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Abstract We address the problem of verifying invariant properties on infinite-state systems.
We present a novel approach, IC3ia, for generalizing the IC3 invariant checking algorithm
fromfinite-state to infinite-state transition systems, expressed over somebackground theories.
The procedure is based on a tight integration of IC3 with Implicit Abstraction, a form of
predicate abstraction that expresses abstract paths without computing explicitly the abstract
system. In this scenario, IC3 operates only at the Boolean level of the abstract state space,
discovering inductive clauses over the abstraction predicates. Theory reasoning is confined
within the underlying SMT solver, and applied transparently when performing satisfiability
checks. When the current abstraction allows for a spurious counterexample, it is refined by
discovering and adding a sufficient set of new predicates. Importantly, this can be done in a
completely incremental manner, without discarding the clauses found in the previous search.
The proposed approach has two key advantages. First, unlike previous SMT generalizations
of IC3, it allows to handle a wide range of background theories without relying on ad-hoc
extensions, such as quantifier elimination or theory-specific clause generalization procedures,
which might not always be available and are often highly inefficient. Second, compared to a
direct exploration of the concrete transition system, the use of abstraction gives a significant
performance improvement, as our experiments demonstrate.
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1 Introduction

IC3 [12] is an algorithm for the verification of invariant properties of transition systems. It
builds an over-approximation of the reachable state space, using clauses obtained by gen-
eralization while disproving candidate counterexamples. The generalization is based on the
idea of keeping a sequence of over-approximations, each inductive relative to the previous
one.

In the case of finite-state systems, the algorithm is implemented on top of Boolean SAT
solvers, fully leveraging their features (e.g. incrementality). IC3 has demonstrated to be
extremely effective, and it is a fundamental core in all the engines in hardware verification.

There have been several attempts to lift IC3 to the case of infinite-state systems, for its
potential applications to software, RTL models, timed and hybrid systems (although the
problem is in general undecidable). These approaches are set in the framework of Satis-
fiability Modulo Theory (SMT) [4] and hereafter are referred to as IC3 Modulo Theories
[18,35,41,51]: the infinite-state transition system is symbolically described by means of
SMT formulas, and an SMT solver plays the same role of the SAT solver in the discrete case.
The key difference is the need in IC3 Modulo Theories for specific theory reasoning to deal
with candidate counterexamples. This led to the development of various techniques, based
on quantifier elimination or theory-specific clause generalization procedures. Unfortunately,
such extensions are typically ad-hoc, and might not always be applicable in all theories of
interest. Furthermore, being based on the fully detailed SMT representation of the transi-
tion systems, some of these solutions (e.g. based on quantifier elimination) can be highly
inefficient.

We present a novel approach to IC3 Modulo Theories, which is able to deal with infinite-
state systems by means of a tight integration with predicate abstraction (PA) [26], a standard
abstraction technique that partitions the state space according to the equivalence relation
induced by a set of predicates. In this work, we leverage Implicit Abstraction (IA) [47], which
allows to express abstract transitions without computing explicitly the abstract system, and
is fully incremental with respect to the addition of new predicates. In the resulting algorithm,
called IC3ia, the search proceeds as if carried out in an abstract system induced by the set
of current predicates P. The key insight is to exploit IA to obtain an abstract version of the
relative induction check, the central operation of IC3. We follow a Counter-Example Guided
Abstraction-Refinement (CEGAR) approach: when an abstract counterexample is found, it
is simulated in the concrete space and, if spurious, the current abstraction is refined by adding
a set of predicates sufficient to rule it out.

The IC3iaapproach has several advantages. First, unlike previous SMT generalizations of
IC3, IC3iaallows to handle a wide range of background theories without relying on ad-hoc
extensions, such as quantifier elimination or theory-specific clause generalization procedures.
The only requirement is the availability of an effective technique for abstraction refinement,
for which various solutions exist for many important theories (e.g. interpolation [33], unsat
core extraction [29], or weakest precondition [38]). Second, the analysis of the infinite-state
transition system is now carried out in the abstract space,which is often as effective as an exact
analysis, but also much faster. Third, the approach is completely incremental, without having
to discard or reconstruct clauses found in the previous iterations. Finally, the integration of
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SMT into IC3 is very natural, in the sense that it preserves the IC3 structure and works in each
iteration on awell-defined transition system (namely, theminimal predicate abstraction given
by the current set of predicates). This allows for a simple implementation of the extension
(especially if compared to the complexity of IC3 ).

We experimentally evaluated IC3iaon a set of benchmarks from heterogeneous sources
[6,31,41], with very positive results. First, our implementation of IC3iais significantly more
expressive than the SMT-based IC3 of [18], being able to handle not only the theory of Linear
Rational Arithmetic (LRA) like [18], but also those of Linear Integer Arithmetic (LIA) and
fixed-size bit-vectors (BV). Second, in terms of performance IC3iais uniformly superior to a
wide range of alternative techniques and tools, including state-of-the-art implementations of
the bit-level IC3 algorithm [10,25,46], other approaches for IC3ModuloTheories [18,35,41],
and techniques based on k-induction and invariant discovery [31,39]. Third, the results show
how IC3iais more efficient also with respect to CTIGAR [8], a more recent integration of
IC3and abstraction, similar in principle to IC3iabutwith several important differences (which
we point out in this paper).

A remarkable property of IC3iais that it can deal with a large number of predicates: in
several benchmarks, hundreds of predicates were introduced during the search. Considering
that an explicit computation of the abstract transition relation (e.g. based on All-SMT [43])
often becomes impractical with a few dozen predicates, we conclude that Implicit Abstraction
is fundamental to scalability, allowing for efficient reasoning in a fine-grained abstract space.

The rest of the paper is structured as follows. In Sect. 2 we present some background on
IC3 and Implicit Abstraction. In Sect. 3 we describe IC3iaand prove its formal properties.
In Sect. 4 we discuss the related work. In Sect. 5 we experimentally evaluate our method. In
Sect. 6 we draw some conclusions and present directions for future work.

2 Background

2.1 Notation

Our setting is first order logic. We use the standard notions of theory, satisfiability, validity,
and logical consequence. We also use notions from Satisfiability Modulo Theories (SMT)
[4]. We denote generic theories as T . We write ϕ |�T ψ to denote that the formula ψ is a
logical consequence of ϕ in the theory T ; when clear from context, we omit T and simply
write ϕ |� ψ .

We denote formulas with φ, ϕ,ψ, I, T, P , variables with x , y, and sets of variables with
X , Y , X , X ′, XP. Unless otherwise specified, we work on quantifier-free formulas. We refer
to 0-arity predicates as Boolean variables, and to 0-arity uninterpreted functions as (theory)
variables. A literal is an atom or its negation. A clause is a disjunction of literals, whereas
a cube is a conjunction of literals. If s is a cube l1 ∧ · · · ∧ ln , with ¬s we denote the clause
¬l1 ∨ · · · ∨ ¬ln , and vice versa. A formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses, and in disjunctive normal form (DNF) if it is a disjunction of cubes.
With a little abuse of notation, we denote formulas in CNF c1 ∧ · · · ∧ cn as sets of clauses
{c1, . . . , cn}, and vice versa. If X1, . . . , Xn are sets of variables and ϕ is a formula, we write
ϕ(X1, . . . , Xn) to indicate that all the variables occurring in ϕ are elements of

⋃n
i=1 Xi .

Given a set of variables X , a signature Σ , a domain M , an interpretation function I of the
symbols inΣ on the domain M , an assignment σ to the variables in X on the domain M , and
a σ -formula φ(X) with free variables in X , the satisfaction relation 〈M, I〉 |� φ is defined
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in the usual way. Given μ = 〈M, I, σ 〉 and φ, we denote by μ(φ) the truth value given by μ

to the formula φ.
When Σ is implicit and clear from the context, we call 〈M, I, σ 〉 an interpretation of X .

