z)) as (y ≤ z) ∧ ϕ, where ϕ is the disjunction of (z ≥ y + 3) ∧ (y ≤ 12),
(z < y + 3) ∧ (4y = 0), and (z < y + 3) ∧ (4y > 4z).

Finally Layer3 uses model enumeration as the last resort. Model enumeration involves
elimination of the quantified variable by enumerating of all possible values of the variable.
Our experiments however indicate that we do not need to invoke model enumeration on a
wide range of benchmarks arising in practice.

Techniques in Layer1 and Layer2 can be considered as preprocessing or simplification
steps that preprocess or simplify the given conjunction of LMCs and eliminate quantifiers if
possible. However inside Layer3, converting LMIs to coefficient-matched form, in general
generates a Boolean combination of LMCs. Elimination of quantifiers from this Boolean
combination of LMCs results in new recursive Project calls. Because of this feedback, the
control flow insideProject is not linear. Hence we choose to call Layer1 and Layer2 as layers,
not as preprocessing or simplification steps.

It is well known that order of elimination of variables crucially affects the running time of
QE algorithms in general. Inside the layers, when there are multiple variables to eliminate,
any ordering heuristic can be used. However the focus of this work does not include finding
the best possible order of elimination. The specific order of elimination of variables we have
used inside the layers is elaborated in Sect. 5.1.

Time complexities of layersLayer1 and Layer2 have polynomial worst-case time complex-
ities. Let n be the number of constraints in the conjunction given as input, v be the number of

123



282 Form Methods Syst Des (2016) 49:272–323

variables in the conjunction, and let e be the number of variables to be eliminated. Assuming
that additions, multiplications, and findingmultiplicative inverses on p-bit numbers take time
O(Q(p)) in the worst-case, where Q(p) is a polynomial on p such that p ≤ Q(p) ≤ p3,
Layer1 has a worst-case time complexity of O(e · n · v · Q(p)), and Layer2 has a worst-case
time complexity of O(e ·n2 ·Q(p)+n · p ·v). Layer3 resorts to model enumeration as the last
resort, and has a worst-case time complexity of O(n · Q(p) ·2(e+1)·p +n · p ·v ·2e·p). Recall
that algorithms for QE from linear arithmetic have exponential complexities [16,26,42].

3.3 Layer1: simplification using LMEs

Layer1 involves simplification of the given conjunction of LMCs using the LMEs present
in the conjunction. It is an extension of the work by Ganesh et. al. [27]. The following
Proposition and Lemmas form the crux of Layer1.

Proposition 3 Let c be an LME 2k · x = t , where k denotes κ(x, c). Then ∃x .c ≡ (2p−k · t =
0).

Example All LMCs in this example have modulus 8. We have ∃x .(21x = 5y + 2) ≡
(23−1(5y + 2) = 0) ≡ (4y = 0).

Proof Let ϕ1 and ϕ2 denote the formulas ∃x .(2k · x = t) and 2p−k · t = 0 respectively. To
see that ϕ1 ⇒ ϕ2, we simply multiply both sides of 2k · x = t by 2p−k , and simplify modulo
2p . To see why ϕ2 ⇒ ϕ1, note that ϕ2 implies that the least significant k bits of t evaluate
to zero. Also recall that t is free of x . Given any value of variables in t such that the least
significant k bits of t evaluate to zero, we can always find a value of x such that 2k · x = t .
This can be done by choosing the least significant p − k bits of x to be the same as the most
significant p − k bits of t . Hence, ϕ2 ⇒ ϕ1, and therefore ϕ1 ≡ ϕ2. ��
Lemma 1 Let A be a conjunction of LMEs. Then ∃x .A can be equivalently expressed as a
conjunction of LMEs each of which is free of x.

Example All LMCs in this example have modulus 8. Consider the problem of computing
∃x .((21x = 5y+2)∧(22x = 5y+6z)∧(21x = 2y+4)). This can be equivalently expressed
as ∃x .((2x = 5y+ 2)∧ (2 · (5y+ 2) = 5y+ 6z)∧ (5y+ 2 = 2y+ 4)). Simplifying modulo
8, we get ∃x .((2x = 5y + 2)) ∧ (5y + 2z = 4) ∧ (3y = 2). Using Proposition 3, we obtain
the final result as (4y = 0) ∧ (5y + 2z = 4) ∧ (3y = 2).

Proof Let A be
∧m

i=1(qi ), where each qi is an LME. Let each LME qi be of the form
2ki · x = ti , where ki = κ(x, qi ) and 1 ≤ i ≤ m. Without loss of generality, let k1 be the
minimum of k1, . . . , km . It can be observed that the LME 2k1 ·x = t1 can be used to eliminate
the occurrences of x in other LMEs by expressing each LME 2ki · x = ti for 2 ≤ i ≤ m
as 2μi · t1 = ti , where each μi = ki − k1. Hence, ∃x .A can be equivalently expressed
as C1 ∧ ∃x .(2k1 · x = t1), where C1 is the conjunction of the LMEs 2μi · t1 = ti . Using
Proposition 3, it follows that C1 ∧ ∃x .(2k1 · x = t1) is equivalent to C1 ∧ (2p−k1 · t1 = 0).

��
Lemma 2 Let A be a conjunction of LMCs containing at least one LME. Let 2k1 · x = t1 be
the LME with the minimum κ(x, ·) value among the LMEs in A. Then ∃x .A ≡ C1 ∧ ∃x .C2,
where C1 is a conjunction of LMCs free of x, and C2 is a conjunction of 2k1 · x = t1 and
(possibly zero) LMIs and LMDs, each of which has κ(x, ·) less than k1.

123



Form Methods Syst Des (2016) 49:272–323 283

Example All LMCs in this example have modulus 8. Consider the problem of computing
∃x .((21x = 5y+2)∧(20x �= 6y+7z)∧(20 ·5x+z ≤ 21x)∧(21 ·3x ≤ y+z)). Substituting
the occurrences of 21x in the LMIs (20 ·5x+z ≤ 21x) and (21 ·3x ≤ y+z) by 5y+2, we have
∃x .((2x = 5y+2)∧(x �= 6y+7z)∧(5x+z ≤ 5y+2)∧(3 ·(5y+2) ≤ y+z)). Simplifying
modulo 8, we get (7y+6 ≤ y+z)∧∃x .((2x = 5y+2)∧(x �= 6y+7z)∧(5x+z ≤ 5y+2)).
Note that the result is of the form C1 ∧ ∃x .C2, as specified in Lemma 2.

Proof Let A be equivalent to E∧D∧ I , where E is a conjunction of LMEs, D is a conjunction
of LMDs, and I is a conjunction of LMIs. Let E be

∧m
i=1(qi ), where each qi is an LME, D

be
∧n

i=m+1(di ), where each di is an LMD, and I be
∧r

i=n+1(li ), where each li is an LMI.
Suppose each LME qi is of the form 2ki · x = ti , where ki = κ(x, qi ) and 1 ≤ i ≤ m.

Suppose each LMD di is of the form 2ki · x �= ti , where ki = κ(x, di ) and m + 1 ≤ i ≤ n.
In addition, suppose each LMI li is of the form (ai · x + ui ≤ bi · x + vi ), where ai , bi are
constants such that (ai �= 0) ∨ (bi �= 0), ui , vi are linear terms free of x , and n + 1 ≤ i ≤ r .
Let us express each ai · x appearing in the LMIs such that ai �= 0 in the equivalent form
2ki · ei · x , where ki = κ(x, ai · x) and ei is an odd number. Similarly, let us express each
bi · x appearing in the LMIs such that bi �= 0 in the equivalent form 2k

′
i · e′

i · x , where
k′
i = κ(x, bi · x) and e′

i is an odd number.
Without loss of generality, let k1 be the minimum of k1, . . . , km . It can be observed that

the LME 2k1 · x = t1 can be used to eliminate the occurrences of x in other LMEs, and in
the LMDs and the LMIs with κ(x, .) at least as large as k1 in the following way.

– Each LME 2ki · x = ti for 2 ≤ i ≤ m can be equivalently expressed as 2μi · t1 = ti
where each μi = ki − k1.

– Each LMD 2ki · x �= ti for m + 1 ≤ i ≤ n, such that k1 ≤ ki can be equivalently
expressed as 2μi · t1 �= ti where each μi = ki − k1.

– Each occurrence of x of the form 2ki · ei · x in the LMIs for n + 1 ≤ i ≤ r such that
k1 ≤ ki can be equivalently expressed as 2μi · t1 · ei where each μi = ki − k1.

– Each occurrence of x of the form 2k
′
i · e′

i · x in the LMIs for n + 1 ≤ i ≤ r such that

k1 ≤ k′
i can be equivalently expressed as 2μ′

i · t1 · e′
i where each μ′

i = k′
i − k1.

Hence, it can be observed that ∃x .A can be equivalently expressed as C1 ∧ ∃x .C2, where
C1 is a conjunction of LMCs free of x , and C2 is a conjunction of the LME 2k1 · x = t1 and
those LMIs and LMDs from A with κ(x, .) less than k1, after substitution of the occurrences
of 2k1 · x by t1. ��

Proposition 3, Lemma 1, and Lemma 2 yield us a simple heuristic QE1_Layer1 that
forms the core of Layer1. Given a conjunction of LMCs A and a variable x to be quantified,
QE1_Layer1 computes ∃x .A as C1 ∧ ∃x .C2 based on Lemma 2. If the κ(x, ·) of all LMDs
and LMIs in A are at least as large as k1 (as in Lemma 2), then C2 consists of the single
LME 2k1 · x = t1. In this case, ∃x .C2 simplifies to 2p−k1 · t1 = 0 (see Proposition 3), and
QE1_Layer1 suffices to compute ∃x .A. However, in general, C2 may contain LMDs and
LMIs with κ(x, ·) values less than k1. We describe techniques to address such cases in the
following subsections.

Analysis of complexity Consider a conjunction of LMCs with a subset of variables in its
support to be eliminated. Let n be the number of LMCs in the conjunction, v be the number of
variables its support, and e be the number of variables to be eliminated. It can be observed that
for a variable x to be eliminated, Layer1 performs O(n · v) multiplications and additions in
the worst-case. Assuming that arithmetic operations on p-bit numbers take time O(Q(p)) in
the worst-case, where Q(p) is a polynomial on p such that p ≤ Q(p) ≤ p3, elimination of a

123



284 Form Methods Syst Des (2016) 49:272–323

variable hence has a worst-case time complexity of O(n ·v ·Q(p)). Observe that eliminating
a variable does not increase the number of LMCs in the conjunction. Hence eliminating e
variables has a worst-case time complexity of O(e ·n ·v ·Q(p)). Note that reading andwriting
an LMC with v variables in support takes O(v · p) time. Hence reading n LMCs as input
and writing them back after eliminating the variables takes O(n · v · p) time. Hence Layer1
has a worst-case time complexity of O(e · n · v · Q(p) + n · v · p). Since p ≤ Q(p) ≤ p3,
this reduces to O(e · n · v · Q(p).

3.4 Layer2: dropping unconstraining LMIs and LMDs

Formally, our goal in this subsection is to express C2, obtained after application of
QE1_Layer1, as C ∧ D ∧ I , where (i) D is a conjunction of (zero or more) LMDs in C2, (ii)
I is a conjunction of (zero or more) LMIs in C2, (iii) C is the conjunction of the remaining
LMCs in C2, and (iv) ∃x .(C) ⇒ ∃x .(C ∧ D ∧ I ). Since ∃x .(C ∧ D ∧ I ) ⇒ ∃x .(C) always
holds, this would allow us to compute ∃x .C2, or equivalently ∃x .(C ∧ D ∧ I ), as ∃x .C . We
say that D and I are unconstraining LMDs and LMIs, respectively, in such cases.

Given C , D and I satisfying conditions (i), (ii) and (iii) above, checking if condition (iv)
holds requires solving a quantified bit-vector formula in general. This can be done by using an
SMT solver such as Z3 that supports quantified bit-vector formulae. Alternatively bit-blasting
followed by QBF solving or bit-level QE can be used. However applying such techniques
can be expensive, as demonstrated in our experiments. In the following discussion, we focus
on finding sufficient and polynomial time computable conditions for condition (iv) to hold.

Let x[i] denote the i th bit of a bit-vector x , where x[0] denotes its least significant bit. For
i ≤ j , let x[i : j] denote the slice of bit-vector x consisting of bits x[i] through x[ j]. Given
slice x[i : j], its value is the natural number encoded by the bits in the slice. A key notion
used in the subsequent discussion is that of “adapting” a solution of a constraint to make it
satisfy another constraint. Formally, we say that a solution θ1 of a conjunction ϕ of LMCs
can be adapted with respect to slice x[i : j] to satisfy a (possibly different) conjunction ψ

of LMCs if there exists a solution θ2 of ψ that matches θ1 except possibly in the bits of slice
x[i : j]. For example, consider the LMCs (x = y + z) (mod 8) and (4y + z ≤ x) (mod 8).
Let θ1 be the solution x = 1, y = 1, z = 0 of (x = y+ z) (mod 8), and let θ2 be the solution
x = 5, y = 1, z = 0 of (4y + z ≤ x) (mod 8). Note that θ2 matches θ1 except in the bits
of slice x[2 : 2]. Hence we can say that θ1 can be adapted with respect to slice x[2 : 2] to
satisfy (4y + z ≤ x) (mod 8).

The central idea in the second layer is to efficiently compute an under-approximation η of
the number of ways in which an arbitrary solution of C can be adapted to satisfy C ∧ D∧ I .
It is easy to see that if η ≥ 1, then ∃x .(C) ⇒ ∃x .(C ∧ D ∧ I ). We illustrate this idea below
through an example. We will use this as a running example throughout this subsection.

Consider the problem of computing ∃x .(C ∧ D ∧ I ), where C ≡ (z = 4x + y), D ≡
(x �= z+7), and I ≡ (6x + y ≤ 4) and all LMCs have modulus 8. We claim that an arbitrary
solution of C can be adapted to satisfy C ∧ D∧ I . Note that C constrains only slice x[0 : 0],
whereas I constrains slice x[0 : 1] and D constrains slice x[0 : 2]. Therefore, the value of
slice x[1 : 2] does not affect satisfaction of C , and the value of slice x[2 : 2] does not affect
satisfaction of C ∧ I . It can be observed that any solution of C can be adapted with respect to
slice x[1 : 1] to satisfy I by choosing value of slice x[1 : 1] such that 6x lies between−y and
4 − y. Since x[0 : 0] is unchanged, each such adapted solution must also satisfy C ∧ I . For
example, the solution x = 1, y = 0, z = 4 of C can be adapted with respect to slice x[1 : 1]
to obtain the solution x = 3, y = 0, z = 4 of C ∧ I . Moreover, notice that any solution of
C ∧ I can be adapted with respect to slice x[2 : 2] to satisfy D by choosing value for slice

123



Form Methods Syst Des (2016) 49:272–323 285

x[2 : 2] that differs from the most significant bit of z + 7. Since x[0 : 1] is unchanged, each
such adapted solution also satisfies C ∧ D ∧ I . For example, the solution x = 3, y = 0,
z = 4 of C ∧ I can be adapted with respect to slice x[2 : 2] to obtain the solution x = 7,
y = 0, z = 4 of C ∧ D ∧ I . In this case, Layer2 computes the under-approximation η of the
number of ways in which an arbitrary solution of C can be adapted to satisfy C ∧ D ∧ I as
≥ 1, thus inferring that ∃x .(C) ⇒ ∃x .(C ∧ D ∧ I ).

We now present procedure QE1_Layer2, that applies the technique described above to
problem instances of the form ∃x .C2, obtained after invoking QE1_Layer1. QE1_Layer2
initially expresses ∃x .C2 as ∃x .(C ∧ D∧ I ), where C denotes 2k1 · x = t1 and D∧ I denotes
the conjunction of LMDs and LMIs in C2. If η (as defined above) is at least 1, then D ∧ I is
dropped from C2. Otherwise, the LMCs in D ∧ I with the largest κ(x, ·) value (i.e., LMCs
whose satisfaction depends on the least number of bits of x) are identified and included in
C , and the above process repeats. If all the LMIs and LMDs in ∃x .C2 are dropped in this
manner, then ∃x .C2 reduces to ∃x .(2k1 · x = t1), and QE1_Layer2 can return the equivalent
form 2p−k1 · t1 = 0. Otherwise, QE1_Layer2 returns ∃x .C3, where C3 is a conjunction of
possibly fewer LMCs compared to C2, such that ∃x .C3 ≡ ∃x .C2.

Before presenting the details of computing η, we present the following proposition.

Proposition 4 Let x1, . . . , xn be r-bit numbers and b be an r-bit odd number such that
b · x1, . . . , b · xn take distinct consecutive values. Let � be a number such that 1 ≤ � ≤ r . If
n < 2�, then the values of x1[0 : � − 1], . . . , xn[0 : � − 1] are distinct. Otherwise, if n ≥ 2�,
then the values of x1[0 : � − 1], . . . , xn[0 : � − 1] span the entire range 0, 1, . . . , 2� − 1.

Example Let x1, x2, x3, x4, x5 respectively be 6, 1, 4, 7, 2, which are 3-bit numbers. Here
n = 5 and r = 3. Suppose b = 3. Note that b · x1, b · x2, b · x3, b · x4, b · x5 take distinct
consecutive values 2, 3, 4, 5, 6 respectively.

– Case 1: Let � be 3. Hence n < 2�. The values of x1[0 : � − 1], x2[0 : � − 1], x3[0 :
� − 1], x4[0 : � − 1], x5[0 : � − 1] are 6, 1, 4, 7, 2 respectively, which are distinct.

– Case 2: Let � be 2. Hence n ≥ 2�. The values of x1[0 : � − 1], x2[0 : � − 1], x3[0 :
� − 1], x4[0 : � − 1], x5[0 : � − 1] are 2, 1, 0, 3, 2 respectively, which span the entire
range 0, 1, . . . , 2� − 1.

Proof The proof is based on the following observations:

1. The values of (b · x1)[0 : � − 1], . . . , (b · xn)[0 : � − 1] are consecutive.
2. (b · xi )[0 : � − 1] is equivalent to b[0 : � − 1] · xi [0 : � − 1] for 1 ≤ i ≤ n.
3. b[0 : � − 1] is odd.
Since b[0 : � − 1] is odd, it has a multiplicative inverse (b[0 : � − 1])′ modulo 2�. Note that
(b[0 : � − 1])′ is also odd. Since (b · xi )[0 : � − 1] is equivalent to b[0 : � − 1] · xi [0 : � − 1]
for 1 ≤ i ≤ n, we get values of x1[0 : � − 1], . . . , xn[0 : � − 1] by multiplying the values of
(b · x1)[0 : � − 1], . . . , (b · xn)[0 : � − 1] by (b[0 : � − 1])′ modulo 2�.

