
Form Methods Syst Des (2016) 49:219–271
DOI 10.1007/s10703-016-0259-2

From LTL to deterministic automata
A safraless compositional approach

Javier Esparza1 · Jan Křetínský1 · Salomon Sickert1

Published online: 3 December 2016
© Springer Science+Business Media New York 2016

Abstract We present a new algorithm to construct a (generalized) deterministic Rabin
automaton for an LTL formula ϕ. The automaton is the product of a co-Büchi automaton for
ϕ and an array of Rabin automata, one for each G-subformula of ϕ. The Rabin automaton
for Gψ is in charge of recognizing whether FGψ holds. This information is passed to the
co-Büchi automaton that decides on acceptance. As opposed to standard procedures based
on Safra’s determinization, the states of all our automata have a clear logical structure, which
allows for various optimizations. Experimental results show improvement in the sizes of the
resulting automata compared to existing methods.

Keywords Automata theory · Temporal logic · Verification

1 Introduction

Linear temporal logic (LTL) is the most popular language for the specification of properties
of single computations of a program. The verification problem for LTL consists of deciding
if all computations of a program satisfy a given LTL-formula formalizing a property. In the
automata-theoretic approach to this problem [1–3], the negation of the formula is translated
into an ω-automaton, and the product of this automaton with the transition system describing
the semantics of the program is analyzed. In particular, if this transition system—or some
suitable abstraction of it—has a finite number of states, then the product can be exhaustively
explored by a search algorithm, and the property can be checked automatically, at least in
principle.

While the size of the ω-automaton can be exponential or even double exponential in
the length of the formula (depending on the kind of ω-automaton), typical formulae used
in practice are either small, or belong to classes for which this blowup does not happen.

B Jan Křetínský
jan.kretinsky@tum.de

1 Fakultät für Informatik, Technische Universität München, Boltzmannstr. 3,
85748 Garching bei München, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0259-2&domain=pdf
http://orcid.org/0000-0002-8122-2881

220 Form Methods Syst Des (2016) 49:219–271

However, since the transition system is often very large, generating small ω-automata is still
crucial for the efficiency of the approach: Even a reduction of a few states in theω-automaton
can lead to a much larger reduction in the product.

For functional LTL verification (as opposed to the probabilistic verification discussed in
the next paragraph), verification algorithms only require to transform the LTL formula into
a non-deterministic ω-automaton, typically a Büchi or generalized Büchi automaton and,
thanks to intense research in the last decade, the problem of generating small automata is
well understood, e.g. [4–6]. Several tools implement a number of heuristic simplifications
(of the formula, of intermediate automata generated during the translation, and of the final
result), and generate Büchi automata of minimal or nearly minimal size for most common
specifications, e.g. [7,8]. An important factor for this success is the fact that the states of the
automaton are LTL formulae, which allows one to use information about logical equivalence
or implication between formulae to merge states.

The picture is still very different for quantitative LTL verification of probabilistic systems,
i.e., for the problem of computing the probability with which an LTL property is satisfied, or
deciding whether it exceeds a given bound. The standard approach to this problem requires
to translate the LTL formula into a deterministic ω-automaton [9,10], typically a determin-
istic Rabin automaton (DRA). Contrary to the functional case, up to 2012 there were no
algorithms providing a direct translation, all algorithms available proceeded in two steps:
first, the formula was translated into a non-deterministic Büchi automaton (NBA), and then
Safra’s construction [11]—or improvements on it [12,13]—were applied to transform the
NBA into a DRA. At the time of writing this paper this is also the default approach adopted
in PRISM [14], a leading probabilistic model checker, which reimplements the optimized
Safra’s construction of the ltl2dstar tool [15]. While Safra’s construction is a milestone
of the theory of ω-automata, it is also difficult to implement (see e.g. [16]). In particular, it
is a monolithic construction that can be applied to any NBA, and therefore does not exploit
the structure of LTL formulae.

In 2011 the second author initiated a research program for the design and implementation
of a direct translation of LTL into deterministic ω-automata that “bypasses” Safra’s con-
struction. As a first result, a translation for the LTL fragment containing only the temporal
operators F and G was presented in [17]. The translation yields a deterministic generalized
Rabin automaton (DGRA), which can then be degeneralized into a standard DRA. Alterna-
tively, a verification algorithm was proposed in [10], which does not require to degeneralize
the DGRA into DRA, but uses directly DGRA, and exhibits the same worst-case complexity.
In both cases much smaller automata were obtained for many formulae. (For instance, while
the standard approach translates a conjunction of three fairness constraints into an automaton
with over a million states, the algorithm of [17] yields a DRA with 462 states, and—when
acceptance is defined on transitions—a DGRA with one single state.) Subsequently, the
approach was extended to larger fragments of LTL containing the X-operator and restricted
appearances of U [18,19]. However, a general algorithm remained elusive.

In this paper we present a novel approach that is able to handle full LTL. Although the
worst-case complexity of our construction is worse than that of the traditional translation
using Safra’s determinization (triple exponential vs. double exponential), our construction
consistently produces smaller automata in all our benchmark sets. Moreover, our approach
is compositional: the DGRA is obtained as a parallel composition of automata running in
lockstep.1 More specifically, the automaton for a formula ϕ is the parallel composition of

1 We could also speak of a product of automata, but the operational view behind the term parallel composition
helps to convey the intuition.

123

Form Methods Syst Des (2016) 49:219–271 221

a co-Büchi automaton (a special case of DRA) and an array of DRAs, one for each G-
subformula of ϕ. Intuitively, the state of the co-Büchi automaton after reading a finite word
corresponds to “the formula that remains to be fulfilled” (we say that the automatonmonitors
the remaining formula). For example, if ϕ = (¬a∧Xa)∨XXGa, then the remaining formula
after reading ∅{a} is tt, and after reading {a} it is XGa. In particular, if the automaton reaches
the state tt, it accepts.

If the co-Büchi automaton never reaches tt, then it needs information from the DRAs to
decide on acceptance. The DRA for a G-subformula Gψ checks whether Gψ eventually
holds, i.e., whether FGψ holds. Like the co-Büchi automaton, the DRA also monitors the
remaining formula, but only partially: more precisely, it does not monitor any G-subformula
of ψ , because other DRAs are responsible for them. For instance, if ψ = a ∧ Gb∧ Gc, then
the DRA for Gψ checks FGa, and “delegates” checking FGb and FGc to other automata.
Furthermore, and crucially, the DRA for Gψ may also provide the information that not only
FGψ , but a stronger formula FG(ψ ∧ ψ ′) holds. For example, the run of the DRA for
G(a ∨ Xc) on the word cω supplies the information that not only FG(a ∨ Xc), but also the
stronger formula FG((a ∨ Xc) ∧ c) holds.

The acceptance condition of the full parallel composition is a disjunction over all possible
subsets G of G-subformulae, and all possible sets of stronger formulae F that the DRAs
can check together. Intuitively, the parallel composition accepts a word w by means of the
disjunct for G and F when w satisfies FG (meaning that w satisfies FGψ for every Gψ ∈ G)
and also F . The co-Büchi automaton is in charge of checking the conditional property that
if w satisfies FG and F , then it also satisfies ϕ.

A previous version of our compositional algorithmappeared in [20]. Since the construction
was involved and had a number of corner cases, the third authormechanically verified it in the
Isabelle theoremprover. The exercise revealed that, as expected, someminor correctionswere
necessary, but also exposed a more serious bug requiring a substantial change in a lemma.
An analysis revealed that the smallest to us known formula for which the construction of [20]
would have produced a wrong result is G(Xa ∨ GXb), which has a high chance of surviving
a large amount of testing.

To summarize, in contrast to the traditional approaches our novel translation is (1) efficient
in practice, (2) compositional, (3) preserves the logical structure of states, and (4) is proven
correct in a theorem prover.

Related work There are many constructions translating LTL to NBA, e.g., [4–8,21–25]. The
one recommended by ltl2dstar and used in PRISM is LTL2BA [5]. The version of
Safra’s construction described in [26], which includes a number of optimizations, has been
implemented in ltl2dstar [15], and re-implemented in PRISM [14]. A comparison of
LTL translators into deterministic ω-automata can be found in [27].

Our compositional construction shares the idea of recursive use of automata with the
construction of [28], where transducers for subformulae, called temporal testers, are com-
posed. However, “testers are inherently non-deterministic” [28], whereas all our automata
are deterministic.

Apart from LTL verification of probabilistic systems, Safra’s construction can also be
applied as intermediate step to solve other problems, such as the LTL synthesis problem
[29]. Bypassing Safra’s construction by means of “safraless approaches” to synthesis has
been the subject of several papers [30–32].

Outline The paper is organized as follows: After Sect. 2, which introduces basic definitions
about LTL and ω-automata, the next four sections present LTL-to-DGRA constructions for

123

222 Form Methods Syst Des (2016) 49:219–271

increasingly general LTL fragments. As a warm-up, Sect. 3 considers the case of G-free
formulae. Section 4 considers the case of formulae FGϕ, where ϕ has no occurrence of G.
Loosely speaking, it gives the recipe to construct a single element of the array of DRAs.
Section 5 then constructs a DGRA for an arbitrary formula FGϕ as an array of DRAs.
Section 6 shows how to construct the co-Büchi automaton and the full parallel composition
for an arbitrary formula. All four sections have the same structure. First, we obtain a logical
characterization of the words that satisfy a formula of the corresponding fragment, and then
derive the corresponding automaton from it.

The paper continues with Sect. 7, which describes some optimizations that reduce the
number of states of the final DGRA, and the size of its acceptance condition. Section 8
contains some remarks about the worst-case complexity of our construction. Finally, Sect. 9
introduces Rabinizer, the tool implementing our construction, and presents a number of
experimental results on different test suites of LTL formulae.

As mentioned above, the correctness proof of our construction has beenmechanized using
the Isabelle theorem prover. Section 10 shows how to access the mechanized proofs, and the
relation between this paper and the formal proof. In particular, in the paper we sometimes
omit cases in proofs by structural induction that do not provide special insight.

Finally, Sect. 11 presents our conclusions. Some technical proofs are presented in Appen-
dix.

2 Basic definitions

We recall basic definitions of ω-automata and linear temporal logic, and establish some
notations.

In this paper, N denotes the set of natural numbers including zero. We say that a property
holds for almost every n ∈ N if it holds for all but finitely many natural numbers.

2.1 Alphabets and words

An alphabet is any finite non-empty set Σ . The elements of Σ are called letters. A word is
an infinite sequence of elements of Σ . The set of all words is denoted by Σω. A finite word
is a finite sequence of elements of Σ , and the set of all finite words is denoted by Σ∗.

The i th letter of awordw ∈ Σω is denoted byw[i], i.e.w = w[0]w[1] Given i, j ∈ N,
we denote by wi j the finite word w[i]w[i + 1] . . . w[j − 1] if i < j , and the empty word if
j ≤ i . We denote by wi the suffix w[i]w[i + 1]

A (finite or infinite) set of words is called a language.

2.2 Linear temporal logic

Linear temporal logic (LTL) extends propositional logic with temporal operators.

2.2.1 Syntax and semantics

Definition 1 (LTL Syntax) Let Ap be a finite set of atomic propositions. The formulae of
linear temporal logic (LTL) over Ap are given by the syntax

ϕ::= tt | ff | a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap.

123

Form Methods Syst Des (2016) 49:219–271 223

Formulae are interpreted on words over the alphabet 2Ap . That is, a letter is a subset of
Ap.

Definition 2 (LTL Semantics) The satisfaction relation |	 between words and formulae is
inductively defined as follows:

w |	 tt
w
|	 ff
w |	 a iff a ∈ w[0]
w |	 ¬ϕ iff w
|	 ϕ

w |	 ϕ ∧ ψ iff w |	 ϕ and w |	 ψ

w |	 ϕ ∨ ψ iff w |	 ϕ or w |	 ψ

w |	 Xϕ iff w1 |	 ϕ

w |	 Fϕ iff ∃ k ∈ N : wk |	 ϕ

w |	 Gϕ iff ∀ k ∈ N : wk |	 ϕ

w |	 ϕUψ iff ∃ k ∈ N : wk |	 ψ and
∀ 0 ≤ j < k : w j |	 ϕ

Given two formulae φ,ψ , we say that φ entails ψ , denoted by φ |	 ψ , if w |	 φ implies
w |	 ψ for every w ∈ (2Ap)ω. We say that φ and ψ are equivalent, denoted by φ ≡ ψ , if
φ |	 ψ and ψ |	 φ.

2.2.2 Negation normal-form

In LTL negations can be “pushed inwards”; for instance, we have¬FGa ≡ G¬Ga ≡ GF¬a.
By pushing negations inwards until all negations appear only in front of atomic propositions,
we obtain the negation normal form:

Definition 3 (Negation normal form) A formula of LTL is in negation normal form if it is
given by the syntax:

ϕ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap.

Proposition 1 (Normal form theorem) Every formula of LTL is equivalent to a formula in
negation normal form.

Proof Exhaustive application of the following well-known rewrite rules (which replace a
formula by an equivalent one) brings every formula in negation normal form:

¬Xϕ � X¬φ, ¬Fϕ � G¬φ, ¬Gϕ � F¬φ, ¬(ϕUψ) � (¬ψU(¬ψ ∧ ¬ϕ)) ∨ G¬ψ.

��
Observe that, due to the last rule, the formula obtained by exhaustive rewriting can be

exponentially longer than the original formula. However, if the formula is stored as a DAG
(directed acyclic graph) instead of a tree, then the DAG of the formula in negation normal
form is only linearly larger than the DAG of the original formula.

In the rest of the paper we assume that formulae of LTL are in negation normal form, and
speak of “a formula” instead of “a formula in negation normal form”.

2.2.3 Propositional entailment, equivalence, and substitution

Loosely speaking, given two formulae ϕ and ψ , we say that ϕ propositionally entails ψ if
ϕ |	 ψ can be proved using only propositional reasoning. So, for instance,Ga propositionally
implies Ga ∨ Gb, but Ga does not propositionally imply Fa.

123

224 Form Methods Syst Des (2016) 49:219–271

Definition 4 (Propositional implication and equivalence) A formula of LTL is proper if it
is not a conjunction or a disjunction (i.e., if the root of its syntax tree is not ∧ or ∨). The
set of proper formulae of LTL over Ap is denoted by PF(Ap). A propositional assignment,
or just an assignment, is a mapping A : PF(Ap) → {0, 1}. Given ϕ ∈ PF(Ap), we write
A |	 ϕ iff A(ϕ) = 1, and extend the relation |	P to arbitrary formulae by:

A |	P ϕ ∧ ψ iff A |	P ϕ and A |	P ψ

A |	P ϕ ∨ ψ iff A |	P ϕ or A |	P ψ

We say thatϕ propositionally entailsψ , denoted byϕ |	P ψ , ifA |	P ϕ impliesA |	P ψ

for every assignmentA. Finally, ϕ andψ are propositionally equivalent, denoted by ϕ ≡P ψ ,
if ϕ |	P ψ andψ |	P ϕ. We denote by [ϕ]P the equivalence class of ϕ under the equivalence
relation ≡P . (Observe that ϕ ≡P ψ implies ϕ ≡ ψ holds.)

Definition 5 (Propositional substitution) Let ψ, χ be formulae, and let � be a set of proper
LTL-formulae. The formula ψ[�/χ]P is inductively defined as follows:

– If ψ = ψ1 ∧ ψ2 then ψ[�/χ]P = ψ1[�/χ]P ∧ ψ2[�/χ]P .
– If ψ = ψ1 ∨ ψ2 then ψ[�/χ]P = ψ1[�/χ]P ∨ ψ2[�/χ]P .
– If ψ is a proper formula and ψ ∈ � then ψ[�/χ]P = χ , else ψ[�/χ]P = ψ .

2.2.4 The after function af (ϕ,w)

Given a formula ϕ and a finite word w, we define a formula af (ϕ,w), read “ϕ after w”.
Intuitively, if a word ww′ (where w is a finite word) satisfies ϕ, then af (ϕ,w) is the formula
that holds “after having readw”, that is, the formula satisfied byw′. As shown in Proposition 2
below, the converse also holds: if w′ satisfies af (ϕ,w), then ww′ satisfies ϕ.

Definition 6 Let ϕ be a formula and ν ∈ 2Ap . We define the formula af (ϕ, ν) as follows:

af (tt, ν) = tt
af (ff, ν) = ff

af (a, ν) =
{

tt if a ∈ ν

ff if a /∈ ν

af (¬a, ν) =
{

ff if a ∈ ν

tt if a /∈ ν

af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)

af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ

af (Gϕ, ν) = af (ϕ, ν) ∧ Gϕ

af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ

af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)

We extend the definition to finite words: af (ϕ, ε) = ϕ; and af (ϕ, νw) = af (af (ϕ, ν), w)

for every ν ∈ 2Ap and every finite word w. Finally, we say that ψ is reachable from ϕ if
ψ = af (ϕ,w) for some finite word w.

Example 1 Let Ap = {a, b, c} and ϕ = a ∨ (b U c). We have af (ϕ, {a}) = tt af (ϕ, {b}) =
(b U c), af (ϕ, {c}) = tt, and af (ϕ,∅) = ff .

We collect a number of simple properties of af , proved in the Appendix.

Lemma 1 For every formula ϕ and every finite word w ∈ (2Ap)∗:

(1) af (ϕ,w) is a boolean combination of proper subformulae of ϕ.
(2) If af (ϕ,w) = tt, then af (ϕ,ww′) = tt for every w′ ∈ (2Ap)∗, and analogously for ff .
(3) If ϕ1 ≡P ϕ2, then af (ϕ1, w) ≡P af (ϕ2, w).
(4) If ϕ has n proper subformulae, then the set of formulae reachable from ϕ has at most

22
n
equivalence classes of formulae with respect to propositional equivalence.

123

Form Methods Syst Des (2016) 49:219–271 225

Observe that, by Lemma 1(3), the function af can be lifted to equivalence classes of for-
mulae w.r.t. propositional equivalence. Abusing language, we also denote this lifted function
by af .

We now state the fundamental property of the After function, also proved in the Appendix:
a word ww′ satisfies a formula ϕ iff “after reading” w the “rest” of the word, i.e., the word
w′, satisfies af (ϕ,w).

Proposition 2 Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word. Then
ww′ |	 ϕ iff w′ |	 af (ϕ,w).

2.3 Transition systems and ω-automata

A deterministic transition system (DTS) over an alphabet Σ is a tuple T = (Q,Σ, δ, q0)
where Q is a set of states, Σ is an alphabet, δ : Q × Σ → Q is a transition function, and
q0 ∈ Q is the initial state. If δ(q, a) = q ′ then we call the triple t = (q, a, q ′) a transition,
and say that q , a, and q ′ are the source, the letter, and the target of t . We denote by T the set
of transitions of T .

A run of T is an infinite sequence ρ = t0t1 . . . of transitions such that the source of t0
is the initial state q0, and for every i ≥ 0 the target of ti is equal to the source of ti+1. A
transition t occurs in ρ if t = ti for some i ≥ 0. A state q occurs in ρ if it is the source
or target of some ti . Given a word w = a0a1 . . . ∈ Σω, we denote by ρ(w) the unique run
t0t1t2 . . . of T such that for every i ≥ 0 the letter of ti is ai .

The product of two DTSs T1 = (Q1,Σ, δ1, q01) and T2 = (Q2,Σ, δ2, q02) is the DTS
T1 × T2 = (Q,Σ, δ, q0), where Q = Q1 × Q2, δ((q1, q2), a) = (δ1(q1, a), δ(q2, a)) for
every q1 ∈ Q1, q2 ∈ Q2, a ∈ Σ , and q0 = (q01, q02).

2.3.1 Acceptance conditions and ω-automata

A state-based acceptance condition for T is a positive boolean formula over the formal
variables VQ = {Inf(S),Fin(S) | S ⊆ Q}. Acceptance conditions are interpreted over runs.
Given a run ρ of T and an acceptance condition α, we consider the truth assignment that
sets the variable Inf(S) to true iff ρ visits (some state of) S infinitely often, and sets Fin(S)

to true iff ρ visits (all states of) S finitely often. The run ρ satisfies α if this truth-assignment
makes α true. The size of a condition α is its length as boolean formula.

A transition-based acceptance condition for T is defined exactly as a state-based accep-
tance condition, but replacing the set VQ by the set VT = {Inf(U),Fin(U) | U ⊆ T }. In
this paper we use state-based or transition-based acceptance conditions, depending on what
is more convenient. It is well-known that a state-based conditions can be transformed into
an equivalent transition-based one (i.e., a condition satisfied by the same runs). It suffices
to replace each occurrence of Inf(S) by Inf(•S), where •S denotes the set of transitions
with target in S, and similarly for Fin(S). Conversely, a transition-based condition can also
be transformed into an equivalent state-based one by replicating the states. Given a DTS
T = (Q,Σ, δ, q0) with a set T of transitions we construct the new DTS T ′ with states
{q0} ∪ T , a transition (q0, a, t) for every transition t = (q0, a, q) of T , and a transition
(t, a, t ′) for every pair t = (q1, a, q2) and t ′ = (q2, b, q3) of transitions of T . Then, the
condition over the transitions of T becomes an equivalent condition over the states of T ′.