Given two disjoint sets of variables X and Y , an interpretation μ1 = 〈M, I, σ1〉 of X and an
interpretationμ2 = 〈M, I, σ2〉 of Y with the same structure 〈M, I〉, thenμ1∪μ2 denotes the
interpretation 〈M, I, σ 〉 of X ∪Y such that σ(x) = σ1(x) for every x ∈ X and σ(y) = σ2(y)
for every y ∈ Y . Given an interpretation μ1 = 〈M, I, σ1〉 of X , we call the projection of
μ1 over Y ⊆ X the interpretation μ2 = 〈M, I, σ2〉 such that σ2(y) = σ1(y) for all y ∈ Y .
Given an interpretation μ = 〈M, I, σ 〉 of X , we denote by μY [y := cy] the interpretation
〈M, I, σY 〉 of Y such that σY (y) = cy for every y ∈ Y . With abuse of notation, given an
interpretation μ = 〈M, I, σ 〉 of X and x ∈ X , we use μ(x) to denote σ(x). We also use μ

to denote the cube representing it.
For each variable x , we assume that there exists a corresponding variable x ′, called the

primed version of x . If X is a set of variables, X ′ is the set obtained by replacing each
element x with its primed version (X ′ = {x ′ | x ∈ X}). ϕ′ is the formula obtained by
replacing each occurrence variable in ϕ with the corresponding primed. xn is the variable
obtained by adding n primes to x , while Xn is the corresponding set (Xn = {xn | x ∈ X}). X
is a copy of the variables X , i.e., is the set variables obtained from X by replacing each x ∈ X
with x (X = {x | x ∈ X}). Given a set of predicates P, XP is a set of variables containing
one variable xp for every predicate p ∈ P (XP = {xp | p ∈ P}).

2.2 Transition systems

In the following, the signature σ and the theory T are implicitly given. A transition system
(TS) S is a tuple 〈X, I, T 〉where X is a set of (state) variables, I (X) is a formula representing
the initial states, and T (X, X ′) is a formula representing the transitions. A state s of S is an
interpretation of the state variables X . A (finite) path of S is a finite sequenceπ =̇s0, s1, . . . , sk
of states, with the same domain and interpretation of symbols in the signature Σ , such that
s0 |� I and for all i , 0 ≤ i < k, si , s′

i+1 |� T . We say that a state s is reachable in S iff there
exists a path of S ending in s.

Example 1 S = 〈{c, d}, c = 0∧ d = 0, c′ = c+ d ∧ d ′ = d + 1〉 is a transition system with
integer variables {c, d}, where d is increased by one in every transition, while c is incremented
by the current value of d .

2.3 Invariant verification problems

Given a formula P(X) and a transition system S = 〈X, I, T 〉, the invariant verification
problem, denoted with S |� P , is the problem to check if for all the finite paths s0, s1, . . . , sk
of S, for all i , 0 ≤ i ≤ k, si |� P . Its dual formulation in terms of reachability of ¬P is the
problem to find a path s0, s1, . . . , sk of S such that sk |� ¬P . P represents the “good” states,
while ¬P represents the “bad” states. S |� P iff all the reachable states of S are good, i.e.
no bad state is reachable.

Inductive invariants and relative inductive invariants are central notions to solve the
invariant verification problem. F is an inductive invariant for S iff I (X) |� F(X), and
F(X)∧ T (X, X ′) |� F(X ′). A typical verification strategy is to look for an inductive invari-
ant F such that F |� P (thus, yielding that S |� P). F is inductive relative to the formula
φ(X) iff I (X) |� F(X), and φ(X) ∧ F(X) ∧ T (X, X ′) |� F(X ′). It is sometimes useful

123



194 Form Methods Syst Des (2016) 49:190–218

to first prove some lemma and then search for an invariant that is inductive relative to such
lemma.

Note that we use the symbol |� with three different denotations: if φ is a formula, φ |� ψ

denotes that ψ is a logical consequence of φ; if μ is an interpretation, μ |� ψ denotes that μ
is a model of ψ ; if S is a transition system, S |� ψ denotes that ψ is an invariant of S. The
different usages of |� will be clear from the context.

2.4 IC3 for finite- and infinite-state systems

IC3 [12] is an efficient SAT-based algorithm for the verification of finite-state systems, with
Boolean state variables and propositional logic formulas. IC3was subsequently extended to
the case of infinite-state systems in [18,35], leveraging the power of SMT. In the following,
we present its main ideas, following the description of [18]. Additional details can be found
in [12,18,35,50].

The IC3algorithm tries to prove that S |� P by finding a suitable inductive invariant
F(X) such that F(X) |� P(X). In order to construct F , IC3maintains a sequence of
formulas (called trace) F0(X), . . . , Fk(X) such that: (i) F0 = I ; (ii) Fi |� Fi+1; (iii)
Fi (X) ∧ T (X, X ′) |� Fi+1(X ′); (iv) for all i < k, Fi |� P . Therefore, each element of
the trace Fi+1, called frame, is inductive relative to the previous one, Fi . IC3 strengthens the
frames by finding new relative inductive clauses. A clause c is inductive relative to the frame
F , i.e. F ∧ c ∧ T |� c′, iff the formula

Rel Ind(F, T, c) =̇ F ∧ c ∧ T ∧ ¬c′ (1)

is unsatisfiable, so that a check of relative inductiveness can be directly tackled by a SAT (or
SMT) solver.

A high-level description of IC3 is shown in Fig. 1 as pseudo-code. The algorithm proceeds
incrementally, by alternating two phases: a blocking phase, and a propagation phase. In the
blocking phase (lines 5–8 of Fig. 1), the trace is analyzed to prove that no intersection between
Fk and ¬P(X) is possible. During this phase, the trace is enriched with additional formulas,
which can be seen as strengthening the approximation of the reachable state space. At the
end of the blocking phase, either Fk |� P is proved or a counterexample is generated.

The propagation phase (lines 9–15 of Fig. 1) tries to extend the trace with a new formula
Fk+1, moving forward the clauses from preceding Fi ’s. If, during this process, two consecu-
tive frames become identical (i.e. Fi = Fi+1), then a fixpoint is reached, and IC3 terminates
with Fi being an inductive invariant proving the property.

In the blocking phase IC3maintains a set of pairs (s, i), where s is a set of states that can
lead to a bad state, and i > 0 is a position in the current trace. New formulas (in the form of
clauses) to be added to the current trace are derived by (recursively) proving that a cube s of
a pair (s, i) is unreachable starting from the formula Fi−1 (RecBlock procedure of Fig. 1).1

This is done by checking the satisfiability of the formula Rel Ind(Fi−1, T,¬s). If the formula
is unsatisfiable, then ¬s is inductive relative to Fi−1, and the bad state s can be blocked at i .
This is done by (i) generalizing ¬s to a stronger clause ¬g that is still inductive relative to
Fi−1 (Generalize procedure), and (ii) adding¬g to Fi . Inductive generalization is a central
step of IC3, that is crucial for the performance of the algorithm. Adding ¬g to Fi blocks not
only the bad cube s, but possibly also many others, thus allowing for a faster convergence of
the algorithm. At a high level, the algorithm for performing inductive generalization works

1 The recursive procedure RecBlock is an oversimplification of the one actually used by IC3. In practice,
RecBlock is implemented using a priority queue. This is however not important for our purposes, and we
refer the reader to [12,25] for more information.
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Fig. 1 High-level description of IC3

by dropping some literals from the input clause ¬s and testing whether the result is still
inductive relative to Fi−1, until a stopping criterion is reached (e.g. a fix-point or a resource
bound). In the literature, several variants of this basic approach have been proposed. We refer
the reader to [13,25,27,32,50] for more information.

If, instead, (1) is satisfiable, then the overapproximation Fi−1 is not strong enough to show
that s is unreachable. In this case, let p be a subset of the states in Fi−1 ∧¬s such that all the
states in p lead to a state in s′ in one transition step. Then, IC3continues by trying to show
that p is not reachable in one step from Fi−2 (that is, it tries to block the pair (p, i −1)). This
procedure continues recursively, possibly generating other pairs to block at earlier points in
the trace, until either IC3generates a pair (q, 0), meaning that the system does not satisfy the
property, or the trace is eventually strengthened so that the original pair (s, i) can be blocked.

A key difference between the original Boolean IC3and its SMT extensions in [18,35] is
in the way sets of states to be blocked or generalized are constructed. In the blocking phase,
when trying to block a pair (s, i), if the formula (1) is satisfiable, then a new pair (p, i−1) has
to be generated such that p is a cube in the preimage of s wrt. T (i.e., for every state in p there
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exists a transition to a state in s). In the propositional case, p can be obtained from the model
μ of (1) generated by the SAT solver, by simply dropping the primed variables occurring in
μ. A naïve lifting of this procedure to the first-order case could however be quite inefficient,
since this would lead IC3 to exclude only a single point at a time in an infinite state space,
resulting in a high chance of divergence in the blocking phase. The solution proposed in [18]
is to compute p by existentially quantifying (1) and then applying an under-approximated
existential elimination algorithm for linear rational arithmetic formulas. In the following, we
refer to the algorithm proposed in [18] as IC3qe . In [35], instead, the problem is addressed
by proposing a theory-aware extension of inductive generalization, to generalize ¬s from a
single point to a larger region before adding it to Fi , after having successfully blocked it. In
addition to dropping literals from ¬s, like in the Boolean case, the algorithm also performs
generalizations at the theory level, by weakening inequalities (t ≤ c) to (t ≤ c + c′) with
c′ > 0, while ensuring that (1) still holds for the resulting clause. Also in this case, however,
the procedure (based on Craig interpolation) is limited to linear rational arithmetic.