Observe that for 1 ≤ i ≤ n and 1 ≤ j ≤ n such that i �= j , xi [0 : �−1] = x j [0 : �−1] iff
(b·xi )[0 : �−1] = (b·x j )[0 : �−1]. Since the values of (b·x1)[0 : �−1], . . . , (b·xn)[0 : �−1]
are consecutive, it follows that, if n < 2�, then the values of x1[0 : � − 1], . . . , xn[0 : � − 1]
are distinct. If n ≥ 2�, then the values of (b · x1)[0 : � − 1], . . . , (b · xn)[0 : � − 1] are
consecutive and they span the range 0, 1, . . . , 2� − 1. Hence it is obvious that the values of
x1[0 : � − 1], . . . , xn[0 : � − 1] also span the range 0, 1, . . . , 2� − 1. ��

Let I be
∧n

i=1(li ), where each li is an LMI of the form s �� t , the operator �� is in {≤,≥},
s is a linear term with x in its support, and t is a linear term free of x . Note that this implies

123



286 Form Methods Syst Des (2016) 49:272–323

some loss of generality, since we disallow LMIs of the form s �� t , where both s and t have x
in their support. However, our experiments indicate that this is not very restrictive in practice.
Let s1, . . . , sr be the distinct linear terms in I with x in their support. We partition I into
I1, . . . , Ir , where each I j is the conjunction of only those LMIs in I that contain the linear
term s j . We assume without loss of generality that each I j contains the trivial LMIs s j ≥ 0
and s j ≤ 2p − 1. Suppose each I j has n j LMIs, of which the first m j (< n j ) are of the form
s j ≥ tq , where 1 ≤ q ≤ m j . Let the remaining LMIs in I j be of the form s j ≤ tq , where
m j + 1 ≤ q ≤ n j .

Consider the inequality Z j : u j ≤ s j ≤ v j , where u j denotes max
m j
q=1(tq) and v j denotes

min
n j
q=m j+1(tq). Although Z j is not a LMI, it is semantically equivalent to I j . For notational

convenience, let us denote κ(x, s j ) by k j . Clearly, the value of slice x[p − k j : p − 1]
does not affect the satisfaction of Z j . We wish to compute the number of ways, say N j ,
in which an arbitrary solution of C can be adapted with respect to slice x[0 : p − k j − 1]
to satisfy Z j . Towards this end, we compute an integer δ j in {0, . . . , 2p − 1} such that
δ j ≤ max(v j − u j + 1, 0) for every combination of values of other variables. Intuitively, δ j
represents the minimum number of consecutive values that s j can take for every combination
of values of other variables, if we were to treat s j as a fresh p-bit variable and if Z j were to
be satisfied.

In our running example,whereC ≡ (z = 4x+y), D ≡ (x �= z+7), and I ≡ (6x+y ≤ 4),
we have s1 = 6x + y and I1 ≡ (6x + y ≥ 0) ∧ (6x + y ≤ 4) ∧ (6x + y ≤ 7). Hence Z1 is
(0 ≤ 6x + y ≤ 4) and thus u1 = 0 and v1 = 4. Note that p = 3, k1 = 1, and the value of
slice x[2 : 2] does not affect the satisfaction of (0 ≤ 6x + y ≤ 4). We are trying to compute
N1, the number of ways in which an arbitrary solution of (z = 4x + y) can be adapted with
respect to slice x[0 : 1] to satisfy (0 ≤ 6x + y ≤ 4). Treating 6x + y as a fresh variable f
gives us (0 ≤ f ≤ 4). As f can take five consecutive values in (0 ≤ f ≤ 4), δ1 is 5.

Let s be a linear termwith x in its support. Let k be κ(x, s). Let u, v respectively be arbitrary
terms free of x which serve as lower and upper bounds of s. Let δ be the minimum number
of consecutive values that s can take for every combination of values of other variables, if
we were to treat s as a fresh p-bit variable and if Z : u ≤ s ≤ v were to be satisfied. The
following Lemma gives a lower bound for the number of distinct values that x[0 : p− k−1]
can take while satisfying Z .

Lemma 3 For every combination of values of variables other than x, there exist at least
�δ/2k� distinct values that x[0 : p − k − 1] can take while satisfying Z.

Example Let Z be Z1 : (0 ≤ 6x + y ≤ 4) from our running example. We have p = 3, k = 1
and δ = 5. Note that, for every value of y, there are at least �δ/2k� = �5/21� = 2 distinct
values that x[0 : 1] can take while satisfying (0 ≤ 6x + y ≤ 4).

Proof δ is the minimum number of consecutive values that s can take for every combination
of values of other variables, if we were to treat s as a fresh p-bit variable and if Z : u ≤ s ≤ v

were to be satisfied. However, in general, s is of the form 2k · b · x + w, where w is a linear
term free of x , and b is an odd number.

There are at least �δ/2k� multiples of 2k among δ consecutive values. Hence, for every
combination of values of other variables, there exist at least �δ/2k� values that 2k · b · x can
take while satisfying Z . The least significant k bits of these values are all zeros. Moreover,
the values of the most significant p − k bits, i.e., the values of slice (2k · b · x)[k : p − 1] are
consecutive. Note that slice (2k · b · x)[k : p − 1] is the same as slice (b · x)[0 : p − k − 1].
Also (b · x)[0 : p− k − 1] is equivalent to b[0 : p− k − 1] · x[0 : p− k − 1]. Therefore, for

123



Form Methods Syst Des (2016) 49:272–323 287

every combination of values of variables other than x , there exist at least �δ/2k� consecutive
values that b[0 : p − k − 1] · x[0 : p − k − 1] can take while satisfying Z .

Since b is odd, b[0 : p − k − 1] is odd. Let us apply Proposition 4 on these consecutive
values of b[0 : p − k − 1] · x[0 : p − k − 1] with n = �δ/2k�, r = � = p − k and
b = b[0 : p − k − 1]. Note that n = �δ/2k� < 2� = 2p−k here, since δ < 2p . Therefore,
using Proposition 4, we have: for every combination of values of variables other than x , there
exist at least n = �δ/2k� distinct values that x[0 : p − k − 1] can take while satisfying Z .

��
Lemma 3 indicates that there are at least �δ j/2k j � ways in which an arbitrary solution of

C can be adapted with respect to slice x[0 : p−k j −1] to satisfy Z j . Hence, N j ≥ �δ j/2k j �.
For notational convenience, we denote �δ j/2k j � by N̂ j .

To understand how δ j is computed in general, recall that for every g in {1 . . .m j } and
for every h in {m j + 1 . . . n j }, we have tg ≤ s j ≤ th . For every such pair of indices g and
h, let δg,h be an integer in {0, . . . , 2p − 1} such that δg,h ≤ max(th − tg + 1, 0) for every
combination of values of th and tg . The value of δ j can then be obtained as the minimum
of all δg,h values. For reasons of simplicity and efficiency, we compute the values of δg,h
conservatively using the following Proposition.

Proposition 5 1. If tg and th are constants and th ≥ tg, then δg,h = th − tg + 1.
2. If th is a constant, tg can be expressed as 2τ · t , where τ is an integer such that 0 ≤ τ ≤

p − 1, and th ≥ 2p − 2τ , then δg,h = th − (2p − 2τ ) + 1.
3. If tg is a constant, th can be expressed as 2τ · t + a, where τ is an integer such that

0 ≤ τ ≤ p − 1, and a mod 2τ ≥ tg, then δg,h = a mod 2τ − tg + 1.
4. Otherwise δg,h = 0.

Example 1. Suppose tg = 1 and th = 6. Therefore, max(th − tg + 1, 0) = th − tg + 1 = 6.
Since δg,h ≤ max(th − tg + 1, 0), we can set δg,h to 6.

2. Suppose tg = 4y, th = 14, and p = 4. Here tg is of the form 2τ · t , where τ = 2 and
t = y. Observe that the maximum possible value of 4y with modulus 16 is 2p −2τ = 12,
i.e., 4y ≤ 12. Therefore, th − tg + 1 = 14 − 4y + 1 ≥ 14 − 12 + 1 = 3. Hence
max(th − tg + 1, 0) ≥ 3. Therefore 3 can be used as δg,h .

3. Suppose tg = 0, th = 4y + 7, and p = 4. Here th is of the form 2τ · t + a, where τ = 2,
t = y, and a = 7. Observe that the minimum possible value of 4y+7 with modulus 16 is
a mod 2τ = 7 mod 4 = 3, i.e., 4y+7 ≥ 3. Therefore, th − tg +1 = (4y+7)−0+1 ≥
3 − 0 + 1 = 4. Hence max(th − tg + 1, 0) ≥ 4. Therefore 4 can be used as δg,h .

4. Suppose tg = y, th = z. In such cases we set δg,h to 0.

Proof δg,h is an integer in {0, . . . , 2p − 1} such that δg,h ≤ max(th − tg + 1, 0) for every
combination of values of th and tg .

1. If tg and th are constants and th ≥ tg , then max(th − tg + 1, 0) reduces to th − tg + 1.
Therefore, it is obvious that th − tg + 1 can be used as δg,h .

2. Consider the case when th is a constant, tg can be expressed as 2τ · t , where τ is an
integer such that 0 ≤ τ ≤ p − 1, and th ≥ 2p − 2τ . Since tg is a multiple of 2τ , the
possible values of tg are 0, 2τ , . . . , 2p − 2τ . Hence the maximum possible value of tg is
2p − 2τ , i.e., tg ≤ 2p − 2τ . This implies that th − tg + 1 ≥ th − (2p − 2τ )+ 1. Therefore
max(th − tg + 1, 0) ≥ th − (2p − 2τ ) + 1. Hence th − (2p − 2τ ) + 1 can be used as δg,h .

3. Consider the case when tg is a constant, th can be expressed as 2τ · t + a, where τ is
an integer such that 0 ≤ τ ≤ p − 1, and a mod 2τ ≥ tg . Let a = 2τ · a1 + a2, where

123



288 Form Methods Syst Des (2016) 49:272–323

Fig. 2 Slicing of bits of x by
k0, . . . , kr

a2 = a mod 2τ and a1 ≥ 0. Hence th can be expressed as 2τ · (t + a1) + a2. Since
2τ · (t +a1) is a multiple of 2τ , the possible values of 2τ · (t +a1) are 0, 2τ , . . . , 2p −2τ .
Hence the possible values of th are a2, 2τ +a2, . . . , 2p−2τ +a2. Therefore, theminimum
possible value of th is a2, i.e., th ≥ a2, which implies that th − tg + 1 ≥ a2 − tg + 1.
Therefore max(th − tg + 1, 0) ≥ a2 − tg + 1. Hence a2 − tg + 1, i.e., a mod 2τ − tg + 1
can be used as δg,h .

4. Consider the casewhen none of the above conditions is true. Since 0 ≤ max(th−tg+1, 0),
we can use δg,h as 0 in this case. ��
Let D be

∧m
i=1(di ), where each di is an LMD of the form 2κ(x,di ) · x �= tdi , where tdi

is a linear term free of x . Let k0 denote κ(x,C), and let C be such that k0 is greater than
both maxmi=1 κ(x, di ) and maxrj=1 k j (recall that k j = κ(x, s j )). To simplify the exposition,
suppose further that k1 > · · · > kr . We partition the bits of x into r + 2 slices as shown in
Fig. 2, where slice0 represents x[0 : p− k0 − 1], slicej represents x[p− k j−1 : p− k j − 1]
for 1 ≤ j ≤ r , and slicer+1 represents x[p − kr : p − 1]. Note that the value of slice0
potentially affects the satisfaction of C as well as that of Z1 through Zr , the value of slicej
potentially affects the satisfaction of Z j through Zr for 1 ≤ j ≤ r , and the value of slicer+1
does not affect the satisfaction of any Z j or C . Recall that similar slicing schemes were
used in [5,9,18] for converting conjunctions of bit-vector constraints into equisatisfiable
constraints on slices of variables. However such slicing schemes were used for a different
objective of simplifying constraints and solving them.

Let Z0 denote True. Let θ be a solution of C ∧ Z0 ∧ · · · ∧ Zi , where 0 ≤ i < r . Note
that bits in slicei+1 through slicer+1 do not affect satisfaction of C ∧ Z0 ∧ · · · ∧ Zi . Let Yi, j
denote the number of ways in which θ can be adapted with respect to bits in slicei+1 through
slicej, to satisfy Z j , where i < j ≤ r . Since slice0 through slicei are unchanged, each such
adapted solution must also satisfy C ∧ Z0 ∧ · · · ∧ Zi .

Lemma 4 Anarbitrary solution ofC∧Z0∧· · ·∧Zi for0 ≤ i < r can be adaptedwith respect
to bits in slicei+1 through slicej, to satisfy Z j for i < j ≤ r in at least �N̂ j/2p−ki � ways.
Moreover, if we focus only on slicei+1, then there are at least min(�N̂ j/2p−ki �, 2ki−ki+1)

distinct values of slicei+1 in the corresponding adapted solutions.

Example In our running example, since p = 3, k0 = 2, k1 = 1, the bits of x are partitioned
into three slices: slice0 is x[0 : 0], slice1 is x[1 : 1] and slice2 is x[2 : 2]. Clearly, the
value of slice0 potentially affects the satisfaction of C : (z = 4x + y) as well as that of
Z1 : (0 ≤ 6x + y ≤ 4). The value of slice1 potentially affects the satisfaction of Z1, but

123



Form Methods Syst Des (2016) 49:272–323 289

not that of C , and the value of slice2 does not affect the satisfaction of C or Z1. Let θ be
a solution of C . Using Lemma 4, there exists at least �N̂1/2p−k1� = �2/23−2� = 1 way in
which θ can be adapted with respect to bits in slice1 to satisfy Z1. Since slice0 is unchanged,
the adapted solution must satisfy C ∧ Z1.

Proof Recall from Proof of Lemma 3 that for every combination of values of variables other
than x , there exist at least N̂ j consecutive values that b j [0 : p − k j − 1] · x[0 : p − k j − 1]
can take while satisfying Z j , where b j [0 : p − k j − 1] is odd. Note that i < j , ki > k j and
p − ki < p − k j . We make use of the following claims.

Claim 1 For every combination of values of variables other than x, (i) if N̂ j < 2p−ki , then
there exist at least N̂ j distinct values that x[0 : p− ki − 1] can take while satisfying Z j , and
(ii) if N̂ j ≥ 2p−ki , the values that x[0 : p − ki − 1] can take while satisfying Z j span the
entire range 0, 1, . . . , 2p−ki − 1.

Claim 2 For every combination of values of variables other than x, (i) if N̂ j < 2p−ki+1 ,
then there exist at least N̂ j distinct values that x[0 : p − ki+1 − 1] can take while satisfying
Z j , and (ii) if N̂ j ≥ 2p−ki+1 , the values that x[0 : p − ki+1 − 1] can take while satisfying
Z j span the entire range 0, 1, . . . , 2p−ki+1 − 1.

Claim 1 can be proved by applying Proposition 4 on the consecutive values of b j [0 :
p−k j −1]·x[0 : p−k j −1]with n = N̂ j , r = p−k j , � = p−ki and b = b j [0 : p−k j −1].
Similarly, Claim 2 can be proved by applying Proposition 4 on the consecutive values of
b j [0 : p − k j − 1] · x[0 : p − k j − 1] with n = N̂ j , r = p − k j , � = p − ki+1 and
b = b j [0 : p − k j − 1].

Using Lemma 3, we know that, for every combination of values of variables other than
x , there exist at least N̂ j distinct values that can be assigned to x[0 : p − k j − 1] (i.e.,
bits in slice0 through slicej) while satisfying Z j . Lemma 3 and Claim 1 together imply
that for every combination of values of variables other than x and for any arbitrary value of
x[0 : p − ki − 1] (i.e., bits in slice0 through slicei), there exist at least �N̂ j/2p−ki � distinct
values that can be assigned to x[p − ki : p − k j − 1] (i.e., bits in slicei+1 through slicej)
while satisfying Z j . Hence, an arbitrary solution of C ∧ Z0 ∧ · · · ∧ Zi for 0 ≤ i < r can be
adapted with respect to bits in slicei+1 through slicej, to satisfy Z j for i < j ≤ r in at least
�N̂ j/2p−ki � ways.

In order to prove our claim on values of slicei+1 in the corresponding adapted solutions,
note that, from Claim 2 we know that, for every combination of values of variables other
than x , there exist at least min(N̂ j , 2p−ki+1) distinct values that x[0 : p − ki+1 − 1] can
take while satisfying Z j . Hence Claim 1 and Claim 2 together imply that, for every combi-
nation of values of variables other than x and for any arbitrary value of x[0 : p − ki − 1]
(i.e., bits in slice0 through slicei), there exist at least min(�N̂ j/2p−ki �, �2p−ki+1/2p−ki �) =
min(�N̂ j/2p−ki �, 2ki−ki+1) distinct values that can be assigned to x[p − ki : p − ki+1 − 1]
(i.e., bits in slicei+1) while satisfying Z j . Therefore, if we focus only on slicei+1 in the
aforementioned adapted solutions, then there are at least min(�N̂ j/2p−ki �, 2ki−ki+1) distinct
values of slicei+1. ��

Using Lemma 4, we have Yi, j ≥ �N̂ j/2p−ki �. For notational convenience, let us denote
min(�N̂ j/2p−ki �, 2ki−ki+1) by αi, j .

Lemma 4 indicates that a solution θ of C ∧ Z0 ∧ · · · ∧ Zi for 0 ≤ i < r can be
adapted to satisfy C ∧ Z0 ∧ · · · ∧ Zi ∧ Z j for i < j ≤ r by using at least αi, j different
values of slicei+1. Let the corresponding set of values of slicei+1 be denoted Sθ

i+1, j . If⋂r
j=i+1 S

θ
i+1, j is non-empty, there exists a common value of slicei+1 that permits us to

123



290 Form Methods Syst Des (2016) 49:272–323

adapt θ with respect to slicei+1 through slicer to satisfy Zi+1 through Zr , respectively. It is
therefore desirable to have | ⋂r

j=i+1 S
θ
i+1, j | ≥ 1. Using the Inclusion-Exclusion principle,

we find that | ⋂r
j=i+1 S

θ
i+1, j | ≥ (

∑r
j=i+1 αi, j ) − (r − i − 1) · 2ki−ki+1 . Note that the lower

bound is independent of θ . For notational convenience, let us denote the lower bound by
Wi+1.

If Wi+1 ≥ 1 for all i ∈ {0, . . . r − 1}, an arbitrary solution θ of C can be adapted to
satisfy C ∧ Z0 ∧ · · · ∧ Zr as follows. Since W1 ≥ 1, we choose a value of slice1, say
v1, from

⋂r
j=1 S

θ
1, j . Let θ1 denote θ with slice1 (possibly) changed to have value v1. Then

θ1 satisfies C ∧ Z1. Since W2 ≥ 1, we can now choose a value of slice2, say v2, from⋂r
j=2 S

θ1
2, j , and repeat the procedure until we have chosen values for slice1 through slicer.