A deterministicω-automaton overΣ is a tupleA = (Q,Σ, δ, q0, α), where (Q,Σ, δ, q0)
is a deterministic transition system and α is an acceptance condition. A accepts a word
w ∈ Σ∗ if the run ρ(w) satisfies α. The language ofA, denoted by L(A), is the set of words
accepted by A.

123

226 Form Methods Syst Des (2016) 49:219–271

An acceptance condition α is a

– Büchi condition if α = Inf(S) for some S ⊆ Q.
– co-Büchi condition if α = Fin(S) for some S ⊆ Q.
– Rabin condition if α = ∨n

j=1(Fin(Fj) ∧ Inf(I j)) for sets F1, I1, . . . , Fn, In ⊆ Q. The
pair Pj = (Fj , I j) is called a Rabin pair.

– generalized Rabin condition if α = ∨n
j=1(Fin(Fj) ∧ ∧m j

k=1 Inf(I jk)) for sets
F1, . . . , Fn, I11, . . . , Inmn ⊆ Q.

A deterministic Büchi, co-Büchi, Rabin or generalized Rabin automaton is a deterministic
ω-automaton with an acceptance condition of the corresponding kind. In the rest of the paper
we shorten deterministic Rabin automaton to DRA, and the generalized version to DGRA.

Observe that Büchi and co-Büchi conditions are special cases of Rabin conditions. Further,
every generalizedRabin automaton can be degeneralized into an equivalent Rabin automaton,
which however may incur an exponential blowup [17]. The generalized Rabin condition
arises naturally when considering intersection of Rabin automata. Observe that we do not

need to consider
∧� j

k=1 Fin(Fjk), but only Fin(Fj), because
∧n j

k=1 Fin(Fjk) is equivalent to

Fin(
⋃� j

k=1 Fjk).
The following results are well known.

Proposition 3 Given DRAs R1 and R2 recognizing languages L1 and L2, respectively, we
can construct DRAs, denoted R1 ∪ R2 and R1 ∩ R2, recognizing L1 ∪ L2 and L1 ∩ L2,
respectively. Moreover, the transition system of bothR1 ∪R2 andR1 ∩ R2 is the product of
the transition systems of R1 and R2.

Proposition 4 Let X be a finite set of indices, and let Ri = (Q,Σ, δ, q0, αi) be a family
of DRAs, one for every index i belonging to some finite set I of indices, all of them with
the same underlying transition system. Then R∪ = (Q,Σ, δ, q0,

∨
i∈I αi) is a DRA recog-

nizing
⋃

i∈X L(Ri), and R∩ = (Q,Σ, δ, q0,
∧

i∈X αi) is a generalized DRA recognizing⋂
i∈X L(Ri).

3 Automata for G-free formulae

We present a translation of G-free formulae (i.e., formulae without any occurrence of the G-
operator) into a deterministic ω-automaton with a very simple acceptance condition, which
can be expressed both as a Büchi and a co-Büchi condition. The translation is by no means
novel, but it serves as a warm-up for the next sections, which consider more general classes of
formulae. Moreover, the section allows us to introduce the general scheme we use to design
translations: first, we give a logical characterization theorem characterizing the words that
satisfy a formula of the given class, and then we construct an automaton which accepts if f
the condition of the characterization holds.

Theorem 1 (Logical characterization theorem I) Let ϕ be a G-free formula and let w be a
word. Then w |	 ϕ iff there exists i > 0 such that af (ϕ,w0 j) ≡P tt for every j ≥ i .

Proof By Lemma 1(2) it suffices to show that w |	 ϕ iff there exists i > 0 such that
af (ϕ,w0i) ≡P tt. (In the rest of this proof we use Lemma 1(2) without explicitly mentioning
it.)
(⇐): Assume there exists i > 0 such that af (ϕ,w0i) ≡P tt. Then wi |	 af (ϕ,w0i). By
Proposition 2, we get w = w0iwi |	 ϕ.

123

Form Methods Syst Des (2016) 49:219–271 227

(⇒): Assume w |	 ϕ. We proceed by structural induction on ϕ. We only consider two
representative cases.

– ϕ = a. Since w |	 ϕ we have w = νw′ for some word w′ and for some ν ∈ Ap such
that a ∈ ν. By the definition of af we have af (a, ν) ≡P tt, and, since ν = w01, we get
af (ϕ,w01) ≡P tt.

– ϕ = ϕ1Uϕ2. By the semantics of LTL there is k ∈ N such that wk |	 ϕ2 and w� |	 ϕ1

for every 0 ≤ � < k. By induction hypothesis there exists for every 0 ≤ � < k an i ≥ �

such that af (ϕ1, w�i) ≡P tt and there exists an i ≥ k such that af (ϕ2, wki) ≡P tt. Let
j be the maximum of all those i’s. We prove af (ϕ1Uϕ2, w0 j) ≡P tt via induction on k.

– k = 0.

af (ϕ1Uϕ2, w0 j)

= af (ϕ2, w0 j) ∨ (af (ϕ1, w0 j) ∧ af (ϕ1Uϕ2, w1 j)) (def. of af)
≡P tt ∨ (af (ϕ1, w0 j) ∧ af (ϕ1Uϕ2, w1 j)) (af (ϕ2, wk j) ≡P tt)
≡P tt

– k > 0.

af (ϕ1Uϕ2, w0 j)

= af (ϕ2, w0 j) ∨ (af (ϕ1, w0 j) ∧ af (ϕ1Uϕ2, w1 j)) (def. of af)
≡P af (ϕ2, w0 j) ∨ (tt ∧ af (ϕ1Uϕ2, w1 j)) (af (ϕ1, w0 j) ≡P tt)
≡P af (ϕ2, w0 j) ∨ (tt ∧ tt) (ind. hyp.)
≡P tt

��
We derive from Theorem 1 a deterministic ω-automaton for a given G-free formula ϕ.

The states of the automaton are equivalence classes of formulae under propositional equiva-
lence. The fundamental design idea is: after reading a finite word w, the current state of the
automaton must be af (ϕ,w0 j). So we take the equivalence class of af (ϕ, ε) = ϕ as initial
state, and the function af itself as transition function. By Theorem 1, a word satisfies ϕ iff its
run in this automaton visits the state [tt]P . Since we have af (tt, ν) = tt for every ν ∈ 2Ap ,
the run visits [tt]P iff it visits [tt]P infinitely often, or if it visits all other states only finitely
often. So we can take F = {[tt]P } as Büchi condition.
Definition 7 Let ϕ be a G-free formula. Let Reach(ϕ) denote the set of equivalence classes
of the formulae reachable from ϕ w.r.t. propositional equivalence. The transition system of
ϕ is the deterministic transition system T (ϕ) = (Q, 2Ap, q0, δ) where

– Q is the quotient of Reach(ϕ) under propositional equivalence.
(In other words, [ψ]P is a state of T (ϕ) iff af (ϕ,w) = ψ for some finite word w.)

– q0 = [ϕ]P , the equivalence class of ϕ.
– δ([ψ]P , ν) = [af (ψ, ν)]P for every [ψ]P ∈ Q and every ν ∈ 2Ap .

(I.e., there is a transition [ϕ]P ν−→ [ψ]P iff af (ϕ, ν) = ψ .)

The Büchi automaton for ϕ is the tuple B(ϕ) = (Q, 2Ap, q0, δ, F), where F = {[tt]P }.
Observe that it can be also seen as a co-Büchi automaton with F = Q \ {[tt]P }.
Example 2 Figure 1 shows the automaton for the formula ϕ = a∨(b U c).We assume Ap =
{a, b, c}. The alphabet 2Ap contains 8 elements, and so every state has 8 outgoing transitions.
To avoid cluttering the figure, we use a boolean-function-like notation for transitions. For

example, q2
c−→ q3 denotes that there is a transition from q2 to q3 for every subset of

123

228 Form Methods Syst Des (2016) 49:219–271

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

Fig. 1 Büchi (or co-Büchi) automaton for a ∨ (b U c)

2Ap containing c. So, actually, q2
c−→ q3 stands for four different transitions. Similarly,

q1
a+āc−→ q3 means that there is a transition from q1 to q3 for each subset of 2Ap that either

contains a, or does not contain a and contains c.

Theorem 2 Let ϕ be a G-free formula. Then L(B(ϕ)) = L(ϕ)

Proof Immediate consequence of Theorem 1 and the definition of B(ϕ). ��

Remark Computing B(ϕ) requires a data structure to represent the equivalence classes of the
formulae of Reach(ϕ)with respect to propositional equivalence. Let PF(ϕ) denote the set of
proper subformulae of ϕ. By Lemma 1(1), a formula of Reach(ϕ) is a boolean combination
of formulae of PF(ϕ). Hence, every formula of Reach(ϕ) induces a boolean function over
PF(ϕ), and two formulae ofReach(ϕ) are propositionally equivalent iff they induce the same
function. In other words, the equivalence class of a formula can be identified with its boolean
function. In our implementation, described in Sect. 9, we use Binary Decision Diagrams as
data structure for boolean functions. It iswell known thatwith this data structure propositional
equivalence can be checked in constant time. Other operations have exponential worst-case
complexity, but in all our experiments the time needed to perform them is negligible.

4 DRAs for simple FG-formulae

We introduce the main building block of our paper: a procedure to construct a DRA for
formulae FGϕ where ϕ is G-free, i.e., contains no occurrence of G. (Notice that even the
formula FGa has no equivalent deterministic Büchi automaton.)

As in the previous section, we first characterize the words w satisfying a formula FGϕ

where ϕ is G-free, and then show how to construct a DRA that accepts iff the condition
of the characterization holds. However, in this section we divide this step into two parts.
We first introduce an auxiliary automata model, called Mojmir automata,2 and show how
to construct a Mojmir automaton recognizing L(FGϕ). (Mojmir automata are designed to
make this construction intuitive and easy to grasp.) Then we show how to transform Mojmir
automata into equivalent DRAs.

2 Named in honour of Mojmír Křetínský, father of one of the authors.

123

Form Methods Syst Des (2016) 49:219–271 229

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄

c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄

c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄

c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄

c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄

c b̄c̄

Fig. 2 The top row shows the first four elements of the array of co-Büchi automata for FG(a∨ (b U c)) after
reading abc ābc̄ ābc̄. At the bottom, the corresponding configuration of the Mojmir automaton

4.1 Logical characterization

The logical characterization of the words satisfying FGϕ is an easy consequence of
Theorem 1.

Theorem 3 (Logical characterization theorem II) Let FGϕ be a formula such that ϕ is G-
free. Thenw |	 FGϕ iff for almost every i ∈ N there exists j ≥ i such that af (ϕ,wi j) ≡P tt.

Proof By the semantics of LTL,w |	 FGϕ iffwi |	 ϕ for almost every i ∈ N. ByTheorem 1,
w |	 FGϕ iff for almost every i ∈ N there exists j ≥ i such that af (ϕ,wi j) ≡P tt. ��
4.2 Mojmir automata

By the definition of LTL, we have w |	 FGϕ iff wi |	 ϕ for all but finitely many i ≥ 0.
Let Aϕ be the deterministic co-Büchi automaton recognizing L(ϕ). From a mathematical
point of view, we can recognize L(FGϕ) with the help of an infinite array of copies of Aϕ .
The i th automaton reads wi , i.e., it skips the first (i − 1) letters of the input word, and
then starts reading. Therefore, the i-th automaton accepts iff wi |	 ϕ. The array accepts
iff almost every array element accepts. Figure 2 shows the first four elements of the array
for the formula FG(a ∨ (b U c)). The figure shows the state of the elements after reading
(abc) (ābc̄) (ābc̄). For example, the automaton on the left has read all three letters, and
reached state q3, graphically displayed by putting a token on the state, while the next one has
only read the last two letters, and reached state q2. The last automaton has not yet read any
letter, and so it is currently in state q1.

We now observe that the complete array can be replaced by one single automaton that
handles all the tokens simultaneously. We call such an automaton a Mojmir automaton. The

123

230 Form Methods Syst Des (2016) 49:219–271

bottom part of Fig. 2 shows the configuration of the Mojmir automaton corresponding to the
array at the top. After reading (abc) (ābc̄) (ābc̄), the automaton has created four tokens,
labelledwith their birthdates. Intuitively, when the automaton reads a letter it moves all tokens
according to the transition function, and then puts a fresh token in the initial state, labelled
with the position of the letter. Initially there is a unique token at the initial state, labelled by
0. The automaton accepts if almost every token eventually reaches an accepting state.

Definition 8 AMojmir automaton is a tupleM = (Q,Σ, q0, δ, F), where (Q,Σ, q0, δ) is
a DTS and F ⊆ Q is a set of accepting states satisfying δ(F, ν) ⊆ F for every ν ∈ Σ , i.e.,
states reachable from accepting states are also accepting.

The run of M over a word w = w[0]w[1] . . . ∈ Σω is the infinite sequence

(q00) (q10 , q
1
1) (q20 , q

2
1 , q

2
2) (q30 , q

3
1 , q

3
2 , q

3
3) . . .

where

qtimetoken =
{
q0 if token = time,

δ
(
qtime−1
token , w[time − 1]) if token < time

The position of a token at a time in the run is given by the function runw : N×N → Q∪{⊥},
defined as follows:

runw(token, time) =
{
qtimetoken if token ≤ time

⊥ if token > time

For every time t ∈ N, we denote by conf w(t) the function defined by

token �→ runw(token, t))

We call conf w(t) the configuration of the run of M on w at time t . The run of M on w is
accepting if for almost every token ∈ N there exists time ∈ N such that runw(token, time) ∈
F .

Given a G-free formula ϕ, the Mojmir automaton equivalent to FGϕ has exactly the same
syntactic structure as the Büchi automaton for ϕ: only the notions of run and acceptance are
different.

Definition 9 Let ϕ be a G-free formula. The Mojmir automaton for FGϕ is M(ϕ) =
(Reach(ϕ), 2Ap, [ϕ]P , af , {[tt]P }).

Since M(ϕ) accepts iff almost every token eventually reaches an accepting state, M(ϕ)

accepts a word w iff w |	 FGϕ, and so we have:

Theorem 4 Let ϕ be a G-free formula. Then L(M(ϕ)) = L(FGϕ).

Example 3 Figure 3 shows the Mojmir automaton for FG(a ∨ (b U c)) and the matrix
representation of runw(token, time) for w = abc ābc̄ ābc̄ The configurations of the
run are given by the columns of the matrix. For instance, conf w(2) is the mapping 0 �→
q3, 1 �→ q2, 2 �→ q1,∀i ≥ 3 : i �→ ⊥ given by the third column, indicating that after two
steps the tokens 0, 1, 2 are in states q3, q2, q1, respectively, and other tokens do not exist yet.

In the rest of the section we show how to construct a deterministic Rabin automaton
equivalent to a given Mojmir automaton. In Sect. 4.3 we define an abstraction that assigns to
each configuration conf w(t) of a run an abstract object srw(t), called a state-ranking. Since

123

Form Methods Syst Des (2016) 49:219–271 231

q1

q2

q3 q4

ābc̄
a + āc āb̄c̄

bc̄

c b̄c̄

0 1 2 3 · · ·
0 q1 q3 q3 q3 · · ·
1 ⊥ q1 q2 q2 · · ·
2 ⊥ ⊥ q1 q2 · · ·
3 ⊥ ⊥ ⊥ q1 · · ·
4 ⊥ ⊥ ⊥ ⊥ · · ·

· · · · · · · · · · · · · · · · · ·

Fig. 3 Mojmir automaton for FG(a ∨ (b U c)), and matrix representation of runw(token, time) for w =
abc ābc̄ ābc̄ . . .

the run of M on a word w is completely characterized by the sequence of configurations
conf w(0) conf w(1) conf w(2) . . ., the abstraction also abstracts a run into the infinite sequence
of state-rankings srw(0) srw(1) srw(2) Sections 4.4 and 4.5 show that the abstraction has
the following properties:

1. There is an easily computable function that given srw(t) andw[t+1] returns srw(t+1).
(Lemma 3)

2. A run is accepting iff its corresponding abstract run satisfies a certain Rabin condition.
(Definition 16)

Finally, Sect. 4.6 derives the deterministic Rabin automaton. As the reader can expect, the
automaton will have the state-rankings as states, the function of (1) as transition function,
and the condition of (2) as acceptance condition.

4.3 State-rankings

Intuitively, a state-ranking of a Mojmir automaton M is a ranking of the states of M. Our
state-rankings are allowed to be partial, that is, to leave some states unranked.

Definition 10 Let M be a Mojmir automaton with n states. A state-ranking of M is a
partial injective function sr : Q → {1, . . . , n}, such that if the image of sr contains i, then
it also contains j for every j < i. When sr(q) is undefined, we write sr(q) = ⊥. The set of
state-rankings of M is denoted by SR.

The state-ranking srw(t) associated to conf w(t) is the result of performing a sequence of
abstraction steps, which we illustrate on an example. Consider a Mojmir automatonM with
states {q0, q1, q2, q3, q4, q5, q6}. Assume that, after the first 8 steps of its run on some word,
M has reached the following configuration, where for each state we give the set of tokens
currently at that state:

q0 q1 q2 q3 q4 q5 q6
({3, 8} {1, 2} ∅ {5, 7} {4} {6} {0}) (1)

Assume further that states q5, q6 are sinks, meaning that δ(q5, ν) = q5 and δ(q6, ν) = q6
for every alphabet letter ν.3 We start the abstraction process by discarding the information

3 For technical reasons, we also decree that the initial state cannot be a sink.

123

232 Form Methods Syst Des (2016) 49:219–271

about tokens in sinks. We use the symbol ⊥ to denote this, and obtain:

q0 q1 q2 q3 q4 q5 q6
({3, 8} {1, 2} ∅ {5, 7} {4} ⊥ ⊥)

Wecontinue by keeping only the oldest token of each state (that is, the onewith the smallest
number). If the state is not populated by any token, again we just write ⊥. We obtain:

q0 q1 q2 q3 q4 q5 q6
(3 1 ⊥ 5 4 ⊥ ⊥)

We call tokens 3, 1, 5 and 4 the senior tokens of the configuration, or just the seniors.
Since a run has infinitely many tokens, the number of possible abstract configurations

of the automaton is still infinite. So we discard even more information. We throw away the
identities of the senior tokens, and keep only their relative seniority rank: the oldest senior
token has rank 1, the second oldest rank 2, etc. We obtain the state-ranking

q0 q1 q2 q3 q4 q5 q6
(2 1 ⊥ 4 3 ⊥ ⊥)

It is useful to think of the set of tokens at a state as the partners of a partnership firm. The
senior partner is the oldest token. The name of the firm is the rank of the senior partner. For
instance, the firm 2 at state q0 has tokens 3 and 8 as partners.

Let us formally define the rank rkw(τ, t) of token τ at time t , and the state-ranking srw(t)
at time t .

Definition 11 Let M = (Q,Σ, q0, δ, F) be a Mojmir automaton with n states. A state
q ∈ Q is a sink if q
= q0 and δ(q, ν) = q for every ν ∈ Σ .

Let w ∈ Σω be a word, and consider the run ofM on w. Given two tokens τ, τ ′ ∈ N, we
say that τ is older than τ ′ if τ < τ ′. The senior of token τ at time t > τ is the oldest token
τ ′ such that runw(τ, t) = runw(τ ′, t). If a token is its own senior, then we call τ a senior (at
time t).

The rank of token τ at time t > τ , denoted by rkw(τ, t), is defined as follows:

– If runw(τ, t) is a sink, then rkw(τ, t) = ⊥ (we say that τ is unranked at time t).
– If runw(τ, t) is not a sink, then let s be the senior of token τ at time t . The rank rkw(τ, t)

is the number of senior tokens τ ′ such that runw(τ ′, t) is not a sink and τ ′ ≤ s.

(Observe that runw(τ, t) = runw(τ ′, t) implies that τ and τ ′ have the same seniors, and
so that rkw(τ, t) = rkw(τ ′, t); so all tokens at the same state get the same rank.)

Finally, the state-ranking at time t , denoted by srw(t), is the mapping Q → N that assigns
to each state q ∈ Q its state-ranking srw(t, q) ∈ {1, . . . , n}, defined as follows:
– If q is a sink, then srw(t, q) = ⊥.
– If q is not a sink and no token τ satisfies runw(τ, t) = q , then srw(t, q) = ⊥.
– If q is not a sink and some token τ satisfies runw(τ, t) = q , then srw(t, q) = rkw(τ, t).

Example 4 Consider for example token 7 in the configuration (1). The senior of 7 is 5. The
seniors are 3, 1, 5, 4. Since all seniors are at least as old as 5, the rank of token 7 is 4. Since
the configuration is the result of reading the first 8 letters of a wordw, we have rkw(7, 8) = 4.