2.5 Abstraction

2.5.1 Predicate abstraction

Abstraction [24] is a very powerful approach to verification. It is used to reduce the search
space while preserving the satisfaction of the property of interest. If Ŝ is an abstraction of S
and a state is reachable in S, then also its abstract version is reachable in Ŝ. Thus, in order to
prove that a set of states is not reachable in S, it is sufficient to prove that its abstract version
is not reachable in Ŝ.

In Predicate Abstraction [26], the abstract state-space is induced by a set of predicates P.
Each predicate p ∈ P is a formula over the variables X . Intuitively, these characterize relevant
facts of the system. For every p ∈ P we introduce a new Boolean variable xp , referred to as
the predicate name or abstract variable. We write XP to denote the set of predicate names
{xp}p∈P. The abstraction relation HP is then defined as

HP(X, XP) =̇
∧

p∈P
xp ↔ p(X)

Given a formulaφ(X), the predicate abstraction ofφ with respect toP, denoted φ̂P, is obtained
by adding the abstraction relation to it and then existentially quantifying the variables X , i.e.,

φ̂P(XP) =̇ ∃X.(φ(X) ∧ HP(X, XP))

and similarly for a (transition) formula over X and X ′

φ̂P(XP, X
′
P
) =̇ ∃X, X ′.(φ(X, X ′) ∧ HP(X, XP) ∧ HP(X

′, X ′
P
))

Given an interpretation μ of X , the corresponding abstract interpretation of XP is denoted
by μ̂ and defined as the interpretation μXP

[xp := μ(p)].
The predicate abstraction of a system S =̇ 〈X, I, T 〉 is obtained by abstracting the initial

and the transition conditions, i.e.

ŜP =̇ 〈XP, ÎP, T̂P〉
In the following, when clear from the context, we omit the P and write just φ̂ instead of φ̂P.

Example 2 Consider the transition system S of Example 1, the set of predicates P = {c =
0, d = 0} and the set of variables XP = {xc=0, xd=0}. The abstract system ŜP is defined as:
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Fig. 2 (Left) Concrete and abstract system: Each circle represents a concrete state and each solid arrow is a
concrete transition. Each rectanglewith rounded corners represents an abstract state (different colors represent
different abstract states). (Right)Abstract path: each rectangle represents a copy of the state space, and a dashed
arrow represents an abstract transition between two abstract states (notice that, to make the example clearer,
we kept the concrete states, and the abstract transitions correspond also to an existing concrete transition in
the system)

〈{xd=0, xc=0}, xd=0 ∧ xc=0, (xd=0 → (¬x ′
d=0 ∧ xc=0 ↔ x ′

c=0)) ∧ (¬xd=0 → (xc=0 →
¬x ′

c=0))〉.
By construction, ŜP |� P̂P implies that S |� P . Clearly, the converse does not hold, i.e. it

is possible that counterexamples in ŜP have no counterpart in S (i.e. they are spurious).

Example 3 Consider Fig. 2. The figure on the left represents a transition system and its
abstraction: each circle is a state and solid arrows represent concrete transitions. States of
the same color give equal values to the predicates. There are four abstract states, induced by
two predicates; each abstract state corresponds to a different truth assignment (00, 01, 10,
11). Each abstract state encloses the concrete states of the corresponding color. The figure
on the right depicts an abstract path (each black rectangle represents various copies of the
concrete state space) with four abstract transitions, 00→10→01→11→11. The sequence
00→10→01 has no counterpart in the concrete system because there does not exist a pair
of concrete transitions that connects a concrete state in 00 to a state in 10, and then the same
state in 10 to a state in 01.

A spurious abstract counterexample indicates that the abstraction is too coarse. CEGAR
[23] is a popular approach to automatically refine an abstraction by extracting information
from spurious counterexamples. In predicate abstraction, this is done by adding more pred-
icates. Predicates can be discovered with several techniques, like interpolation, unsat core
extraction, or weakest precondition, for which there is a wide literature (e.g. [2,33,34]).

The main issue with Predicate Abstraction is that most model checkers deal only with
quantifier-free formulas. Thus, the computation of ŜP requires the elimination of the existen-
tial quantifiers. Efficient algorithms for the computationof predicate abstractions (bymeans of
All-SMT and extensions) have therefore received a lot of interest in the literature [15,17,43].
A different, but equally active, research direction has focused instead on approximation
techniques in order to reduce the computational cost of eliminating the quantifiers. These
approximations typically yield a simpler abstract transition relation, at the cost of including
more abstract transitions (and thus potential refinements). In this sense, predicate abstraction
as defined above is also called minimal, or precise, because it contains the minimal set of
transitions given a set of predicates. Some of the most popular approximation techniques are
Cartesian abstraction [3], early quantification [24], maximum cube length [1], localization
reduction [42], predicate partitioning [38]. However, an upfront, eager computation of the
abstract system is known to be very hard in practice.

123



198 Form Methods Syst Des (2016) 49:190–218

2.5.2 Abstraction refinement via Craig interpolation

Given an ordered pair of formulas (ϕ, ψ) in a theory T , a (binary) Craig interpolant is a
formula ι that satisfies the following constraints:

(i) ϕ |�T ι;
(ii) ψ ∧ ι |�T ⊥; and
(iii) all the uninterpreted (in T ) symbols occurring in ι occur in both ϕ and ψ .

The definition can be extended to an ordered sequence of formulas ϕ0, . . . , ϕn such that∧
i ϕi |� ⊥, obtaining a sequence interpolant ι1, . . . , ιn such that:

(i)
∧

0≤k<i ϕk |� ιi ;
(ii) ιi ∧ ∧

i≤k≤n ϕk |� ⊥;
(iii) ϕi−1 ∧ ιi |� ιi+1 for all 1 ≤ i < n; and
(iv) all the uninterpreted (in T ) symbols occurring in ιi occur in both

∧
0≤k<i ϕk and∧

i≤k≤n ϕk .

Sequence interpolants can be efficiently computed via SMT techniques for various impor-
tant theories (see e.g. [21]). One of their prominent applications in formal verification is in
automatic refinement of predicate abstractions via CEGAR. The technique, introduced in
[33] in the context of software model checking, is described in more detail in Sect. 3.3,
where we adapt it to our setting.

2.5.3 Implicit predicate abstraction

The idea of implicit predicate abstraction [47] is to avoid the upfront computation of the
abstract system, by encoding as a quantifier-free formula the existence of a path in the
abstract space. This is based on the following formula:

EQP(X, X) =̇
∧

p∈P
p(X) ↔ p(X) (2)

which represent the relation between two concrete states (the interpretation of X and the
interpretation of X ) that correspond to the same abstract state: the two states are in the same
abstract state if they result in the same valuation to the predicates. In Fig. 2 any two states
satisfy the EQP relation if and only if they have the same color. The formula

Pathk
P

=̇
∧

1≤h<k

(
T (X

h−1
, Xh) ∧ EQP(X

h, X
h
)
)

∧ T (X
k−1

, Xk)

is satisfiable iff there exists a path of k steps in the abstract state space. Intuitively, rather
than a sequence of contiguous transitions, the encoding represents a sequence of (possibly

disconnected) transitions. The starting state of the h-th transition is represented by X
h−1

,
while Xh is the target state. Subsequent transitions may be disconnected, in the sense that

Xh and X
h
are not forced to be equal, but every gap between two transitions is forced to lay

in the same abstract state by EQP(X
h, X

h
).

BMCk
P
encodes the abstract boundedmodel checking problem, and is obtained fromPathk

P

by adding the abstract initial and target conditions:

BMCk
P

=̇ I (X0) ∧ EQP(X
0, X

0
) ∧ Pathk

P
∧ EQP(X

k, X
k
) ∧ ¬P(X

k
) (3)
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Interestingly, if we let EQP(X, X) be
∧

x∈X (x = x), i.e. we force the subsequent states
to be the same, after substitution we obtain the BMC encoding in S without abstraction.