Finally, since slicer+1 does not affect the satisfaction of C or of any Zi , we can choose an
arbitrary value for slicer+1. Clearly, there are at least (

∏r−1
i=0 |Wi+1|) · 2kr ways in which

values of different slices can be chosen, so as to adapt θ to satisfy C ∧ Z0 ∧ · · · ∧ Zr . Let us
denote (

∏r−1
i=0 |Wi+1|) · 2kr by μI .

In our running example,we have,Y0,1 ≥ �N̂1/2p−k0� = 1.Alsoα0,1 = min(�N̂1/2p−k0�,
2k0−k1) = min(1, 22−1) = 1. Hence W1 = (

∑1
j=1 α0,1) − (1 − 0 − 1) · 2k0−k1 = α0,1 = 1.

Note that there is at least one way of adapting an arbitrary solution of (z = 4x + y) with
respect to slice1 to satisfy (z = 4x + y) ∧ (0 ≤ 6x + y ≤ 4). Moreover, there are at least
two ways of adapting an arbitrary solution of (z = 4x + y) with respect to slice1 through to
slice2 to satisfy (z = 4x+ y)∧(0 ≤ 6x+ y ≤ 4) as indicated byμI = W1 ·2k1 = 1 ·21 = 2.

Let us now consider each LMD di in D. Recall that each di is of the form 2κ(x,di ) · x �= tdi .
Note that di constrains only slice x[0 : p − κ(x, di ) − 1]. It can be observed that for every
combination of values of variables other than x , the onlyway to violate di is to choose value of
slice x[0 : p−κ(x, di )−1] to be the same as the value of tdi [κ(x, di ) : p−1]. Hence, for every
combination of values of variables other than x , there is at most one way of choosing value
for slice x[0 : p−κ(x, di )−1] such that di is violated. Since slice x[p−κ(x, di ) : p−1] is
not constrained by di , this means that for every combination of values of variables other than
x , there are at most 2κ(x,di ) ways of choosing values for slice0 through slicer+1 such that di is
violated. Therefore, for every combination of values of variables other than x ,

∑m
i=1(2

κ(x,di ))

is an over-approximation of the number ways of choosing values for slice0 through slicer+1
such that D is violated. Let us denote

∑m
i=1(2

κ(x,di )) by μD . We have already seen that there
are at least μI ways of adapting an arbitrary solution θ of C to satisfy C ∧ Z0 ∧ · · · ∧ Zr .
As μD is an over-approximation of the number of such adapted solutions that can violate D,
there are at least μI − μD ways of adapting θ to satisfy C ∧ Z0 ∧ · · · ∧ Zr ∧ D. We denote
μI − μD by η.

In the running example, we have, d1 ≡ (x �= z + 7) and κ(x, d1) = 0. Note that for every
value of z + 7, there is at most one way of choosing value for slice x[0 : 2] such that d1
is violated. Here μD = 2κ(x,d1) = 1, and hence η = μI − μD = 1. Thus there is at least
one way of adapting an arbitrary solution of (z = 4x + y) to satisfy (z = 4x + y) ∧ (0 ≤
6x + y ≤ 4) ∧ (x �= z + 7).

The above reasoning can be extended to the general case k1 ≥ · · · ≥ kr . Let πi for
0 ≤ i < r be the number of Z j ’s with k j < ki for i < j ≤ r . Using the Inclusion-Exclusion
principle, Wi+1 above then changes to (

∑r
j=i+1 αi, j ) − (πi − 1) · 2ki−ki+1 .

Theorem 1 If η ≥ 1, then ∃x .(C ∧ D ∧ I ) ≡ ∃x .(C)

Proof There are at least ηways of adapting an arbitrary solution ofC to satisfyC∧Z0∧· · ·∧
Zr∧D. If η ≥ 1, then an arbitrary solution ofC can be adapted to satisfyC∧Z0∧· · ·∧Zr∧D,
and hence ∃x .(C) ⇒ ∃x .(C ∧ D ∧ I ). Since ∃x .(C ∧ D ∧ I ) ⇒ ∃x .(C) always holds, we
have ∃x .(C ∧ D ∧ I ) ≡ ∃x .(C) if η ≥ 1. ��

123



Form Methods Syst Des (2016) 49:272–323 291

It can be observed that η is computable in polynomial time. The difficult step is computa-
tion ofμI . Let r be the number of distinct linear terms in I with x in their support. Computing
μI requires O(r2) arithmetic operations in the worst-case.

As mentioned earlier, the procedure QE1_Layer2 applies this technique to problem
instances of the form ∃x .C2, obtained after invoking QE1_Layer1 to find unconstraining
LMDs and LMIs. If all the LMIs and LMDs in ∃x .C2 are unconstraining, then ∃x .C2 reduces
to ∃x .(2k1 · x = t1), and QE1_Layer2 returns the equivalent form 2p−k1 · t1 = 0.

In the running example,QE1_Layer2drops theLMI (6x+y ≤ 4) and theLMD (x �= z+7)
as they are unconstraining in ∃x .((z = 4x + y)∧ (6x + y ≤ 4)∧ (x �= z+ 7)). The problem
instance thus reduces to ∃x .(z = 4x + y), which is equivalent to (4y + 4z = 0). Hence the
final result is (4y + 4z = 0).

In general, QE1_Layer2 returns ∃x .C3, where C3 is a conjunction of possibly fewer
LMCs compared to C2, such that ∃x .C3 ≡ ∃x .C2. The next subsection describes techniques
to eliminate quantifiers from such problem instances.

Analysis of complexity Consider a conjunction of LMCs with a subset of variables in its
support to be eliminated. Let n be the number of LMCs in the conjunction, v be the number
of variables in its support, and e be the number of variables to be eliminated. Consider the
elimination of a variable x inside Layer2. Recall that Layer2 can be applied only when all
LMIs involving x are of the form s �� t , where ��∈ {≤,≥}, s is a linear term with x in its
support, and t is a linear term free of x . Let r be the number of distinct linear terms with
x in the support appearing in the LMIs. As observed above, computing η requires O(r2)
arithmetic operations in the worst-case. Note that r ≤ n. Assuming that each arithmetic
operation on p-bit numbers take time O(Q(p)) in the worst-case, where p ≤ Q(p) ≤ p3,
elimination of a variable hence has a worst-case time complexity of O(n2 · Q(p)). Observe
that eliminating a variable does not increase the number of LMCs in the conjunction. Hence
eliminating e variables has a worst-case time complexity of O(e · n2 · Q(p)). Since reading
n LMCs as input and writing the result takes O(n · v · p) time, Layer2 has a worst-case time
complexity of O(e · n2 · Q(p) + n · p · v).

3.5 Layer3: Fourier–Motzkin elimination for LMIs

In this subsection, we present a Fourier–Motzkin (FM) style QE algorithm for computing
∃x .C3 obtained above. Recall that C3 obtained above, in general, contains LMDs, LMIs,
and a single LME. We propose converting the LMDs and the LME in C3 to LMIs using
the equivalences (t1 = t2) ≡ (t1 ≥ t2) ∧ (t1 ≤ t2) and (t1 �= t2) ≡ ¬(t1 = t2). This, in
general, converts C3 to a Boolean combination of LMIs. However, as we will see in Sect. 4,
a QE algorithm for conjunctions of LMIs can be extended to a QE algorithm for Boolean
combinations of LMIs. Hence, in the remainder of this subsection, we will focus on QE from
conjunctions of LMIs.

There are two fundamental problems when trying to apply FM elimination for reals [20]
to a conjunction of LMIs:

1. Wrap-around behaviour Recall that FM elimination normalizes each inequality l w.r.t.
the variable x being quantified by expressing l in an equivalent form x �� t , where
�� ∈ {≤,≥} and t is a term free of x . However, due to wrap-around behaviour, the
equivalences (i) (t1 ≤ t2) ≡ (t1+ t3 ≤ t2+ t3) and (ii) (t1 ≤ t2) ≡ (a · t1 ≤ a · t2) used for
normalizing inequalities do not hold for LMIs in general. For example, (2 ≤ 3 (mod 4)),
but (2 + 1 > 3 + 1 (mod 4)). Similarly, (1 ≤ 2 (mod 4)), but (1 · 2 > 2 · 2 (mod 4)).
Hence, normalizing an LMIw.r.t. a variable ismuchmore difficult than normalizing in the
case of reals.Moreover, unlike in the case of reals and integers, presence of equalities does

123



292 Form Methods Syst Des (2016) 49:272–323

not always simplify QE in modular arithmetic. For example, ∃x .((2x = 3y+2)∧ (3x >

4z + 3)) can be simplified to ∃x .((6x = 9y + 6) ∧ (6x > 8z + 6)) on integers. However
this simplification cannot be done in modular arithmetic in general.

2. Lack of density Even if we could normalize LMIs w.r.t. the variable being quantified, due
to the lack of density of integers, FM elimination cannot be directly lifted to normalized
LMIs. For example ∃x .((y ≤ 4x) ∧ (4x ≤ z)) is equivalent to (y ≤ z) in reals, whereas
this is not true in modular arithmetic in general.

This motivates us to (i) define a (weak) normal form for LMIs, and (ii) adapt FM elim-
ination to achieve QE from normalized LMIs. Recall that Omega Test [51] also defines a
normal form for inequalities over integers, and adapts FM elimination over reals for QE
from normalized inequalities over integers. However, Omega Test cannot be directly used
for QE from LMIs—using Omega Test for QE from LMIs requires converting the LMIs
to equivalent constraints in linear integer arithmetic; the resulting formula is in linear inte-
ger arithmetic, and converting the resulting formula back to modular arithmetic is difficult.
Moreover our experiments in Sect. 5 indicate that, using Omega Test for QE from the linear
integer arithmetic constraints arising from LMIs incurs considerable performance overhead.

3.5.1 A (weak) normal form for LMIs

We say that an LMI l with x in its support is normalized w.r.t. x if it is of the form a · x �� t , or
of the form a ·x �� b·x , where �� ∈ {≤,≥}, and t is a linear term free of x .Wewill henceforth
use NF1 to refer to the first normal form (a · x �� t) and NF2 to refer to the second normal
form (a · x �� b · x). A Boolean combination of LMCs ϕ is said to be normalized w.r.t. x if
every LMI in ϕ with x in its support is normalized w.r.t. x .

We will now show that every LMI with x in its support can be equivalently expressed
as a Boolean combination of LMCs normalized w.r.t. x . Before going into the details of
normalizing LMIs, it would be useful to introduce some notation. We define �(t1, t2) as the
condition under which t1 + t2 overflows a p-bit representation, i.e., t1 + t2 interpreted as an
integer exceeds 2p − 1. Note that �(t1, t2) is equivalent to both (t2 �= 0) ∧ (t1 ≥ −t2) and
(t1 �= 0) ∧ (t2 ≥ −t1).

Suppose we wish to normalize the LMI (x+2 ≤ y)modulo 8 w.r.t. x . Adding the additive
inverse of 2 modulo 8, i.e, 6 to both sides of the LMI, the left-hand side x + 2 changes to x
and the right-hand side y changes to y + 6. However, note that (x + 2 ≤ y) is not equivalent
to (x ≤ y + 6). If �(x + 2, 6) ≡ �(y, 6), then (x + 2 ≤ y) ≡ (x ≤ y + 6) holds; otherwise
(x + 2 ≤ y) ≡ (x > y + 6) holds. Note that �(x + 2, 6) ≡ �(y, 6) can be equivalently
expressed as (x ≤ 5) ≡ (y ≥ 2). Hence, (x + 2 ≤ y) can be equivalently expressed in the
normalized form ite(ϕ, (x ≤ y + 6), (x > y + 6)), where ϕ denotes (x ≤ 5) ≡ (y ≥ 2),
and ite(α, β, γ ) is a shorthand for (α ∧ β) ∨ (¬α ∧ γ ).

In this example, the � predicate allowed us to perform a case-split and normalize each
branch. The following Lemma generalizes this idea.

Lemma 5 Let l1 : (a · x + t1 ≤ b · x + t2) be an LMI, where t1 and t2 are linear terms
without x in their supports. Then, l1 ≡ ite(ϕ, l2,¬l2), where l2 ≡ (a · x − b · x ≤ t2 − t1),
and ϕ is a Boolean combination of LMCs normalized w.r.t. x.

Before we present the proof of Lemma 5, it would be useful to present a proposition.

Proposition 6 Let l1 be an LMI t1 ≤ t2, and let t3 be a linear term. Then l1 ≡ i te(ϕ1 ∧
(ϕ2 ⊕ ϕ3), (t1 + t3 > t2 + t3), (t1 + t3 ≤ t2 + t3)), where ϕ1 ≡ (t3 �= 0), ϕ2 ≡ (−t3 ≤ t1),
ϕ3 ≡ (−t3 ≤ t2) and ϕ2 ⊕ ϕ3 denotes exclusive-or of ϕ2 and ϕ3.

123



Form Methods Syst Des (2016) 49:272–323 293

Proof Note that (t1 ≤ t2) ≡ ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4, where

– ψ1 ≡ (t1 ≤ t2) ∧ �(t1, t3) ∧ �(t2, t3)
– ψ2 ≡ (t1 ≤ t2) ∧ �(t1, t3) ∧ ¬�(t2, t3)
– ψ3 ≡ (t1 ≤ t2) ∧ ¬�(t1, t3) ∧ �(t2, t3)
– ψ4 ≡ (t1 ≤ t2) ∧ ¬�(t1, t3) ∧ ¬�(t2, t3)

It can be seen that,

– ψ1 ≡ (t1 + t3 ≤ t2 + t3) ∧ �(t1, t3) ∧ �(t2, t3)
– ψ2 ≡ false, since �(t1, t3) ∧ ¬�(t2, t3) ⇒ (t1 > t2). However, we can write ψ2 as

(t1 + t3 > t2 + t3) ∧ �(t1, t3) ∧ ¬�(t2, t3) as well, which is equivalent to false, since
�(t1, t3) ∧ ¬�(t2, t3) ⇒ (t1 + t3 < t2 + t3).

– ψ3 ≡ (t1 + t3 > t2 + t3) ∧ ¬�(t1, t3) ∧ �(t2, t3)
– ψ4 ≡ (t1 + t3 ≤ t2 + t3) ∧ ¬�(t1, t3) ∧ ¬�(t2, t3)

Expressing ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 in terms of ites, we have,

(t1 ≤ t2) ≡ ite(�(t1, t3) ⊕ �(t2, t3), (t1 + t3 > t2 + t3), (t1 + t3 ≤ t2 + t3))

Expanding the �’s using the formula �(α, β) ≡ (β �= 0)∧ (α ≥ −β), where α, β are linear
terms, we have,

(t1 ≤ t2) ≡ ite(ϕ1 ∧ (ϕ2 ⊕ ϕ3), (t1 + t3 > t2 + t3), (t1 + t3 ≤ t2 + t3))

where, ϕ1 ≡ (t3 �= 0), ϕ2 ≡ (−t3 ≤ t1), and ϕ3 ≡ (−t3 ≤ t2). ��
We can now prove Lemma 5.

Proof (Proof of Lemma 5) Consider an LMI l1 : a · x + t1 ≤ b · x + t2, where t1 and t2 are
linear terms without x in their supports. Using Proposition 6, with a · x + t1 in place of t1,
b · x + t2 in place of t2 and −b · x − t1 in place of t3,

l1 ≡ ite(ϕ1 ∧ (ϕ2 ⊕ ϕ3), (a · x − b · x > t2 − t1), (a · x − b · x ≤ t2 − t1))

where, ϕ1 ≡ (b · x + t1 �= 0), ϕ2 ≡ (b · x + t1 ≤ a · x + t1), and ϕ3 ≡ (b · x + t1 ≤ b · x + t2).
Note that the LMIs (a · x − b · x > t2 − t1) and (a · x − b · x ≤ t2 − t1) are normalized

w.r.t. x , whereas ϕ2 and ϕ3 are not. Hence, let us try to normalize ϕ2 and ϕ3 w.r.t. x .
Consider ϕ2 ≡ (b · x + t1 ≤ a · x + t1). Using Proposition 6, with b · x + t1 in place of

t1, a · x + t1 in place of t2 and −t1 in place of t3,

ϕ2 ≡ i te((t1 �= 0) ∧ ((t1 ≤ a · x + t1) ⊕ (t1 ≤ b · x + t1)), (b · x > a · x), (b · x ≤ a · x))
Using the observations (β ≤ α + β) ≡ ¬�(α, β) and �(α, β) ≡ (β �= 0) ∧ (α ≥ −β) for
linear terms α and β, and simplifying, (t1 �= 0) ∧ ((t1 ≤ a · x + t1) ⊕ (t1 ≤ b · x + t1)) is
equivalent to (t1 �= 0) ∧ ((−t1 ≤ a · x) ⊕ (−t1 ≤ b · x)). Hence,

ϕ2 ≡ i te((t1 �= 0) ∧ ((−t1 ≤ a · x) ⊕ (−t1 ≤ b · x)), (b · x > a · x), (b · x ≤ a · x))
Similarly, consider ϕ3 ≡ (b · x + t1 ≤ b · x + t2). Using Proposition 6, with b · x + t1 in

place of t1, b · x + t2 in place of t2 and −b · x in place of t3,

ϕ3 ≡ i te((b · x �= 0) ∧ ((b · x ≤ b · x + t1) ⊕ (b · x ≤ b · x + t2)), (t1 > t2), (t1 ≤ t2))

≡ i te((b · x �= 0) ∧ ((−b · x ≤ t1) ⊕ (−b · x ≤ t2)), (t1 > t2), (t1 ≤ t2))

123



294 Form Methods Syst Des (2016) 49:272–323

Putting everything together,

l1 ≡ i te(ϕ1 ∧ (ϕ2 ⊕ ϕ3), (a · x − b · x > t2 − t1), (a · x − b · x ≤ t2 − t1)), where

ϕ1 ≡ (b · x + t1 �= 0)

ϕ2 ≡ i te((t1 �= 0) ∧ ((−t1 ≤ a · x) ⊕ (−t1 ≤ b · x)), (b · x > a · x), (b · x ≤ a · x))
ϕ3 ≡ i te((b · x �= 0) ∧ ((−b · x ≤ t1) ⊕ (−b · x ≤ t2)), (t1 > t2), (t1 ≤ t2))

Hence l1 can be equivalently expressed as, ite(ϕ, l2,¬l2), where l2 ≡ (a·x−b·x ≤ t2−t1),
and ϕ ≡ ¬ϕ1 ∨ (ϕ2 ≡ ϕ3). Note that ϕ here is a Boolean combination of LMCs normalized
w.r.t. x . ��

3.5.2 Modified FM for normalized LMIs

We begin by illustrating the primary idea through an example. Consider the problem of
computing ∃x .C , where C ≡ (y ≤ 4x) ∧ (4x ≤ z) with modulus 16. Note that ∃x .C is “the
condition under which there exists a multiple of 4 between y and z, where y ≤ z”. Note that
if x, y, z were reals, then we would have obtained (y ≤ z) for ∃x .C . However, as in the case
of integers, this would over-approximate ∃x .C in the case of fixed width bit-vectors.