While the birthdate of a token does not change along a run, its rank can change, and for
two different reasons. Assume the current rank of a token τ is 4. If the firm of rank, say, 3,
moves to a sink, then it “disappears”, and the rank of τ is upgraded to 3. If the token’s firm

123

Form Methods Syst Des (2016) 49:219–271 233

merges with the firm of rank, say, 2, the rank of τ is upgraded to 2. In both cases, we observe
that, as long as the token does not reach a sink, its rank can only improve (get older) along a
run.

Lemma 2 Let M = (Q,Σ, q0, δ, F) be a Mojmir automaton and let w ∈ Σω be a word.
For every token τ ∈ N:

– if rkw(τ, t) = ⊥ for some t ∈ N, then rkw(τ, t ′) = ⊥ for every t ′ ≥ t .
– if t ≤ t ′ and rkw(τ, t), rkw(τ, t ′) ∈ N, then rkw(τ, t) ≥ rkw(τ, t ′).

Proof Follows easily from the definitions. ��
4.4 Computing the successor of a state-ranking

Recall that the run of a Mojmir automaton on a word w is completely determined by the
sequence of configurations conf w(0) conf w(1) conf w(2) To this sequence corresponds
a sequence srw(0) srw(1), srw(2) . . . of state-rankings. We show that srw(t + 1) can be
directly computed from srw(t) and the letter w[t + 1]. More precisely, we define a function
nxt : SR× Σ → SR and show that it satisfies nxt(srw(t), w[t + 1]) = srw(t + 1) for every
time t .

Let srw(t) be the state-ranking

q0 q1 q2 q3 q4 q5 q6
(2 1 ⊥ 4 3 ⊥ ⊥)

Assume w[t + 1] = ν for some ν ∈ Σ , and assume further that

δ(q0, ν) = q5 δ(q1, ν) = q2 = δ(q3, ν) δ(q4, ν) = q3

We obtain srw(t + 1) in four steps:

(i) Move all senior tokens according to δ.
The token of rank 2 at q0 moves to the sink q5 (recall that q5 and q6 are sinks) and
“disappears”. The tokens of ranks 1 and 4 move to state q2. The token of rank 3 at q4
moves to q3. We obtain:

q0 q1 q2 q3 q4 q5 q6
(⊥ ⊥ {1, 4} 3 ⊥ ⊥ ⊥)

(ii) If a state holds more than one token, keep only the most senior token.
Only the token of rank 1 survives in q2. Intuitively, the firms with rank 1 and 4 merge,
and 1 becomes the senior partner.

q0 q1 q2 q3 q4 q5 q6
(⊥ ⊥ 1 3 ⊥ ⊥ ⊥)

(iii) Recompute the seniority ranks of the remaining tokens.
The token of rank 3 is upgraded to rank 2.

q0 q1 q2 q3 q4 q5 q6
(⊥ ⊥ 1 2 ⊥ ⊥ ⊥)

(iv) If there is no token on the initial state, add one with the next lowest seniority rank.
We add a token to q0 of rank 3.

q0 q1 q2 q3 q4 q5 q6
(3 ⊥ 1 2 ⊥ ⊥ ⊥)

123

234 Form Methods Syst Des (2016) 49:219–271

q1 : a ∨ (bU c)

q2 : bU c

q3 : tt q4 : ff

ābc̄

a + c āb̄c̄
bc̄

c b̄c̄

(1, ⊥)

(2,1)

t1 : a + c
t2 : āb̄c̄

t3 : ābc̄
t6 : c
t7 : ab̄c̄
t8 : āb̄c̄

t4 : abc̄
t5 : ābc̄

Fig. 4 A Mojmir automaton for a ∨ (b U c) and its corresponding DRA

The corresponding formal definition is:

Definition 12 Let M = (Q,Σ, q0, δ, F) be a Mojmir automaton with n states and a set S
of sinks. Let sr be a state-ranking ofM, and let ν ∈ Σ . For every q ∈ Q, the set of ranks of
sr that move to q under ν, denoted by mvto(q), is given by:

mvto(q) =
{

{sr(q ′) | sr(q ′)
= ⊥ ∧ δ(q ′, ν) = q} if q
= q0
{sr(q ′) | sr(q ′)
= ⊥ ∧ δ(q ′, ν) = q} ∪ {n} if q = q0

The state-ranking nxt(sr, ν) is defined with min(∅) = ∞ by:

nxt(sr, ν, q)

=
{

|{q ′ ∈ Q \ S | min(mvto(q ′)) ≤ min(mvto(q))}| if q /∈ S and mvto(q)
= ∅
⊥ otherwise

We get the following lemma.

Lemma 3 Let M be a Mojmir automaton and let w be a word. Then srw(t + 1) =
nxt(srw(t), w[t + 1]) for every t ≥ 0.

Proof (Sketch) The key observation for the proof is that nxt(srw(t), w[t + 1]) computes for
a state q the set of senior states q ′ at time t + 1 and then takes the cardinality of this set as a
value. This coincides with the definition of srw(t + 1). ��

We already have all we need to define the states and transition function of the DRA
equivalent to a given Mojmir automaton (although not the acceptance condition). The states
of the Rabin automaton are the state-rankings, and the transition function is given by nxt.

Example 5 Figure 4 shows our running example on the left, and the states and transitions of
its correspondingRabin automaton on the right. Since statesq3 and q4 are sinks, state rankings
only rank states q1 and q2. The initial state-ranking is (1,⊥). The only other state-ranking
reachable from it turns out to be (2, 1).

4.5 Deciding acceptance of an abstract run

We define a Rabin acceptance condition that turns the transition system above into a DRA
equivalent to theMojmir automaton.We start by classifying the tokens of a run of theMojmir
automaton.

123

Form Methods Syst Des (2016) 49:219–271 235

Definition 13 Let M = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word. A
token τ ∈ N of the run of M on w

– squats if it never reaches a sink
(that is, if runw(τ, t) ∈ Q \ S for every t ∈ N);

– fails if it eventually reaches a non-accepting sink
(that is, if there exists t ∈ N such that runw(τ, t) ∈ S \ F);

– succeeds if it eventually reaches an accepting state, sink or non-sink
(that is, if there exists t ∈ N such that runw(τ, t) ∈ F).

Further, we say that a token succeeds at rank i if it has rank i immediately before entering the
set of accepting states, i.e., if there is t ∈ N such that runw(τ, t) /∈ F\{q0}, runw(τ, t+1) ∈ F ,
and rkw(τ, t) = i.4

Observe that the three classes are not disjoint. More precisely, a token either fails, succeeds,
or squats in non-accepting states. By definition, a Mojmir automaton accepts a word w if all
but finitely many of the tokens generated during the run on w succeed (recall that tokens that
reach an accepting state stay within the set of accepting states). So, given the abstract run of
M onw, our task is to find a Rabin condition equivalent to “only finitely many tokens fail and
only finitely many tokens squat in non-accepting states”. The condition equivalent to “only
finitely many tokens fail” is simple: since a token fails when it moves into a non-accepting
sink, we stipulate that transitions moving tokens into non-accepting sinks can only occur
finitely often.

Finding a condition equivalent to “only finitelymany tokens squat in non-accepting states”
is a bit more involved. Observe that, since a squatter τ never reaches a sink, it has a rank at
every moment in time. So, if infinitely many tokens squat in non-accepting states, then, since
they are all confined within Q \ (S ∪ F), infinitely many firm merges must take place in this
set of states. This suggests the following definition:

Definition 14 Let M = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word. Let
τ, τ ′ ∈ N be two tokens such that τ < τ ′. We say that τ and τ ′ merge during the run of M
on w if there is t ∈ N and a state q /∈ F such that runw(τ, t) = q = runw(τ ′, t), and one of
the two following conditions hold:

– τ ′ < t and runw(τ, t − 1)
= runw(τ ′, t − 1).
(Both tokens already existed at time t − 1, and were at different states)

– τ ′ = t .
(Token τ ′ is created at time t .)

Further, we say that the tokens merge at rank i if rkw(τ, t) = i.

Notice the condition q /∈ F in the definition: we reserve the term “merge” for the merges
occurring in non-accepting states.

If two tokens merge at some time t , then from that moment on they follow the same
trajectory, and so we have:

Lemma 4 Let M = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word. Let
τ, τ ′ ∈ N be two tokens that merge along the run ofM on w. Then either both τ and τ ′ fail,
or both succeed at the same rank, or both squat.

4 Observe that in the special case q0 ∈ F (all states are accepting), the first move of each token is considered
succeeding.

123

236 Form Methods Syst Des (2016) 49:219–271

Proof By the definition of merge there is a time t0 such that runw(τ, t0) = q /∈ F and
runw(τ, t) = runw(τ ′, t) for all t ≥ t0. We proceed by case distinction and only consider
two cases.

– τ fails. This means that the token τ moves at some point to a non-accepting sink and
stays there forever. Let us call this time t ′. Without loss of generality we assume that the
merge happens outside the sinks S and we have t ′ > t0. Hence we have runw(τ ′, t ′) =
runw(τ, t ′) = qs and thus τ ′ also fails.

– τ succeeds at rank i . Thus the token τ moved at some time t ′ > t0 from the non-accepting
states to the accepting states with rank i . Since τ and τ ′ already merged and tokens that
are in the same state have the same rank, also τ ′ succeeds with rank i . ��
We can now formulate and prove the main theorem of the section, presenting conditions

equivalent to “only finitely many tokens fail” (condition (1)), and “only finitely many tokens
squat in non-accepting states” (condition (2)):

Theorem 5 Let M = (Q,Σ, δ, q0, F) be a Mojmir automaton and let w be a word. M
accepts w if and only if the run of M on w satisfies the following two conditions:

(1) Finitely many tokens fail.
(2) There is a rank i such that

(2.1) infinitely many tokens succeed at rank i, and
(2.2) finitely many pairs of tokens merge at rank older than i, i.e. with a rank j < i.

Proof (⇒): AssumeM acceptsw. Then almost every token of the run ofM onw succeeds.
Therefore, since no token can succeed and fail, (1) holds.

Let i be the smallest rank satisfying (2.1) (since almost all tokens succeed and the number
of ranks are finite, such an i exists). We prove that i satisfies (2.2). Let Mi be the set of pairs
(τ, τ ′) of tokens such that τ < τ ′ and τ and τ ′ merge at rank older than i. We prove that Mi

is finite. By Lemma 4 either both τ and τ ′ succeed, or none succeeds. Let Si be the set of
pairs (τ, τ ′) ∈ Mi such that both τ and τ ′ succeed. Since M accepts w, almost every token
succeeds, and so Mi \ Si is finite.

It remains to prove that Si is finite. By the definition of i, it suffices to prove that for every
(τ, τ ′) ∈ Si both τ and τ ′ succeed at a rank older than i. Let t0 be the time at which τ and
τ ′ merge. By the definition of a merge, at time t0 neither τ nor τ ′ have reached the set of
accepting states. Since τ and τ ′ merge at rank older than i and two merged tokens always
have the same rank, we have rkw(τ ′, t0) < i. Let t1 > t0 be the time at which both tokens
enter the set of accepting states. By Lemma 2(2), we have rkw(τ, t1) < i and rkw(τ ′, t1) < i,
and so both τ and τ ′ succeed at a rank older than i.

(⇐): If q0 ∈ F then by the definition of Mojmir automata M accepts every word, and
we are done. So assume q0 /∈ F .

By the definition of squatting, a token τ squats iff rkw(τ, t) ∈ N for every t ≥ τ . ByLemma
2, the rank of τ can only get older, and so there is a time t such that rkw(τ, t) = rkw(τ, t ′)
for every t ′ ≥ t . We call this rank the stable rank of τ , denoted by strkw(τ). The following
lemma, proved in the Appendix, shows that all stable ranks are old. ��
Lemma 5 Let i be the rank of condition (2). If the rank of τ stabilizes, then strkw(τ) < i.

We now use the lemma to prove the result by contradiction. AssumeM does not acceptw.
Then, infinitely many tokens do not succeed in the run ofM on w. Since by (1) only finitely
many tokens fail, infinitely many tokens squat in non-accepting states. By Lemma 5, their

123

Form Methods Syst Des (2016) 49:219–271 237

stable ranks are all older than i. So there is a rank j < i such that infinitely many tokens have
stable rank j. Let τ be one of these tokens, and let t be the time at which its rank stabilizes.
All tokens born after t whose rank stabilize at j eventually merge with τ . Therefore, infinitely
many pairs (τ, τ ′) merge at rank i. But this contradicts our assumption that (2.2) holds.

We conclude the section with a definition that will be important in Sect. 6.

Definition 15 Let M be a Mojmir automaton and let w be a word. We say that M accepts
w at rank i if M accepts w and the rank of condition (2) in Theorem 5 is i.

Note that a word can be accepted at several ranks. In Sect. 6.2 we will show that the ranks
at which the automaton M(ϕ) of a formula ϕ accepts a word carry useful information.

4.6 From Mojmir automata to deterministic Rabin automata

From Theorem 5 we can easily derive a deterministic Rabin automaton equivalent to a given
Mojmir automaton. More precisely, we show how to construct an automaton with a Rabin
condition on transitions. Applying the construction of Sect. 2.3.1, this automaton can be
transformed into one with a Rabin condition on states.

Definition 16 LetM = (Q,Σ, q0, δ, F) be a Mojmir automaton with a set S of sinks. The
deterministic Rabin automaton R(M) = (QR,Σ, q0R, δR, αR) is defined as follows:

– QR is the set SR of state-rankings of M;
– q0R is the state-ranking satisfying q0R(q0) = 1 and q0R(q) = ⊥ for every q
= q0;
– δR(sr, ν) = nxt(sr, ν) for every state-ranking sr and letter ν;
– αR = ∨|Q|

i=1 Pi , where the i th Rabin pair is Pi = (fail ∪ merge(i), succeed(i)), and the
sets fail, merge(i), and succeed(i) are defined as follows. A transition (sr, ν, sr ′) ∈ δR
belongs to

– fail if there exists q ∈ Q such that sr(q) ∈ N and δ(q, ν) ∈ S \ F .
– succeed(i) if there exists q /∈ F such that sr(q) = i and δ(q, ν) ∈ F , or q0 ∈ F and

sr(q0) = i.5

– merge(i) if
• there exists a state q ∈ Q \ F and distinct states q1, q2 ∈ Q such that δ(q1, ν) =

q = δ(q2, ν), sr(q1) < i, and sr(q2)
= ⊥; or
• q0 /∈ F , and there exists a state q such that δ(q, ν) = q0 and sr(q) < i.6

R(M) accepts a word w at rank j if Pj is an accepting pair on the run of R(M) on w.

Example 6 Let us determine the accepting pairs of the DRA on the right of Fig. 4. We
examine several representative cases.

– t1 moves tokens from q1 to the accepting sink q3. Since sr(q1) = 1, transition t1 belongs
to succeed(1). Since we can safely ignore sinks (q3, q4) and states that are empty (q2)
for testing membership, we are done with t1.

– t2 takes tokens from the initial state and moves them to the non-accepting sink q4. This
matches the definition of fail, with sr(q1) ∈ N and δ(q1, āb̄c̄) = q4 ∈ S \ F . Hence
t2 ∈ fail.

5 If q0 is accepting then, by the definition of Mojmir automaton, all states reachable from q0 are accepting.
This condition covers the corner case in which no transition into an accepting state is possible, because all
states are accepting state.
6 In this case there is a merge between the token at q and the token newly created on state q0.

123

238 Form Methods Syst Des (2016) 49:219–271

– t3 moves tokens from q1 to q2. Since q2 is neither a sink nor an accepting state, t3 is not
contained in fail or in any succeed set. Moreover, since sr(q2) = ⊥, it does not belong
to any merge set either.

– t8 moves tokens from q1 and q2 to the non-accepting sink q3. Hence t8 ∈ fail. Moreover,
the transition merges the tokens from q1 and q2 in q3 with rank sr(q1) = 1, and so t8 is
also contained in merge(2).

Altogether we obtain

fail = {t2, t7, t8} merge(1) = ∅
merge(2) = {t5, t8}

succeed(1) = {t1, t6}
succeed(2) = {t4, t6, t7}

It is easy to see that the runs accepted by the pair P1 are those that take t2, t7, t8 only
finitely often, and visit (1,⊥) infinitely often. They are accepted at rank 1. The runs accepted
at rank 2 are those accepted by P2 but not by P1. They take t1, t2, t5, t6, t7, t8 finitely often,
and so they are exactly the runs with a tω4 suffix.

Lemma 6 Let M = (Q,Σ, i, δ, F) be a Mojmir automaton, and let R(M) be its corre-
sponding Rabin automaton. For every wordw, the sequence conf w(0)conf w(1) . . . is the run
of M on w iff srw(0)srw(1) . . . is the run of R(M) on w.

The Rabin condition of this automaton checks conditions (1) and (2) of Theorem 5.
Consider a transition conf w(t)

a−→ conf w(t + 1) between two configurations of M in

which some tokenmoves into a non-accepting sink. Then the transition srw(t)
a−→ srw(t+1)

clearly belongs to the set fail, and vice versa. Similarly, transitions of succeed(i) correspond
to transitions of M that make some token succeed at rank i, and transitions of merge(i)
correspond to transitions of M that merge two tokens at rank i. So we obtain:

Theorem 6 Let M be a Mojmir automaton, and let R(M) be its corresponding Rabin
automaton. Then L(M) = L(R(M)). Moreover, for every w ∈ L(M) both M and R(M)

accept w at the same ranks.

5 DRAs for arbitrary FG-formulae

We show how to translate formulae of the form FGϕ into DRAs. Thanks to the results of
Sect. 4, it suffices to translate them intoMojmir automata.We show that theMojmir automaton
for a formula can be defined compositionally, as an intersection of Mojmir automata. The
next proposition shows that Mojmir automata are closed under union and intersection (the
proof can be found in the Appendix).

Proposition 5 Let M1 = (Q1,Σ, q01, δ1, F1) and M2 = (Q2,Σ, q02, δ2, F2). Let Q =
Q1×Q2, let q0 = (q01, q02), and let δ : Q×Σ → Q be the function given by δ(q1, q2, ν) =
(δ1(q1, ν), δ2(q2, ν)) Then the tuples

M1 ∩ M2 = (
Q,Σ, q0, δ, F1 × F2

)
M1 ∪ M2 = (

Q,Σ, q0, δ, (F1 × Q2) ∪ (Q1 × F2)
)

are also Mojmir automata, and moreover L(M1 ∩ M2) = L(M1) ∩ L(M2) and L(M1 ∪
M2) = L(M1) ∪ L(M2).

123

Form Methods Syst Des (2016) 49:219–271 239

ψ1

tt

a

ā

true

Fig. 5 Mojmir automaton for words satisfying FGψ1 but not FGψ2

5.1 A compositional construction: intuition

We present the intuition behind the construction by means of an example. Consider the
formula

ϕ = FG(Fa ∨ (G(a ∨ Fb) ∧ c)))

We use the abbreviations ψ2 = a ∨ Fb and ψ1 = Fa ∨ (Gψ2 ∧ c), and so we also refer to
the formula as FGψ1.

We cannot directly apply the construction of the last section because FGψ1 contains the
G-subformulaGψ2. However, sinceψ2 does not contain anyG-subformula, we can construct
a Mojmir automaton M(ψ2) for FGψ2. We use this fact to define the automaton M(ψ1)

as the union of two Mojmir automata: The first automaton recognizes all words satisfying
FGψ1 but not FGψ2 (and perhaps some other words satisfying FGψ2), while the second
recognizes all words satisfying FGψ1 and FGψ2 (and perhaps some other words satisfying
FGψ1). Consider for example the words

w1 = (ab̄c̄ āb̄c)ω w2 = (ābc)ω w3 = (āb̄c)ω

We have w1 |	 FGψ1 ∧¬FGψ2, w2 |	 FGψ1 ∧FGψ2 and w3
|	 FGψ1. So both automata
will reject w3. Moreover, the first automaton will accept w1, and the second w2.

The first automaton, called M(ψ1,∅) in Sect. 5.2 below, is just the Mojmir automaton
for the formula FGψ1[Gψ2/ff], i.e., the result of substituting Gψ2 by ff in FGψ1. It is easy
to see that, since ψ1 is in negation normal form, FGψ1[Gψ2/ff] logically implies FGψ1,
and so every word accepted by M(ψ1,∅) satisfies FGψ1. Moreover, observe that if a word
w does not satisfy FGψ2, then the formula Gψ2 is false for every suffix wi of w, and so,
intuitively, treating FGψ2 as false still allows M(ϕ,∅) to accept all words FGψ1 but not
FGψ2. The automatonM(ϕ,∅) that treats Gψ2 as ff is shown in Fig. 5. To observe the effect
of “treating Gψ2 as ff”, consider state ψ1 and the letter ābc. If we used the function af as

transition relation, then we would obtain the transition ψ1
ābc−→ Fa ∨ (Gψ2 ∧ Fb). Instead,

since Gψ2 is treated as ff , we get ψ1
ābc−→ Fa.