We remark that implicit abstraction is based on the definition of minimal predicate
abstraction: although it does not compute the whole abstract transition relation upfront by
quantification, it finds a counterexample only if it is a path in the minimal predicate abstrac-
tion of S. However, during the search, only the relevant constraints on the predicates are
built: in other words, the lemmas found by the SMT solver may not yield the quantifier
elimination of the minimal predicate abstraction, but may give an overapproximation that
is sufficient to prove the abstract bounded model checking formula unsatisfiable. In this
sense, the lemmas that are found by the SMT solver when checking the satisfiability of an
abstract bounded model checking problem can be seen as an on-demand approximation of
the minimal abstraction.

3 IC3 with implicit abstraction

3.1 The abstract space

The main idea of IC3iais to mimic how IC3would work on the abstract state space defined
by a set of predicates P, and use implicit abstraction to avoid the explicit computation of the
abstract transition relation. In IC3ia, clauses, frames and cubes are formulas over the set XP

of abstract variables.
The set P contains all predicates in the initial condition I and in the property P . Thus, I

and P are Boolean combinations of predicates in P. Note that if φ is a Boolean combination
of predicates in P, its abstraction φ̂ is logically equivalent to

φ[XP/P] ∧ ∃X.HP(X, XP)

where φ[XP/P] denotes the Boolean formula obtained by substituting in φ the occurrences
of each predicate p(X) ∈ P with the corresponding abstraction variable xp . Observe that
the second conjunct is independent of the formula being abstracted. Intuitively, it defines the
mutual relationships between the abstract names of the predicates. In an SMT setting, μ is a
interpretation of XP satisfying ∃X.HP(X, XP) iff the induced evaluation of the predicates P is
consistent with respect to the underlying theory (i.e., iff

∧
p∈P p(X) ↔ μ(xp) is satisfiable).

Thismeans that computing ∃X.HP(X, XP) upfront is not required, but can be done on demand
by anSMTsolver.Weuseφ to denoteφ[XP/P], i.e. the syntactic replacement of the predicates
with the corresponding Boolean name variables.

When working in the abstract space of Ŝ, the critical step for IC3ia is repeatedly checking
whether a clause c is inductive relative to the frame F (where c and F are both formulas
over XP). This check, if encoded as Rel Ind(F, T̂ , c), would require the explicit construction
of T̂ . The key insight underlying IC3iais to use implicit abstraction to perform the check
without actually constructing the abstract transition relation T̂ . This is done by checking the
quantifier-free formula:

AbsRelInd(F, T, c, P) =̇ F(XP) ∧ c(XP) ∧ HP(X, XP) ∧ HP(X
′, X ′

P
) ∧

EQP(X, X) ∧ T (X , X
′
) ∧ EQP(X

′
, X ′) ∧ ¬c(X ′

P
) (4)

The correctness of this step is justified by the following theorem.

Theorem 1 Consider a set P of predicates, and two formulas F and c over XP. Then
Rel I nd(F, T̂ , c) and AbsRelInd(F, T, c, P) are equisatisfiable. In particular, if μ |�
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AbsRelInd(F, T, c, P), then μP |� Rel Ind(F, T̂ , c), where μP is the projection of μ over
XP ∪ X ′

P
.

Proof Suppose μ |� AbsRelInd(F, T, c, P). Let us denote with t and t the projections of μ

over X ∪ X
′
and over X ∪ X ′, respectively. Then t |� T and therefore the corresponding

abstract transition t̂ |� T̂ . Since μ |� EQP(X, X) ∧ EQP(X
′
, X ′), t̂ and t̂ are the same

abstract transition and therefore t̂ |� T̂ . Since μ |� HP(X, XP) ∧ HP(X ′, X ′
P
), μP = t̂ and

thus μP |� T̂ . Note that μP |� F ∧ c ∧ ¬c′. Thus, μP |� Rel Ind(F̂, T̂ , ĉ).
For the other direction, suppose tP |� Rel Ind(F, T̂ , c). Then there exists an interpretation

t of X ∪ X ′ such that t |� T and t̂ = tP. Therefore, tP ∪ t |� F(XP)∧ c(XP)∧HP(X, XP)∧
HP(X ′, X ′

P
)∧EQP(X, X)∧ T (X, X ′)∧EQP(X

′, X ′)∧¬c(X ′), which concludes the proof.
��

3.2 The algorithm

The IC3iaalgorithm is shown in Fig. 3. IC3iahas the same structure of IC3 (Fig. 1). The trace,
i.e. the sequence of frames, is represented as the vector F . The state of IC3iais enriched by
a set of predicates P, that defines the current precision of the abstraction. The frames are sets
of Boolean clauses over XP.

The algorithm consists of a loop, in which each iteration is divided into the blocking and
the propagation phase.

The blocking phase starts by picking a Boolean cube c(XP) representing an abstract
state in the last frame violating the property (line 6). This is recursively blocked along the
trace by checking if AbsRelInd(Fi−1, T,¬c, P) is satisfiable. If the relative induction check
succeeds, Fi is strengthened with a generalization of ¬c. If the check fails, the recursive
blocking continues with an abstract predecessor of c, that is, a cube in Fi−1 ∧ ¬c that leads
to c in one step. This recursive blocking results in either strengthening of the trace or in the
generation of an abstract counterexample. If the counterexample can be simulated on the
concrete transition system, then the algorithm terminates with a violation of the property.
Otherwise, the algorithm refines the abstraction, adding new predicates to P so that the
abstract counterexample is no more a path of the abstract system.

In the propagation phase, clauses of a frame Fi that are inductive relative to Fi using T̂
are propagated to the following frame Fi+1. As for IC3, if two consecutive frames are equal,
we can conclude that the property is satisfied by the abstract transition system, and therefore
also by the concrete one.

3.3 Simulation and refinement

When IC3ia finds an abstract counterexample π̂ =̇ ŝ0, ŝ1, . . . , ŝk , in form of an interpretation
of

⋃k
i=0 X

i
P
, we check if it can be concretized, i.e. there exists a corresponding counterex-

ample in S. The Concretizable routine checks whether such a concrete counterexample
exists, and if not the Refine primitive is called to increase the precision of the abstraction,
by adding new predicates to P.

The abstract counterexample π̂ is simulated in the concrete system S encoding all the
paths of S up to k steps, restricted to π̂ .

Simulate(T, P, π̂) =̇
∧

0≤i<k

T (Xi , Xi+1) ∧
∧

0<i≤k

ŝi (X
i
P
)[Pi/Xi

P
] (5)
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Fig. 3 The IC3ia algorithm (with changes wrt. the Boolean IC3 in red). (Color figure online)

If the formula is satisfiable, then the interpretation of the concrete variables X0, X1, . . . ,

Xk yield a concrete counterexample s0, s1, . . . , sk that is a witnesses for S �|� P (note that

s0 |� I and sk |� ¬P since ŝ0 |� I and ŝk |� ¬ P). Otherwise, π̂ is spurious and the
abstraction must be refined by adding new predicates.

The Refine(I, T, P, P, π) procedure is somewhat orthogonal to IC3ia, and can be done
in various ways [2,33,34]. The only requirement is that the new set of predicates should be
sufficient to remove the spurious counterexample. We now discuss the use of SMT-based
interpolation to discover new predicates, similarly to [33]. We partition Simulate(T, P, π̂)

into a sequence of formulas ϕ0, . . . , ϕk as follows:
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Simulate(T, P, π̂) =̇ ŝ0(X
0
P
)[P0/X0

P
]

︸ ︷︷ ︸
ϕ0

∧
∧

1≤i≤k

T (Xi−1, Xi ) ∧ ŝi (X
i
P
)[Pi/Xi

P
]

︸ ︷︷ ︸
ϕi

We then compute a sequence interpolant ι1, . . . , ιk for ϕ0, . . . , ϕk (using the technique of
[21]). Let ι j [X/X j ] denote the formula obtained from ι j by replacing all the variables
v j ∈ X j with v ∈ X , and let ρ(φ) be a function that returns the set of all the atomic formulas
occurring in the formula φ (e.g. ρ((x ≥ 1) ∧ ¬(y + x = 0) ∧ b) returns {(x ≥ 1), (y + x =
0), b}).We refine the abstraction by adding the set of predicates P

new =̇ ⋃
1≤i≤k ρ(ιi [X/ Xi ])

to P. As shown by the following theorem, the predicates will rule out the counterexample π̂

from the abstraction. 2

Theorem 2 (Progress of interpolation-based refinement) Let S =̇〈I, T, P〉, P, π =̇s0, . . . , sk
be as above, such that Simulate(T, P, π̂) is unsatisfiable. Let ι1, . . . , ιk be a sequence
interpolant produced for the partitioning of Simulate(T, P, π̂) into ϕ0, . . . , ϕk , and let
P
new =̇ ⋃

1≤i≤k ρ(ιi [X/Xi ]). Then, SPnew∪P contains no (abstract) counterexample path
ẑ0, . . . , ẑk such that ẑi |� ŝi for all 0 ≤ i ≤ k.