If (y ≤ 12) ∧ (z ≥ y + 3) holds, then the difference between y and z is ≥ 3. In this case,
existence of a multiple of 4 between y and z is guaranteed. Thus (y ≤ z) ∧ (y ≤ 12) ∧ (z ≥
y + 3) ⇒ ∃x .C .

It can be seen that if (y > 12), then there does not exist any x such that (y ≤ 4x). Hence,
if (y > 12), then ∃x .C is false. If (z < y + 3), then ∃x .C is true iff one of the following
conditions holds: (i) (y ≤ z) and y is a multiple of 4, i.e., (y ≤ z) ∧ (4y = 0), (ii) (y ≤ z)
and (y > z (mod 4)), i.e., (y ≤ z) ∧ (4y > 4z).

Hence ∃x .C is equivalent to (y ≤ z)∧ϕ, where ϕ is the disjunction of the following three
formulas: (i) (z ≥ y+3)∧(y ≤ 12), (ii) (z < y+3)∧(4y = 0), (iii) (z < y+3)∧(4y > 4z).

The following Lemma generalizes this idea.

Lemma 6 Let l1 : (t1 ≤ a ·x) and l2 : (a ·x ≤ t2) be LMIs in NF1w.r.t. x. Let k be κ(x, a ·x).
Then,∃x .(l1∧l2) ≡ (t1 ≤ t2)∧ϕ, whereϕ is the disjunction of the formulas: (i) (2p−k ·t1 = 0),
(ii) (t2 ≥ t1 + 2k − 1)∧ (t1 ≤ 2p − 2k), and (iii) (t2 < t1 + 2k − 1)∧ (2p−k · t1 > 2p−k · t2).
Proof Note that ∃x .(l1 ∧ l2) ≡ ∃x .(l ′1 ∧ l ′2), where l ′1 ≡ (t1 ≤ 2k · x) and l ′2 ≡ (2k ·
x ≤ t2), since the multiples of 2k and 2k · e are the same modulo 2p for any odd number
e ∈ {1, . . . , 2p − 1}.

Now ∃x .(l ′1 ∧ l ′2) ≡ ∃x .ψ1 ∨ ∃x .ψ2 ∨ ∃x .ψ3 ∨ ∃x .ψ4, where

– ψ1 ≡ l ′1 ∧ l ′2 ∧ (2p−k · t1 = 0)
– ψ2 ≡ l ′1 ∧ l ′2 ∧ (2p−k · t1 �= 0) ∧ (t2 ≥ t1 + 2k − 1) ∧ (t1 ≤ 2p − 2k)
– ψ3 ≡ l ′1 ∧ l ′2 ∧ (2p−k · t1 �= 0) ∧ (t2 < t1 + 2k − 1)
– ψ4 ≡ l ′1 ∧ l ′2 ∧ (2p−k · t1 �= 0) ∧ (t1 > 2p − 2k)

Consider ∃x .ψ1. This is equivalent to ∃x .(ψ1∧(t1 ≤ t2)), since (t1 ≤ t2) is anLMI implied
by ψ1. It can be seen that ∃x .(ψ1 ∧ (t1 ≤ t2)) is equivalent to (2p−k · t1 = 0) ∧ (t1 ≤ t2),
since given any solution to (2p−k · t1 = 0) ∧ (t1 ≤ t2), we can satisfy l ′1 ∧ l ′2 by setting 2k · x
to t1. Note that setting 2k · x to t1 is always possible, since 2p−k · t1 = 0 ⇒ ∃x .(2k · x = t1)
(see Proposition 3). Hence, ∃x .ψ1 ≡ (2p−k · t1 = 0) ∧ (t1 ≤ t2).

Consider ∃x .ψ2. Note that the difference between t1 and t2 here is≥ 2k −1, which implies
that there exists amultiple of 2k between t1 and t2. Hence it can be seen that (t1 ≤ t2)∧(2p−k ·

123



Form Methods Syst Des (2016) 49:272–323 295

t1 �= 0)∧ (t2 ≥ t1 + 2k − 1)∧ (t1 ≤ 2p − 2k) ⇒ ∃x .ψ2. Implication in the other direction is
obvious. Hence, ∃x .ψ2 ≡ (t1 ≤ t2) ∧ (2p−k · t1 �= 0) ∧ (t2 ≥ t1 + 2k − 1) ∧ (t1 ≤ 2p − 2k).

Consider ∃x .ψ3. This implies (2p−k ·t1 > 2p−k ·t2). Hence ∃x .ψ3 ≡ ∃x .(ψ3∧(2p−k ·t1 >

2p−k · t2)). This is equivalent to (t1 ≤ t2) ∧ (2p−k · t1 �= 0) ∧ (t2 < t1 + 2k − 1) ∧
(2p−k · t1 > 2p−k · t2), as the existence of a multiple of 2k between t1 and t2 is implied by
(t1 ≤ t2) ∧ (2p−k · t1 �= 0) ∧ (t2 < t1 + 2k − 1) ∧ (2p−k · t1 > 2p−k · t2).

Consider ∃x .ψ4. This is equivalent to false, since given (t1 > 2p − 2k), there exists no t2
such that l ′1 ∧ l ′2 holds.

Putting everything together, it can be seen that ∃x .(l1 ∧ l2) ≡ (t1 ≤ t2) ∧ ϕ, where ϕ is
the disjunction of the formulas: (i) (2p−k · t1 = 0), (ii) (t2 ≥ t1 + 2k − 1) ∧ (t1 ≤ 2p − 2k),
and (iii) (t2 < t1 + 2k − 1) ∧ (2p−k · t1 > 2p−k · t2). ��

Suppose we wish to compute ∃x .I , where I is a conjunction of LMIs normalized w.r.t.
x . Let I ≡ I1 ∧ I2, where I1 is the conjunction of LMIs in I that are in NF1, and I2 is
the conjunction of LMIs in I that are in NF2. In addition, let a1, . . . , an be the distinct
non-zero coefficients of x in LMIs in I1, and let I1,i denote the conjunction of LMIs in
I1 in which the coefficient of x is ai . Finally, let Δ(t1, t2, k) denote the result of computing
∃x .((t1 ≤ a ·x)∧(a ·x ≤ t2)) using Lemma 6, where k denotes κ(x, a ·x). It is easy to see that
Lemma 6 can be used to compute ∃x .I1,i , for every i ∈ {1, . . . n}. Similar to FM elimination,
we partition the LMIs li, j : ai · x �� t j in I1,i into two sets Λ≤ and Λ≥, where Λ�� = {li, j |
li, j is of the form ai · x �� t j }, for �� ∈ {≤,≥}. We assume without loss of generality that
the trivial LMIs ai · x ≤ 2p − 1 and ai · x ≥ 0 are present in Λ≤ and Λ≥ respectively. We
can now compute ∃x .I1,i as ∧

(ai ·x≤tp)∈Λ≤, (ai ·x≥tq )∈Λ≥
(
Δ

(
tq , tp, κ (x, ai · x))).

Each conjunction of LMIs such as I1,i above, where all LMIs are in NF1w.r.t. x , and have
the same coefficient of x are said to be “coefficient-matched” w.r.t. x . Similarly, a Boolean
combination of LMCs ϕ is said to be coefficient-matched w.r.t. x if all LMIs in ϕ with x in
their support are in NF1 w.r.t. x and have the same coefficient of x . In the special case when
I2 ≡ true and n = 1, i.e., when I is a conjunction of LMIs coefficient-matched w.r.t. x , ∃x .I
reduces to ∃x .I1,1.

Unfortunately, converting I to coefficient-matched form w.r.t. a variable is inefficient in
general. Hence we propose converting I to coefficient-matched form w.r.t. x only in the
following cases, where it can be done without much loss of efficiency: (a) I2 ≡ true, n = 2
and a2 = −a1, and (b) I2 ≡ true and every ai is of the form 2ki ·e, where e is an odd number
in {1, . . . , 2p − 1} independent of i .

In case (a) above, I can be equivalently expressed as a Boolean combination of LMCs
coefficient-matched w.r.t. x by using the following Proposition.

Proposition 7 (−t1 ≤ −t2) is equivalent to (t1 = 0) ∨ ((t2 �= 0) ∧ (t1 ≥ t2)).

Example Consider the problem of computing ∃x .I , where I ≡ (y ≤ 2x) ∧ (6x ≤ z) with
modulus 8. Using Proposition 7, (6x ≤ z) is equivalent to (2x = 0)∨((z �= 0)∧(2x ≥ −z)).
Thus ∃x .I can be equivalently expressed as ∃x .ϕ, where ϕ is the disjunction of (y ≤ 2x) ∧
(2x = 0) and (y ≤ 2x) ∧ (z �= 0) ∧ (2x ≥ −z). Note that ϕ is coefficient-matched w.r.t. x .

We explain the idea behind case (b) with an example before considering the general
case. Consider the problem of computing ∃x .I , where I ≡ (y ≤ 2x) ∧ (x ≤ z) with
modulus 8. It can be shown that x ≤ z can be equivalently expressed as the disjunction
of (i) �(x, x) ∧ �(z, z) ∧ (2x ≤ 2z), (ii) ¬�(x, x) ∧ ¬�(z, z) ∧ (2x ≤ 2z), and (iii)
¬�(x, x) ∧ �(z, z). Hence, ∃x .I can be equivalently expressed as ∃x .ϕ′, where ϕ′ is the
disjunction of (i)�(x, x)∧�(z, z)∧(2x ≤ 2z)∧(y ≤ 2x), (ii)¬�(x, x)∧¬�(z, z)∧(2x ≤

123



296 Form Methods Syst Des (2016) 49:272–323

2z)∧ (y ≤ 2x), and (iii) ¬�(x, x)∧�(z, z)∧ (y ≤ 2x). Note that �(x, x) and �(z, z) can
be equivalently expressed as x ≥ 4 and z ≥ 4 respectively. However, on closer inspection, it
can be seen that occurrences of x ≥ 4 in ∃x .ϕ′ arising from �(x, x) are unconstraining, and
can therefore be dropped. Thus ∃x .ϕ′ can be equivalently expressed as ∃x .ϕ, where ϕ is the
disjunction of (2x ≤ 2z) ∧ (y ≤ 2x) and (z ≥ 4) ∧ (y ≤ 2x). Note that ∃x .ϕ is equivalent
to ∃x .I and is coefficient-matched w.r.t. x .

In general, given ∃x .I such that I2 ≡ true and every ai is of the form 2ki · e (as defined
above), we have the following Lemma.

Lemma 7 Let I1 be a conjunction of LMIs in NF1 w.r.t. x. Let a1, . . . , an be the distinct
non-zero coefficients of x in LMIs in I1. Let each ai , for 1 ≤ i ≤ n, be of the form 2ki · e,
where e is an odd number in {1, . . . , 2p−1} independent of i . Then, ∃x .I1 can be equivalently
expressed as ∃x .ϕ, where ϕ is a Boolean combination of LMCs coefficient-matched w.r.t. x.

Proof Our proof makes use of the following claims.

Claim 3 An LMI a · x ≤ t in NF1 can be equivalently expressed as the disjunction of
formulas: (i)�(a·x, a·x)∧�(t, t)∧(2a·x ≤ 2t), (ii)¬�(a·x, a·x)∧¬�(t, t)∧(2a·x ≤ 2t),
and (iii) ¬�(a · x, a · x) ∧ �(t, t).

Claim 4 An LMI a · x ≥ t in NF1 can be equivalently expressed as the disjunction of
formulas: (i)�(a·x, a·x)∧�(t, t)∧(2a·x ≥ 2t), (ii)¬�(a·x, a·x)∧¬�(t, t)∧(2a·x ≥ 2t),
and (iii) �(a · x, a · x) ∧ ¬�(t, t).

To see why Claim 3 is true, note that (a · x ≤ t) ≡ ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4, where

– ψ1 ≡ (a · x ≤ t) ∧ �(a · x, a · x) ∧ �(t, t)
– ψ2 ≡ (a · x ≤ t) ∧ �(a · x, a · x) ∧ ¬�(t, t)
– ψ3 ≡ (a · x ≤ t) ∧ ¬�(a · x, a · x) ∧ �(t, t)
– ψ4 ≡ (a · x ≤ t) ∧ ¬�(a · x, a · x) ∧ ¬�(t, t)

It can be seen that,

– ψ1 ≡ �(a · x, a · x) ∧ �(t, t) ∧ (2a · x ≤ 2t)
– ψ2 ≡ false, since �(a · x, a · x) ∧ ¬�(t, t) ⇒ (a · x > t)
– ψ3 ≡ ¬�(a · x, a · x) ∧ �(t, t), since ¬�(a · x, a · x) ∧ �(t, t) ⇒ (a · x < t)
– ψ4 ≡ ¬�(a · x, a · x) ∧ ¬�(t, t) ∧ (2a · x ≤ 2t)

Claim 4 can be proved in a similar manner.
Without loss of generality, let a1 > a2 > · · · > an , i.e., 2k1 · e > 2k2 · e > · · · > 2kn · e.

This implies that (i) k1 > k2 > · · · > kn , and (ii) a1 = 2k1−ki · ai for 2 ≤ i ≤ n.
Now consider each LMI ai ·x �� t j in I1, where 2 ≤ i ≤ n and �� ∈ {≤,≥}. It can be seen

that the above Claims can be used to express ai ·x �� t j as an equivalent Boolean combination
of LMCs, involving (i) the LMI (2ai · x �� 2t j ), (ii) �(ai · x, ai · x), and (iii) �(t j , t j ).
Moreover, the above claims can be used repeatedly to express ai · x �� t j as an equivalent
Boolean combination of LMCs, involving (i) the LMI (2k1−ki ai ·x �� 2k1−ki t j ), i.e., (a1 ·x ��
2k1−ki t j ), (ii) �(ai · x, ai · x), �(2ai · x, 2ai · x),. . ., �(2k1−ki−1ai · x, 2k1−ki−1ai · x), and
(iii) �(t j , t j ), �(2t j , 2t j ),. . ., �(2k1−ki−1t j , 2k1−ki−1t j ).

It can be seen that�(ai · x, ai · x),�(2ai · x, 2ai · x),. . .,�(2k1−ki−1ai · x, 2k1−ki−1ai · x)
can be equivalently expressed as (ai · x ≥ 2p−1), (2ai · x ≥ 2p−1), . . ., (2k1−ki−1ai · x ≥
2p−1) respectively. Similarly �(t j , t j ), �(2t j , 2t j ),. . ., �(2k1−ki−1t j , 2k1−ki−1t j ) can be
equivalently expressed as (t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1) respectively.

123



Form Methods Syst Des (2016) 49:272–323 297

Hence I1 can be equivalently expressed as a Boolean combination of LMCs ϕ′, involving (i)
LMIs of the form (a1 ·x �� 2k1−ki ·t j ), (ii) LMIs of the form (ai ·x ≥ 2p−1), (2ai ·x ≥ 2p−1),
. . ., (2k1−ki−1ai · x ≥ 2p−1), and (iii) LMIs of the form (t j ≥ 2p−1), (2t j ≥ 2p−1), . . .,
(2k1−ki−1t j ≥ 2p−1).

We can express ϕ′ equivalently as
∨r

�=1 C�, where each C� is a conjunction of LMCs.
Hence ∃x .ϕ′ is equivalent to

∨r
�=1(∃x .C�). Observe that each C� involves three kinds of

LMIs: (i) LMIs of the form (a1 · x �� 2k1−ki · t j ), (ii) LMIs of the form (ai · x ≥ 2p−1),
(2ai · x ≥ 2p−1), . . ., (2k1−ki−1ai · x ≥ 2p−1) and/or their negations, and (iii) LMIs of
the form (t j ≥ 2p−1), (2t j ≥ 2p−1), . . ., (2k1−ki−1t j ≥ 2p−1) and/or their negations.
Let C�,1 be the conjunction of the first kind of LMIs in C�. Similarly, let C�,2 and C�,3

respectively be the conjunctions of the second and the third kinds of LMIs in C�. Hence we
have C� ≡ C�,1 ∧ C�,2 ∧ C�,3.

Therefore ∃x .C� ≡ (∃x .(C�,1 ∧ C�,2)) ∧ C�,3, since C�,3 is free of x . Moreover, by
applying Theorem 1 on ∃x .(C�,1 ∧ C�,2), it can be proved that C�,2 is unconstraining in
∃x .(C�,1 ∧C�,2). Hence ∃x .C� can be equivalently expressed as ∃x .(C�,1) ∧C�,3. Note that
the coefficient of x in C�,1 is a1. This implies that

∨r
�=1 C� can be equivalently expressed as

a Boolean combination of LMCs coefficient-matched w.r.t. x , with coefficient of x as a1.
��

Note that normalizing a given conjunction of LMIs w.r.t. a variable and then converting it
to coefficient-matched form transforms it to a Boolean combination of LMCs in general. We
make use of techniques in Sect. 4 for eliminating quantifiers from suchBoolean combinations
of LMCs.

In cases other than those covered in cases (a) and (b) above, we propose computing ∃x .I
using model enumeration, i.e., by expressing ∃x .I in the equivalent form I |x←0 ∨ · · · ∨
I |x←2p−1 where I |x←i denotes I with x replaced by the constant i .

The procedure that computes ∃x .C3 (where C3 is obtained from QE1_Layer2) using
techniques mentioned in this subsection is called QE1_Layer3 (see Algorithm 1). Initially,
theLMDsand the singleLME in the conjunction are converted toLMIs using the equivalences
(t1 = t2) ≡ (t1 ≥ t2)∧(t1 ≤ t2) and (t1 �= t2) ≡ ¬(t1 = t2). This in general yields a Boolean
combination of LMCs ϕ1. If ϕ1 is a conjunction of LMIs coefficient-matched w.r.t. x , then
∃x .ϕ1 is computed using the modified FM elimination in Lemma 6. Otherwise, ∃x .ϕ1 is
computed either by converting ϕ1 to coefficient-matched form w.r.t. x , followed by QE from
the resulting Boolean combination of LMCs, or by model enumeration.

Analysis of complexity Consider a conjunction of LMCs with a subset of variables in its
support to be eliminated. Let n be the number of LMCs in the conjunction, v be the number
of variables in its support, and e be the number of variables to be eliminated. Note that Layer3
resorts tomodel enumeration in theworst case. Consider the elimination of the first quantified
variable, say, x1 by model enumeration.

Elimination of x1 by model enumeration involves creating 2p copies of the conjunction,
and then replacing x1 by a constant in each copy. Replacing x1 by constant and then sim-
plifying takes O(n) arithmetic operations in the worst-case for each copy. Assuming that
each arithmetic operation on p-bit numbers take time O(Q(p)) in the worst-case, where
p ≤ Q(p) ≤ p3, elimination of x1 from each copy hence has a worst-case time complexity
of O(n · Q(p)). Since there are 2p such copies, elimination of x1 has a worst-case time
complexity of O(n · Q(p) · 2p).