The second automaton is the intersection of twoMojmir automata. The first one isM(ψ2),
the Mojmir automaton for ψ2, which guarantees that the intersection only accepts words
satisfying FGψ2. The second one, which will be called M(ψ1, {ψ2}) in Sect. 5.2, is intu-
itively in charge of checking that a word w satisfies FGψ1 assuming that it satisfies FGψ2.
Both automata are shown in Fig. 6. We choose M(ψ1, {ψ2}) as the Mojmir automaton for
FGψ1[Gψ2/tt]. At first sight, since FGψ2 and Gψ2 are not equivalent, replacing Gψ2 by tt
looks wrong. Let us see why it is correct. Since Gψ2 eventually holds, the assumption that
Gψ2 is true can only be incorrect for a finite time, or, in other words, for a finite number of
tokens. Now we observe that the acceptance condition of Mojmir automata is insensitive to
the fate of a finite number of tokens: if almost every token eventually reaches the accepting

123

240 Form Methods Syst Des (2016) 49:219–271

ψ1

Fa

tt

āc̄

a + c ā

a

true

ψ2

Fb

tt

ab

a + b b̄

a

true

Fig. 6 The automata M(ψ1, {ψ2}) and M(ψ2)

states, then after changing the fate of a finite number of tokens this is still the case, and vice
versa. So replacing Gψ2 by tt is correct after all.

Consider state ψ1 of M(ψ1, {ψ2}). If we used the function af as transition relation, then
we would obtain the transition ψ1

āc−→ Fa ∨ Gψ2. Since we handle Gψ2 as tt, we get

ψ1
āc−→ tt instead.

We have thus constructed an automaton forFG(Fa∨(G(a∨Fb)∧c)). To handle formulae
FGψ where ψ has multiple G-subformulae Gψ1, . . . , Gψn , possibly nested within each
other, we generalize the procedure above, and construct an automaton M(ϕ,G) for each
subset G of G-subformulae. The automaton M(ϕ,G) accepts all words w such that w |	 ϕ

and w |	 FGψ for every Gψ ∈ G. The automaton is an intersection of automata, one for
each formula in G. The automaton for Gψi handles the G-subformulae ofψi that belong to G
as tt. Observe that circularity assumptions of the form “the automaton for Gψ1 assumes that
FGψ2 holds, and the automaton for Gψ2 assumes that that FGψ1 holds” are not possible
because no two formulae can be subformulae of each other.

The final point is to address the state-explosion problem. In the construction above, the
final Mojmir automaton for a formula with G-subformulae Gψ1, . . . , Gψn is the union of
2n Mojmir automata, and has an unacceptably large number of states. Fortunately, we can
construct all these automata so that they have exactly the same states and transitions, and
only differ on their set of accepting states. The idea is to constructM(ψ,G) using a different
transition function. We replace af by another function af G that behaves like af , except for
G subformulae, where we set af G(Gψ, ν) = Gψ instead of af (Gψ, ν) = Gψ ∧ af (ψ, ν).
Intuitively, we leave the decision whether to handle Gψ as tt or ff “open”. Then, for every
set G we choose the accepting states appropriately: Since M(ϕ,G) assumes that all the
formulae of G are true, we choose as accepting states those whose corresponding formulae
are propositionally implied by G.

In our example, bothM(ψ1,∅) andM(ψ1, {ψ2}) are the intersection of the two automata
of Fig. 7; they differ only in the accepting states. In the case ofM(ψ1,∅), the left automaton
treats Gψ2 as ff , and the right automaton is redundant; therefore, the only accepting state
of the left automaton is tt, and all states of the right automaton are accepting. In the case of
M(ψ1, {ψ2}), the left automaton on the left treats Gψ2 as tt, and the right automaton checks
that Gψ2 holds; therefore, the accepting states of the left automaton are Fa ∨ GFψ2 and tt,
and the only accepting state of the right automaton is tt.

123

Form Methods Syst Des (2016) 49:219–271 241

ψ1

Fa ∨ Gψ2 Fa

tt

āc ac

aā

a

ā

a

true

ψ2

Fb

tt

ab

a + b b̄

a

true

ψ1

Fa ∨ Gψ2 Fa

tt

āc ac

aā

a

ā

a

true

ψ2

Fb

tt

ab

a + b b̄

a

true

Fig. 7 Intersections with the same structure equivalent to M(ψ1, ∅) and M(ψ1, {ψ2}) ∩ M(φ2)

5.2 Logical characterization

In order to formalize the notion of “handling a subformula Gψ as tt” we introduce the
following definition:

Definition 17 Let ϕ be a formula and ν ∈ 2Ap . The formula af G(ϕ, ν) is inductively defined
as af (ϕ, ν), with only this difference:

af G(Gϕ, ν) = Gϕ (instead ofaf (Gϕ, ν) = af (ϕ, ν) ∧ Gϕ).

We define ReachG(ϕ) = {[af G(ϕ,w)]P | w ∈ (2Ap)∗}.
Example 7 Let ϕ = ψU¬a, where ψ = G(a ∧ X¬a). We have

af G(ϕ, {a}) = af G(ψ, {a}) ∧ ϕ ≡p ψ ∧ ϕ

af (ϕ, {a}) = af (ψ, {a}) ∧ ϕ ≡p ¬a ∧ ψ ∧ ϕ

The logical characterization theorem will be an easy corollary of Lemma 7 below. Given
a formula ϕ and a word w, the lemma characterizes the set of G-subformulae of ϕ that
eventually hold at a word w, i.e., the subformulae Gψ such that w |	 FGψ . If ϕ is of the
form FGψ , then clearly w |	 ϕ iff the subformula Gψ belongs to this set.

Definition 18 Given a formula ϕ, we denote byG(ϕ) the set of G-subformulae of ϕ, i.e., the
subformulae of ϕ of the form Gψ . Given a word w, we say that Gψ ∈ G(ϕ) is eventually
true in w if w |	 FGψ . We denote the set of eventually true G-subformulae of ϕ by Gw(ϕ).

123

242 Form Methods Syst Des (2016) 49:219–271

Definition 19 A set of G ⊆ G(ϕ) is closed for w if G |	P af G(ψ,wi j) holds for almost all
i ∈ N, almost all j ≥ i , and for every Gψ ∈ G.

The following lemma shows that eventually true G-subformulae can be characterized
using the closed sets.

Lemma 7 Let ϕ be a formula and let w be a word.

– Every set G ⊆ G(ϕ) closed for w is included in Gw(ϕ).
– Gw(ϕ) is closed for w.

Theorem 7 (Logical characterization theorem III) For every LTL formula FGϕ and every
word w: w |	 FGϕ iff there exists a closed set G ⊆ G(FGϕ) for w containing Gϕ.

Proof (⇒): Assumew |	 FGϕ. Then ϕ ∈ Gw(FGϕ) and by Lemma 7(2) Gw(FGϕ) is closed
for w. So we can take G = Gw(ϕ).
(⇐): Assume some G ⊆ G(FGϕ) containing Gϕ is closed for w. By Lemma 7(1) we have
Gϕ ∈ Gw(FGϕ), and so, by the definition of Gw(FGϕ), we get w |	 FGϕ. ��

Let us see that the theorem indeed generalizes Theorem 1. If ϕ is a G-free formula, then
G(FGϕ) = {Gϕ}. So the only possible choice for G is G = {Gϕ} and the only possible ψ is
ψ = ϕ. Further, we have

G |	P af G(ψ,wi j)

iff Gψ |	P af G(ψ,wi j)

iff ∅ |	P af G(ψ,wi j) (Gψdoes not occur inaf G(ψ,wi j)

iff af G(ψ,wi j) ≡P tt
iff af (ψ,wi j) ≡P tt (af (ψ,wi j) = af G(ψ,wi j since ϕisG− f ree)

So for a G-free formula ϕ the theorem states that w |	 FGϕ iff af (ϕ,wi j) ≡P tt for almost
every i ∈ N and almost every j ≥ i .

Let us construct a Mojmir automaton for FGϕ from Theorem 7. The key is the following
simple fact:

af G(ϕ,wi j) ≡P tt holds for almost every i ∈ N and almost every j ≥ i (*)
iff

for almost every i ∈ N there exists j ≥ i such that af G(ϕ,wi j) ≡P tt (**)

For the proof, notice first that (*) implies (**); for the other direction recall that if
af G(ϕ,wi j) ≡P tt then af G(ϕ,wi j ′) ≡P tt for every j ′ ≥ j .

Now,we observe that (**) has the formof the acceptance condition of aMojmir automaton.
Intuitively, we can reshape it into “for every token i ∈ N there exists a time j ∈ N such that
af G(ϕ,wi j) ≡P tt”. So we define:

Definition 20 Let ϕ be a formula and letG ⊆ G(ϕ). TheMojmir automaton of ϕ with respect
toG isM(ϕ,G) = (ReachG(ϕ), ϕ, af G, FG),where FG is the set of formulaeψ ∈ ReachG(ϕ)

such that G |	P ψ .

As we announced earlier, only the set of accepting states of M(ϕ,G) depends on G. The
following lemma, proved in theAppendix, shows thatM(ϕ,G) is indeed aMojmir automaton,
i.e., that states reachable from accepting states are also accepting.

Lemma 8 Let ϕ be a formula and let G ⊆ G(ϕ). For every ψ ∈ ReachG(ϕ) and every
ν ∈ 2Ap, if G |	P ψ then G |	P af G(ψ, ν).

123

Form Methods Syst Des (2016) 49:219–271 243

ϕ ϕ ∧ Gψ

tt Gψ

ā

a

ā

true

a

true

ψ ¬a

ff tt

ā

a

ā

true

a

true

Fig. 8 Transition systems of the Mojmir automata for ϕ = (Gψ)U¬a and for ψ = a ∧ X¬a

Example 8 Let ϕ = (Gψ)U¬a, where ψ = a ∧ X¬a. We have G(ϕ) = {Gψ}, and so two
automata M(ϕ,∅) and M(ϕ, {Gψ}), whose common transition system is shown in Fig. 8.
We have one single automatonM(ψ,∅), shown on the right of the figure. A formulaψ ′ is an
accepting state ofM(ψ,∅) if tt |	p ψ ′; and so the only accepting state of this automaton is
tt. The same holds forM(ϕ,∅). On the other hand, ψ ′ is an accepting state ofM(ϕ, {Gψ})
if Gψ |	 ψ ′, and so both Gψ and tt are accepting states.

As a corollary of Lemma 7 and Definition 20 we obtain:

Corollary 1 Let ϕ be a formula, w a word, and G ⊆ G(ϕ).

– If for every Gψ ∈ G we have w ∈ L(M(ψ,G)), then for every Gψ ∈ G we have
w |	 FGψ .

– If for every Gψ ∈ G we have w |	 FGψ , then for every Gψ ∈ Gw(ϕ) we have w ∈
L(M(ψ,Gw(ϕ))).

Moreover, as a particular case:

Theorem 8 Let FGϕ be a formula and let w be a word. Then w |	 FGϕ iff there is G ⊆
G(FGϕ) containing Gϕ such that w ∈ L(M(ψ,G)) for every Gψ ∈ G.

5.3 The product automaton

Theorem 8 allows us to construct a generalized Rabin automaton for an arbitraryFG-formula
FGϕ.

Definition 21 Let ϕ = FGχ be a FG-formula, and let G(ϕ) be the set of G-subformulae
of ϕ. For every formula Gψ ∈ G(ϕ), let R(ψ,G) = (Qψ, q0ψ, δψ, AccGψ) be the Rabin
automaton obtained by applying Definition 16 to the Mojmir automaton M(ψ,G). (Recall
that Qψ , q0ψ , and δψ do not depend on G.)

We define the generalized Rabin automaton automaton R(ϕ) as

R(ϕ) =
⎛
⎝ ∏

Gψ∈G(ϕ)

Qψ, 2Ap,
∏

Gψ∈G(ϕ)

q0ψ,
∏

Gψ∈G(ϕ)

δψ , Acc

⎞
⎠

where the accepting condition Acc, which expresses “some G ⊆ G(ϕ) containing Gψ is
closed”, is given by

Acc :=
∨

{G⊆G(ϕ)|Gχ∈G}

∧
Gψ∈G

AccGψ

Since each AccGψ is a Rabin condition, Acc is a generalized Rabin condition.R(ϕ) can be
transformed into an equivalent Rabin automaton using the construction of Sect. 2.3.1. Notice

123

244 Form Methods Syst Des (2016) 49:219–271

however that, as shown in [10], for many applications it is better to keep the generalized
Rabin condition.

Theorem 9 Let ϕ be a FG-formula and let w be a word. Then w |	 ϕ iff w ∈ L(R(ϕ)).

Proof Assume ϕ = FGχ . By the definition of its accepting condition,R(ϕ) accepts a word
w iff there is a set G ⊆ G(ϕ) containing Gχ such thatR(ψ,G) accepts w for every Gψ ∈ G.
By Theorem 6, this is the case iffM(ψ,G) accepts w for every Gψ ∈ G. By Theorem 8 this
is the case iff w |	 ϕ. ��

6 DRAs for arbitrary formulae

In order to explain the last step of our procedure, let Ap = {a, b, c} be a set of atomic
propositions, and consider the formula ϕ = b ∨ XGψ over Ap, where ψ = a ∨ X(bUc).
Following the ideas of the previous section, we try to construct an automaton for ϕ as the
union of

(i) an automaton M(ϕ,∅) accepting all words satisfying ϕ but not FGψ (plus possibly
other words satisfying ϕ), and

(ii) an automatonM(ϕ, {ψ}) accepting all words satisfying ϕ and FGψ (plus possibly other
words satisfying ϕ).

By the same argument we gave in the previous section, for M(ϕ,∅) we can take a Mojmir
automaton accepting the words satisfying ϕ[Gψ/ff] = b∨Xff ≡ b. We now try to construct
M(ϕ, {ψ}) as the intersection of two Mojmir automata: M(ψ), which guarantees that the
intersection only accepts words satisfying FGψ , and an automaton that accepts the words
satisfying ϕ under the assumption that they satisfy FGψ . The automatonM(ψ) is shown on
the right of Fig. 9. But what can the other automaton be?

We consider the following idea. As transition system of the automaton we take T (ϕ)

(see Definition 7). This guarantees that the state reached after reading a finite word w0i

is af (ϕ,w0i). Further, we choose a co-Büchi accepting condition stating that states ϕ′ ∈
Reach(ϕ) that do not satisfy Gψ |	P ϕ′ occur only finitely often in the run. Then, an

q0 : ϕ

q2 : Gψ

q3 : Gψ ∧ bUc q4 : ff

q1 : tt

b̄

b

a

āac

ā(b + c)+ abc̄

b̄c̄

true

true

p0 : ψ

p1 : bUc

p2 : ffp3 : tt

ā

a

b̄c̄c

bc̄

truetrue

Fig. 9 Automata B(ϕ) and M(ψ) for ϕ = b ∨ XGψ and ψ = a ∨ X(bUc)

123

Form Methods Syst Des (2016) 49:219–271 245

accepting run on a word w gets eventually trapped in states satisfying Gψ |	P ϕ′. So,
since Gψ eventually holds, for a sufficiently large i we have wi |	 af (ϕ,w0i), and so by
Proposition 2 we have w |	 ϕ.

Unfortunately, while this reasoning is sound, it is not complete. In our example, this
idea leads to the automaton B(ϕ) shown on the left of Fig. 9. Since we have Gψ |	P tt and
Gψ |	P Gψ , the accepting states ofB(ϕ) are q1 and q2. Consider the wordw = āb̄c̄ (ābc)ω.
We have w |	 ϕ, but the run for w starts at q0, moves to q2, and then moves to q3 and stays
there forever. So w is rejected. The point is that neither G = ∅ nor G = {Gψ} satisfy
G |	P q3.

In the rest of the section we show that this is, however, nearly correct. We construct a
correct automaton with the same states and transitions as the one above, but with a modified
accepting condition. For this we first interpret this failed attempt in logical terms.

6.1 Logical characterization theorem

Our failed attempt amounts to, given a word w, checking if there is a closed set G for w

satisfying G |	P af (ϕ,w0 j) for almost every j ∈ N. The following proposition summarizes
our observation that this condition does not characterize the words satisfying ϕ.

Proposition 6 Let ϕ be a formula and w a word. If there exists a set G ⊆ G(ϕ) such that (1)
G is closed for w and (2) G |	P af (ϕ,w0 j) for almost every j ∈ N, then w |	 ϕ. However,
the converse does not hold.

Proof Assume such a G exists. Since G is closed for w, by Lemma 7(b) we have w |	 FGψ

for every Gψ ∈ G, and so there exists an index i ∈ N such that w j |	 G for every j ≥ i .
By (2), we have G |	P af (ϕ,w0 j) for some j ≥ i and hence w j |	 af (ϕ,w0 j). Finally, by
Proposition 2, w |	 ϕ.

The converse does not hold due to the previous example where neither G = ∅ nor G =
{Gψ} satisfy G |	P af (ϕ,w0i). ��

In the rest of the section we weaken condition (2) of Proposition 6 so that the converse
also holds, thus yielding a logical characterization theorem that generalizes Theorem 7.
More precisely, our goal is to find an adequate formula F(G, w0 j) such that after replacing
condition (2) by

(2∗) G ∧ F(G, w0 j) |	P af (ϕ,w0 j) for almost every j ∈ N.

both Proposition 6 and its converse hold. Observe that we replace G by the stronger formula
G ∧ F(G, w0 j), which makes the propositional implication easier to satisfy.

6.1.1 A first candidate for F(G, w0 j)

The formulaF(G, w0 j) should satisfyw j |	 F(G, w0 j) for almost every j ∈ N, because then
we can still prove that (1) and (2*) imply w |	 ϕ using the same proof as in Proposition 6.
So we search for a formula satisfying this condition.

Let us examine the closure condition in more detail. Given Gψ ∈ G, it states that for
almost all i ∈ N we have G |	P af G(ψ,wi j) for almost all j ≥ i . So there is a smallest
index i such that G |	P af G(ψ,wi j) holds for almost every j ≥ i . We give it a name, and
define a first candidate for F(G, w0 j).

123

246 Form Methods Syst Des (2016) 49:219–271

Definition 22 Let ϕ be a formula and let w be a word. Let G ⊆ G(ϕ) be closed for w

and let Gψ ∈ G. The threshold thrw(ψ,G) of ψ in G is the smallest index i such that
G |	P af G(ψ,w jk) holds for every j ≥ i and almost all k ≥ j . Further, we define

F1(ψ,G, w0 j) =
j∧

i=thrw(ψ,G)

af G(ψ,wi j)

F1(G, w0 j) =
∧

Gψ∈G
F1(ψ,G, w0 j)

Recall that wi j = ε if i ≥ j by definition. Since af G(ψ, ε) = ψ , we can also define

F1(ψ,G, w0 j) =
{

ψ if j = 0
ψ ∧ ∧ j−1

i=thrw(ψ,G) af G(ψ,wi j) if j > 0

Example 9 Consider the formula ϕ = b ∨ XGψ and ψ = a ∨ X(bUc) and let G = {Gψ}.
For w = (abc)ω we have af G(ψ,wi j) = tt for every 0 ≤ i < j . So G is closed for w.
Further we have thrw(ψ,G) = 0, and so F1(ψ,G, w0 j) = ψ for every j ≥ 0.

For w = (abc)ω we have af G(ψ,wi(i+1)) = bUc for every i ≥ 0, and af G(ψ,wi j) = tt
for every j > i + 1 ≥ 1. So G is closed for w. Further we have thrw(ψ,G) = 0, and so

F1(ψ,G, w0 j) =
{

ψ if j = 0
ψ ∧ bUc if j > 0

For w = abc(abc)ω we have af G(ψ,w0 j) = bUc for all j > 0 and af G(ψ,wi j) = tt
for all other pairs j > i . So G is closed for w. Further we have thrw(ψ,G) = 1, because
Gψ
|	P af G(ψ,w0 j) = bUc for all j > 0. So F1(ψ,G, w0 j) = ψ for every j ≥ 0.

Let us prove that our first candidate indeed satisfies w j |	 G ∧ F1(G, w0 j) for almost
every j .

Lemma 9 Let ϕ, w, G and Gψ as in Definition 22. Then w j |	 G ∧ F1(G, w0 j) for almost
every j ∈ N

Proof By the semantics of LTL, there exists an index k such that for every Gψ ∈ G(ϕ)

either wk |	 Gψ or wk
|	 FGψ holds. We say that G(ϕ) stabilizes at k. By Theorem 7, we
further have wk |	 G. So w j |	 G for every j ≥ k. We now show that w j |	 af G(ψ,wi j)

holds for every j ≥ k, every Gψ ∈ G, and every i ≥ thrw(ψ,G), which concludes the
proof. We consider two cases. If G |	P af G(ψ,wi j) holds, then the claim follows from
wk |	 G. If G
|	P af G(ψ,wi j) then, since i ≥ thrw(ψ,G), there exists j ′ > j such that
G |	P af G(ψ,wi j ′). Since j ′ ≥ k, we have w j ′ |	 G, and so w j ′ |	 af G(ψ,wi j ′) =
af G(af G(ψ,wi j), w j j ′). It remains to show that w j ′ |	 af G(af G(ψ,wi j), w j j ′) implies
w j |	 af G(ψ,wi j). The proof is by structural induction on the structure of ψ . All cases are
identical to those of Proposition 2, with the exception of ψ = Gψ ′. If ψ = Gψ ′ we have
af G(af G(ψ,wi j), w j j ′) = af G(ψ,wi j) = Gψ ′, and so we have to prove that w j ′ |	 Gψ ′
implies w j |	 Gψ . Since j ′ > j , this does not seem at first to be the case, but recall that
we have j ′ > j ≥ k by hypothesis; since G(ϕ) stabilizes at k, the two suffixes w j ′ and w j

satisfy the same formulae of G(ϕ), and we are done. ��
Unfortunately, our first candidate is not good enough for a logical characterization: we

can find a formula ϕ and a word w such that w |	 ϕ but no set G satisfies conditions (1) and
(2*).