Proof (Sketch) Since ι1, . . . , ιk is a sequence interpolant, we have that

ιi (X
i )[X/Xi ] ∧ T (X, X ′) ∧ ŝi−1(XP)[P/XP] |� ιi+1(X

i+1)[X ′/Xi+1]
for all 0 < i < k. That is, each ιi+1 is an overapproximation of the image of ιi ∧ ŝi−1

wrt. T . Together with the fact that
∧

0≤k<i ϕk |� ιi , by induction it holds that each ιi is an
overapproximation of the states reachable in S with a path z0, . . . , zi−1 such that, for all
0 ≤ j ≤ i − 1, z j |� ŝ j . Since P

new contains all the atoms in the ιi ’s and the predicate
abstraction is minimal, it follows that ι̂iPnew∪P |� ιi , and that each ι̂i is an overapproximation
of the states reachable in SPnew∪P with a path ẑ0, . . . , ẑi−1 such that, for all 0 ≤ j ≤ i − 1,
ẑ j |� ŝ j . Since ιk |� ⊥, SPnew∪P contains no path ẑ0, . . . , ẑk such that ẑi |� ι̂i for all i . ��

3.4 Discussion

The IC3iaalgorithm has the following distinguishing features. First, it is very close to the
original, Boolean algorithm. The differences are: (i) IC3iapicks cubes instead of concrete
states in the test to end the blocking phase (line 7); (ii) IC3iausesAbsRelInd instead of Rel Ind
(line 15, and line 2 in RecBlock); (iii) when a counterexample is found, instead of returning
False as in the Boolean case, it is checked for spuriousness (line 9), and, if needed, new
predicates are added to refine the abstraction (line 10). In all these three points, IC3iauses an
SMT solver so that the facts asserted at the Boolean abstract level are ensured to be consistent
with the SMT theories used in the predicates. However, IC3iaoperates primarily on Boolean
data structures (trace, clauses), and confines the theory reasoning within these checks. This
makes it easy to implement and reuse the IC3code, but at the same time it leverages the
theory information available.

Second, IC3iais highly incremental, in the sense that the set of predicates increases
monotonically after a refinement (i.e. we always add new predicates to the existing set of
predicates). Thus, the transition relation is monotonically strengthened (i.e. T̂P∪Pnew |� T̂P).
This allows us to keep all the clauses in the IC3iaframes after a refinement, enabling a
fully incremental approach. Simulation and refinement can also be performed incrementally,
reusing the same solver instance used for simulating the abstract counterexample.

2 This is a reformulation of a well-known result stated (without proof) in [33], adapted to our context.
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Finally, concerning the initial set of predicates used by our algorithm, we require that it
includes all the predicates of the initial states and of the safety property, as this simplifies
the exposition, the proof of correctness, and the implementation of the procedure. However,
we can easily limit the number of predicates in the initial abstraction by relying on simple
model transformations. The original safety property P , which may be an arbitrary Boolean
combination of predicates, can be replaced by a single Boolean variable pb, ensuring that
the invariant P ↔ pb holds in the transition system. For the initial state, it is sufficient to
add an initial “reset” state (encoded with an additional Boolean variable r ). The system is
initially in the “reset” state (r is true in the initial states) and non-deterministically moves to
an initial state of the original system, exiting the “reset” state (the transition relation states
that r → (¬r ′ ∧ I )); from that point the system moves according to the original transition
relation (i.e. ¬r → (¬r ′ ∧ T )); finally, the safety property is changed to always hold in the
reset state (i.e. ¬r → pb). So, overall:

– the new initial condition is r ;
– the new transition condition is (¬r ′) ∧ (r → I ′) ∧ (¬r → T ) ∧ (P ′ → p′

b);
– the new property is ¬r → pb.

3.5 Example

Let us consider the transition system S = 〈{c, d}, c = 0∧d = 0, c′ = c+d∧d ′ = d+1〉 of
Example 1. To give an intuition of the IC3iabehavior we show its main steps when proving
the property P =̇ (d ≤ 3) ∨ ¬(c ≤ d) on S. We describe the first three iterations of the
IC3iamain loop, showing all the important steps of the algorithm, like the blocking phase
using the abstract relative induction check and the refinement.

IC3iaproves that the property holds performing 8 iterations of the IC3iamain loop, refining
4 times the abstraction and ending with a total of 9 predicates.

The initial set of predicates, taken from the initial formula and the property, is P0 =̇ {(c =
0), (d = 0), (d ≤ 3), (c ≤ d)} and the initial status of the frames is F0 =̇ xc=0 ∧ xd=0.

First iteration In the first iteration the algorithm checks that F0 ∧ HP(X, XP) ∧ ¬ P is
unsatisfiable, adding the empty frame F1.

Second iteration IC3iafinds a pair (c0, 1) where c0 = xc=0¬xd=0 ∧ ¬xd≤3 ∧ xc≤d

and such that c0 ∧ HP(X, XP) |� F1 ∧ ¬P . Then, IC3iatries to block (c0, 1) in the
frame F0: c0 is blocked by F0, since AbsRelInd(F0, T, c0, P0) is unsatisfiable. In fact,
AbsRelInd(F0, T, c0, P0) is the formula:

AbsRelInd(F0, T, c0, P0) =̇ xc=0 ∧ xd=0∧ [F0(XP)]
xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d∧ [c0(XP)]
xd=0 ↔ (d = 0) ∧ xc=0 ↔ (c = 0)∧ [HP(X, XP)]
xd≤3 ↔ (d ≤ 3) ∧ xc≤d ↔ (c ≤ d)∧
x ′
d=0 ↔ (d ′ = 0) ∧ x ′

c=0 ↔ (c′ = 0)∧ [HP(X ′, X ′
P
)]

x ′
d≤3 ↔ (d ′ ≤ 3) ∧ x ′

c≤d ↔ (c′ ≤ d ′)∧
(d = 0) ↔ (d = 0) ∧ (c = 0) ↔ (c = 0)∧ [EQP(X, X)]
(d ≤ 3) ↔ (d ≤ 3) ∧ (c ≤ d) ↔ (c ≤ d)∧
(c′ = c + d) ∧ (d ′ = d + 1)∧ [T (X , X

′
)]

(d ′ = 0) ↔ (d ′ = 0) ∧ (c′ = 0) ↔ (c′ = 0)∧
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(d ′ ≤ 3) ↔ (d ′ ≤ 3) ∧ (c′ ≤ d ′) ↔ (c′ ≤ d ′)∧ [EQP(X
′
, X ′)]

¬(x ′
c=0 ∧ ¬x ′

d=0 ∧ ¬x ′
d≤3 ∧ x ′

c≤d ) [¬c0(X
′
P
)]

Since AbsRelInd(F0, T, c0, P0) |� ⊥, IC3iatries to generalize c0 to block more states in the
frame F1. One possible generalization is ¬xd≤3, since AbsRelInd(F0, T,¬xd≤3, P0) |� ⊥.
IC3iaadds the negation of the generalized cube, xd≤3, to F1. Now the frame F1 does not
intersect the bad states¬P , and thus IC3iaadds the frame F2 and proceeds to the propagation
phase (in this case there are no clauses in a frame that can be propagated to the successive
frame).

Third iteration IC3iafinds a chain of pairs: (¬xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d , 2), (xc=0 ∧
¬xd=0∧xd≤3∧xc≤d , 1) and (xc=0∧xd=0∧xd≤3∧xc≤d , 0) byfinding a satisfiable assignment
to¬xc=0∧¬xd=0∧¬xd≤3∧xc≤d ∧HP(X, XP) |� F2∧¬P , and then recursively calling the
functionRecBlock. The last pair is at depth 0, hence IC3iafound an abstract counterexample.
The counterexample path cannot be simulated on the concrete system, due to the transition
from the second to the third state of the path. In the third state we have that the abstract path
requires that ¬(d ≤ 3), but in the concrete system d must be lower or equal than 2 after two
steps. The refinmement finds (d ≤ 2) as new predicate; now the abstraction is determined
by the set of predicates P1 =̇ P0 ∪ {(d ≤ 2)}.