Elimination of x1 generates a formula with 2p disjuncts, where each disjunct can have n
LMCs. In a similar manner as above, it can be seen that elimination of the second quantified
variable, say, x2 has a worst-case time complexity of O(n ·Q(p) ·22·p). Proceeding like this,

123



298 Form Methods Syst Des (2016) 49:272–323

Algorithm 1: QE1_Layer3
Input: Conjunction of LMCs C , Variable to eliminate x
Output: Boolean combination of LMCs ψ equivalent to ∃x .C

1 ϕ1 := convertToLMIs(C); // convert LMEs and LMDs to LMIs
2 if ϕ1 is a coefficient-matched conjunction w.r.t. x then
3 ψ := modifiedFM(ϕ1, x); // Apply modified FM based on Lemma 6

4 else
5 if model enumeration is selected to compute ∃x . ϕ1 then
6 ψ := modelEnumerate(ϕ1, x); // Apply model enumeration

7 else
8 ϕ2 := coefficientMatch(ϕ1, x); // ϕ1 in general is a Boolean combination
9 ψ := QEFromBooleanCombination(ϕ2, x);

// Eliminate x from Boolean combination ϕ2; this recursively
// calls Project (see Section 4 for details)

10 return ψ ;

it can be seen that elimination of e quantified variables has a worst-case time complexity of
O

(
n · Q(p) · (

2p + 22·p + · · · 2e·p)), which reduces to O(n · Q(p) · 2(e+1)·p).
After elimination of e variables, we have a formulawith 2e·p disjuncts, where each disjunct

can have n LMCs. Writing each disjunct involving n LMCs takes O(n · v · p) time. Hence
writing the result takes O(n · v · p · 2e·p) time. Therefore Layer3 has a worst-case time
complexity of O(n · Q(p) · 2(e+1)·p + n · v · p · 2e·p).
3.6 Project: combining layers

Recall that QE1_Layer1, QE1_Layer2, and QE1_Layer3 try to eliminate a single quantifier
from a conjunction of LMCs. These procedures can be extended to eliminate multiple quan-
tifiers by invoking them iteratively. Thus we have procedures Layer1, Layer2, and Layer3 -
extensions of QE1_Layer1, QE1_Layer2, and QE1_Layer3 respectively, to eliminate multi-
ple quantifiers.

Algorithm 2: Project
Input: Conjunction of LMCs A, Set of variables to eliminate X
Output: Boolean combination of LMCs ψ equivalent to ∃X. A

1 ϕ1 := Layer1(A, X ); // for each x ∈ X, Apply QE1_Layer1
2 if ϕ1 has no quantifiers then
3 ψ := ϕ1;

4 else
// Let ϕ1 ≡ A1 ∧ ∃Y. B

5 ϕ2 := Layer2(B, Y ); // for each x ∈ Y, Apply QE1_Layer2
6 if ϕ2 has no quantifiers then
7 ψ := A1 ∧ ϕ2;

8 else
// Let ϕ2 ≡ A2 ∧ ∃Z .C

9 ϕ3 := Layer3(C , Z ); // for each x ∈ Z, Apply QE1_Layer3
10 ψ := A1 ∧ A2 ∧ ϕ3;

11 return ψ ;

123



Form Methods Syst Des (2016) 49:272–323 299

We now present the overall QE algorithm Project (see Algorithm 2) for computing ∃X.A,
where A is a conjunction of LMCs over a set of variables V such that X ⊆ V . Initially
Project tries to compute ∃X.A using Layer1. This reduces ∃X.A to an equivalent conjunction
of LMCs ϕ1. If all variables in X are eliminated by Layer1, then ϕ1 is free of quantifiers. In
this case, ∃X.A is equivalent to ϕ1, and Project returns ϕ1. Otherwise, ϕ1 is equivalent to the
conjunction of A1 and ∃Y.B, where A1, B are conjunctions of LMCs, Y ⊆ X , and X \ Y
is the subset of variables in X that are eliminated by Layer1. Project then tries to compute
∃Y.B using Layer2.

Layer2 reduces ∃Y.B to an equivalent conjunction of LMCs ϕ2. If all variables in Y are
eliminated by Layer2, then ϕ2 is free of quantifiers. In this case ∃X.A is equivalent to A1∧ϕ2,
and Project returns A1 ∧ϕ2. Otherwise, ϕ2 is equivalent to the conjunction of A2 and ∃Z .C ,
where A2, C are conjunctions of LMCs, Z ⊆ Y , and Y \ Z is the subset of variables in Y
that are eliminated by Layer2. Project calls Layer3 to compute ∃Z .C . Layer3 computes ϕ3,
a Boolean combination of LMCs equivalent to ∃Z .C , and Project returns A1 ∧ A2 ∧ ϕ3.

Let x be the variable being eliminated. Line-8 of QE1_Layer3 generates a Boolean
combination of LMCs ϕ2 coefficient-matched w.r.t. x . Line-9 of QE1_Layer3 then calls
QEFromBooleanCombination in order to eliminate x from ϕ2. This eventually gets reduced
to eliminating x from a bunch of conjunctions of LMCs. Eliminating x from each such con-
junction of LMCs results in a new recursiveProject call. Because of this feedback, the control
flow inside Project is not linear.

Note that each new recursive Project call may in turn call QE1_Layer3. However it can
be observed that this mutual recursion between QE1_Layer3 and Project does not result
in infinite recursion. To see this, note that in each of the recursive Project calls, all LMIs
involving x are coefficient-matched w.r.t. x . Hence x will be certainly eliminated by Layer1,
Layer2, ormodifiedFM inside these recursiveProject calls. This guarantees that the recursion
terminates.

4 Extending QE to Boolean combinations

Algorithm Project described above eliminates a set of variables from a conjunction of LMCs.
In this section, we explore approaches for extending Project to Boolean combinations of
LMCs.

As mentioned in Sect. 2, the problem of extending a QE algorithm for conjunctions of
constraints to Boolean combinations of constraints is encountered in other theories such as
linear real arithmetic and linear integer arithmetic as well. Among the techniques to solve this
problem for these theories (see Sect. 2.1), the work by Chaki et. al. in [12] proposes a decision
diagram based algorithm for QE from formulas in the theory of Octagons and the work by
Monniaux in [44] proposes an SMT solving based algorithm for extending Fourier–Motzkin
to arbitrary Boolean combinations of constraints in linear real arithmetic. The approaches for
extending Project to Boolean combinations of LMCs described in this section are motivated
by the ideas introduced in these works.

4.1 Decision diagram based approach

We introduce a data structure called Linear Modular Decision Diagram (LMDD) that rep-
resents Boolean combinations of LMCs. LMDDs are BDDs [10] with nodes labeled with
LMEs or LMIs. The problem we wish to solve in this subsection can be formally stated

123



300 Form Methods Syst Des (2016) 49:272–323

as follows. Given an LMDD f representing a Boolean combination of LMCs over a set of
variables V , we wish to compute an LMDD g equivalent to ∃X. f , where X ⊆ V .

The algorithms presented in this subsection use the following helper functions: a) Vars:
returns the set of variables in an LMC, b) getConjunct: computes the conjunction of LMCs in
a given set, c) isUnsat: determines if the conjunction of LMCs in a given set is unsatisfiable,
d) createLMDD: creates an LMDD from a Boolean combination of LMCs, e) AND, OR,
NOT, ITE: performs the basic operations on LMDDs indicated by their names. We denote a
non-terminal LMDD node f as (P( f ), H( f ), L( f )), where P( f ) is the LME/LMI labeling
the node, and H( f ) and L( f ) are the high child and low child respectively as defined in [10].

A straightforward algorithm to compute ∃X. f is to apply Project to each path originating
from the root of f . We call this algorithm All_Path_QElim (see Algorithm 3). To compute
∃X. f , we call All_Path_QElim with arguments f , { } and X . All_Path_QElim performs a
recursive traversal of f collecting the set of LMCs S containing any of the variables in X that
it encountered along the path from the root of f . If the path leads to a 1-terminal and if the
conjunction Cs of LMCs in S is theory-consistent, then Project is called to compute ∃X.Cs .

Algorithm 3: All_Path_QElim
Input: LMDD f , Set of LMCs S, Set of variables to eliminate X
Output: LMDD for ∃X. ( f ∧ Cs ), where Cs is the conjunction of LMCs in S

1 if f = 0 or isUnsat(S) then
2 return 0;

3 if f = 1 then // f is theory-consistent 1-terminal
4 Cs := getConjunct(S);
5 π := Project(Cs , X );// π ≡ ∃X.Cs
6 return createLMDD(π );// π ≡ ∃X. ( f ∧ Cs )

// traverse down
7 c := P( f );
8 if Vars(c) ∩X == { } then // c is free of variables to eliminate
9 return ITE(c, All_Path_QElim(H( f ), S, X ), All_Path_QElim(L( f ), S, X ));

10 else // c contains variables to eliminate
11 return OR(All_Path_QElim(H( f ), S ∪ {c}, X ), All_Path_QElim(L( f ), S ∪ {¬c}, X ));

As observed in [11,12], because of the dependence of the result of a recursive call on the
context S, if the same LMDD node is encountered following two different paths, then the
results of the calls are not the same in general. Hence All_Path_QElim is not amenable to
dynamic programming, and the number of recursive calls is linear in the number of paths in
f , which can be exponential in the number of nodes in f .
In the following discussion we present a more efficient algorithmQE_LMDD to compute

∃X. f . QE_LMDD makes use of an algorithm called QE1_LMDD that eliminates a single
variable x from f (see Algorithm 4). To compute ∃x . f , we callQE1_LMDDwith arguments
f , { } and x . QE1_LMDD performs a recursive traversal of the LMDD f collecting the set
of LMCs Sx containing x that it encountered along the path from f .

In general, QE1_LMDD ( f , Sx , x) computes an LMDD for ∃x .( f ∧ CSx ), where CSx
denotes the conjunction of LMCs in Sx . Let Ex be the set of LMEs in Sx . Let each LME ei
in Ex be of the form 2ki · x = ti , where ki = κ(x, ei ) and 1 ≤ i ≤ n (recall the definition of
κ from Sect. 3.1). Without loss of generality, let k1 be the minimum of k1, . . . , kn . Let g be
any internal non-terminal node of f represented as (P(g), H(g), L(g)). Let us denote P(g)
by c. It can be observed that if c has x in its support, then c can be simplified by replacing the
occurrences of 2k1 · x in it by t1. Let c′ be the simplified LMC. Note that if κ(x, c) ≥ k1, then

123



Form Methods Syst Des (2016) 49:272–323 301

Algorithm 4: QE1_LMDD
Input: LMDD f , Set of LMCs Sx , Variable to eliminate x
Output: LMDD for ∃x . ( f ∧ CSx ), where CSx is the conjunction of LMCs in Sx

1 if f = 0 or isUnsat(Sx ) then
2 return 0;

3 if f = 1 then // theory-consistent 1-terminal
4 CSx := getConjunct(Sx );
5 π := Project(CSx , {x});// π ≡ ∃x .CSx
6 return createLMDD(π );// π ≡ ∃x . ( f ∧ CSx )

// simplification using LMEs
7 Ex := set of LMEs in Sx ;
8 if Ex �= { } then
9 e1 := selectLME(Ex );

10 f ′ := simplifyLMDD( f , e1, x);
11 if f ′ is free of x then
12 CSx := getConjunct(Sx );
13 π := Project(CSx , {x});// π ≡ ∃x .CSx
14 return AND( f ′, createLMDD(π ));// f ′ ∧ π ≡ ∃x . ( f ∧ CSx )

15 else
16 f ′ := f ;

// traverse down
17 c := P( f ′);
18 if c is free of x then
19 return ITE(c, QE1_LMDD(H( f ′), Sx , x), QE1_LMDD(L( f ′), Sx , x));
20 else
21 return OR(QE1_LMDD(H( f ′), Sx ∪ {c}, x), QE1_LMDD(L( f ′), S ∪ {¬c}, x));

c′ we get, is free of x . Thus, if κ(x, c) ≥ k1, then g can be simplified to (c′, H(g), L(g)),
where c′ is free of x .

We call the procedure that performs the selection of LME with the minimum κ among
the LMEs in Ex as selectLME. The Procedure simplifyLMDD (see Algorithm 5) performs
simplification of f using the selected LME as described above. The procedure simplifyLMC
in Algorithm 5 simplifies c to c′ using the selected LME.

Algorithm 5: simplifyLMDD

Input: LMDD f , LME e1 : 2k1 · x = t1, Variable to eliminate x
Output: LMDD f simplified using e1

1 if f = 0 or f = 1 then
2 return f ;

3 c := P( f );
4 if c is free of x then
5 return ITE(c, simplifyLMDD(H( f ), x , e1), simplifyLMDD(L( f ), x , e1));

6 else
7 c′ := simplifyLMC(c, e1, x);// if κ(x, c) ≥ k1, then c′ is free of x
8 return ITE(c′, simplifyLMDD(H( f ), x , e1), simplifyLMDD(L( f ), x , e1));

If simplifyLMDD is successful in eliminating all occurrences of variable x using the
selected LME, then it returns a simplified LMDD f ′ such that ∃x .( f ∧CSx ) is equivalent to
f ′ ∧ ∃x .(CSx ). Note that ∃x .(CSx ) can be computed by Project. In this case, QE1_LMDD

123



302 Form Methods Syst Des (2016) 49:272–323

Fig. 3 Example for QE1_LMDD

returns without any further recursive calls. If simplifyLMDD is unable to eliminate all occur-
rences of variable x , then QE1_LMDD proceeds by recursively traversing the simplified
LMDD f ′.

Example All LMCs in this example have modulus 8. Let f be the LMDD shown on the left
in Fig. 3. Suppose we wish to compute ∃x . f usingQE1_LMDD. Note thatQE1_LMDD calls
simplifyLMDD with arguments H( f ), (3x + 2y = 0) and x . The LME (3x + 2y = 0) is
equivalent to (x = 2y). simplifyLMDD eliminates all occurrences of x in H( f ) using (x =
2y), and thus simplifies H( f ) as shown on the right in Fig. 3. Let g be the simplified LMDD,
which is free of x (shown in different colour in Fig. 3). Notice that ∃x .(H( f )∧ (x = 2y)) is
equivalent to g∧∃x .(x = 2y). Since∃x .(x = 2y) is true,∃x .(H( f )∧(x = 2y)) is equivalent
to g. However, L( f ) cannot be simplified in this manner, as there are no LMEs involving
x in its context. QE1_LMDD performs traversal of L( f ), and calls Project to compute
∃x .((3x + 2y �= 0) ∧ (2x + n = 0)). Project computes ∃x .((3x + 2y �= 0) ∧ (2x + n = 0))
as (4n = 0). Hence the final result is LMDD for g ∨ (4n = 0).

It can be observed that if the same LMDD node is encountered with the same LME
following two different paths, then the results of the calls to simplifyLMDD must be the
same. Hence simplifyLMDD can be implemented with dynamic programming. Moreover,
although the result of each recursive call to QE1_LMDD depends on the context Sx , the
number of LMCs in Sx is usually very small, as only the LMCs containing x are collected in
Sx . Hence QE1_LMDD is still amenable to dynamic programming.

QE1_LMDD can be repeatedly invoked to compute ∃X. f . This is implemented in the algo-
rithm QE_LMDD. The order in which variables are selected for elimination in QE_LMDD
has a crucial impact on the sizes of the intermediate and final LMDDs. In our ordering
scheme, we selected the variable occurring in the least number of LMDD nodes as the next
variable to be eliminated. Intuitively, this ordering scheme usually results in smaller contexts
(i.e., smaller Sx ’s), and more opportunities for dynamic programming.

123



Form Methods Syst Des (2016) 49:272–323 303

In practice, the strategy of eliminating one variable at a time and simplification of LMDDs
using the LMEs in the context provide significant opportunities for reuse of results through
dynamic programming. As a result of these, QE_LMDD in practice clearly outperforms
All_Path_QElim, as also demonstrated by our experiments.

4.2 SMT solving based approach

In this subsection, we present an algorithmQE_SMT (see Algorithm 6) which is an extension
of the algorithm proposed in [44]. Given a Boolean combination of LMCs ϕ over a set of
variables V , QE_SMT computes a Boolean combination of LMCs ψ equivalent to ∃X.ϕ,
where X ⊆ V . Notice thatQE_SMT involves All-SMT loop with optimizations as suggested
in [44].

Algorithm 6: QE_SMT
Input: Boolean combination of LMCs ϕ, Set of variables to eliminate X
Output: Boolean combination of LMCs ψ equivalent to ∃X. ϕ

1 H := ϕ;
2 ψ := false;
3 while H is satisfiable do
4 m := a solution of H ;// m |� H and m |� ϕ

5 C := Generalize1(ϕ, m);// C ⇒ ϕ

6 C ′ := Generalize2(ϕ, C);// C ⇒ C ′ and C ′ ⇒ ϕ

7 π := Project(C ′, X );// π ≡ ∃X.C ′
8 ψ := ψ ∨ π ;
9 H := H ∧ ¬π ;

10 return ψ ;// ψ ≡ ∃X. ϕ

Algorithm 7: Generalize1
Input: Boolean combination of LMCs ϕ, A solution m of ϕ

Output: A conjunction C of LMCs such that C ⇒ ϕ

1 S := set of LMCs in ϕ;
2 C := true;
3 for c ∈ S do
4 if m |� c then
5 C := C ∧ c;

6 else
7 C := C ∧ ¬c;

8 return C ;

Each iteration of the All-SMT loop in Algorithm 6 finds a solutionm of H . Note thatm is
also a solution of ϕ. Generalize1 (see Algorithm 7, originally proposed in [44]) is then used
for generalizing m to a conjunction of LMCs C such that C ⇒ ϕ. Generalize1 computes
C as follows. First C is initialized to true. Each LMC c in ϕ is then evaluated with values
given to variables in its support as per m. If c evaluates to true under m, i.e., m |� c, then
c is conjoined with C . Otherwise, if c evaluates to false under m, i.e., m |� ¬c, then ¬c is
conjoined with C . It is easy to see that the conjunction C returned implies ϕ.

Generalize2 is used for further generalizing C by dropping unnecessary constraints from
C . HenceC ′ computed byGeneralize2 is such thatC ⇒ C ′ andC ′ ⇒ ϕ. The implementation
of Generalize2 in [44] works as follows. For each constraint c in C , it is checked to see if

123



304 Form Methods Syst Des (2016) 49:272–323

C ⇒ ϕ remains valid even after dropping c from C . If C ⇒ ϕ remains valid even after
dropping c fromC , then c is unnecessary and is dropped fromC . Otherwise if the implication
C ⇒ ϕ becomes invalid after dropping c fromC , then c is not dropped fromC . Checking the
validity ofC ⇒ ϕ involves an SMT solver call. However, in our experiments with LMCs, we
have found that this implementation of Generalize2 is prohibitively time consuming as the
number of SMT solver calls is equal to the number of constraints in C . Our implementation
of Generalize2 makes use of a cheaper technique to achieve generalization.