123

Form Methods Syst Des (2016) 49:219–271 247

Example 10 Let ϕ = Gψ , where ψ = Xa ∨ Gb, and w = aω. We have w |	 ϕ. The only
non-empty set closed for w is G = {ϕ}. However, for this G condition (2*) does not hold.
Indeed, we have

af G(ψ,wi j) = a ∨ Gb for every j = i + 1
af G(ψ,wi j) = tt for every j > i + 1
af (ϕ,w0 j) = ϕ ∧ a for every j > i ≥ 1

and so (2*) holds only if ϕ ∧ (a ∨ Gb) |	P ϕ ∧ a, which is not the case.

6.1.2 A second (and correct) candidate

Observe that, intuitively, if both (1) and (2*) hold, thenw satisfies ϕ even if it does not satisfy
any of the formulae of G = G(ϕ) \ G. Using this, we show that Lemma 9 still holds if we
strengthen F1(G, w0i) by, loosely speaking, replacing occurrences of formulae of G by ff .
Let us define this formula F(G, w0i), our final candidate.

Definition 23 Let ϕ, w, G, and Gψ as in Definition 22, and let G = G(ϕ) \ G. We define

F(ψ,G, w0 j) = F1(ψ,G, w0 j)[G/ff]P
F(G, w0i) =

∧
Gψ∈G

F(ψ,G, w0i)

Example 11 In Example 10 we have G = {ϕ}, hence G = {Gb}. So F(ψ,w0i) = (a ∨
Gb)[{Gb}/ff]P = a, and now condition (2*) holds.

For the three words of Example 9 we have G = G(ϕ), and so F(ψ,w0i) = F1(ψ,w0i).

Lemma 10 Let ϕ,w, G andGψ be as in Definition 22. Thenw j |	 G∧F(G, w0i) for almost
every j ∈ N.

Proof The proof is analogous to the proof of Lemma9 and additionally relies on the following
equivalence, which can proven by a straightforward induction on ψ .

G |	P af G(ψ[G/ff]P , w0i) iff G |	P af G(ψ,w0i)[G/ff]P
��

We show that the new candidate indeed yields a logical characterization theorem.

Theorem 10 (Logical characterization theorem IV) Let ϕ be a formula and w a word. Then
w |	 ϕ iff there exists G ⊆ G(ϕ) satisfying (1) G is closed forw, and (2*) G∧F(G, w0i) |	P

af (ϕ,w0i) for almost every i ∈ N.

Proof (⇐) By (1) and (2*), we havew j |	 G∧F(G, w0i) andG∧F(G, w0 j) |	P af (ϕ,w0 j)

for almost every j ∈ N,which impliesw j |	 af (ϕ,w0 j) for almost every j ∈ N, and therefore
w |	 ϕ.

(⇒) Assume w |	 ϕ. Let Gw be the set of all formulae Gψ ∈ Gϕ such that w |	 FGψ .
Then by Lemma 7, Gw satisfies (1). For (2*), we first consider the special case in which
thrw(ψ,G) = 0 holds for all Gψ ∈ Gw , that is, we not only have w |	 FGψ but even
w |	 Gψ for every ψ ∈ Gw. Then, by the same reasoning as in the proof of Theorem 7, we

123

248 Form Methods Syst Des (2016) 49:219–271

obtain that Gϕ |	P af G(ϕ,w0 j) holds for almost all j ∈ N. So, after unfolding the definition
of F(Gϕ,w0 j), it remains to show that for almost all j ∈ N:

af G(ϕ,w0 j)[Gw/ff]P ∧
∧

Gψ∈Gw

⎛
⎝Gψ ∧

j∧
i=0

af G(ψ,wi j)[Gw/ff]P
⎞
⎠ |	P af (ϕ,w0 j)

which is proven by a straightforward induction on ϕ. We consider only two sample cases:

– ϕ = a. Since ϕ = a does not have any G-subformulae, the conjunction over all Gw on
the left hand side is simply tt and also the propositional substitution has no effect. After
simplification we obtain af G(a, w0 j) |	P af (a, w0 j) which is true.

– ϕ = Gϕ′. In the case Gϕ′ /∈ Gw, the left-hand side is propositionally equal to ff and
hence the claim holds. Thus assume Gϕ′ ∈ Gw. Let us now examine the right-hand side:

af (Gϕ′, w0i) = Gϕ′ ∧
j∧

0=i

af (ϕ′, wi j)

Since Gϕ′ ∈ Gw , the first conjunct is implied by the left-hand side. Let now
af (ϕ′, wi j) be an arbitrary conjunct of the right-hand side. Then there is a matching
af G(ϕ′, wi j)[Gw/ff]P on the left-hand side. We now apply the induction hypothesis on
this pair and obtain that af (ϕ′, wi j) is propositionally entailed by the whole left-hand
side. Applying this idea to all conjuncts yields the claim.

Let us now consider the general case. Let k be the maximum of thrw(ψ,G) for elements of
Gw. Then we have wk |	 Gψ for every ψ ∈ Gw . Let ϕ′ = af (ϕ,w0k). By Proposition 2, we
have wk |	 ϕ′, and we can apply the reasoning above to obtain: for almost every i ∈ N: G ∧
Fwk (G, w0ki) |	P af (ϕ′, wki). Since F(G, w0(k+i)) contains all conjuncts of Fwk (G, wki),
after unfolding the definitions we finally obtain G ∧ F(G, w0i) |	P af (ϕ,w0i) for almost
every i ∈ N. ��
6.2 From the logical characterization to automata

As in the previous section, we transform the logical characterization into an automaton. For
this, we show that F(G, w0i) is closely related to the ranks at which the automata M(ψ,G)

accept the word w. Loosely speaking, the fact that these automata accept tells us that the
formulae of G eventually hold, and the ranks at which they accept allows us to determine
the formula F1(G, w0i)—and hence also F(G, w0i)—for sufficiently large i . We need a
preliminary definition.

Definition 24 LetM be a Mojmir automaton with set of states QM, and let sr : QM → N

be a state-ranking that assigns to each state q ∈ QM a rank sr(q). For every k ∈ N, we
define

S(sr, k) = {q ∈ QM | sr(q) ≥ k}
In words: S(sr, k) is the set of states that have rank at least k in the state-ranking sr .

Example 12 For a state-ranking

q0 q1 q2 q3 q4 q5 q6
(2 1 ⊥ 4 3 ⊥ ⊥)

123

Form Methods Syst Des (2016) 49:219–271 249

q0 : ϕ

q2 : Gψ

q3 : Gψ ∧ bUc q4 : ff

q1 : tt

b̄

b

a

āac

ā(b + c) + abc̄

b̄c̄

true

true

p0 : ψ

p1 : bUc

p2 : ffp3 : tt

ā

a

b̄c̄c

bc̄

truetrue

sr0 : (1, ⊥)

sr1 : (2, 1)

t1 : a

t2 : ā t7 : act8 : ab̄c̄

t4 : abc̄ t5 : āc

t3 : āb̄c̄ t6 : ābc̄

Fig. 10 Transition system T (ϕ) and automata M(ψ), and R(ψ) for ϕ = b ∨ XGψ and ψ = a ∨ X(bUc)

we have for example S(sr, 1) = {q0, q1, q3, q4}, and S(sr, 3) = {q3, q4}. For the bottom
state of the DRA in Fig. 4 (which is a state-ranking of the Mojmir automaton on the left of
the figure) we get S(sr, 1) = {a ∨ (bUc), bUc} and S(sr, 2) = {a ∨ (bUc)}.

We can now state the theorem. Recall that the Mojmir automaton M(ψ,G) was defined
in Definition 20, and that the states of its corresponding Rabin automatonR(ψ,G) are state-
rankings for the states of the Mojmir M(ψ,G).

Theorem 11 Let G ⊆ G(ϕ) be closed for w, and let Gψ ∈ G. For every i ≥ 0, let sr(i)
be the state of R(ψ,G) reached after w0i (in other words, sr(i) = δψ(q0ψ,w0i), where δψ

is the transition function of R(ψ,G)). Finally, let r be the smallest rank at which R(ψ,G)

accepts w. Then

G ∧ F1(ψ,G, w0i) ≡P G ∧ S(sr(i), r) for almost every i ∈ N.

Before proving the theorem, let us consider an example.

Example 13 Figure 10 shows the transition system T (ϕ), theMojmir automatonM(ψ), and
the DRAR(ψ) for the formula ϕ = b∨ XGψ with ψ = a ∨ bUc (cf. Fig. 9). The state (i, j)
of R(ψ) indicates that ψ has rank i and bUc has rank j. We have

fail = {t3, t8} merge(1) = ∅
merge(2) = {t6}

succeed(1) = {t1, t5, t7}
succeed(2) = {t4, t7, t8}

We examine again the three words of Example 9.
Let w = aω. The run of R(ψ) on w is tω1 , and so R(ψ) accepts w at rank 1. Recall that

F1(ψ,G, w0i) = ψ for every i ≥ 0. So we have

G ∧ F1(G, w0i) = Gψ ∧ ψ for almost every i ∈ N

Further, sinceS(sr(i), 1) is the conjunction of the states q ofM(ψ) such that sr(w0i , q) ≥ 1,
and the run ofR(ψ) on w only visits (1,⊥), we have sr(i) = (1,⊥) for every i ≥ 0, and so
S(sr(i), 1) = q1 = ψ . We get

G ∧ S(sr(i), 1) = Gψ ∧ ψ for almost every i ∈ N

which is indeed propositionally equivalent to G ∧ F1(G, w0i).
Let now w = cω. The run of R(ψ) on w is t2tω5 , and so R(ψ) accepts w at rank 1. But

now we have F1(ψ,G, w0i) ≡P ψ ∧ (bUc) for every i ≥ 2, and so

G ∧ F(G, w0i) = Gψ ∧ ψ ∧ (bUc) for almost every i ∈ N

123

250 Form Methods Syst Des (2016) 49:219–271

Since the run ofR(ψ) on w gets trapped in state (2, 1), we have S(sr(i), 1) = ψ ∧ bUc for
almost every i ≥ 2, and so

G ∧ S(sr(i), 1) = Gψ ∧ ψ ∧ (bUc) for almost every i ∈ N

Finally, let w = ābc abc̄ω. The run ofR(ψ) on w is t2tω4 , and soR(ψ) accepts w at rank
2 and not at rank 1. We have F1(ψ,G, w0i) = ψ for every i ≥ 1, and so

G ∧ F1(G, w0i) = Gψ ∧ ψ for almost every i ∈ N

Further, since the run of R(ψ) on w gets trapped in state (2, 1), we have S(sr(i), 2) = ψ

for almost every i ≥ 0, and so

G ∧ S(sr(i), 2) = Gψ ∧ ψ for almost every i ∈ N

Before proving the theorem we have a closer look at the succeeding tokens of a Mojmir
automaton. Assume that a Mojmir automaton accepts a word, and we are given the rank at
which the word is accepted. The following lemma (proved in the Appendix) shows that from
some moment on whether a token succeeds or not depends only on its birthdate, its current
rank, and its current state. Most importantly, all young enough tokens will succeed.

Lemma 11 Let M(ψ,G) be the Mojmir automaton for a formula ψ . Assume M(ψ,G)

accepts a word w at the smallest accepting rank r. For almost every t ∈ N and for every
token τ of the run of M(ψ,G) on w, the token succeeds iff

1. τ > t , or
2. srw(t, runw(τ, t)) ≥ r, or
3. runw(τ, t) ∈ F.

The proof of the Theorem is based on the crucial insight that each af G(ψ,wτ t) precisely
corresponds to the state that token τ occupies at time t .

Proof Of Theorem 11 Consider the run ofM(ψ,G) on the word w. Let t be large enough so
that

– every token τ succeeds iff one of the three conditions of Lemma 11 holds, and
– all tokens τ < thrw(ψ,G) that succeed have already reached the set of accepting states

of M(ψ,G).

Let m ≥ t . We prove G ∧ F1(ψ,G, w0m) ≡P G ∧ S(sr(m), r).
(⇒): G ∧ F1(ψ,G, w0m) |	P G ∧ S(sr(m), r).

By definition we have S(sr(m), r) = {q ∈ QM(ψ,G) | srw(m, q) ≥ r}, and so it suffices
to show that G |	P q or F1(ψ,G, w0m) |	P q holds for every q ∈ S(sr(m), r). Assume
G
|	P q . We prove F1(ψ,G, w0m) |	P q .

We position ourselves at time m: when we talk about the rank or the state of a token we
mean its rank or state at time m. Since srw(m, q) ≥ r, in particular the state q is ranked, and
so every token on state q has rank srw(m, q). Let τ be any of these tokens. By our choice of
t , and since t ≤ m, all tokens with rank greater than or equal to r succeed. So τ succeeds.
Moreover, since G
|	P q , the state q is not an accepting state of M(ψ,G), and so τ has
not succeeded yet. So τ will eventually reach the accepting states of M(ψ,G) in the future.
Moreover, by our choice of t , all tokens born before thrw(ψ,G) have already reached the
accepting states. So we have τ ≥ thrw(ψ,G), and so, by the definition of F1(ψ,G, w0m),
we get F1(ψ,G, w0m) |	P af G(ψ,wτm) (notice that τ < m because we assume that token
τ was already born at time t). By the definition of the transition system of M(ψ,G), the

123

Form Methods Syst Des (2016) 49:219–271 251

equivalence class [af G(ψ,wτm)]P is precisely the state of M(ψ,G) reached by token τ at
time m, that is, q = [af G(ψ,wτm)]P . So F1(ψ,G, w0m) |	P q .

(⇐): G ∧ S(sr(m), r) |	P G ∧ F1(ψ,G, w0m).
By the definition of F1 it suffices to show that the left-hand-side implies af G(ψ,wim)

for every thrw(ψ,G) ≤ i ≤ m. Without loss of generality we assume G
|	 af G(ψ,wim).
Consider the token created at time i . Since it is created after time thrw(ψ,G), it will eventually
reach the accepting states by the definition of the threshold and succeed. Furthermore, since
i ≤ m, one of the three conditions of Lemma 11 with t = m and τ = i holds. Since i cannot
satisfy conditions (1) or (3) (G
|	 af G(ψ,wim)), it must satisfy condition (2). So the rank
of the state runw(i,m) at time m is at least r, and so it belongs to S(sr(m), r). But the state
runw(i,m) is the state reached by token i at time m, and so it is equal to [af G(ψ,wim)]P .
So G ∧ S(sr(m), r) |	P af G(ψ,wim). ��
6.3 The automaton A(ϕ): informal definition

Let us first recall the structure of the DGRA R(FGψ) for a FG-formula. It is the
union of DGRAs R(G), one for each subset G ⊆ G(ϕ) containing Gψ . Given a set
G = {Gψ1, . . . , Gψn} of G-subformulae, R(G) accepts all words w satisfying ϕ and
FGψ1, . . . , FGψn . It is defined as the intersection of the DRAs R(ψ1,G), . . . ,R(ψn,G),
which have all the same transition systems (i.e., the same states, transitions, and initial state),
but differ on their accepting conditions. Recall that each R(ψi ,G) can accept at different
ranks (as many as the number of accepting pairs in R(ψi ,G)).

Given an arbitrary formula ϕ, we also define its DGRAA(ϕ) as a union of DGRAs. How-
ever, the union now contains an elementR(G, r) for every setG = {Gψ1, . . . , Gψn} ⊆ G(ϕ),
and for each possible vector r = (r1, . . . , rn) of accepting ranks ofR(ψ1,G), . . . ,R(ψn,G).
For example, if n = 2 andR(ψ1,G) andR(ψ2,G) have 3 and 2 accepting pairs, respectively,
then instead of one single DGRAR(G) we have six DGRAsR(G, (1, 1)), . . . ,R(G, (3, 2)).

The transition system of R(G, r) is the product of the transition system T (ϕ) and the
transition system ofR(G). Recall that T (ϕ) has Reach(ϕ) as set of states, and af as transition
function. Since, in turn, the transition system ofR(G) is the product of the transition systems
of R(ψ1,G), . . . ,R(ψn,G), a state of R(G) is a tuple (sr1, . . . , srn), where sri is a state-
ranking of the formulae of ReachG(ψi), and a state ofR(G, r) is a tuple (χ, sr1, . . . , srn)),
where χ ∈ Reach(ϕ).

It remains to describe the accepting condition of R(G, r). We say that R(G) accepts at
rank-vector r = (r1, . . . , rn) if each R(ψi ,G) accepts at rank ri . Our goal is to design the
accepting condition as a conjunction of two conditions guaranteeing that:

(i) G is closed (which implies thatR(G) accepts), andmoreoverR(G) accepts at rank-vector
r, and

(ii) R(G, r) eventually stays within states (χ, sr1, . . . , srn) satisfying

G ∧ S(sr1, r1)[G/ff]P ∧ · · · ∧ S(srn, rn)[G/ff]P |	P χ

In particular, (i) checks condition (1) of the logical characterization theorem, Theorem 10.
Let us now see that (ii) checks condition (2*). By definition, the formula χ reached after
reading a finite prefix w0i of a word w is the formula af (ϕ,w0i). Therefore, (ii) is equivalent
to

G ∧ (S(sr1(w0i , r1)) ∧ · · · ∧ S(srn(w0i , rn)))[G/ff]P |	P af (ϕ,w0i)

for almost every i ∈ N

123

252 Form Methods Syst Des (2016) 49:219–271

which by Theorem 11 is equivalent after propositional substitution of G with ff on both sides
to

G ∧ F(ψ,G, w0i) |	P af (ϕ,w0i) for almost every i ∈ N

and so to condition (2*) of the logical characterization theorem.
We still have to express (i) and (ii) as generalized Rabin conditions. Condition (i) is a

conjunction of conditions expressing that R(ψi ,G) accepts at rank ri for every 1 ≤ i ≤ n.
Let P1 ∨ · · · ∨ Pn be the accepting condition of R(ψi ,G). Recall that R(ψi ,G) accepts at
rank ri if it accepts with the Rabin pair Pri . Pri ∨ Pri+1 ∨ · · · ∨ Pn . Further, condition (ii) is
a co-Büchi condition, which is a special case of a Rabin condition. So the conjunction of (i)
and (ii) is a conjunction of Rabin conditions, and so a generalized Rabin condition.

Observe that condition (i) can be decomposed into a conjunction of conditions, each of
which concerns only one of the automata in the product. On the contrary, condition (ii)
involves all components of the product, and cannot be decomposed.

As in the case of FG-formulae, it remains to deal with the state-explosion problem. Recall
that, when we introduced the automataR(ψ,G), we observed that they can all be constructed
so that they all have the same transition system, and therefore the intersection R(G) has the
same transition system as well. SinceR(G) andR(G, r) have the same transition system, the
same happens now.

6.4 The automaton A(ϕ): formal definition

We conclude the section by giving a precise definition of the automaton A(ϕ).

Definition 25 Let ϕ be an arbitrary formula, and let G(ϕ) = {Gψ1, . . . , Gψn} be
the set of G-subformulae of ϕ. For every formula Gψi ∈ G(ϕ), let R(ψi ,G) =
(Qi , 2Ap, q0i , δi , Acc

G
i) be the DRA obtained by applying Definition 16 to the Mojmir

automaton M(ψi ,G). Recall that a state of Qi is a state-ranking of the states of M(ψi ,G).
We use sri to denote a state-ranking of Qi .

The DGRA A(ϕ) = (Qϕ, 2Ap, q0ϕ, δϕ, Accϕ) is defined as follows:

– Qϕ = Reach(ϕ) × Q1 × · · · × Qn .
– q0ϕ = (ϕ, q01, . . . , q0n).
– δϕ((χ, sr1, . . . , srn), a) = (af (χ, a), δ1(sr1, a), . . . , δn(srn, a)).
– Accϕ is a disjunction containing a disjunct AccGr for each pair (G, r), where G ⊆ G(ϕ)

and r is a mapping assigning to each ψ ∈ G a rank, i.e., a number between 1 and the
number of Rabin pairs of R(ψ,G); each AccGr is then of the form

MG
r ∧

∧
Gψ∈G

AccGr (ψ)

where AccGr (ψ) denotes the Rabin pair ofR(ψ,G)with number r(ψ), and MG
r says that

transitions taken infinitely often by A(ϕ) must lead into the following set:

{(χ, sr1, . . . , srn) ∈ Qϕ | G ∧
∧

Gψi∈G
S(sri , r(ψi))[G/ff]P |	P χ} .