After the refinement, IC3iachecks if there exists another cube that violates P at frame F2.
The search still finds the pairs: (¬xc=0 ∧ ¬xd=0 ∧ ¬xd≤3 ∧ xc≤d , 2) and (xc=0 ∧ ¬xd=0 ∧
xd≤3 ∧ xc≤d ∧ ¬xd≤2, 1). (xc=0 ∧ ¬xd=0 ∧ xd≤3 ∧ xc≤d ∧ ¬xd≤2, 1) is blocked by F0, and
thus IC3iaadds xd≤2 to F1; then (¬xc=0 ∧¬xd=0 ∧¬xd≤3 ∧ xc≤d , 2) is blocked by F1, thus
IC3iaadds xd≤3 to F2. At this point F2 satisfies the property and IC3iaadds the frame F3,
peforming the propagation phase (it still does not propagate any clause).

Final result The final set of predicates found by IC3iais {(c = 0), (d = 0), (d ≤ 3), (c ≤
d), (d ≤ 2), (d ≤ 1), (1 ≤ c), (3 ≤ c)} and the final inductive invariant is:

(¬(c = 0) ∨ (d ≤ 2)) ∧ ((d ≤ 1) ∨ (1 ≤ c)) ∧ ((c = 0) ∨ ¬(d ≤ 1)) ∧
(¬(c=0) ∨ (c ≤ d)) ∧ ((d ≤ 2) ∨ (1 ≤ c)) ∧ ((d ≤ 2) ∨ (3≤c)) ∧ ((d≤3) ∨ ¬(c≤d))

3.6 Correctness

In the following lemmas and proofs, we use LiftP(XP) to denote a Boolean formula equivalent
to ∃X.HP(X, XP).

Lemma 1 (Invariants) The following conditions are invariants of IC3ia:

1. F0 ∧ LiftP |� Î ;
2. for all i < k, Fi |� Fi+1;
3. for all i < k, Fi ∧ T̂ (XP, X ′

P
) |� Fi+1;

4. for all i < k, Fi ∧ LiftP |� P̂.

Proof We prove now that the conditions (1–4) are loop invariants for the main IC3ialoop
(line 5).

Note that Î is logically equivalent to I ∧∃X.HP(X, XP), since I is a Boolean combination

of predicates in P. Thus, condition 1 holds initially since F0 = I . Moreover it is preserved
by the loop, since F0 is never changed.

For condition (4), note that when entering the loop it holds (from line 2) that

I ∧HP(X, XP) |� P , and thus F0 ∧ LiftP |� P̂ . Thus condition 4 holds at the beginning
of the loop.
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Note also that the frames can only be strengthened. Thus the condition 4 can be violated
only at line 12. However, when the inner loop ends, we are guaranteed that Fk∧HP(X, XP) |�
P holds. Thus, condition 4 is preserved when k is increased.

The invariant conditions 2–3 hold trivially when entering the loop.
We now prove that they are preserved by the inner loop at line 6. The loop may change

the content of a frame Fi adding a new clause ¬s while recursively blocking a cube (s, i)
(line 6 of RecBlock). This happens when i > 0 and s can reach ¬P̂ in k − i steps,
and AbsRelInd(Fi−1, T,¬s, P) is unsatisfiable. By inductive hypothesis, P̂ is satisfied in
the first k − 1 steps. Thus, s is not reachable in k − 1 − k + i = i − 1 steps. Since
AbsRelInd(Fi−1, T,¬s, P) is unsatisfiable, by Theorem 1, s cannot be reached in i steps.
Thus conditions 2–3 are preserved.

In the loop the set of predicates P may change at line 10. Note that the invariant conditions
still hold in this case. Let P

new = P∪Refine(I, T, P, P, π̂). In particular, 3 holds because if
P ⊆ P

new, then T̂ (XPnew , X ′
Pnew) |� T̂ (XP, X ′

P
). Finally, the propagation phase maintains all

the invariants (2–3), by the definition of abstract relative induction AbsRelInd(Fi , T, c, P
new)

and Theorem 1. ��
Lemma 2 If IC3ia(I, T, P, P) returns True, then ŜP |� P̂P.

Proof Let us define, for all i < k, F̂i as Fi ∧ LiftP. Thus, from Lemma 1, all the invariant
conditions of the IC3algorithm hold for the abstract frames: 1) F̂0 = Î ; for all i < k, 2)

F̂i |� F̂i+1; 3) F̂i ∧ T̂ |� ̂F ′
i+1; and 4) F̂i |� P̂ .

By assumption IC3iareturns True and thus Fk−1 = Fk , and thus F̂k−1 = F̂k . Since the
conditions (1-4) hold, we have that F̂k−1 is an inductive invariant that proves Ŝ |� P̂ . ��
Lemma 3 (Abstract counterexample) If IC3iafinds an abstract counterexample π̂ =̇ ŝ0, ŝ1,
. . . , ŝk (line 8), then π̂ is a path of Ŝ violating P̂.

Proof We show that π̂ =̇ ŝ0, ŝ1, . . . , ŝk is a path of Ŝ violating P̂ . For all i , 0 ≤ i ≤ k, we
have that ŝi |� Fi ∧ LiftP (by line 7). Since ŝ0 |� F0 ∧ LiftP and by Lemma 1, ŝ0 |� Î .
Moreover, ŝk |� ¬̂P (by line 7). Then, for all i , 0 ≤ i < k, ŝi ∧ T̂ |� ŝi+1, since by Lemma 1
Fi ∧ T̂ |� Fi+1. ��
Theorem 3 (Soundness) Let S = 〈X, I, T 〉 be a transition system, P a safety property and
P be a set of predicates over X. The result of IC3ia(I, T, P, P) is correct.

Proof If IC3ia(I , T , P , P) returns True, then ŜP |� P̂P by Lemma 2, and thus S |� P . If
IC3ia(I , T , P , P) returns False, then the simulation of the abstract counterexample in the
concrete system succeeded, and thus S �|� P . ��
Theorem 4 (Relative completeness) Suppose that for some set P of predicates, ŜP |� P̂P. If,
at a certain iteration of the main loop, IC3iahas P as set of predicates, then IC3ia returns
True.

Proof Let us consider the case in which, at a certain iteration of the main loop, P is as
defined in the premises of theorem. At every following iteration of the loop, IC3iaeither
finds an abstract counterexample π̂ or strengthens a frame Fi with a new clause over XP. The
first case is not possible, since, by Lemma 3, π̂ would be a path of Ŝ violating the property.
Therefore, at every iteration, IC3iastrengthens some frame with a new clause. Since the
number of clauses over XP is finite and, by Lemma 1, for all i , Fi |� Fi+1, IC3iawill
eventually find that Fi = Fi+1 for some i and return True. ��
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Theorem 5 (Progress) Let S =̇ 〈X, I, T 〉 be a transition system, P a safety property and P a
set of predicates over X, such that I, T, P and the predicates P are quantifier-free formulas
in a first-order theory T whose ground satisfiability is decidable. Then IC3ia(I, T, P, P)

either returns True, or it finds an abstract counterexample π̂ .

Proof Since by hypothesis the satisfiability of quantifier-free formulas in T is decidable,
each SMT call in IC3iaterminates. Since P (and so XP) is fixed and finite, the number of
possible cubes and clauses examined and generated during the blocking phase is finite. Then,
the theorem holds by Theorem 1 and the completeness of IC3 for finite-state systems. ��

4 Related work

Among the existing abstraction techniques, predicate abstraction [26] has been success-
fully applied to the verification of infinite-state transition systems, such as software [45].
Implicit abstraction [47] was first used with k-induction to avoid the explicit computation
of the abstract system. In our work, we exploit implicit abstraction in IC3 to avoid theory-
specific generalization techniques, widening the applicability of IC3 to transition systems
expressed over some background theories. Moreover, we provided the first integration of
implicit abstraction in a CEGAR loop.

The IC3 [12] algorithm has been widely applied to the hardware domain [16,25] to prove
safety and also as a backend to prove liveness [11]. In [48], IC3 is combined with a lazy
abstraction technique in the context of hardware verification. The approach has some sim-
ilarities with our work, but it is limited to Boolean systems, it uses a “visible variables”
abstraction rather than PA, and applies a modified concrete version of IC3 for refinement.
Similarly, in [5], IC3 is combined with localization reduction for the verification of hard-
ware designs, but is limited to Boolean systems and the integration is shallow in the sense
that it consists in exploiting the over-approximations of incomplete run of IC3 to refine the
abstraction.