The technique is based on analysis of the Boolean skeleton of the formula ϕ. Boolean
skeleton P of ϕ is the representation of Boolean structure of ϕ as a Directed Acyclic Graph
(DAG), with leaves representing LMCs in ϕ and internal nodes as ¬, ∧, and ∨. As every
LMC in ϕ appears in C in its original or negated form, C effectively gives an assignment of
Boolean values to the leaves of P . We now perform a bottom-up traversal of P to evaluate
P using the values assigned to the leaves. Let B(n) be the value assigned to a node n in P
during the evaluation. For each node n, we find a subset S(n) of LMCs inC that are sufficient
to evaluate n to B(n). Table 1 shows how B(n) and S(n) are computed for the different nodes
in P under different conditions. Let S(r) be the set of LMCs found in this way for the root r
of P . Then C ′ is computed as the conjunction of LMCs in S(r). It is easy to see that C ⇒ C ′
and C ′ ⇒ ϕ.

Example All LMCs in this example have modulus 8. Let ϕ be (y = 4x) ∧ ((x �= z) ∨ (x �=
w)). Suppose we wish to compute ∃X.ϕ using QE_SMT, where X = {x}. Let m : x = 1,
y = 4, z = 1, w = 0 be the solution of ϕ from SMT solver in the first iteration of the loop
in QE_SMT. Note that Generalize1 generalizes m to the conjunction C : (y = 4x) ∧ (x =
z) ∧ (x �= w). Generalize2 then generalizes C to C ′ : (y = 4x) ∧ (x �= w). To see how
Generalize2works, observe that the Boolean skeleton P of ϕ is n1 ∧ (n2 ∨n3), where n1, n2,
n3 denote (y = 4x), (x �= z), (x �= w) respectively. From Table 1, we have, B(n1) = true,
B(n2) = false, and B(n3) = true. Also S(n1) = {n1}, S(n2) = {¬n2}, and S(n3) = {n3}.
Let n4 be the node (n2 ∨ n3). Since B(n2) = false, B(n3) = true, and n4 is (n2 ∨ n3), we
have B(n4) = true. Note that B(n3) = true is sufficient to make B(n4) = true. We have
S(n4) = S(n3) = {n3} as per Table 1. Let r be the root node of P , i.e., the node n1 ∧ n4.
Since B(n1) = true, B(n4) = true, we have B(r) = true. Since r is n1∧n4, both B(n1) and

Table 1 Computation of B(n) and S(n) inside Generalize2

node n Condition B(n) S(n)

LMC c c appears in C true {c}
¬c appears in C f alse {¬c}

¬n1 B(n1) = true f alse S(n1)

B(n1) = f alse true S(n1)

n1 ∧ n2 B(n1) = true ∧ B(n2) = true true S(n1) ∪ S(n2)

B(n1) = true ∧ B(n2) = f alse f alse S(n2)

B(n1) = f alse ∧ B(n2) = true f alse S(n1)

B(n1) = f alse ∧ B(n2) = f alse f alse Smaller among S(n1) and S(n2)

n1 ∨ n2 B(n1) = true ∧ B(n2) = true true Smaller among S(n1) and S(n2)

B(n1) = true ∧ B(n2) = f alse true S(n1)

B(n1) = f alse ∧ B(n2) = true true S(n2)

B(n1) = f alse ∧ B(n2) = f alse f alse S(n1) ∪ S(n2)

123



Form Methods Syst Des (2016) 49:272–323 305

Fig. 4 Example for hybrid
approach

B(n4) should be true for B(r) to be true. We have S(r) = S(n1)∪ S(n4) = {n1, n3}. Finally
C ′ is n1 ∧ n3, i.e., (y = 4x) ∧ (x �= w). Project computes ∃x .C ′ as π : (2y = 0). Note that
ϕ ∧ ¬π is unsatisfiable, and the algorithm terminates. The result of QE is thus (2y = 0).

4.3 Hybrid approach

The factors that contribute to the success of the LMDD based approach are the presence of
large shared sub-LMDDs and the strategy of eliminating one variable at a time. Both factors
contribute to significant opportunities for reuse of results through dynamic programming.
The success of the SMT solving based approach is attributable primarily to pruning of the
solution space achieved by interleaving of projection andmodel enumeration. In the following
discussion, we present a hybrid approach that tries to combine the strengths of these two
approaches.

We illustrate the idea with the help of an example. All LMCs in this example havemodulus
8. Let f be the LMDD shown in Fig. 4. Let f1, f2, f3, and f4 be the internal nodes of
the LMDD as shown in Fig. 4. Suppose we wish to compute ∃x . f . Note that ∃x . f is the
disjunction of three sub-problems: (i) ∃x .( f3 ∧ (y = 4x) ∧ (x �= z)), (ii) ∃x .( f2 ∧ (y =
4x) ∧ (x = z)), and (iii) ∃x .( f4 ∧ (y �= 4x)). Also, notice that ∃x . f is actually equivalent to
(2y = 0), the result of the first sub-problem ∃x .( f3 ∧ (y = 4x) ∧ (x �= z)). Hence it is not
necessary to compute the sub-problems ∃x .( f2∧(y = 4x)∧(x = z)) and ∃x .( f4∧(y �= 4x)).
We call such sub-problemswhose computation is not necessary as “redundant” sub-problems.
We can infer that the sub-problems ∃x .( f2∧(y = 4x)∧(x = z)) and ∃x .( f4∧(y �= 4x)) are
redundant, from the fact that f2∧(y = 4x)∧(x = z)∧(2y �= 0) and f4∧(y �= 4x)∧(2y �= 0)
are unsatisfiable.

In general, suppose we wish to compute ∃X. f , where f denotes an LMDD representing
a Boolean combination of LMCs over a set of variables V and X ⊆ V . We can derive a set
of sub-problems of the form ∃X.( fi ∧ Ci ), for 1 ≤ i ≤ n, where fi denotes an LMDD and
Ci denotes a conjunction of LMCs, such that ∃X. f is equivalent to

∨n
i=1 (∃X.( fi ∧ Ci )).

123



306 Form Methods Syst Des (2016) 49:272–323

Let g denote
∨m

i=1 (∃X.( fi ∧ Ci )), where 1 ≤ m < n. A sub-problem ∃X.( f j ∧C j ), where
m + 1 ≤ j ≤ n, is redundant if f j ∧ C j ∧ ¬g is unsatisfiable.

Our hybrid algorithm QE_Combined (see Algorithm 8) makes use of this idea to identify
redundant sub-problems. Initially,QE_Combined selects a satisfiable path π in the LMDD f
using a function selectPath. Subsequently, the algorithm simplify (seeAlgorithm9) is invoked,
which traverses the path π , in order to split f into an equivalent disjunction

∨n
i=1( fi ∧Ci ),

where fi denotes an LMDD andCi denotes a conjunction of LMCs. In Algorithm 9, ( fi ∧Ci )

is represented as a pair 〈 fi ,Ci 〉.
Algorithm 8: QE_Combined
Input: LMDD f , Set of variables to eliminate X
Output: Boolean combination of LMCs g equivalent to ∃X. f

1 π := selectPath( f );
2 S := { };// set of sub-problems
3 C := true;
4 simplify( f , π , C , S);
5 g := false;
6 for each 〈 fi ,Ci 〉 ∈ S do
7 if fi ∧ Ci ∧ ¬g is satisfiable then
8 h := QE_LMDD_Mod( fi , Ci , X );
9 g := g ∨ h;

10 return g;

In order to split LMDD f , simplify is called with arguments f , π , C and S. Note that
C is initialized to true and S initialized to { }. simplify collects ( fi ∧ Ci ), for 1 ≤ i ≤ n
in the set S in the following way. The path π is traversed recursively starting from the root
node of f , conjoining with C all LMCs encountered on π . In each recursive call, if f is
a terminal, then 〈 f,C〉 is inserted in S. Otherwise if f is a non-terminal and node H( f )
appears in π , then 〈L( f ),C ∧ ¬P( f )〉 is inserted in S. Similarly if f is a non-terminal and
node L( f ) appears in π , then 〈H( f ),C ∧ P( f )〉 is inserted in S. Figure 5 illustrates the
splitting scheme followed by simplify. For example, in the case of LMDD in Fig. 4, using
the path (y = 4x) → (x �= z) → 1 as π , splits the LMDD into (i) 〈 f3, (y = 4x)∧ (x �= z)〉,
(ii) 〈 f2, (y = 4x) ∧ (x = z)〉, and (iii) 〈 f4, (y �= 4x)〉.

Algorithm 9: Simplify
Input: LMDD f , Satisfiable path π ,

Conjunction C of LMCs encountered along π

Output: Set of sub-problems S
1 if f = 1 then
2 S := S ∪ {〈 f , C〉};
3 else
4 if node H( f ) is in π then
5 S := S ∪ {〈L( f ), C ∧ ¬P( f )〉};
6 simplify(H( f ), π , C ∧ P( f ));

7 else
8 S := S ∪ {〈H( f ), C ∧ P( f )〉};
9 simplify(L( f ), π , C ∧ ¬P( f ));

123



Form Methods Syst Des (2016) 49:272–323 307

Fig. 5 Splitting scheme in
simplify

The function selectPath selects the path π in the following way. First, a solutionm of f is
generated using an SMT solver call. The root node of f is selected as the first node in π . The
LMC P( f ) labeling the root node of f is then evaluated with values given to variables in its
support as per m. If P( f ) evaluates to true under m, then H( f ) is selected as the next node
in π . Otherwise if P( f ) evaluates to false under m, then L( f ) is selected as the next node
in π . The LMC labeling the child of f thus selected as the next node in π is then evaluated
under m. These steps are iteratively repeated until 1-terminal is encountered, each iteration
adding a new node to π . Note that encountering 1-terminal is guaranteed sincem is a solution
of f .

QE_Combined now computes g ≡ ∃X. f as
∨n

i=1 (∃X.( fi ∧ Ci )) in the following
manner. In order to compute ∃X.( fi ∧ Ci ), QE_Combined makes use of an algorithm
QE_LMDD_Mod. QE_LMDD_Mod is a variant of QE_LMDD that eliminates a set of vari-
ables from an LMDD conjoined with a set of LMCs. QE_Combined initially sets g to false.
In the first iteration of the loop, the satisfiability of f1∧C1 is checked. If f1∧C1 is satisfiable,
then g is set to ∃X.( f1 ∧ C1). Otherwise if f1 ∧ C1 is unsatisfiable, then the sub-problem
∃X.( f1 ∧ C1) is redundant and is not computed. In the second iteration, the satisfiability of
f2 ∧C2 ∧¬g is checked. If f2 ∧C2 ∧¬g is satisfiable, then ∃X.( f2 ∧C2) is computed and is
disjoined with g. Otherwise if f2 ∧C2 ∧¬g is unsatisfiable, then ∃X.( f2 ∧C2) is redundant
and is not computed. This loop is repeated until all the sub-problems are considered. It can
be observed that g is equivalent to

∨i
j=1

(∃X.( f j ∧ C j )
)
after the i th iteration of the loop.

Hence g is equivalent to
∨n

j=1

(∃X.( f j ∧ C j )
)
when the loop is terminated.

In our example, in the first iteration of the loop, the satisfiability of f3∧(y = 4x)∧(x �= z)
is checked. Since f3 ∧ (y = 4x) ∧ (x �= z) is satisfiable, g is set to (2y = 0), the result
of ∃x .( f3 ∧ (y = 4x) ∧ (x �= z)). In the second iteration, the satisfiability of f2 ∧ (y =
4x) ∧ (x = z) ∧ (2y �= 0) is checked. f2 ∧ (y = 4x) ∧ (x = z) ∧ (2y �= 0) is unsatisfiable,
and hence ∃x .( f2 ∧ (y = 4x) ∧ (x = z)) is not computed. Similarly, in the third iteration of
the loop, the satisfiability of f4∧ (y �= 4x)∧ (2y �= 0) is checked. f4∧ (y �= 4x)∧ (2y �= 0)
is unsatisfiable, and ∃x .( f4 ∧ (y �= 4x)) is also not computed. The final result of QE is
(2y = 0).

123



308 Form Methods Syst Des (2016) 49:272–323

Note that unlikeQE_SMT,QE_Combined does not explicitly interleave projections inside
model enumeration. However disjoining the result of ∃X.( fi ∧ Ci ) with g, and computing
∃X.( fi ∧ Ci ) only if fi ∧ Ci ∧ ¬g is satisfiable, helps in avoiding the computation of
redundant sub-problems. This enables pruning the solution space of the problem, as achieved
in QE_SMT.

5 Experimental results

We performed experiments to evaluate the performance and effectiveness of our QE algo-
rithms, compare their performance with alternative QE techniques, and evaluate their utility
in formal verification.

5.1 Experimental methodology and benchmarks

All the experiments were performed on a 1.83 GHz Intel(R) Core 2 Duo machine with 2GB
memory running Linux, with a timeout of 1800 s. We implemented our own LMDD package
for carrying out QE experiments involving LMDDs. In LMDDs the following heuristic was
used to order the LMCs. We performed depth-first traversal of the DAG representations of
formulae from which the LMDDs were created. Each new LMC encountered in the traversal
was placed at the end of the current order. A similar variable ordering heuristic was used in the
experiments involvingBDDs. InProject, inside the layers, when thereweremultiple variables
to eliminate, we used a simple lexicographic variable elimination order. Moreover, inside
Layer3, the variables with constraints in coefficient-matched form were eliminated before
the variables which required transformation to Boolean combination. In all experiments,
we used simplifyingSTP as the SMT solver. simplifyingSTP was selected, because it has
a variable eliminator [27] considered as suitable for solving bit-vector formulas involving
LMEs. In experiments involvingOmegaTest, we used Pugh et al.’s implementation ofOmega
Test from [52].

The following simplification heuristics were used in the implementation. (i) The LMDs
with modulus 2 were converted to equivalent LMEs. For example, the LMD x + y �= 1
(mod 2)was converted to x+y = 0 (mod 2).We observed that this helps in easy elimination
of existentially quantified variables involved in LMCs with modulus 2. (ii) In a non-terminal
LMDD node u, if P(u) is an LME, then it is kept in a normal form 2k · x = t , where x is
the variable appearing first in lexicographical ordering between the names of variables in the
support of P(u), and k = κ(x, P(u)) (recall the definition of κ from Sect. 3.1). This allows
identification of equivalent LMEs during LMDD creation and hence more compact LMDDs.

We used a benchmark suite consisting of 198 lindd benchmarks [12] and 39 vhdl bench-
marks. Each of these benchmarks is a Boolean combination of LMCs with a subset of the
variables in their support existentially quantified.

The lindd benchmarks reported in [12] are Boolean combinations of octagonal constraints
over integers, i.e., constraints of the form a · x + b · y ≤ k where x , y are integer variables,
k is an integer constant, and a, b ∈ {−1, 1}. We converted these benchmarks to Boolean
combinations of LMCs by assuming the size of integer as 16 bits. Although these benchmarks
had no LMEs explicitly, they contained LMEs encoded as conjunctions of the form (x − y ≤
k) ∧ ¬(x − y ≤ k − 1). We converted each such conjunction to an LME x − y = k as a
preprocessing step. The total number of variables, the number of variables to be eliminated,
and the number of bits to be eliminated in the lindd benchmarks ranged from 30 to 259, 23
to 207, and 368 to 3312 respectively.

123



Form Methods Syst Des (2016) 49:272–323 309

The vhdl benchmarks were obtained in the following manner. We took a set of word-
level VHDL designs. Some of these are designs taken from ITC99 benchmark suite [22],
and the remaining are proprietary. We derived the symbolic transition relations of these
VHDL designs. The vhdl benchmarks were obtained by quantifying out a subset of internal
variables (i.e., neither input nor output of the top-levelmodule) from these symbolic transition
relations. Effectively this gives abstract transition relations of the designs. The coefficients of
the variables in these benchmarkswere largely odd. These benchmarks contained a significant
number of LMEs (arising from assignment statements in the VHDL programs). The total
number of variables, the number of variables to be eliminated, and the number of bits to be
eliminated in the vhdl benchmarks ranged from 8 to 50, 2 to 21, and 10 to 672 respectively.

Overview of ExperimentsWe performed experimental evaluation of our QE techniques in
three different ways.

1. Experimental evaluation at the level of conjunctions of LMCs This involved evaluation of
performance and effectiveness of layers in Project, and comparison of the performance
of Project with alternative QE techniques based on bit-blasting and conversion to linear
integer arithmetic.

2. Experimental evaluation at the level of Boolean combinations of LMCs This involved
evaluation of performance of the algorithms QE_SMT, QE_LMDD, and QE_Combined
for QE from Boolean combinations of LMCs. We then compared the performance of
QE_SMT with alternative QE techniques based on bit-blasting and conversion to linear
integer arithmetic.

3. Evaluation of utility of our techniques in verification We selected a set of word-level
VHDL designs, and derived their symbolic transition relations. We used QE_LMDD to
compute abstract transition relations of these designs by quantifying out a subset of inter-
nal variables from the symbolic transition relations. We then compared the performance
of bounded model checking using these abstract transition relations with that of bounded
model checking using the original transition relations.We also evaluated the utility of our
QE techniques in solving conjunctions of LMCs and for computing Craig interpolants
for Boolean combinations of LMCs.

All benchmarks, implementations, and experimental data can be accessed from https://
github.com/ajithkjohn123/BenchmarksImplementationExpdataForQE.git.

5.2 Evaluation of QE techniques for conjunctions of LMCs

5.2.1 Evaluation of layers in project

We performed QE from the benchmarks using the algorithms QE_SMT, QE_LMDD, and
QE_Combined, and analyzed theProject calls that were generated during this process. Recall
that Layer3 involves transforming a conjunction of LMCs to a Boolean combination of LMCs
andQEfrom thisBoolean combination.Asmentioned inSect. 3.6, this results in new recursive
Project calls. Hence two kinds of Project calls were generated while performing QE from
the benchmarks: (i) the initial/original Project calls, and the (ii) recursive Project calls. In
our analysis, we focussed only on the initial/original Project calls. The recursive Project
calls were considered as part of Layer3. In the subsequent discussion, whenever we mention
“Project calls”, it refers to the initial/original Project calls, unless stated otherwise.