Observe that MG
r can be phrased as a co-Büchi condition on transitions. Therefore, the

whole condition Accϕ is a generalized Rabin condition.

Example 14 Recall Example 13 illustrated in Fig. 10. The states of A(ϕ) are pairs (χ, sr),
where χ is a state of T (ϕ) (on the left of the figure) and sr is a state ofR(ψ) (on the right).

123

Form Methods Syst Des (2016) 49:219–271 253

Rank vectors have only one component, and so we write r instead of r. SinceR(ψ) has two
Rabin pairs, we have r = 1 or r = 2.

ForG = ∅we have Acc∅
r = M∅

r , and, independently of r, conditionM∅
r requests thatA(ϕ)

eventually stays in states (χ, sr) satisfying tt |	 χ , and so in the set { (q1, sr0) , (q1, sr1) }.
For G = {ψ} we have Accψ

r = Mψ
r ∧ Accψ

r . Condition Accψ
r states that R(ψ) must

accept using the pair P(r). Let us now examine Mψ

1 and Mψ

2 , starting with the latter.

Mψ

2 requests thatA(ϕ) eventually stays in states (χ, sr) satisfying Gψ ∧S(sr, 2)[G/ff]P
|	P χ . Since S(sr0, 2) = tt and S(sr1, 2) = ψ (see the Mojmir automaton in the middle
of the figure), A(ϕ) must eventually stay in states (χ, sr0) satisfying Gψ |	P χ or states
(χ, sr1) satisfying Gψ ∧ ψ |	P χ , and so in the states {q1, q2} × {sr0, sr1}.

Mψ

1 requests thatA(ϕ) eventually stays in states (χ, sr) satisfying Gψ ∧S(sr, 1)[G/ff]P
|	P χ . Since S(sr1, 1) = {p0, p1} = ψ ∧ (bUc), we have Gψ ∧ S(sr1, 1)[G/ff]P |	P χ

for χ = Gψ ∧ (bUc), the formula of state q3. So A(ϕ) must eventually stay in the set
({q1, q2} × {sr0, sr1}) ∪ {(q3, sr1)}.

We now proceed to our final result.

Theorem 12 For any LTL formula ϕ, L(A(ϕ)) = L(ϕ).

Proof (⇒) By Theorem 10 we only need to prove that if A(ϕ) accepts w with G ⊆ G(ϕ)

and rank vector r, then (1) G is closed for w and (2*) G ∧ F(G, w0i) |	P af (ϕ,w0i) holds
for almost every i ∈ N. By construction A(ϕ) only accepts with closed G’s and thus (1)
holds. For (2*) we observe thatA(ϕ) also accepts w with the rank vector r∗ that maps every
element of G to the smallest accepting rank for w. So we obtain from MG

r∗ :

G ∧
∧

Gψi∈G
S(sri , r∗(ψi))[G/ff]P |	P af (ϕ,w0i)

By Theorem 11 we have G∧S(sri , r) |	P G∧F1(G, w0i) for almost every i ∈ N, and by
propositional substitution of G with ff on both sides we conclude that property (2*) holds.
(⇐): Let G ⊆ G(ϕ) be a set satisfying the conditions of Theorem 10, and let r be the rank
vector that maps every element of G to the corresponding smallest accepting rank. We now
prove thatA(ϕ) accepts w with AccGr . Since G is closed for w, the Rabin pairs AccGr (ψ) are
accepting for all Gψ ∈ G. Hence it remains to show that also MG

r is accepting. For this we
use the other direction of Theorem 11, i.e., that G ∧F1(G, w0i) |	P G ∧S(sri , r) for almost
every i ∈ N, and propositional substitute G with ff on both sides. ��

7 Optimizations

The construction described in the previous sections can be optimized in a number of ways.
In fact, we have already presented an important optimization: the fact that sink states are not
ranked. It is possible to handle sinks just as any other state, but this leads to much larger
Rabin automata. Even the toy examples of the paper would then be too large to be drawn.

We implemented further optimizations reducing the number of states or the size of the
accepting condition of the automata. Some, but not all, have been mechanically proven. The
effect of the optimizations can be seen on examples in Tables 3 and 5.

123

254 Form Methods Syst Des (2016) 49:219–271

FGa FGa ∨ Ga FGa ∨ (Ga ∧ a)

a

ā a

ā

tt

Fig. 11 Original and optimized co-Büchi automata for FGa

aa aā

āa āā

a

ā

ε

a
ā

a āāa

ā
a

a

ā

a

ā

a

ā

Fig. 12 A co-Büchi automaton for GF((a ∧ XXa) ∨ (¬a ∧ XX¬a)) and the optimized automaton inside the
grey area (with an arbitrary initial state)

7.1 Reducing the state space

The first obvious reduction is to construct only the states reachable from the initial states.
Further, we merge equivalent states in several ways. Interestingly, this happens based on the
formulae that label the states, and not on the graph structure of the automaton, as is the case
for, e.g., simulation-based reductions.

1. Unfolding formulae.
Let the one-step unfolding Unf of a formula be inductively defined by the following
rules:

Unf(a) = a
Unf(¬a) = ¬a

Unf(ϕ ∧ ψ) = Unf(ϕ) ∧ Unf(ψ)

Unf(ϕ ∨ ψ) = Unf(ϕ) ∨ Unf(ψ)

Unf(Xϕ) = Xϕ

Unf(Fϕ) = Unf(ϕ) ∨ Fϕ

Unf(Gϕ) = Unf(ϕ) ∧ Gϕ

Unf(ϕUψ) = Unf(ψ) ∨ (Unf(ϕ) ∧ (ϕUψ))

The optimization consists of always using unfolded formulae as states. Note that
af (Unf(ϕ), ·) = af (ϕ, ·) since af is Unf followed by plugging in the valuation read.
Therefore, the only change in the transition system of the automaton is to merge states
labelled by ϕ1
= ϕ2 such that Unf(ϕ1) = Unf(ϕ2). This is an efficient way to under-
approximate LTL equivalence by propositional equivalence, which is also easier to check
(PSPACE vs. NP), e.g. using BDDs. As a simple example, the optimized automaton for
FGa has one state, instead of two states, as illustrated in Fig. 11.

2. Different initial states for DRAs.
Since no finite prefix influences acceptance of Rabin automata for FG-formulae, intro-
ducing arbitrary initial states for them does not change the accepted language. Therefore,
instead of using “transient” states, which cannot be visited once left, we try to use states
that are reachable even after reading some prefixes. For instance, consider the formula
GF((a ∧ XXa) ∨ (¬a ∧ XX¬a)). The automaton, depicted in Fig. 12, corresponds to a
buffer keeping track of several last letters read. Without the optimization, we start with
an empty buffer; such an initial state of the Rabin automaton has only a single token in

123

Form Methods Syst Des (2016) 49:219–271 255

the initial state of theMojmir automaton. Thenwe read a letter andmove to a buffer filled
with either a or ā. In the next step, wemove to a bufferwith two letters and from that point
switch only among the two-letter buffers. The total size is thus 20 + 21 + 22 = 7. How-
ever, if we start with an already full buffer (filled with whatever letters), the acceptance
is not affected, but the reachable state space is only of size 22 = 4.

3. Irrelevant DRAs.
Recall that a state of our parallel composition is an array of formulae, one corresponding
to the current state of the co-Büchi automaton, and the others to the states of the DRAs.
We say that a DRA is irrelevant at a state if its corresponding G-formula either does
not appear inside the current formula of the co-Büchi automaton, or it only appears
in conjunction with another formula without any occurrence of G. For instance, after
reading a in a ∧ Fb ∧ FGc ∨ ¬a ∧ FGd , the co-Büchi automaton reaches the state
Fb ∧ FGc, where the DRA for the formula d is irrelevant. Consider now Fb ∧ FGc.
At this state the DRA for c is irrelevant, due to the conjunction with Fb. Intuitively,
the co-Büchi automaton waits for a b, and only after that it is important to monitor the
satisfaction of FGc. Indeed, postponing the monitoring by finite time does not affect
acceptance, similarly to the previous optimization. Moreover, if b never holds, then it is
unnecessary to check satisfaction of FGc.

7.2 Reducing the acceptance condition

All disjuncts of a generalized Rabin condition are of the form (F,
∧

k∈K Ik), which we call a
generalized pair.We consider a transition-based condition and denote the set of all transitions
by T .We remove generalized pairs that cannot be satisfied, aswell as thosewhose satisfaction
implies satisfaction of another pair. In order to detect such pairs, we first simplify them. The
optimizations are performed to exhaustion in the following order.
1. Remove every generalized pair (F, I) such that F = T .

Such pairs never accept, since the whole T cannot be avoided.
2. Replace every generalized pair (F, I ∧ I) such that I ∪ F = T by (F, I).

If F is visited only finitely often then T \ F ⊆ I is visited infinitely often.
3. Replace every generalized pair (F,

∧
k∈K Ik) by (F,

∧
k∈K Ik \ F).

Visiting F infinitely often excludes acceptance.
4. Remove every generalized pair (F, I ∧ ∅).

The empty set cannot be visited (infinitely often).
5. Replace every generalized pair (F, I ∧ I ∧ J) such that I ⊆ J by (F, I ∧ I).

If I is visited infinitely often then so is J .
6. Remove every generalized pair (F,

∧
k∈K Ik) for which there exists (F ′,

∧
k′∈K ′ I ′

k′)
such that F ′ ⊆ F , and for each k′ ∈ K ′ there is k ∈ K such that Ik ⊆ I ′

k′ .
A run accepted by the unprimed pair is also accepted by the primed pair.

For example, consider the formula (GF(a ∧ Xb) ∨ FG(b ∨ X¬a)) ∧ (GF(b ∧ Xc) ∨
FG(!c∨ Xa)) ∧ (GF(b∧ XXa) ∨ FG(¬c∨ X¬b)). We start with 4568 pairs and after each
phase we are left with 4052, 3715, 1997, 131, 122, and finally 12 pairs, respectively.

8 Complexity bounds

Before discussing the implementation of our construction and experimental results we briefly
discuss the worst-case complexity and compare it with that of Safra-based constructions.

123

256 Form Methods Syst Des (2016) 49:219–271

Recall that the smallest DRA for an LTL formula of length n may have �(22
n
) states.

This is the case even for the fragment of LTL containing only conjunction, disjunction and
the F-operator [33, Theorem 3.8]. Indeed, the paper shows that all DRAs for the formula

F
n∧

i=1

(ai ∨ Fbi)

have a double exponential number of states (in n). This lower bound is essentially matched
by LTL-to-DRA translations based on Safra’s construction. These translations first transform
ϕ into a NBA of size O(2n), and then apply Safra’s construction, which runs in mO(m) time
and space, for an automaton of size m [11]. The overall complexity is thus

2n·O(2n) = 2O(2n+log n)

Besides, the number of Rabin pairs of Safra-based translations is at most O(m) = O(2n).
In our translation of a formula ϕ, the set of states of our co-Büchi automaton is Reach(ϕ),

and the set of states of our DRAs are state-rankings over ReachG(ψ) for subformulae ψ

of ϕ. By Lemma 1, if ϕ has n proper subformulae then both Reach(ϕ) and ReachG(ψ)

have size at most 22
n
. Since a state-ranking is a permutation of Mojmir states, the resulting

DRA contains in the worst-case all permutations. Hence the number of states in the product
(co-Büchi automaton and at most n DRAs) is at most

22
n · (

(22
n
)!)n = 22

O(2n)

Further, each pair corresponds to DRAs accepting at one of less than 22
n
ranks, or not

accepting at all. Altogether, there are at most (22
n
)n = 22

O(n)
pairs.

Weconjecture that there is a family of formulae forwhich our construction indeed produces
automata of triple exponential size, although we have not yet been able to find one.

Consider now the LTL fragment with syntax

λ ::= λ ∧ λ | λ ∨ λ | GFα | FGα

α ::= a | ¬a | α ∧ α | α ∨ α

where a ∈ Ap. This fragment contains many interesting fairness formulae, like those of
the family

∧n
i=1 (GF ai → GFbi). Our construction yields DGRAs with only one single

state, provided we use the unfolding optimization presented in Sect. 7. Indeed, a simple
induction shows that for every formula ϕ in the fragment and for every ν ∈ 2Ap , we have
Unf(af (ϕ, ν)) ≡P Unf(ϕ). Therefore, if we take Unf(ϕ) as the initial state, the co-Büchi
automaton only has one reachable state. By a similar argument, replacing af by af G, the
Mojmir automaton M(ψ) for a G-subformula Gψ also has one single state, and the same
holds for its corresponding Rabin automaton. Since every component of the parallel compo-
sition only has one state, the same holds for the parallel composition itself. Note that without
the unfolding optimization the co-Büchi automaton for

∧n
i=1 FGai would have 2n states.

9 Implementation and experimental results

9.1 Implementation

The construction is implemented in a toolRabinizer 3, whichwas reported on in [34]. It is
written in Java and uses JavaBDD to work with formulae as Boolean functions. Furthermore,

123

Form Methods Syst Des (2016) 49:219–271 257

in order to optimize the construction time, we have implemented a new version 3.1 of the
tool.7 It uses BDDs also for labelling edges in automata and explores the state space in this
more symbolic way rather than examining successors for each valuation separately.

The implementation allows to choose between the mechanically proved construction and
switching on any subset of the described optimizations. Furthermore, apart from producing
the resulting transition-based generalized Rabin automata, it can also convert the result to
state-based automata as well as degeneralize them into Rabin automata.

Finally, there is a choice of output formats: dot format, useful for graphical representation,
e.g. by dotty or Graphviz; and the HOA (Hanoi omega-automata) format, the new
standard [35], nowadays implemented by other translators as well as PRISM. This allows for
linking Rabinizer to PRISM, resulting in a significantly faster probabilistic LTL model
checker, see [10,34].

9.2 Experimental results

We compare the performance of the following tools and methods in terms of the number of
states of the resulting automata.

(L*) ltl2dstar [15] implements and optimizes [26] Safra’s construction [11]. It uses
LTL2BA [5] to obtain the non-deterministic Büchi automata (NBA) first. Other trans-
lators to NBA may also be used, such as Spot [8] or LTL3BA [7] and in some cases
may yield better results (see [27] for comparison thereof), but LTL2BA is recom-
mended by ltl2dstar and is used this way in PRISM [14].

(R1/2) Rabinizer [18] and Rabinizer 2 [19] implement a direct construction based
on [17] for fragments LTL(F, G) and LTL\GU

8, respectively. The latter tool is applied
here only on formulae not in LTL(F, G).

(L3) LTL3DRA [36] implements a construction via alternating automata, which is
“inspired by [17]” (quoted from [36]) and performs several optimizations.

(R3) Rabinizer 3.1 performs our new construction. Unless specified otherwise we
employ the previously described optimizations. Notice that we produce a state space
with a logical structure, which permits many further optimizations; for instance, one
could incorporate the suspension optimization of LTL3BA [37].

For L* and R1/2 we produce DRAs (although Rabinizer 2 can also produce DGRAs)
with state-based acceptance conditions. For L3 and R3 we produce DGRAs with transition-
based acceptance conditions (tDGRAs), which can be directly used for probabilistic model
checking without any blow-up [10]. Inapplicability of a tool to a formula is denoted in tables
by −. All automata in this section were constructed within a few seconds, with the exception
of the larger automata generated by ltl2dstar: it took several minutes for automata
over ten thousand states and hours for hundreds of thousands of states. The automaton for∧3

i=1(GFai → GFbi) took even more than a day and “?” denotes a time-out after one day.
Table 1 shows formulae of the LTL(F, G) fragment. The upper part comes from

BEEM (BEnchmarks for Explicit Model checkers) [38], the lower one from [25] on which
ltl2dstar was originally tested [39]. There are overlaps between the two sets. All the
formulae were used already in [17,36]. Although more general, our method usually achieves
the same results as the optimized LTL3DRA, outperforming the first two approaches.

7 http://www7.in.tum.de/~kretinsk/rabinizer3.html.
8 LTL\GU was introduced in [19] and disallows occurrences of U in the scope of G.

123

http://www7.in.tum.de/~kretinsk/rabinizer3.html

258 Form Methods Syst Des (2016) 49:219–271

Table 1 Experimental results on LTL(F,G)-fragment

Formula L* R1 L3 R3

G(a ∨ Fb) 4 4 2 2

FGa ∨ FGb ∨ GFc 8 8 1 1

F(a ∨ b) 2 2 2 2

GF(a ∨ b) 2 2 1 1

G(a ∨ b ∨ c) 3 2 2 2

G(a ∨ F(b ∨ c)) 4 4 2 2

Fa ∨ Gb 4 3 3 3

G(a ∨ F(b ∧ c)) 4 4 2 2

(FGa ∨ GFb) 4 4 1 1

GF(a ∨ b) ∧ GF(b ∨ c) 7 3 1 1

(FFa ∧ G¬a) ∨ (GG¬a ∧ Fa) 1 0 1 2

(GFa) ∧ FGb 3 3 1 1

(GFa ∧ FGb) ∨ (FG¬a ∧ GF¬b) 5 4 1 1

FGa ∧ GFa 2 2 1 1

G(Fa ∧ Fb) 5 3 1 3

Fa ∧ F¬a 4 4 4 4

(G(b ∨ GFa) ∧ G(c ∨ GF¬a)) ∨ Gb ∨ Gc 13 18 4 4

(G(b ∨ FGa) ∧ G(c ∨ FG¬a)) ∨ Gb ∨ Gc 14 6 4 4

(F(b ∧ FGa) ∨ F(c ∧ FG¬a)) ∧ Fb ∧ Fc 7 5 4 4

(F(b ∧ GFa) ∨ F(c ∧ GF¬a)) ∧ Fb ∧ Fc 7 5 4 4

Table 2 shows formulae of LTL\GU used in [19]. The first part comes mostly from the
same sources and [22]. The second part is considered in [19] in order to demonstrate the
difficulties of the standard approach to handle

1. many X-operators inside the scope of other temporal operators, especially U, where the
DRAs are already quite complex, and

2. conjunctions of liveness properties where the efficiency of generalized Rabin acceptance
condition may be fully exploited.

Table 3 contains formulae of the general LTL. The first part contains two randomly picked
formulae illustrating the same two phenomena as in the previous table now on general LTL
formulae. The second part contains two examples of formulae from a network monitor-
ing project Liberouter.9 The third part contains five more complex formulae from Spec
Pattern [40].10 and express the following “after Q until R” properties:

ϕ35 : G(!q ∨ (Gp ∨ (!pU(r ∨ (s∧!p ∧ X(!pUt))))))
ϕ40 : G(!q ∨ (((!s ∨ r) ∨ X(G(!t ∨ r)∨!rU(r ∧ (!t ∨ r))))U(r ∨ p) ∨ G((!s ∨ XG!t))))
ϕ45 : G(!q∨(!s∨X(G!t∨!rU(r∧!t))∨X(!rU(r∧Fp)))U(r∨G(!s∨X(G!t∨!rU(r∧!t))∨

X(!rU(t ∧ Fp)))))
ϕ50 : G(!q ∨ (!p ∨ (!rU(s∧!r ∧ X(!rUt))))U(r ∨ G(!p ∨ (s ∧ XFt))))

9 https://www.liberouter.org/.
10 Spec Patterns: Property Pattern Mappings for LTL http://patterns.projects.cis.ksu.edu/documentation/
patterns/ltl.shtml.

123

https://www.liberouter.org/
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Form Methods Syst Des (2016) 49:219–271 259

Table 2 Experimental results on LTL\GU-fragment

Formula L* R2 L3 R3

(Fp)U(Gq) 4 3 2 2

(Gp)Uq 5 5 5 5

(p ∨ q)Up ∨ Gq 4 3 3 3

G(!p ∨ Fq) ∧ ((Xp)Uq ∨ X((!p∨!q)U!p ∨ G(!p∨!q))) 19 8 – 5

G(q ∨ XGp) ∧ G(r ∨ XG!p) 5 14 4 4

(X(Gr ∨ rU(r ∧ sUp)))U(Gr ∨ rU(r ∧ s)) 18 9 8 8

pU(q ∧ X(r ∧ (F(s ∧ X(F(t ∧ X(F(u ∧ XFv)))))))) 9 13 13 13

(GF(a ∧ XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧ XXb)) 353 73 – 12

GF(XXXa ∧ XXXXb) ∧ GF(b ∨ Xc) ∧ GF(c ∧ XXa) 2127 169 – 16

(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨ Xe)) 18,176 80 – 2

(GF(a ∧ XXc) ∨ FGb) ∧ (GFc ∨ FG(d ∨ Xa ∧ XXb)) ? 142 – 12

aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨ FGd)∨ 640,771 210 8 7

∨aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb)

Table 3 Experimental results on general LTL

Formula L* R1/2 L3 R3-unopt. R3-opt.