Several approaches adapted the original IC3algorithm to deal with infinite-state systems
[8,9,18,35–37,40,41,44,51]. The techniques presented in [9,18,35] extend IC3 to verify
systems described in the linear real arithmetic theory. In contrast to these approaches, we
do not rely on theory specific generalization procedures. In [18], a possibly expensive real
quantifier elimination is adopted. In [35], the generalization is based on interpolation and
does not exploit relative induction. In [9], the frames are restricted to be convex polyhedra,
while quantifier elimination and polyhedral abstract interpretation are integrated for the gen-
eralization procedure. Differently from IC3ia, extending these methods to different theories
requires ad-hoc techniques.

The approaches presented in [36,41] are restricted to timed automata, exploiting the
abstraction given by the region graph or by the clock zones. While we could restrict the set
of predicates used by IC3iato regions/zones, our technique is applicable to a much broader
class of systems, and it also allows us to apply conservative abstractions.

IC3was also generalized to the bit-vector theory in [51]. The approach is based on an
ad-hoc extension, that may not handle efficiently some bit-vector operators. Instead, our
approach is not specific for bit-vectors.

In [18,44], IC3was extended to exploit the control-flow graph of software programs. As
shown also in [19], the approach is orthogonal to the usage of predicate abstraction and can
be exploited also with IC3ia.
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CTIGAR[8] is perhaps the most closely related approach, since it also embeds an abstrac-
tion refinement scheme in IC3. In CTIGARthe simulation and refinement may be performed
after each generalization of a counterexample to induction and after each relative induction
check, while in IC3iawe delay the simulation and refinement only when we find an abstract
counterexample. Another key difference is the precision of the abstraction. In our approach,
at each step of the algorithm, we analyze a precise predicate abstraction of the concrete sys-
tem;CTIGARrelies on cartesian abstraction, that is not precise in general. As a consequence,
CTIGARmay require more refinement steps; furthermore, in the refinement, CTIGARhas to
consider generic Boolean combinations of predicates, instead of single predicates.

Themain focus of [37,40] is to verify programs thatmanipulate the heap,whilewe focus on
programs that can be expressed in the LRA, BV, or LIA theory. As in our work, [37] analyzes
the abstract state spaceusing IC3without computing the abstract systemexplicitly.Differently
from us, there is no automatic refinement of the abstraction as soon as the algorithm finds
a spurious counterexample. A key aspect of IC3iais to automatically refine the abstraction
by adding new predicates incrementally, without restarting the analysis from scratch. In
principle, our incremental refinement could be also applied to [37]. In [40] the authors
employ a “diagram based abstraction” to infer universally quantified invariants. A diagram
is an existentially quantified formula that represents the set of all the extensions of a finite
model of a formula. The diagram is used to abstract a bad cube and a counterexample to
induction in IC3, providing a mean to infer an universally quantified invariant. This approach
does not require the refinement of the abstraction.

Interesting variants of IC3have been presented in [30,49]. These focus on finite-state
systems and the techniques are orthogonal to the proposed in this paper.

5 Experimental evaluation

We have implemented the algorithms described in the previous sections within nuXmv [14],
on top of the SMT-based extension of IC3 presented in [18]. We rely on MathSAT [20] as
backend SMT solver. The discovery of newpredicates for abstraction refinement is performed
using the interpolation procedures implemented inMathSAT , following [33]. For inductive
clause generalization, we use the simple iterative procedure described in [25] (however, since
we use an SMT solver instead of a SAT solver, our inductive generalization is still modulo
theory).

We organize our experimental evaluation by first comparing IC3iawith other approaches,
and then analyzing some of its features. All the experiments have been performed on a
cluster of 64-bit Linux machines with a 2.7 Ghz Intel Xeon X5650 CPU (our implementation
is not parallel, we distributed the execution of the experiments on different machines) with
a memory limit set to 3Gb and a time limit of 1200 seconds (unless otherwise specified).
The tools and benchmarks used in the experiments are available at http://es.fbk.eu/people/
griggio/papers/fmsd-ic3ia.tar.bz2.

5.1 Tools

We compare the following tools, whose properties are summarized in Table 1:

– IC3ia: the implementation of the algorithm described in Sect. 3;
– CTIGAR- reimpl: our reimplementation of the CTIGAR algorithm [8] within the same

software platform as IC3ia;
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Table 1 Applicability of the tools

Algorithm/tool LRA BV LIA CFG(LIA)

IC3ia � � � �
CTIGAR- reimpl � � � �
IC3qe �
z3 � � � �
CTIGAR- cav14 �
pKind �
Kind2- pdr �
Kind2- parallel �
jKind-IC3ia �
ABC- pdr �
ABC- dprove �
nuXmv -IC3-sat �

The first column (algorithm/tools) shows the list of tools considered in the experimental evaluation, while the
other columns (LRA , BV , L I A , CFG(L I A )) tells what benchmark family (see the “Benchmark” section)
are supported by each tool (a � indicates that the tool supports the benchmark set)

– IC3qe : the IC3 extension for infinite state systems over LRApresented in [18]. IC3qe is
based on underapproximated quantifier elimination, and only supports the LRAtheory;

– z3 : the IC3 extension for SMT described in [35], as implemented in the latest version of
the z3 solver;

– pKind : an induction-basedmodel checker for Lustre programs [39], using the LIA theory
for expressing constraints;

– Kind2- pdr : the implementation of IC3 for the LIA theory of Kind2 , a model checker
for Lustre programs3. This implementation of IC3computes approximated pre-images,
similarly to IC3qe. The description of the implementation of Kind2 may be found at
https://github.com/kind2-mc/kind2/blob/develop/doc/usr/content/1_techniques/1_techniques.md.

– Kind2- parallel : this configuration of theKind2model checker runs several algorithm
in parallel, exchanging the discovered invariants. In this configuration, Kind2 runs in
parallel k-induction, IC3, BMCand twoprocesses that performa template-based invariant
generation.

– jKind-IC3ia: the implementation of IC3iafor the LIA theory of jKind, a model checker
for Lustre programs4. This is an implementation of the algorithm described in the present
paper made by a completely independent team, using a different programming language,
front-end, and underlying SMT solver.

– CTIGAR- cav14 : the original implementation of the CTIGAR algorithm [8]. The tool
takes as input problems written as annotated programs in a subset of the C language, and
only supports the LIA theory.

– ABC- pdr : the implementation of finite-state IC3, as available in ABC[25];
– ABC- dprove : the dprove algorithm of ABC, which combines various different tech-

niques for bit-level verification (including IC3);

3 http://kind2-mc.github.io/kind2/.
4 https://github.com/agacek/jkind/.
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– nuXmv -IC3-sat : the implementation of finite-state IC3, as available in the latest version
of nuXmv [14].

With the exception of z3, none of the tools is able to handle the full set of problems
supported by IC3iaand CTIGAR- reimpl.

Compared to the experimental evaluation in [19], we concentrate on IC3iaover transition
systems, and do not include the results for the various versions of TreeIC3, that is able to
deal with imperative-style programs, nor for the other recent adaptation of IC3 to control-
flow automata presented in [44]. The availability of a CFG is somewhat orthogonal to the
content of this paper. In fact Implicit Abstraction has been integrated within TreeIC3, and
the results in [19] demonstrate significant advantages with respect to the concrete version.
We also disregard Atmoc [41] sinceAtmoc targets timed systems. Anyway, the comparison
against IC3iain [19] was uniformly in favor of IC3ia.

5.2 Benchmarks

We have collected benchmarks from several sources, and organized them in four groups:

– The symbolic transition systems used in [18], over the LRAtheory. The LRA group of
benchmarks consists of 99 instances. For this group, we compare IC3ia, IC3qe, z3and
CTIGAR- reimpl.

– Symbolic transition systems over bit-vectors, generated from software verification prob-
lems. The BV group of benchmarks consists of 205 benchmarks. More specifically, we
used:

– all the benchmarks used in [18], but using BVinstead of LRAas background theory;
– the instances of the bitvector set of the Software Verification Competition SV-

COMP [6];
– the instances from the test suite of InvGen [28], a subset of which was used also in

[51].

For this set of benchmarks, we compare IC3ia, CTIGAR- reimpl, z3, ABC- pdr,
nuXmv -IC3-sat , and ABC- dprove .

– Lustre programs from the pKind suite [31], over the LIA theory. The LIA group of
benchmarks has 790 instances (after removing duplicate instances from the original suite
of 951 programs). On this benchmark set we compare IC3ia, CTIGAR- reimpl, z3,
pKind, Kind2- pdrand Kind2- parallel .