The total number of Project calls generated from the lindd and vhdl benchmarks were
52,836 and 8027 respectively. Statistics of these Project calls are shown in Table 2. The
contribution of a layer is measured as the ratio of the number of quantifiers eliminated by

123

https://github.com/ajithkjohn123/BenchmarksImplementationExpdataForQE.git
https://github.com/ajithkjohn123/BenchmarksImplementationExpdataForQE.git


310 Form Methods Syst Des (2016) 49:272–323

Table 2 Details of Project calls (figures are per Project call)

Type Vars Qnt LMIs LMEs LMDs Contr Time Pr

L1 L2 L3 L1 L2 L3

lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0, 8.1) 51 44 5 3 5 13,149 674

vhdl 8.6 7.2 (4, 0, 0.3) (16, 0, 5.8) (31, 0, 2.0) 95 4.5 0.5 2 6 161 3

Vars: average number of variables, Qnt: average number of quantifiers, LMIs: (maximum, minimum, average)
number of LMIs, LMEs: (maximum, minimum, average) number of LMEs, LMDs: (maximum, minimum,
average) number of LMDs, Contr: average contribution of a layer, L1: Layer1, L2: Layer2, L3: Layer3, Pr:
Project, Time: average time spent per quantifier eliminated in milliseconds

 0

 20

 40

 60

 80

 100

 120

 0  20000  40000  60000

La
ye

r1
 C

on
tri

bu
tio

n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0  20000  40000  60000

La
ye

r2
 C

on
tri

bu
tio

n

Project Call

a  b

Fig. 6 Contribution of a Layer1 and b Layer2 for lindd benchmarks

Fig. 7 Contribution of Layer3
for lindd benchmarks

 0

 20

 40

 60

 80

 100

 120

 0  20000  40000  60000

La
ye

r3
 C

on
tri

bu
tio

n

Project Call

the layer to the number of quantifiers to be eliminated in the Project call multiplied by 100.
The time spent per quantifier eliminated for a layer is measured as the ratio of the time spent
inside the layer to the number of quantifiers eliminated by the layer. The contributions of the
layers and the times spent by the layers per quantifier eliminated for individual Project calls
from lindd benchmarks are shown in Figs. 6, 7 and 10, and those for individual Project calls
from vhdl benchmarks are shown in Figs. 8, 9 and 11. The Project calls here are sorted in
increasing order of contribution from Layer1.

Layer1 and Layer2 were cheap and eliminated a large fraction of quantifiers in both
lindd and vhdl benchmarks. This underlines the importance of our layered framework. The
relatively large contribution of Layer1 in the Project calls from vhdl benchmarks was due
to significant number of LMEs in these problem instances. Layer3 was found to be the most
expensive layer. Most of the time spent in Layer3 was consumed in the recursive Project

123



Form Methods Syst Des (2016) 49:272–323 311

 0

 20

 40

 60

 80

 100

 120

 0  2000  4000  6000  8000  10000

La
ye

r1
 C

on
tri

bu
tio

n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0  2000  4000  6000  8000  10000

La
ye

r2
 C

on
tri

bu
tio

n

Project Call

a  b

Fig. 8 Contribution of a Layer1 and b Layer2 for vhdl benchmarks

Fig. 9 Contribution of Layer3
for vhdl benchmarks

 0

 20

 40

 60

 80

 100

 120

 0  2000  4000  6000  8000  10000

La
ye

r3
 C

on
tri

bu
tio

n

Project Call

Fig. 10 Cost of layers for lindd
benchmarks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  20000  40000  60000

Ti
m

e 
P

er
 Q

ua
nt

ifi
er

 (m
ill

i s
ec

s)

Project Call

Layer 1
Layer 2
Layer 3

calls. No Layer3 call in our experiments required model enumeration. The large gap in the
time per quantifier in Layer2 and that in Layer3 for both sets of benchmarks points to the
need for developing additional cheap layers between Layer2 and Layer3 as part of future
work.

5.2.2 Comparison with alternative QE techniques

We compared the performance of Project with QE based on linear integer arithmetic using
Omega Test [8,51], and also with QE based on bit-blasting [40,53]. We implemented the
following algorithms for this purpose: (i) Layer1_Blast: this procedure first quantifies out
the variables using Layer1 (recall that Layer1 is a simple extension of the work in [27]),
and then uses bit-blasting and BDD based bit-level QE [53] for the remaining variables.

123



312 Form Methods Syst Des (2016) 49:272–323

Fig. 11 Cost of layers for vhdl benchmarks

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

La
ye

r1
_B

la
st

 T
im

e

Project Time

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

La
ye

r1
_O

T 
Ti

m
e

Project Time

a  b

Fig. 12 Plots comparing a Project and Layer1_Blast and b Project and Layer1_OT (all times are in millisec-
onds)

(ii) Layer1_OT, Layer2_OT : Layer1_OT first quantifies out the variables using Layer1, and
then uses conversion to linear integer arithmetic and Omega Test for the remaining variables.
Layer2_OT first quantifies out the variables using Layer1 followed by Layer2, and then
uses conversion to linear integer arithmetic and Omega Test for the remaining variables.
Layer2_OT helps us to compare the performance of Layer3 with that of Omega Test.

We collected 100 instances of QE problem for conjunctions of LMCs arising from
QE_SMT when QE is performed on the benchmarks. We performed QE from these
conjunction-level problem instances using Project, Layer1_Blast, Layer1_OT, and
Layer2_OT. Fig. 12a, b compare the QE times taken by Project against those taken by
Layer1_Blast and Layer1_OT for each of these conjunction-level problem instances.

Project could successfully eliminate quantifiers in all of the 100 instances. Layer1_Blast
wasunsuccessful in in 68 cases andLayer1_OT were unsuccessful in 65 cases. These cases are
indicated by the topmost points in Fig. 12a, b respectively. In most cases where Layer1_Blast
and Layer1_OT were successful, the times taken by all the three algorithmswere comparable.
However there were a few cases where Layer1_Blast and Layer1_OT performed better than

123



Form Methods Syst Des (2016) 49:272–323 313

Fig. 13 Plot comparing Layer3
and Omega Test (all times are in
milliseconds)

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

O
m

eg
a 

Te
st

 T
im

e

Layer3 Time

Project. We found that these cases involved Layer3, and most of the time consumed by
Project was spent inside Layer3.

We compared the times consumed by Layer3 in Project with those consumed by Omega
Test in Layer2_OT (see Fig. 13). There were 51 problem instances which required Layer3.
Omega Test timed out in 37 of them. In 13 of the remaining 14 cases, Omega Test performed
better than Layer3. Our analysis revealed that these cases were simpler in terms of number of
LMCs and number of variables to be eliminated. However Layer3 incurred several recursive
Project calls in these cases.

Recall that given ∃x .(C ∧ D ∧ I ), where C is a conjunction of LMCs, D is a conjunction
of LMDs and I is a conjunction of LMIs, Layer2 checks if ∃x .(C) ≡ ∃x .(C ∧ D ∧ I ) holds.
Layer2 performs this check by computing an efficiently computable under-approximation of
the number of ways in which an arbitrary solution ofC can be engineered to satisfyC∧D∧ I .
We compared the performance of Layer2with a BDD based alternative technique to perform
this check.We implemented a procedureBddBasedLayer2 for this purpose.BddBasedLayer2
computes BDDs for ∃x .(C) and ∃x .(C∧D∧ I ), and then checks if these BDDs are the same.
Note that ∃x .(C) ≡ ∃x .(C ∧ D ∧ I ) holds iff the BDDs for ∃x .(C) and ∃x .(C ∧ D ∧ I ) are
the same. We then implemented procedure ProjectWithBddBasedLayer2 which is a variant
of Project that uses BddBasedLayer2 in place of Layer2.

We performedQE from the 100 conjunction-level problem instances usingProjectWithBd-
dBasedLayer2. For each problem instance, we then compared the time consumed by Layer2
in Project with that consumed by BddBasedLayer2 in ProjectWithBddBasedLayer2 (see
Fig. 14). Layer2 outperformed the BDD based alternative technique in all the 100 problem
instances.

5.3 Evaluation of QE techniques for Boolean combinations of LMCs

5.3.1 Evaluation of QE_SMT, QE_LMDD, and QE_Combined

We measured the time taken by QE_SMT, QE_LMDD, and QE_Combined for QE from
each benchmark. For QE_LMDD and QE_Combined, this included the time to build the
initial LMDD. We observed that each approach performed better than the others for some
benchmarks (see Figs. 15, 16). Note that the points in Fig. 16 are scattered, while the points
in Fig. 15a, b are more clustered near the 45◦ line. This shows that DD and SMT based
approaches are incomparable, whereas the hybrid approach inherits the strengths of bothDD

123



314 Form Methods Syst Des (2016) 49:272–323

Fig. 14 Plot comparing Layer2
and BddBasedLayer2 (all times
are in milliseconds)

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

B
D

D
B

as
ed

La
ye

r2
 T

im
e

Layer2 Time

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
E

_C
om

bi
ne

d 
Q

E
 T

im
e

QE_SMT QE Time

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
E

_C
om

bi
ne

d 
Q

E
 T

im
e

QE_LMDD QE Time

a  b

Fig. 15 Plots comparing aQE_SMT andQE_Combined and bQE_LMDD andQE_Combined (all times are
in seconds)

Fig. 16 Plot comparing
QE_SMT and QE_LMDD (all
times are in seconds)

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

QE_SMT QE Time

123



Form Methods Syst Des (2016) 49:272–323 315

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

All_Path_QElim QE Time

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
E

_S
M

T 
Q

E
 T

im
e

QE_SMT_Mod QE Time

a  b

Fig. 17 Plots comparing a All_Path_QElim and QE_LMDD and b QE_SMT and QE_SMT_Mod (all times
are in seconds)

and SMT based approaches. Hence, given a problem instance, we recommend the hybrid
approach, unless the approach which will perform better is known a-priori.

Recall that in QE_Combined, we converted ∃X. f , where f is an LMDD, into an equiv-
alent disjunction of sub-problems, and then gave these sub-problems to QE_LMDD_Mod
separately. Our analysis revealed that this helped in identifying redundant sub-problems.
However, it was observed that splitting ∃X. f into sub-problems and computing the sub-
problems separately, reduced scope for reuse of results through dynamic programming when
compared to computing ∃X. f directly using QE_LMDD. We could also observe that using
a more eager strategy for splitting into subproblems (i.e., a strategy that generates more sub-
problems) in place of simplify, further reduced scope for reuse of results, although it improved
opportunity for identifying redundant sub-problems. On the other hand, using a less eager
strategy improved reuse of results, but gave less opportunity for identifying redundant sub-
problems. Hence, although both reuse of results and splitting into subproblems contribute
towards success of the hybrid approach, they act against each other. In our experiments, we
found that the splitting scheme in simplify achieves a trade-off between them.

Inorder to evaluate the effectiveness of our simplifications inQE_LMDD,we compared the
time taken by QE_LMDD with that taken by All_Path_QElim for QE from each benchmark
(see Fig. 17a). All_Path_QElim succeeded only in a few cases. This is not surprising, as the
LMDDs for the benchmarks contained a huge number of paths. In QE_LMDD, the single
variable elimination strategy and the simplification of LMDDsusing simplifyLMDD helped in
achieving significant reuse of results through dynamic programming. This helped in avoiding
path enumeration, which resulted in considerable performance gains over All_Path_QElim.

In order to evaluate the effectiveness of our generalization technique based on analysis of
Boolean skeleton of formulae in Generalize2, we implemented a variant of QE_SMT called
QE_SMT_Mod. QE_SMT_Mod is the same as QE_SMT except that it uses the implemen-
tation of Generalize2 as proposed in [44]. Recall from Sect. 4.2 that the implementation
of Generalize2 in [44] makes use of SMT solver calls to identify unnecessary LMCs. We
compared the time taken by QE_SMT and QE_SMT_Mod for QE from each benchmark
(see Fig. 17b). QE_SMT outperformed QE_SMT_Mod except in a few cases. On profiling,
we found that most of the time taken by QE_SMT_Mod was spent in the SMT solver calls
in Generalize2. In the few cases where QE_SMT_Mod performed better than QE_SMT, the

123



316 Form Methods Syst Des (2016) 49:272–323

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

A
ve

ra
ge

 L
ay

er
1_

B
la

st
 T

im
e

Average Project Time

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

A
ve

ra
ge

 L
ay

er
1_

O
T 

Ti
m

e

Average Project Time

a  b

Fig. 18 Plots comparing average times consumedbyaProject andLayer1_Blast andbProject andLayer1_OT
when used inside QE_SMT (all times are in milliseconds). Topmost green circles indicate the benchmarks for
which Layer1_Blast or Layer1_OT was unsuccessful. (Color figure online)

SMT solver based generalization inQE_SMT_Mod wasmore effective which helped in faster
termination of the All-SMT loop.

5.3.2 Comparison with alternative QE techniques

We wanted to understand how QE_SMT would perform if a bit-blasting or linear integer
arithmetic based alternative QE algorithm is used in place of Project. In order to do this,
we first computed the average times taken by Project for QE from conjunction-level prob-
lem instances arising from QE_SMT when QE is performed on each benchmark. We also
computed the average times taken by Layer1_Blast, Layer1_OT, and Layer2_OT for QE
from these conjunction-level problem instances. For each benchmark, we then compared the
average QE times taken by Project against those taken by Layer1_Blast and Layer1_OT (see
Fig. 18a, b). Subsequently, for each benchmark, we compared the average time consumed
by Layer3 in the Project calls with that consumed by Omega Test in the Layer2_OT calls
(see Fig. 19). For a large number of benchmarks, we observed that the bit-blasting or linear
integer arithmetic based alternative QE algorithm was unsuccessful in eliminating quanti-
fiers from the conjunction-level problem instances. These benchmarks are indicated by the
topmost green circles in Figs. 18a, b and 19. Note that, for these benchmarks we could not
compute the average times consumed by the bit-blasting or linear integer arithmetic based
alternative QE algorithm, as the algorithm was unsuccessful in eliminating quantifiers from
the conjunction-level problem instances. There were a few cases where Omega Test per-
formed better than Layer3. This was due to the relatively larger number of recursive Project
calls in these cases.

We also wanted to understand howQE_SMT would perform if the BDD based alternative
technique BddBasedLayer2 is used in place of Layer2 inside Project. In order to do this,
for each benchmark, we first computed the average time consumed by Layer2 when QE is
performed using QE_SMT. For each benchmark, we then computed the average time con-
sumed by BddBasedLayer2when BddBasedLayer2 is used in place of Layer2 inside Project.
Figure 20a compares these times. Many points corresponding to different benchmarks are
merged in Fig. 20a, since the average times consumed in Layer2 were significantly small
compared those consumed inBddBasedLayer2.We provide a comparison of the total times in

123



Form Methods Syst Des (2016) 49:272–323 317

Fig. 19 Plot comparing average
times consumed by Layer3 and
Omega Test when used inside
QE_SMT (all times are in
milliseconds). Topmost green
circles indicate the benchmarks
for which Omega Test was
unsuccessful. (Color figure
online)

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

A
ve

ra
ge

 O
m

eg
a 

Te
st

 T
im

e

Average Layer3 Time

 1

a  b

 100

 10000

 1e+06

 1  100  10000  1e+06

A
ve

ra
ge

 B
D

D
B

as
ed

La
ye

r2
 T

im
e

Average Layer2 Time

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

To
ta

l B
D

D
B

as
ed

La
ye

r2
 T

im
e

Total Layer2 Time

Fig. 20 Plot comparing a average times and b total times consumed by Layer2 and BddBasedLayer2 when
used insideQE_SMT (all times are in milliseconds). Topmost green circles indicate the benchmarks for which
BddBasedLayer2 was unsuccessful. (Color figure online)

Fig. 20b for better exposition. The plots clearly demonstrate that QE_SMT performs poorly
when the BDD based alternative technique is used in place of Layer2. Note that here again,
topmost green circles in Fig. 20a, b indicate the benchmarks for which QE was unsuccessful
when BddBasedLayer2 was used in place of Layer2.

5.4 Utility of our QE algorithms in verification

5.4.1 Utility in bounded model checking

Recall that the vhdl benchmarkswere obtainedbyquantifyingout a subset of internal variables
from the symbolic transition relations ofword-levelVHDLdesigns. The quantifier eliminated
formulae give abstract transition relations of theVHDLdesigns. In order to evaluate the utility
of our QE algorithms, we used QE_LMDD to compute these abstract transition relations,
and then used these abstract transition relations for checking safety properties of the VHDL
designs using bounded model checking.

123



318 Form Methods Syst Des (2016) 49:272–323

Table 3 Experimental results on VHDL programs

Design LOC TR N=500

NA QL

machine_1 363 (592, 22, 580) TO(TO) 52(7, 23)

machine_2 373 (594, 22, 436) TO(TO) 30(6, 1)

machine_3 383 (620, 25, 439) TO(TO) 33(6, 3)

machine_4 253 (439, 26, 677) 1471(1441) 24(2, 0)

machine_5 253 (439, 26, 509) 1443(1413) 25(2, 0)

machine_6 363 (406, 17, 64) 78(53) 17(1, 1)

machine_7 379 (440, 22, 69) 221(196) 22(1, 3)

machine_8 251 (286, 20, 157) 193(177) 13(2, 0)

machine_9 251 (286, 20, 485) 331(315) 13(2, 0)

machine_10 363 (406, 17, 420) TO(TO) 16(0, 1)

machine_11 363 (593, 22, 96) TO(TO) 40(8, 4)

machine_12 363 (406, 17, 420) TO(TO) 220(4, 187)

board_1 404 (400, 24, 194) 1442(1424) 21(12, 1)

board_2 373 (420, 24, 194) TO(TO) 14(5, 1)

board_3 503 (573, 54, 361) TO(TO) 16(5, 1)

board_4 415 (422, 28, 198) 241(223) 62(9, 2)

All times are in seconds. TO:>1800 s, LOC: lines of code, TR: transition relation details (dag size, number of
variables, number of bits), NA: without abstraction: total time (simplifyingSTP time), QL: with QE_LMDD
for abstraction: total time (QE_LMDD time, simplifyingSTP time), N: number of BMC unrollings

In order to check if the safety property holds for the first N cycles of operation, we
first unrolled the transition relation N times, and conjoined the unrolled relation with the
negation of the property. The resulting formula was then given to an SMT solver for checking
satisfiability. Next, we obtained an abstract transition relation R′ using QE_LMDD. The
abstract transition relation was then unrolled N times and was conjoined with the negation of
the property to obtain a formula, which was given to the SMT solver to check satisfiability.

All the SMT solver calls were unsatisfiable, which implies that the properties hold for the
first N cycles of operation of the designs, and the abstract transition relations are sufficient
to prove the properties. Table 3 gives a summary of the results for 16 designs. machine_1
to machine_12 are modified versions of benchmarks from ITC99 benchmark suite [22]. The
remaining designs are proprietary. The table clearly shows the significant performance benefit
of using abstract transition relations computed byQE_LMDD in these verification exercises.

For all the designs except machine_12, all the internal variables were eliminated from
the transition relation in order to obtain the abstract transition relation. For machine_12, a
manually chosen subset of internal variables were eliminated. It was observed that in all
the cases, Layer1 and Layer2 were sufficient to eliminate the variables, without any call to
Layer3. Layer2 was needed only in five cases: machine_6 through machine_10. In these
cases Layer2 eliminated 12.5% to 40% of the quantified variables.