FG((a ∧ XXb ∧ GFb)U(G(XX!c ∨ XX(a ∧ b)))) 2053 – – 9 3

G(F!a ∧ F(b ∧ X!c) ∧ GF(aUd)) ∧ GF((Xd)U(b ∨ Gc)) 283 – – 25 7

G(((!p1)) ∧ (p2U((!p2)U((!p3) ∨ p4)))) 7 – – 6 4

G(((p1) ∧ X!p1) ∨ X(p1U(((!p2) ∧ p1)∧ 8 – – 12 9

X(p2 ∧ p1 ∧ (p1U(((!p2) ∧ p1) ∧ X(p2 ∧ p1)))))))

ϕ35:2 cause-1 effect precedence chain 6 – – 9 6

ϕ40:1 cause-2 effect precedence chain 314 – – 16 16

ϕ45:2 stimulus-1 response chain 1450 – – 81 68

ϕ50:1 stimulus-2 response chain 28 – – 36 21

ϕ55:1–2 response chain constrained by a single proposition 28 – – 36 21

ϕ55 : G(!q ∨ (!p ∨ (!rU(s∧!r∧!z ∧ X((!r∧!z)Ut))))U(r ∨ G(!p ∨ (s∧!z ∧ X(!zUt)))))

Here we also compare unoptimized and optimized versions of our construction.
Table 4 contains formulae of the general LTL generated randomly by randltl [8]. The

first part contains formulae over at most 4 atomic propositions and of length 10 to 20 (before
simplifications enforced by randltl). The second part contains formulae over at most 8
atomic propositions and of length 15–50 (before the simplifications). Each part contains 1000
formulae and their negations; time-out per formula was set to 1 minute, using ltlcross
[8]. Since the formulae are of general LTL we compare only ltl2dstar and (optimized)
Rabinizer 3.1. In addition, we also provide comparison to Spot [8], one of the most
efficient tools producing non-deterministic transition-based generalized Büchi automata (the
tables displays the percentage of actually non-deterministic automata produced). The table
provides the average and maximal number of states per automaton on each set; for the more
complex set we also provide the percentage of automata greater than 10, 100, and 1000 states

123

260 Form Methods Syst Des (2016) 49:219–271

Table 4 Experimental results on general LTL

L* R3 Spot (non-det. TGBA)

Avg size 22.4 (0.1% time-outs) 4.3 3.1 (39% non-det.)

Max size 5815 65 19

< / = / > R3 11%/34%/55% 59%/28%/13%

avg size 839.5 (13% time-outs) 12.2 (3% time-outs) 6.0 (65% Non-det.)

Max size 86,896 387 78

< / = / > R3 13%/17%/70% 63%/18%/19%

>10/>100/>1000 51%/20%/4% 27%/4%/0% 12%/0%/0%

Table 5 Experimental results on “fairness”-fragment given by λ of Sect. 8

Formula L* R1 L3 R3-unopt. R3-opt.

(FGa ∨ GFb) 4 4 1 4 1

(FGa ∨ GFb) ∧ (FGc ∨ GFd) 11,324 18 1 16 1∧3
i=1(FGai ∨ GFbi) 1,304,706 462 1 64 1

GF(Fa ∨ GFb ∨ FG(a ∨ b)) 14 4 1 3 1

FG(Fa ∨ GFb ∨ FG(a ∨ b)) 145 4 1 4 1

FG(Fa ∨ GFb ∨ FG(a ∨ b) ∨ FGb) 181 4 1 4 1

(GFa ∨ FGb) 4 4 1 4 1

(GFa ∨ FGb) ∧ (GFb ∨ FGc) 572 11 1 9 1

(GFa ∨ FGb) ∧ (GFb ∨ FGc) ∧ (GFc ∨ FGd) 290,046 52 1 17 1

(GFa ∨ FGb) ∧ (GFb ∨ FGc) ∧ (GFc ∨ FGd) ∧ (GFd ∨ FGh) ? 1288 1 33 1

(among the results that did not time out). Finally, we also display the percentage of results
smaller than, equal to, and greater than those of Rabinizer 3.1.

9.3 Advantages and limits of the approach

In this section, we focus on formulae with extremely complex acceptance conditions. This is
caused by combinations of “infinitary” behaviour, whose satisfaction does not depend on any
finite prefix of the word. A typical example is the “fairness”-fragment given by λ of Sect. 8. In
this case, our DGRA have only one state. While DRA need to remember the last letter read,
the transition-based acceptance together with the generalized acceptance condition allow
transition-based DGRA not to remember anything. Such formulae are the most difficult for
our as well as the traditional determinization approach.

The formulae from Table 5 were used before in [17,36] and include fairness-like con-
straints.

Table 6 shows that it is very beneficial to use the generalized Rabin acceptance. Further-
more, using transition-based acceptance even more states are saved.

However, when the the automata are used for probabilistic model checking, transition-
based acceptance does not improve the results so much. Indeed, although state-based DGRA
are larger than their transition-based counterpart tDGRA, the respective product is not much
larger (often not at all), see Table 7. For instance, consider the case when the only extra

123

Form Methods Syst Des (2016) 49:219–271 261

Table 6 Experimental comparisons of acceptance conditions

Formula ltl2dstar Rabinizer 3

DRA states Pairs DRA st. DGRA st. tDGRA st. Pairs

FGa ∨ GFb 4 2 4 4 1 2

(FGa ∨ GFb) ∧ (FGc ∨ GFd) 11,324 8 21 16 1 4∧3
i=1(GFai → GFbi) 1,304,706 10 511 64 1 8∧3
i=1(GFai → GFai+1) 153,558 8 58 17 1 8

ψ1 40 4 4 4 3 1

ψ2 314 7 21 21 16 4

We display number of states and acceptance pairs for ltl2dstar and Rabinizer 3 producing different
types of automata, all with the same number of pairs. Hereψ1 = FG(((a∧XXb)∧GFb)UG(XX!c∨XX(a∧
b))) and ψ2 = G(!q ∨ (((!s ∨ r) ∨ X(G(!t ∨ r)∨!rU(r ∧ (!t ∨ r))))U(r ∨ p) ∨ G((!s ∨ XG!t)))), the latter
being ϕ40 “1 cause-2 effect precedence chain” of Spec Patterns

Table 7 Model checking Pnueli–Zuck mutex protocol with 5 processes (altogether m = 308, 800 states)
from the benchmark set [14] for the property that either all processes 1–4 enter the critical section infinitely
often, or process 5 asks to enter it only finitely often

L* DRA R3 DRA R3DGRA R3 tDGRA

Automaton size (and no of pairs) 196 (5) 11 (2) 33 (2) 1 (2)

Product size 13,826,588 1,100,608 308,800 308,800

“Effective” size of automaton = product size/m 44.78 3.56 1 1

information that DGRA carries in states, compared to tDGRA, is the labelling of the last
transition taken. Then this information is absorbed in the product, as the system’s states carry
their labelling anyway. Therefore, in this relatively common case for simpler formulae (like
the one in Table 7), there is no difference in sizes of products with DGRA and tDGRA.

Further, notice that the DGRA in Table 7 is larger than the DRA obtained by degeneraliza-
tion of tDGRAand subsequent transformation to a state-based automaton.However, the prod-
uctwith theDGRA is of the size of the original system,while forDRA it is larger! This demon-
strates the superiority of generalized Rabin automata over standard Rabin automata with
respect to the product size and thus also computation time, which is superlinear in the size.

Finally, Table 8 compares the running times for the discussed fairness-fragment.

10 Formalization in Isabelle

We have mechanically verified the proof of correctness of our construction using the Isabelle
theorem prover,11 which provides a rich library of formalised mathematics and convenient
support for proof development. A detailed introduction can be found in [41]. Similar work
was pioneered by the CAVA project,12 which already verified a range of automata-theoretic
algorithms [42]. In fact some of the theories developed in the context of the CAVA project
are also reused in our work. The formalization was carried out by one of us, and constituted
his Master’s thesis. The formal proof can be found at [43], and consists of around 11,000
lines.

11 https://isabelle.in.tum.de/.
12 https://cava.in.tum.de/.

123

https://isabelle.in.tum.de/
https://cava.in.tum.de/

262 Form Methods Syst Des (2016) 49:219–271

Table 8 Running times for constructing an automaton and its acceptance condition for fairness constraints∧k
i=1(FGai ∨ GFbi) for different k

k L* R1 L3 R3.0 R3.1-unopt. R3.1-opt.

1 0.15 0.10 0.01 0.04 0.12 0.12

2 4.3 0.19 0.01 0.08 0.29 0.14

3 5.7 0.03 0.38 2.1 0.24

4 0.19 3.8 22 0.54

5 1.9 105 640 1.2

6 25 4.1

7 350 17

8 86

9 670

10

Times are given in seconds with time-out (blank space) after 1 h. The experiments were run on an 2.8 GHz
Intel Core i7 with 8 GB memory. Here we also compare to Rabinizer 3 of [34], denoted by R3.0, where
all transitions are handled separately, as opposed to a symbolic encoding into edges of Rabinizer 3.1,
denoted by R3.1

Table 9 Important theories and their content

LTL.thy Syntax and semantics of LTL

af.thy The af and afG functions and their properties

Logical_Characterization.thy The logical characterization theorems

Mojmir.thy Mojmir automata

Rabin.thy (Generalised) Rabin automata

Mojmir_Rabin.thy Translation from Mojmir to Rabin automata

LTL_Rabin.thy Translation from LTL to DGRA

LTL_Rabin_Unfold_Opt.thy Unfold optimisation of the general translation

10.1 Relation between formalisation and the content of this paper

The formalization is split into several “theories”. A theory is just a collection of definitions
and results, which can reuse results from other theories. Our theories are listed in Table 9.

For the main definitions, lemmas, and theorems of this paper, Table 10 shows their corre-
sponding name and location in the formalized theories. With the help of this table, interested
readers can establish the correspondence between our results and their formal versions. For
example, we reproduce here Theorem 7 next to the formal version in the mechanized proof:

Theorem 13 (Logical characterization theorem III) For every LTL formula FGϕ and every
word w: w |	 FGϕ iff there exists a closed set G ⊆ G(FGϕ) for w containing Gϕ.

123

Form Methods Syst Des (2016) 49:219–271 263

Table 10 Location of definitions, lemmas and theorems

Def. 2 LTL.thy ltl_semantics

Def. 4 LTL.thy ltl_prop_entailment

Def. 6 af.thy af_letter, af

Lem. 1 af.thy af_nested_propos, af_simps,

af_respectfulness

Prop. 2 af.thy af_ltl_continuation

Thm. 1 Logical_Characterization.thy ltl_implies_provable

Lem. 2 Mojmir.thy rank_None_Suc, rank_monotonic

Lem. 3 Mojmir.thy state_rank_step

Lem. 4 Mojmir.thy token_succeeds_run_merge,

token_squats_run_merge

Lem. 5 Mojmir.thy mojmir_accept_iff_token_set_accept

Lem. 5 Mojmir.thy stable_rank_bounded

Thm. 6 Mojmir_Rabin.thy mojmir_accept_iff_rabin_accept

Def. 17 af.thy af_G_letter, afG
Lem. 7 Logical_Characterization.thy closed_GFG, closed_FG

Thm. 7 Logical_Characterization.thy ltl_FG_logical_characterization

Lem. 8 af.thy afG_sat_core

Thm. 9 LTL_Rabin.thy ltl_FG_to_generalised_rabin_correct

Lem. 10 Logical_Characterization.thy almost_all_suffixes_model_F

Thm. 10 Logical_Characterization.thy ltl_logical_characterization

Thm. 11 LTL_Rabin.thy F_eq_S

Lem. 11 Mojmir.thy token_accepting_rank

Thm. 12 LTL_Rabin.thy ltl_to_generalised_rabin_correct

Note that there are several differences between the formulation of the theorem in the paper
and in the formalized theories.

– Unbounded variables such as w and ϕ are implicitly universally quantified.
– The type system automatically deduces the types of w, which is an ω-word, and ϕ, which

is an LTL formula, using the signature of the operator |	. Thus the type annotations are
omitted.

– Since we cannot use the whole range of mathematical symbols and notation due to
technical constraints, alternative notation is used. In this instance G is replaced by G,
and Gw(ϕ) by GFG ϕ w.

123

264 Form Methods Syst Des (2016) 49:219–271

The theorem declaration is then followed by the proof body, which is written in the proof
language Isar. In every proof step facts are established using the keywords have, hence,
show, and thus. These claims then have to be proven using a proof method, such as
blast, metis, and auto. Furthermore, we can pass additional facts to these methods
using parameters such as intro, dest or via the using keyword. All remaining proof
goals, in this case that the right hand side implies the left, are proven with the method behind
qed. A detailed explanation of the language is given in [44], while the whole specification
can be found in [45].

Note that some definitions and claims, like for instance Proposition 1 and Theorem 3, have
no counterpart in the formalisation, as they only illustrate different aspects of the construction,
but are not an essential part of it. In the first case, we directly define LTL in negation normal
form and do not include a translation method, while in the second case the theorem is just a
special case of Theorem 7 and thus left out.

10.2 Merits of the mechanization

While the effort invested in the mechanization of the proof has been very considerable (about
8 person-months of a master student who had taken an introductory course on Isabelle), it has
helped to identify several bugs in the construction we presented in [20], the conference paper
preceding this one. All but one concerned corner cases that were arguably not very relevant.
For example, the translation from a Mojmir to a Rabin automaton was incorrect for the case
in which the Mojmir automaton has one single state, which is at the same time an accepting
state. However, one bug was more serious. Lemma C of our conference paper was wrong,
due to a mistake in the proof. The proof was carried out by induction over the structure of
LTL formulae. Since our attempts at mechanizing the proof obviously failed, we repeatedly
tried to correct the argument by nesting induction proofs. This process eventually lead to the
smallest to us known formula for which the lemma fails: G(Xa ∨ GXb). Observe that the
formula is already long enough to have a good chance of surviving random testing.Moreover,
testing can only be performed with respect to another tool producing DRAs from formulae,
which could itself have a bug, and the test requires to check equivalence of deterministic
Rabin automata, which is a complicated task. Finally, we do not know of any reasonable way
of certifying an LTL to DRA translation, that is, of making the tool produce a certificate of
correctness that can be checked by independent means.

After these experiences, we consider automata-theoretic constructions used in model
checking tools to be an area in which mechanized proofs are highly desirable, if not neces-
sary. Many of the constructions are very clever and involved. Moreover, while they often rely
on relatively simple intuitions, their correctness proofs often involve detailed case analyses.
Since the constructions become part of model checkers, which for the most part are used
to find bugs in other systems, bugs in the construction itself can have a multiplying effect.
Finally, as mentioned above, there is no simple direct way to test the tools. However, we
can take the following indirect approach. Firstly, given a formula ϕ, we construct the cor-
responding automaton A. Secondly, we model check the transition system of A against the
formula φ ←→ ρ where the LTL formula ρ encodes the acceptance condition of A. The
translation is correct if and only if the model checking procedure does not find any violation.
This approach relies on a verified model checker (for non-probabilistic systems).

123

Form Methods Syst Des (2016) 49:219–271 265

11 Conclusions

We have presented the first direct translation from LTL formulae to deterministic Rabin
automata able to handle arbitrary formulae. The construction is compositional. Given ϕ, we
compute (1) a transition system for ϕ, automata for eachG-subformula of ϕ, and their parallel
composition, and (2) the acceptance condition: we first guess a set of G-subformulae that
are true (this yields the accepting states of automata for G-subformulae), and then guess the
ranks (this yields the information for a co-Büchi acceptance condition of the whole product).

The compositional approach together with the logical structure of states open the door
to many possible optimizations. Since the automata for G-subformulae are typically very
small, we can aggressively try to optimize them, knowing that each reduced state in one
potentially leads to large savings in the final number of states of the product. So far we have
only implemented a few simple optimizations, and we think there is still much room for
improvement.

We have provided a mechanized proof of the construction, which has also led to discovery
of a serious bug in the original construction [20].

We have conducted a detailed experimental comparison. Our construction outperforms
two-step approaches that first translate the formula into a Büchi automaton and then apply
Safra’s construction. Finally, we produce a (often much smaller) generalized Rabin automa-
ton, which can be directly used for probabilistic verification, without further translation into
a standard Rabin automaton.

Acknowledgements We are grateful to the anonymous referees for their helpful comments to improve previ-
ous versions of the manuscript and their interesting suggestions for future work. This research was funded in
part by the Czech Science Foundation Grant No. P202/12/G061, the DFG Research Training Group “PUMA:
Programm- und Modell-Analyse” (GRK 1480), and the DFG grant CAVA, Computer Aided Verification of
Automata.

Appendix: Technical proofs

Lemma 1 For every formula ϕ and every finite word w ∈ (2Ap)∗:
(1) af (ϕ,w) is a boolean combination of proper subformulae of ϕ.
(2) If af (ϕ,w) = tt, then af (ϕ,ww′) = tt for every w′ ∈ (2Ap)∗, and analogously for ff .
(3) If ϕ1 ≡P ϕ2, then af (ϕ1, w) ≡P af (ϕ2, w).
(4) If ϕ has n proper subformulae, then the set of formulae reachable from ϕ has at most

22
n
equivalence classes of formulae with respect to propositional equivalence.

Proof (1) By structural induction on ϕ.
(2) Follows immediately from af (tt, ν) = tt and af (ff, ν) = ff .
(3) By (1) every formula ϕ is a positive boolean combination of proper formulae. Since af

distributes over ∧ and ∨, the formula af (ϕ, ν) is obtained by applying a simultaneous
substitution to the proper formulae. (For example, a proper formula Gψ is substituted
by af (ψ, ν) ∧ Gψ .) Let ϕ[S] be the result of the substitution.
Consider two equivalent formulae ϕ1 ≡P ϕ2. Since we apply the same substitution to
both sides, the substitution lemma of propositional logic guarantees ϕ1[S] ≡P ϕ2[S]. So
af (ϕ1, ν) ≡P af (ϕ2, ν) for a letter ν. The general case af (ϕ1, w) ≡P af (ϕ2, w) follows
by induction on the length of w.

(4) Follows from (1) and the fact that there are 22
n
equivalence classes of boolean formulae

with n variables.
��

123

266 Form Methods Syst Des (2016) 49:219–271

Proposition 2 Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word. Then
ww′ |	 ϕ iff w′ |	 af (ϕ,w).

Proof First we prove the property when w is a single letter ν:

νw′ |	 ϕ iff w′ |	 af (ϕ, ν) (2)

We prove (2) by structural induction on ϕ. We only consider two representative cases.

– ϕ = a. Then

νw′ |	 a
hence a ∈ ν

hence af (a, ν) = tt
hence w′ |	 af (a, ν)

νw′
|	 a
hence a /∈ ν (semantics of LTL)
hence af (a, ν) = ff (def. of af)
hence w′
|	 af (a, ν)

– ϕ = Fϕ′. Then

νw′ |	 Fϕ′
iff νw′ |	 (XFϕ′) ∨ ϕ′ (Fϕ′ ≡ XFϕ′ ∨ ϕ′)
iff

(
w′ |	 Fϕ′) ∨ (

νw′ |	 ϕ′) (semantics of LTL)
iff

(
w′ |	 Fϕ′) ∨ (

w′ |	 af (ϕ′, ν)
)

(ind. hyp.)
iff w′ |	 Fϕ′ ∨ af (ϕ′, ν) (def. of af)
iff w′ |	 af (Fϕ′, ν) (def. of af)

Now we prove the property for every word w by induction on the length of w. If w = ε

then af (ϕ,w) = ϕ, and so ww′ |	 ϕ iff w′ |	 ϕ iff w′ |	 af (ϕ,w). If w = νw′′ for some
ν ∈ 2Ap , then we have

w′ |	 af (ϕ,w)

iff w′ |	 af (ϕ, νw′′)
iff w′ |	 af (af (ϕ, ν), w′′) (def. of af)
iff w′′w′ |	 af (ϕ, ν) (ind. hyp.)
iff νw′′w′ |	 ϕ (2)
iff ww′ |	 ϕ

��
Lemma 5 Let i be the rank of condition (2) in Theorem 5. If the rank of τ stabilizes, then
strkw(τ) < i.

Proof We first prove the following two claims, where i is the rank of condition (2):

(a) If τ succeeds at rank i, then strkw(τ) < i.
Since τ has rank i when it reaches the accepting states, we clearly have strkw(τ) ≤ i.
We show strkw(τ) < i. Assume the contrary. With the previous observation, we have
strkw(τ) = i. Let t be some time at which τ has already entered the accepting states,
and its rank has stabilized. By (2.1), some token τ ′ born after time t (i.e., τ ′ > t) also
succeeds at rank i. Let t ′ ≥ t be the time immediately before τ ′ enters the accepting
states. Then we have rkw(τ, t ′) = i, because at time t ′ token τ has already stabilized,
and rkw(τ ′, t ′) = i by definition. But at time t ′ token τ is in some accepting state, while
τ ′ is not. So we have two tokens in different states with the same rank, contradicting the
definition of rank.

123

Form Methods Syst Des (2016) 49:219–271 267

(b) If rkw(τ, t) ≤ rkw(τ ′, t) = strkw(τ ′) ∈ N, then rkw(τ, t) = strkw(τ).
(If a token has reached its stable rank at some time t , then so have all tokens of older
rank.)
Assume rkw(τ, t)
= strkw(τ). Then at some time t ′ > t the rank of τ either becomes
⊥ (because τ reaches a sink) or improves (because τ ’s firm merges with a firm of older
rank). In both cases, the rank of rkw(τ ′, t) also improves (because the rank of τ becomes
vacant), contradicting the assumption that at time t token τ has already reached its stable
rank.

Assume now that the rank of τ stabilizes but strkw(τ) ≥ i. By (2.1), some token τ ′ born
after the rank of τ stabilizes succeeds at rank i. Since q0 /∈ F , this token eventually enters
the accepting states. Let t be the time immediately before τ ′ enters the accepting states. We
have rkw(τ ′, t) = i. Since strkw(τ) ≥ i, we have rkw(τ, t) ≥ i = rkw(τ ′, t). By (b) (with
the roles of τ and τ reversed), we get rkw(τ ′, t) = strkw(τ ′), and so strkw(τ ′) = i. But,
since τ ′ succeeds at rank i, this contradicts (a). ��
Proposition 5 Let M1 = (Q1,Σ, q01, δ1, F1) and M2 = (Q2,Σ, q02, δ2, F2). Let Q =
Q1×Q2, let q0 = (q01, q02), and let δ : Q×Σ → Q be the function given by δ(q1, q2, ν) =
(δ1(q1, ν), δ2(q2, ν)) Then the tuples

M1 ∩ M2 = (
Q,Σ, q0, δ, F1 × F2

)
M1 ∪ M2 = (

Q,Σ, q0, δ, (F1 × Q2) ∪ (Q1 × F2)
)

are alsoMojmir automata, andmoreoverL(M1∩M2) = L(K1)∩L(K2)andL(M1∪M2) =
L(K1) ∪ L(K2).

Proof Wehave to show that states reachable froman accepting state ofM1∩M2 orM1∪M2

are again accepting. If (q1, q2) is an accepting state of M1 ∩ M2 or M1 ∪ M2, then by
definition δ((q1, q2), ν) = (δ1(q1, ν), δ2(q2, ν)).

– If (q1, q2) ∈ F1 × F2, then, sinceM1 andM2 areM automata, we have δ1(q1, ν) ∈ F1
and δ2(q2, ν) ∈ F2, and so δ((q1, q2), ν) ∈ F1 × F2.

– If (q1, q2) ∈ (F1 × Q2)∪ (Q1 × F2), then, sinceM1 andM2 areM automata, we have
δ(q1, ν) ∈ F1 or δ(q2, ν) ∈ F2, and so δ((q1, q2), ν) ∈ (F1 × Q2) ∪ (Q1 × F2).

We now prove L(M1 ∩M2) = L(K1) ∩ L(K2) and L(M1 ∪M2) = L(K1) ∪ L(K2). Since
M1 ∩ M2 and M1 ∪ M2 only differ in their accepting states, they have the same function
runw(τ, t) describing the position of token τ at time t . Moreover, by the definition of q0 and
δ we easily get

runw(τ, t) = (
run1w(τ, t), run2w(τ, t)

)
where run1 and run2 are the corresponding functions for M1 and M2. So we have

(a) Token τ of M1 ∩ M2 eventually reaches F1 × F2 iff the token τ of M1 eventually
reaches F1 and the token τ of M2 eventually reaches F2.

(b) Token τ ofM1 ∪M2 eventually reaches (F1 × Q2) ∪ (Q1 × F2) iff the token τ ofM1

eventually reaches F1, or the token τ of M2 eventually reach F2.

By (a), almost every token of M1 ∩ M2 eventually reaches F1 × F2 iff almost every token
of M1 eventually reaches F1, and almost every token of M2 eventually reaches F2. So
L(M1∩M2) = L(K1)∩L(K2). By (b), almost every token ofM1∩M2 eventually reaches
(F1 × Q2)∪ (Q1 × F2) iff almost every token ofM1 eventually reaches F1, or almost every
token of M2 eventually reaches F2. So L(M1 ∪ M2) = L(K1) ∪ L(K2) ��

123

268 Form Methods Syst Des (2016) 49:219–271

Lemma 7 Let ϕ be a formula and let w be a word.

(a) Every set G ⊆ Gϕ closed for w is included in Gw(ϕ).
(b) Gw(ϕ) is closed for w.

Proof (a) Given G ⊆ Gϕ, we inductively assign to every Gψ ∈ G an index as follows. If ψ

has no G-subformulae, then Gψ has index 0; if ψ has G-subformulae, then its index is
the maximum of the indices of its subformulae plus 1.
Assume G ⊆ G(ϕ) is closed for w, and let Gψ ∈ G. We prove w |	 FGψ by induction
on the index n of Gψ .

– n = 0. Since G is closed for w, we have G |	P af G(ψ,wi j) for almost every i ∈ N

and almost every j ≥ i . Let j > i be such that G |	P af G(ψ,wi j) holds. Since
ψ has no G-subformulae (because n = 0), the formulae of G occur neither in ψ

nor, by the definition of af G, in af G(ψ,wi j). So we get ∅ |	P af G(ψ,wi j), which
implies af G(ψ,wi j) ≡P tt. Moreover, since ψ has no subformulae and af G and
af only differ on G-formulae, we have af G(ψ,wi j) = af (ψ,wi j). So we finally
obtain af (ψ,wi j) ≡P tt for almost every i ∈ N and almost every j ≥ i . Apply now
Theorem 3.

– n > 0. Let G′ be the set of formulae of G that are subformulae of ψ . For every
Gψ ′ ∈ G′ the index of Gψ ′ is at most n−1 and so, by induction hypothesis, we have
w |	 FGψ ′. So there exists k1 such thatwi |	 G′ for every i ≥ k1. Moreover, since G
is closed forw, we have G |	P af G(ψ,wi j) for almost every i ∈ N and almost every
j ≥ i . Further, since the formulae of G \ G′ do not appear in any af G(ψ,wi j), there
exists k2 such that G′ |	P af G(ψ,wi j) for every i ≥ k2 and almost every j ≥ i .
Taking k = max{k1, k2}, we obtain:
(i) wi |	 G′ for every i ≥ k, and
(ii) G′ |	P af G(ψ,wi j) for every i ≥ k and almost every j ≥ i .
We show that (i) and (ii) imply wi |	 ψ for almost every i ≥ k. We proceed by an
structural induction onψ , very similar to the one in the proof of Proposition 2, except
for the case ψ = Gψ ′. We omit some cases, and only sketch the proof of others.

– ψ = a. Let i ≥ k such that (i) holds. By (ii) we have G′ |	P af G(a, wi j)

for almost every j ≥ i , and so af G(a, wi j) = tt for almost every j ≥ i . But
af G(a, wi j) = tt implies wi(i+1) = a, and so wi |	 a.

– ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2. Both cases follow immediately from the
induction hypothesis.

– ψ = Gψ ′. By the definition of af G, we have af G(ψ,wi j) = Gψ ′ = ψ for
every j ≥ i . So, by (ii), we have G′ |	P ψ which, together with (i), implies
wi |	 ψ for every i ≥ k.

(b) We first prove a preliminary result: if w |	 ϕ, then Gw(ϕ) |	 af G(ϕ,w0i) for almost
every i ∈ N. The proof is very similar to that of Theorem 1. It suffices to say that we
proceed by structural induction on ϕ, using the same arguments as in Theorem 1, with
two minor adjustments:

– af G(ϕ,w0i) ≡P tt is replaced by Gw(ϕ) |	 af G(ϕ,w0i).
– The G-case, i.e., ϕ = Gϕ′, is proved differently. It follows immediately from the fact

that, since w |	 Gϕ′ by assumption, we have Gϕ′ ∈ Gw(Gϕ′).

Now we proceed to prove (b), also by structural induction on ϕ. If ϕ is not a G-formula,
then the result follows either directly from the definitions or directly from the induction

123

Form Methods Syst Des (2016) 49:219–271 269

hypothesis. So consider the case ϕ = Gϕ′. By definition we have Gw(ϕ′) ⊆ Gw(ϕ), and by
induction hypothesis Gw(ϕ′) is closed for w. If w
|	 FGϕ′ then Gw(ϕ′) = Gw(ϕ), and so
Gw(ϕ) is closed for w. If w |	 FGϕ′ then Gw(ϕ) = Gw(ϕ′) ∪ {Gϕ′}. Since Gw(ϕ′) is closed
for w, we have Gw(ϕ′) |	P af G(ψ,wi j) for almost every i ∈ N, almost every j ≥ i , and
for every Gψ ∈ Gw(ϕ′). So it suffices to show Gw(ϕ) |	P af G(ϕ′, wi j) for almost all every
i ∈ N and almost every j ≥ i . Since w |	 FGϕ′, we have wi |	 ϕ′ for almost all i ∈ N.
Applying the preliminary result above to every wi , we obtain Gw(ϕ′) |	P af G(ϕ′, wi j) for
almost every i ∈ N and almost every j ≥ i , and we are done. ��

Lemma 8 Let ϕ be a formula and let G ⊆ G(ϕ). For every ψ ∈ ReachG(ϕ) and every
ν ∈ 2Ap, if G |	P ψ then G |	P af G(ψ, ν).

Proof We proceed by induction on the structure of ψ . Since G |	P ψ , by the definition
of propositional implication, the formula ψ must be either tt, a conjunction, a disjunction,
or a G-formula. If ψ = tt then af G(ψ, ν) = tt and we are done. If ψ = ψ1 ∧ ψ2 then
af G(ψ, ν) = af G(ψ1, ν) ∧ af G(ψ2, ν) and G |	P af G(ψ, ν) follows immediately from the
induction hypothesis. The case ψ = ψ1 ∨ ψ2 is analogous. Finally, if ψ = Gψ ′ for some
formula ψ ′ then af G(Gψ ′) = Gψ ′, and we are done. ��

Lemma 11 Let M(ψ,G) be the Mojmir automaton for a formula ψ . Assume M(ψ,G)

accepts a word w at the smallest accepting rank r. For almost every t ∈ N and for every
token τ of the run of M(ψ,G) on w, the token succeeds iff

1. τ > t , or
2. srw(runw(τ, t), t) ≥ r , or
3. runw(τ, t) ∈ F.

Proof Consider the accepting run of M(ψ,G) on w. Let k′ be large enough such that at
time t ′ ≥ k′: all tokens τ born after k′ eventually succeed; the finitely many tokens that fail
have already reached a sink; and the finitely many tokens that succeed with rank smaller than
r have already already reached an accepting state. Notice that such a k′ only exists for the
smallest accepting rank, since infinitely many tokens enter the accepting states with this rank
and for all larger accepting ranks this constant does not exist. Furthermore let k ≥ k′ be large
enough so that all squatting tokens born before or at time k′ have already reached their stable
rank at time k. We show that the lemma holds for every t ≥ k.

Let τ be an arbitrary token.

– Assume τ succeeds. We show that if (1) and (3) do not hold, then (2) holds. By (3), τ

has not yet reached the accepting states. By our choice of k′, by the time τ enters the
accepting states it will have rank r or larger. Since the rank of a token can only decrease,
its current rank is also equal to the accepting rank r or larger. So srw(runw(τ, t), t) ≥ r .

– Assume (1), (2), or (3) hold. If (3) holds, then τ succeeds by the definition of success.
If (1) holds, then τ succeeds by our choice of k′. Assume now that (2) holds. We show
that (2) neither fails nor squats outside the accepting states, and so necessarily succeeds.
Since τ has a rank at time t , it is not in a sink, and so, by our choice of k′, the token does
not fail. To show that τ does not squat outside the accepting states, we recall part (c) in
the proof of Theorem 5: the stable rank of a token is bounded from above by accepting
ranks, thus also by the smallest. So, by (2), the rank of τ has not stabilized yet, and
therefore, by our choice of k, it does not squat outside the accepting states. ��

123

270 Form Methods Syst Des (2016) 49:219–271

References

1. Vardi MY (1999) Probabilistic linear-time model checking: an overview of the automata-theoretic
approach. In: Formal methods for real-time and probabilistic systems, 5th international AMAST work-
shop, pp 265–276

2. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification (prelimi-
nary report). In: LICS, pp 332–344

3. Vardi MY, Wolper P (1994) Reasoning about infinite computations. Inf Comput 115(1):1–37
4. Couvreur J-M (1999) On-the-fly verification of linear temporal logic. In: World congress on formal,

methods, pp 253–271
5. Gastin P, Oddoux D (2001) Fast LTL to Büchi automata translation. In: CAV. LNCS, vol 2102. Springer,

Berlin, pp 53–65. http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
6. Gerth R, Peled D, Vardi MY, Wolper P (1995) Simple on-the-fly automatic verification of linear temporal

logic. In Proceedings of the fifteenth IFIP WG6.1 international symposium on protocol specification,
testing and verification protocol specification, testing and verification XV, pp 3–18

7. Babiak T, Křetínský M, Rehák V, Strejček J (2012) LTL to Büchi automata translation: fast and more
deterministic. In: TACAS, pp 95–109

8. Duret-Lutz A (2013) Manipulating LTL formulas using spot 1.0. In: ATVA, pp 442–445
9. Baier C, Katoen J-P (2008) Principles of model checking. MIT Press, Cambridge, MA

10. Chatterjee K, Gaiser A, Křetínský J (2013) Automata with generalized Rabin pairs for probabilistic model
checking and LTL synthesis. In: CAV, pp 559–575

11. Safra S (1988) On the complexity of ω-automata. In: FOCS. IEEE Computer Society, Los Alamitos, pp
319–327

12. Piterman N (2006) From nondeterministic Büchi and Streett automata to deterministic parity automata.
In: LICS, pp 255–264

13. Schewe S (2009) Tighter bounds for the determinisation of Büchi automata. In: FOSSACS, pp 167–181
14. KwiatkowskaMZ,NormanG, Parker D (2011) PRISM4.0: verification of probabilistic real-time systems.

In: CAV, pp 585–591
15. Klein J (2005) Linear time logic and deterministic omega-automata.Master’s thesis, Rheinische Friedrich-

Wilhelms Universität Bonn. The tool ltl2dstar—LTL to deterministic Streett and Rabin automata. http://
www.ltl2dstar.de/

16. Kupferman O (2012) Recent challenges and ideas in temporal synthesis. In: SOFSEM. LNCS, vol 7147.
Springer, New York, pp 88–98

17. Křetínský J, Esparza J (2012) Deterministic automata for the (F,G)-fragment of LTL. In: CAV, pp 7–22
18. Gaiser A, Křetínský J, Esparza J (2012) Rabinizer: small deterministic automata for LTL(F,G). In: ATVA,

pp 72–76
19. Křetínský J, Ledesma-Garza R (2013) Rabinizer 2: small deterministic automata for LTL\GU. In: ATVA,

pp 446–450
20. Esparza J, Křetínský J (2014) From LTL to deterministic automata: a safraless compositional approach.

In: CAV, pp 192–208
21. Daniele M, Giunchiglia F, Vardi MY (1999) Improved automata generation for linear temporal logic. In:

CAV, pp 249–260
22. Etessami K, Holzmann GJ (2000) Optimizing Büchi automata. In: CONCUR, pp 153–167
23. Fritz C (2003) Constructing Büchi automata from linear temporal logic using simulation relations for

alternating Büchi automata. In: CIAA, pp 35–48
24. Giannakopoulou D, Lerda F (2002) From states to transitions: improving translation of LTL formulae to

Büchi automata. In: FORTE, pp 308–326
25. Somenzi F, Bloem R (2000) Efficient Büchi automata from LTL formulae. In: CAV. LNCS, vol 1855.

Springer, Heidelberg, pp 248–263
26. Klein J, Baier C (2007) On-the-fly stuttering in the construction of deterministic ω-automata. In: CIAA.

LNCS, vol 4783. Springer, New York, pp 51–61
27. Blahoudek F, Křetínský M, Strejček J (2013) Comparison of LTL to deterministic Rabin automata trans-

lators. In: LPAR, pp 164–172
28. Pnueli A, Zaks A (2008) On the merits of temporal testers. In: 25 years of model checking—history,

achievements, perspectives, pp 172–195
29. Pnueli A, Rosner R (1988) A framework for the synthesis of reactive modules. In Concurrency. LNCS,

vol 335. Springer, Heidelberg, pp 4–17
30. DiGiampaoloB,GeeraertsG,Raskin J-F, SznajderN (2010) Safraless procedures for timed specifications.

In: FORMATS, pp 2–22

123

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.ltl2dstar.de/
http://www.ltl2dstar.de/

Form Methods Syst Des (2016) 49:219–271 271

31. Kupferman O, Piterman N, Vardi MY (2006) Safraless compositional synthesis. In: CAV. LNCS, vol
4144. Springer, New York, pp 31–44

32. Kupferman O, Vardi MY (2005) Safraless decision procedures. In: FOCS. IEEE Computer Society, Los
Alamitos, pp 531–542

33. Alur R, La Torre S (2004) Deterministic generators and games for LTL fragments. ACM Trans Comput
Log 5(1):1–25

34. KomárkováZ,Křetínský J (2014)Rabinizer 3: safraless translation ofLTL to small deterministic automata.
In: ATVA, pp 235–241

35. Babiak T, Blahoudek F, Duret-Lutz A, Klein J, Křetínský J, Müller D, Parker D, Strejček J (2015) The
Hanoi omega-automata format. In: CAV, pp 479–486

36. Babiak T, Blahoudek F, KřetínskýM, Strejček J (2013) Effective translation of LTL to deterministic Rabin
automata: beyond the (F, G)-fragment. In: ATVA, pp 24–39

37. Babiak T, Badie T, Duret-Lutz A, Křetínský M, Strejček J (2013) Compositional approach to suspension
and other improvements to LTL translation. In: SPIN, pp 81–98

38. Pelánek R (2007) Beem: benchmarks for explicit model checkers. In: Proc of SPIN Workshop. LNCS,
vol 4595. Springer, Heidelberg, pp 263–267

39. Klein J, Baier C (2006) Experiments with deterministic ω-automata for formulas of linear temporal logic.
Theor Comput Sci 363(2):182–195

40. DwyerMB, Avrunin GS, Corbett JC (1999) Patterns in property specifications for finite-state verification.
In: ICSE, pp 411–420

41. Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher-order logic., Lecture
notes in computer scienceSpringer, Heidelberg

42. Esparza J, Lammich P, Neumann R, Nipkow T, Schimpf A, Smaus J-G (2013) A fully verified executable
LTL model checker. In: CAV, pp 463–478

43. Sickert S (2015) Converting linear temporal logic to deterministic (generalized) Rabin automata. Archive
of Formal Proofs. http://isa-afp.org/entries/LTL_to_DRA.shtml (Formal proof development)

44. WenzelM (2007) Isabelle/isar-a generic framework for human-readable proof documents. In: From insight
to proof-festschrift in honour of Andrzej Trybulec, vol 10(23), pp 277–298

45. Wenzel M (2014) The Isabelle/Isar reference manual

123

http://isa-afp.org/entries/LTL_to_DRA.shtml

	From LTL to deterministic automata
	A safraless compositional approach
	Abstract
	1 Introduction
	2 Basic definitions
	2.1 Alphabets and words
	2.2 Linear temporal logic
	2.2.1 Syntax and semantics
	2.2.2 Negation normal-form
	2.2.3 Propositional entailment, equivalence, and substitution
	2.2.4 The after function af(, w)

	2.3 Transition systems and ω-automata
	2.3.1 Acceptance conditions and ω-automata

	3 Automata for G-free formulae
	4 DRAs for simple FG-formulae
	4.1 Logical characterization
	4.2 Mojmir automata
	4.3 State-rankings
	4.4 Computing the successor of a state-ranking
	4.5 Deciding acceptance of an abstract run
	4.6 From Mojmir automata to deterministic Rabin automata

	5 DRAs for arbitrary FG-formulae
	5.1 A compositional construction: intuition
	5.2 Logical characterization
	5.3 The product automaton

	6 DRAs for arbitrary formulae
	6.1 Logical characterization theorem
	6.1.1 A first candidate for mathcalF(mathcalG, w0j)
	6.1.2 A second (and correct) candidate

	6.2 From the logical characterization to automata
	6.3 The automaton mathcalA(): informal definition
	6.4 The automaton mathcalA(): formal definition

	7 Optimizations
	7.1 Reducing the state space
	7.2 Reducing the acceptance condition

	8 Complexity bounds
	9 Implementation and experimental results
	9.1 Implementation
	9.2 Experimental results
	9.3 Advantages and limits of the approach

	10 Formalization in Isabelle
	10.1 Relation between formalisation and the content of this paper
	10.2 Merits of the mechanization

	11 Conclusions
	Acknowledgements
	Appendix: Technical proofs
	References