5.4.2 Utility in other applications

We performed limited preliminary experiments to evaluate the utility of Layer1 and Layer2
as preprocessing steps for conjunctions of LMCs before finding satisfying assignments for

123



Form Methods Syst Des (2016) 49:272–323 319

Table 4 Experimental results on preprocessing using Layer1 and Layer2

Set V E D I NP PR AP

set_1 20 14 13 13 1763 1572 2688

set_2 20 0 36 4 3270 251 0

set_3 20 0 4 36 3208 655 3245

set_4 30 20 20 20 8415 4769 9216

set_5 30 0 54 6 7423 533 0

set_6 30 0 6 54 7203 1651 7218

set_7 40 28 26 26 223,880 11,255 171,207

set_8 40 0 72 8 14,115 1150 0

set_9 40 0 8 72 14,343 3561 13,238

All times are in milliseconds. V: number of variables, E: number of LMEs, D: number of LMDs, I: number of
LMIs, NP: average time taken by simplifyingSTP for solving the benchmarks in the set without preprocessing,
PR: average time for preprocessing the benchmarks in the set, AP: average time taken by simplifyingSTP for
solving the benchmarks in the set after preprocessing

the conjunctions using an SMT solver. Towards this end, we generated 9 sets of random
benchmarks. Each set included 5 benchmarks that are randomly generated conjunctions of
LMCs with the same number of variables, LMEs, LMDs and LMIs. The moduli of all LMCs
in all benchmarks was fixed to 224. The number of variables varied from 20 to 50. The number
of LMCs was chosen as twice the number of variables.

In order to properly evaluate the effectiveness of Layer1 and Layer2, we generated three
types of benchmarks. Type-1 benchmarks contained an equalmix ofLMEs, LMDs, andLMIs.
The benchmarks in set_1, set_4, and set_7 in Table 4 were of this type. These benchmarks
allowed us to evaluate the effectiveness of Layer1. In type-2 benchmarks, 80% of constraints
were LMDs and the remaining were LMIs. The benchmarks in set_2, set_5, and set_8 in
Table 4 were of this type. Finally, in type-3 benchmarks, 80% of constraints were LMIs and
the remaining were LMDs. The benchmarks in set_3, set_6, and set_9 in Table 4 were of
type-3. Type-2 and type-3 benchmarks allowed us to evaluate the effectiveness of Layer2 on
different mixes of constraints.

We first measured the time taken by simplifyingSTP to solve each benchmark. We then
eliminated variables in the support of each benchmark using Layer1 and Layer2. This yields
a potentially simplified benchmark with fewer variables in the support. We then measured
the time taken by simplifyingSTP to solve each preprocessed benchmark. Table 4 gives a
summary of the results. Preprocessing helped in cases of type-2 benchmark sets set_2, set_5,
and set_8. Preprocessing in these cases completely solved the problem instances. In other
cases preprocessing either caused additional overhead or was of not much use.

We also performed limited preliminary experiments to evaluate the utility of our QE
techniques for computing Craig interpolants for Boolean combinations of LMCs. Towards
this end,we generated a set of interpolation benchmarks. Each benchmark is a pair of formulas
(ϕ, ψ), where ϕ,ψ are Boolean combinations of LMCs which are mutually inconsistent. We
denote the set of variables in the support of both ϕ and ψ as Y . The set of variables in the
support of ϕ but not in the support of ψ is denoted as X . Similarly, the set of variables in the
support of ψ but not in the support of ϕ is denoted as Z .

Note that ∃X.ϕ serves as an interpolant for (ϕ, ψ). In fact, ∃X.ϕ is the strongest interpolant
for (ϕ, ψ). For each interpolation benchmark, we first usedQE_Combined to compute ∃X.ϕ.
For each benchmark, we then used Mathsat to compute an interpolant (Mathsat makes use

123



320 Form Methods Syst Des (2016) 49:272–323

Table 5 Experimental results on
computing interpolants

Benchmark |X| |Y| |Z| W MS QC

benchmark_1 5 16 12 16 12 36

benchmark_2 6 15 8 16 45 44

benchmark_3 8 10 6 8 0 3

benchmark_4 17 23 11 32 7 275

benchmark_5 17 23 10 32 6 142

benchmark_6 21 25 8 32 TO TO

benchmark_7 12 7 7 22 TO 16

benchmark_8 10 17 8 32 0 29

benchmark_9 3 10 3 32 TO 12

benchmark_10 4 14 3 16 TO 7

All times are in seconds. TO:
>1800 s, |X|: number of
variables in set X, |Y|: number of
variables in set Y, |Z|: number of
variables in set Z, W: maximum
bit-width of a variable, MS: time
taken by Mathsat, QC: time taken
by QE_Combined

of work in [31] for interpolant computation). We then compared the time taken by Mathsat
to compute interpolant with that taken by QE_Combined to compute ∃X.ϕ. Table 5 gives a
summary of the results for 10 benchmarks. Since interpolation is an approximation of QE, it
is amenable to simplifications that QEmay not be able exploit. Nevertheless our experiments
show that the two techniques are incomparable. In some cases, an interpolant can be computed
faster than the quantifier-eliminated formula, while in other cases, QE using our techniques
can be done much faster than computing an interpolant using the techniques encoded in
MathSAT.

Considering the three sets of experiments that we performed for evaluating the utility
of our QE techniques, it can be seen that our techniques are convincingly useful for com-
puting abstract transition relations in bounded model checking. Our experiments showed
that applying our techniques often translates to a model checking problem being solved
within given time constraints, as opposed to timing out. However the other two sets of
experiments—applying our techniques in solving conjunctions of LMCs and for computing
Craig interpolants for Boolean combinations of LMCs—gave mixed results. Exploring other
applications of our techniques is part of future work.

6 Conclusions and future work

We presented a practically efficient and bit-precise algorithm for QE from conjunctions of
LMCs. Our algorithm made use of a layered framework—incomplete and cheaper layers are
applied first, expensive and complete layers are called only when required. Each of our layers
is motivated by QE problem instances that occur in practice. Our studies revealed that using a
layered framework allows us to solve such problem instances efficiently using incomplete and
cheaper techniques rather than resorting to expensive and complete techniques. Our layers
make use of properties of modular arithmetic and keep the quantifier-eliminated formula in
modular arithmetic.We extended this algorithm toworkwith arbitrary Boolean combinations
of LMCs. Experiments demonstrated that our techniques significantly outperform alternative
QE techniques.

There are several promising directions for future work. Our experiments showed that
Layer3 is significantly expensive compared to Layer2. As part of future work, wewill explore
development of new cheaper layers between Layer2 and Layer3. It is interesting to study how
our techniques can be extended to QE from full bit-vector arithmetic. Other than linear modu-

123



Form Methods Syst Des (2016) 49:272–323 321

lar arithmetic operations, bit-vector arithmetic primarily includes extractions, concatenations,
non-linear multiplications and bit-wise operations. Many QE problem instances that arise in
practice frequently mix expressions from different theories. It is interesting to understand
how our techniques can be extended to work in combined theories such as combination of
linear modular arithmetic and equality over uninterpreted functions, combination of linear
modular arithmetic and array logic etc. Another interesting direction in future work is to
integrate our QE techniques with SMT solvers, which will allow SMT solvers to use these
techniques to reason about quantified bit-vector formulas.

We showed the utility of our techniques in computing abstract symbolic transition rela-
tions for improving the scalability of bounded model checking of word-level RTL designs.
We also presented preliminary experiments that demonstrate the utility of our techniques
in solving conjunctions of LMCs and computing Craig interpolants for Boolean combina-
tions of LMCs. There are many other applications that can potentially benefit from our QE
techniques. Our techniques can be used for computation of predicate abstractions, compu-
tation of strongest post-conditions and image computation in the verification of word-level
RTL designs and embedded programs. In a Counterexample-Guided Abstraction Refinement
(CEGAR) [14] framework, our techniques can be used to compute Craig interpolants from
spurious counterexamples. We plan to explore these applications in future.

References

1. Ax J, Kochen S (1965) Diophantine problems over local fields II. A complete set of axioms for p-adic
number theory. Am J Math 87(3):631–648

2. Babic D, Musuvathi M (2005) Modular arithmetic decision procedure. Technical report TR-2005-114,
Microsoft Research

3. Bierre A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: Proceedings
of international conference on tools and algorithms for the construction and analysis of systems (TACAS),
pp 193–207

4. Bjørner N (2010) Linear quantifier elimination as an abstract decision procedure. In: Proceedings of
international joint conference on automated reasoning (IJCAR), pp 316–330

5. BjørnerN, PichoraM(1998)Decidingfixed andnon-fixed size bit-vectors. In: Proceedings of international
conference on tools and algorithms for the construction and analysis of systems (TACAS), pp 376–392

6. Bjørner N, Janota M (2015) Playing with quantified satisfaction. In: Proceedings of international confer-
ences on logic for programming, artificial intelligence and reasoning (LPAR)—short presentations, pp
15–27

7. Bjørner N, Blass A, Gurevich Y, Musuvathi M (2008) Modular difference logic is hard. CoRR
abs/0811.0987

8. Brinkmann R, Drechsler R (2002) RTL-datapath verification using integer linear programming. In: Pro-
ceedings of IEEE VLSI design conference, pp 741–746

9. Bruttomesso R, Sharygina N (2009) A scalable decision procedure for fixed-width bit-vectors. In: Pro-
ceedings of international conference on computer-aided design (ICCAD), pp 13–20

10. Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans Comput
35(8):677–691

11. Cavada R, Cimatti A, Franzen A, Kalyanasundaram K, Roveri M, Shyamasundar RK (2007) Computing
predicate abstractions by integrating BDDs and SMT solvers. In: Proceedings of international conference
on formal methods in computer-aided design (FMCAD), pp 69–76

12. Chaki S, Gurfinkel A, Strichman O (2009) Decision diagrams for linear arithmetic. In: Proceedings of
international conference on formal methods in computer-aided design (FMCAD), pp 53–60

13. Clarke EM, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
14. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement.

In: Proceedings of international conference on computer aided verification (CAV), pp 154–169
15. Cohen P (1969) Decision procedures for real and p-adic fields. Commun Pure Appl Logic 25:213–231
16. Cooper D (1972) Theorem proving in arithmetic without multiplication. Mach Intell 7:91–99

123



322 Form Methods Syst Des (2016) 49:272–323

17. CraigW(1957)Linear reasoning: a new formof theHerbrand–Gentzen theorem. J SymbLogic 22(3):250–
268

18. Cyrluk D, Möller M, Rueß H (1997) An efficient decision procedure for the theory of fixed-sized bit-
vectors. In: Proceedings of international conference on computer aided verification (CAV), pp 60–71

19. Damm W, Dierks H, Disch S, Hagemann W, Pigorsch F, Scholl C, Waldmann U, Wirtz B (2012) Exact
and fully symbolic verification of linear hybrid automata with large discrete state spaces. Sci Comput
Program 77(10–11):1122–1150

20. DantzigGB, EavesBC (1973) Fourier–Motzkin elimination and its dual. J CombTheory SerA 14(3):288–
297

21. Das S (2003) Predicate abstraction. PhD thesis, Stanford University
22. Davidson S (1999) Characteristics of the ITC’99 benchmark circuits. http://cerc.utexas.edu/itc99-

benchmarks/bench.html
23. deMouraL,BjørnerN (2007)Relevancy propagation. Technical report TR-2007-140,Microsoft Research
24. de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Proceedings of international conference

on tools and algorithms for the construction and analysis of systems (TACAS), pp 337–340
25. Déharbe D, Fontaine P, Berre DL, Mazure B (2013) Computing prime implicants. In: Proceedings of

international conference on formal methods in computer-aided design (FMCAD), pp 46–52
26. Ferrante J, Rackoff C (1975) A decision procedure for the first order theory of real addition with order.

Soc Ind Appl Math (SIAM) J Comput 4(1):69–76
27. Ganesh V, Dill D (2007) A decision procedure for bit-vectors and arrays. In: Proceedings of international

conference on computer aided verification (CAV), pp 519–531
28. Ganesh V, Berezin S, Dill D (2002) Deciding Presburger arithmetic by model checking and comparisons

with other methods. In: Proceedings of international conference on formal methods in computer-aided
design (FMCAD), pp 171–186

29. Gange G, Søndergaard H, Stuckey P, Schachte P (2013) Solving difference constraints over modular
arithmetic. In: Proceedings of international conference on automated deduction (CADE), pp 215–230

30. Gotlieb A, Leconte M, Marre B (2010) Constraint solving on modular integers. In: Proceedings of ninth
internationalworkshop on constraintmodelling and reformulation (ModRef) co-locatedwith international
conference on principles and practice of constraint programming (CP)

31. Griggio A (2011) Effective word-level interpolation for software verification. In: Proceedings of interna-
tional conference on formal methods in computer-aided design (FMCAD), pp 28–36

32. Hadarean L, Bansal K, Jovanovic D, Barret C, Tinelli C (2014) A tale of two solvers: eager and lazy
approaches to bit-vectors. In: Proceedings of international conference on computer aided verification
(CAV), pp 680–695

33. Howell JA,GregoryRT (1969)Analgorithm for solving linear algebraic equations using residue arithmetic
I. BIT Numer Math 9(3):200–224

34. Huang C, Cheng K (2000) Assertion checking by combined word-level ATPG and modular arithmetic
constraint-solving techniques. In: Proceedings of ACM/IEEE design automation conference (DAC), pp
118–123

35. Jain H, Clarke EM, Grumberg O (2008) Efficient Craig interpolation for linear diophantine (dis)equations
and linear modular equations. In: Proceedings of international conference on computer aided verification
(CAV), pp 254–267

36. John A, Chakraborty S (2011) A quantifier elimination algorithm for linear modular equations and dise-
quations. In: Proceedings of international conference on computer aided verification (CAV), pp 486–503

37. John A, Chakraborty S (2013) Extending quantifier elimination to linear inequalities on bit-vectors. In:
Proceedings of international conference on tools and algorithms for the construction and analysis of
systems (TACAS), pp 78–92

38. Kapur D (2006) A quantifier-elimination based heuristic for automatically generating inductive assertions
for programs. J Syst Sci Complex 19(3):307–330

39. Komuravelli A, Gurfinkel A, Chaki S (2014) SMT-based model checking for recursive programs. In:
Proceedings of international conference on computer aided verification (CAV), pp 17–34

40. Kroening D, Strichman O (2008) Decision procedures: an algorithmic point of view. Springer, Berlin
41. Lahiri S,NieuwenhuisR,OliverasA (2006) SMT techniques for fast predicate abstraction. In: Proceedings

of international conference on computer aided verification (CAV), pp 424–437
42. Loos R, Weispfenning V (1993) Applying linear quantifier elimination. Comput J 36(5):450–462
43. Mishchenko A, Chatterjee S, Jiang R, Brayton R (2005) FRAIGs: a unifying representation for logic

synthesis and verification. Technical report, EECS Department, UC Berkeley
44. Monniaux D (2008) A quantifier elimination algorithm for linear real arithmetic. In: Proceedings of

international conference on logic for programming artificial intelligence and reasoning (LPAR), pp 243–
257

123

http://cerc.utexas.edu/itc99-benchmarks/bench.html
http://cerc.utexas.edu/itc99-benchmarks/bench.html


Form Methods Syst Des (2016) 49:272–323 323

45. Monniaux D (2010) Quantifier elimination by lazy model enumeration. In: Proceedings of international
conference on computer aided verification (CAV), pp 585–599

46. Müller-OlmM,SeidlH (2007)Analysis ofmodular arithmetic.ACMTransProgramLangSyst (TOPLAS)
29(5):29

47. Niemetz A, Preiner M, Biere A (2014) Turbo-charging lemmas on demand with don’t care reasoning.
In: Proceedings of international conference on formal methods in computer-aided design (FMCAD), pp
179–186

48. Nipkow T (2008) Linear quantifier elimination. In: Proceedings of international joint conference on
automated reasoning (IJCAR), pp 18–33

49. Owre S, Rushby J, Shankar N (1992) PVS: A prototype verification system. In: Proceedings of interna-
tional conference on automated deduction (CADE), pp 748–752

50. Phan A, Bjørner N, Monniaux D (2012) Anatomy of alternating quantifier satisfiability (work in
progress). In: Proceedings of SMT workshop at international joint conference on automated reasoning
(SMT@IJCAR), pp 120–130

51. Pugh W (1992) The Omega test: a fast and practical integer programming algorithm for dependence
analysis. Commun ACM 35(8):102–114

52. Pugh W (2013) The Omega project: frameworks and algorithms for the analysis and transformation of
scientific programs. www.cs.umd.edu/projects/omega

53. Somenzi F (2015) CUDD: Colorado university decision diagram package release 3.0.0. http://vlsi.
colorado.edu/~fabio/CUDD

54. Szabo N, Tanaka R (1967) Residue arithmetic and its applications to computer technology. McGraw-Hill,
New York

55. TewN,Kalla P, ShekharN,GopalakrishnanS (2008)Verification of arithmetic datapaths using polynomial
function models and congruence solving. In: Proceedings of international conference on computer-aided
design (ICCAD), pp 122–128

56. Veanes M, Bjørner N, Nachmanson L, Bereg S (2014) Monadic decomposition. In: Proceedings of
international conference on computer aided verification (CAV), pp 628–645

57. Wintersteiger C, Hamadi Y, de Moura L (2010) Efficiently solving quantified bit-vector formulas. In:
Proceedings of international conference on formal methods in computer-aided design (FMCAD), pp
239–246

123

www.cs.umd.edu/projects/omega
http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD

	A layered algorithm for quantifier elimination  from linear modular constraints
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	2.1 Existing techniques for extending QE to Boolean combinations
	2.2 Complexity results on LMCs
	2.3 Decision procedures and interpolation procedures for LMCs

	3 QE for conjunctions of LMCs
	3.1 Notation and preliminaries
	3.2 Overview of layers in Project
	3.3 Layer1: simplification using LMEs
	3.4 Layer2: dropping unconstraining LMIs and LMDs
	3.5 Layer3: Fourier–Motzkin elimination for LMIs
	3.5.1 A (weak) normal form for LMIs
	3.5.2 Modified FM for normalized LMIs

	3.6 Project: combining layers

	4 Extending QE to Boolean combinations
	4.1 Decision diagram based approach
	4.2 SMT solving based approach
	4.3 Hybrid approach

	5 Experimental results
	5.1 Experimental methodology and benchmarks
	5.2 Evaluation of QE techniques for conjunctions of LMCs
	5.2.1 Evaluation of layers in project
	5.2.2 Comparison with alternative QE techniques

	5.3 Evaluation of QE techniques for Boolean combinations of LMCs
	5.3.1 Evaluation of QE_SMT, QE_LMDD, and QE_Combined
	5.3.2 Comparison with alternative QE techniques

	5.4 Utility of our QE algorithms in verification
	5.4.1 Utility in bounded model checking
	5.4.2 Utility in other applications


	6 Conclusions and future work
	References