– The C programs used in the CTIGAR paper [8]. The CFG(LIA) group consists of 110
instances.We compare IC3ia,CTIGAR,CTIGAR- reimpland z3. For IC3ia,CTIGAR-
reimpland z3we have produced a (straigthforward) symbolic encoding of the control-
flow graphs (CFG) of the programs.

5.3 Results

The results for the various groups of benchmarks are reported in Figs. 4, 5, 6, and 7. For each
algorithm/tool considered, the plots show the number of solved instances (on the y axis) in
the given total amount of time (on the x axis). A ranking of the tools (in terms of number of
solved instances, and total time) is then displayed in the underlying tables.

Overall, IC3iais the best performing tool in all the categories we have considered. It
outperforms z3 in all the categories, the highly tuned bit-level engines of ABCand nuXmv in
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Fig. 4 Experimental results on LRAbenchmarks

the BVbenchmarks, and Kind2- parallel in the Lustre benchmarks. This is true also for
the independent implementation of IC3with Implicit Abstraction within the jKindmodel
checker, whose performance is very close to that of IC3ia, and better than all the other tools.
These results clearly demonstrate the effectiveness of our approach.

Compared to IC3qe, the SMT-extension of IC3 presented in [18], IC3iais not only more
efficient (solving 7 more instances in a shorter total execution time), but also much more
general, being able to handle transition systems expressed over various (combinations of)
theories (LRA, LIA , bit-vectors), and not just LRA.We also remark that the performance of
the IC3qe implementation has been greatly improved compared to the version of [18], thanks
to a careful tuning of the approximated quantifier elimination routines used for computing
preimages, and to the integration of the LRA-specific generalization technique of [35]. In
fact, the results for IC3qecorrespond to the best configuration settings for the quantifier
elimination procedure; other (apparently similar) settings produce significantly worse results.
In contrast, the implementation of IC3iadid not require any particular tuning for achieving
very good performance (see the discussion at the end of this Section).

5.4 An in-depth comparison between IC3IAand CTIGAR

The results across all categories of benchmarks show that the IC3iaalgorithm is uniformly
superior to theCTIGARapproach proposed in [8]. This is true not only for CTIGAR- reimpl,
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Fig. 5 Experimental results on bit-vector benchmarks from software verification

our reimplementation of CTIGAR, but also for CTIGAR- cav14 , the original tool [8] (see
Fig. 7).
We now integrate the comparison with additional insights.

First, we point out that, although we have tried to follow the description of the algorithm
in [8] as closely as possible, there are still some important differences between CTIGAR-
reimpland the original implementation. Besides the different overall platform, front-end, and
underlying SMT solver (we rely solely on MathSAT , whereas in [8] both MathSATand
z3are used), the most significant differences are in the refinement procedure. In [8], multiple
different refinement strategies are discussed. In CTIGAR- reimpl, we only implemented the
one that was considered the best in [8]. We discover new predicates using interpolation, and
we add both the top-level conjuncts and all the atoms occurring in interpolants as predicates.
We use the “CCL” strategy of [8] for activating a refinement, with a threshold of 3 spurious
transitions in a single trace. However, we have not implemented the “refinement statemining”
predicate discovery technique described in [8], which is used to extract additional predicates
that could not be discovered by interpolation.
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Fig. 6 Experimental results on LIAbenchmarks from Lustre programs

Second, our implementation of CTIGARsupports the same set of problems as IC3ia, i.e.
all the theories considered here (LRA, LIA , BV). It is thus more general than CTIGAR-
cav14 .

Finally, consider that CTIGAR- cav14uses static analysis techniques to generate a set
of initial predicates for the abstraction-refinement loop. These techniques are completely
orthogonal to the underlying combination of IC3 with abstraction, and can be applied to both
CTIGARand to IC3ia.

In order to understand the impact of predicate initialization, for the fourth group of bench-
marks we evaluated CTIGAR- cav14 , CTIGAR- reimpl, and also IC3ia, both with and
without the initial predicate discovery routines. In practice, this is done by extracting the
predicates from a run of CTIGAR- cav14 , and then importing them inCTIGAR- reimpland
in IC3ia. The results, reported in Fig. 7, clearly demonstrate that static analysis is extremely
effective in identifying a good set of initial predicates: a significant performance boost is
obtained for all the tools considered. In terms of number of instances gained, the biggest
impact is for CTIGAR- reimpl, which gains 37 instances. In fact, when using the computed
initial set of predicates, CTIGAR- reimplcan solve 57 instances without any refinement at
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Fig. 7 Experimental results on CFG(LIA) benchmarks from the CTIGAR suite

all. However, IC3iadoes even better in this respect, solving 72 instances without any refine-
ment. In contrast, when no initial predicates are used, all instances of the set need at least 1
refinement step (with an median of 3 for IC3iaand 10 for CTIGAR- reimpl).

We provide additional details in Figs. 8 and 9, where we compare the three tools in terms
of number of refinement steps and number of calls to the underlying SMT solver, over the
48 instances that can be solved by all the tools. We can see that in both cases IC3iahas a
significant advantage compared to the two implementations of CTIGAR, which show very
similar performance both in terms of number of refinements and number of SMT solver calls.
We believe that these results can help explaining the performance advantage of IC3iaover
CTIGAR for this class of instances.

5.5 Impact of redundant predicates on IC3IA

We now provide some additional insights on IC3ia. The interpolation-based refinement
strategy may introduce more predicates than those actually needed to rule out a spurious
counterexample. Our refinement procedure simply adds as predicates all the atoms found
in the interpolants. However, interpolants generated by current SMT solvers are typically
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Fig. 8 Number of abstraction refinements on CFG(LIA) benchmarks from the CTIGAR suite
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Fig. 9 Number of SMT queries on CFG(LIA) benchmarks from the CTIGAR suite

very redundant, so it often happens that not all the atoms are actually needed to refute
the abstract trace. In principle, such redundant predicates might significantly hurt perfor-
mance.

We thus implemented a procedure that identifies and removes (a subset of) redundant
predicates after each successful refinement step, using the implicit abstraction framework.
Suppose that IC3ia finds a spurious counterexample trace π̂ =̇ ŝ0, ŝ1, . . . , ŝk with the set
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Fig. 10 Effects of predicates reduction on IC3ia. The plot on the left (resp. the right) shows the number of
predicates discovered (resp. the total execution time in seconds) by IC3iawithout predicate reduction, on the
y axes, and with predicate reduction, on the x axes. In the graph each point corresponds to a single benchmark
instance: a red circle represents an unsafe instance, where the property does not hold, while a blue square
represents a safe instance. (Color figure online)

of predicates P, and that Refine(I, T, P, P, π) finds a set P
new of new predicates. The

reduction procedure exploits the formula Simulate(T, P, π̂), which is satisfiable if and only
if the abstract path π̂ can be concretized (See Formula 5 in Sect. 3). If P ∪ P

new are sufficient
to rule out the spurious counterexample, Simulate(T, P ∪ P

new, π̂) is unsatisfiable. We ask
the SMT solver to compute the unsatisfiable core of Simulate(T, P ∪ P

new, π̂), and we keep
only the predicates of P

new that appear in the unsatisfiable core.
In order to evaluate the effectiveness of this simple approach, we compared two versions of

IC3iawith andwithout the reduction procedure. Figure 10 shows the results of the comparison
with and without predicates reduction. The reduction procedure is almost always effective
in reducing the total number of predicates, although the number of predicate sometimes
increases. In fact, it may happen that if two predicates are redundant, we remove the one that
is necessary or maybe even sufficient to prove the property, while removing it requires to
find new spurious counterexamples adding more predicates. Consider for example a counter
c that increases by 1 from 0 to 10 satisfying the invariant x ≤ 11; the predicate c ≤ 10
would be sufficient to prove the property; suppose, however, we find the predicates c ≤ 0
and c ≤ 10 and we discard c ≤ 10 and at the next iteration we add c ≤ 1 and c ≤ 10 and we
discard again c ≤ 10 and so on; at the end, we will have many more predicates than simply
keeping in the first iteration c ≤ 10.

Perhaps surprisingly, however, the effects on the execution time are not very big. Redun-
dancy removal does seem to improve performance for the hard instances, but overall the two
versions of IC3iasolve the same number of problems.

We conclude that our algorithm is much less sensitive to the number of predicates, com-
pared to approaches based on an explicit computation of the abstract transition relation (e.g.
via All-SMT). In fact, such approaches often show (not only in theory, but also in practice)
an exponential increase in run time with the addition of new predicates. IC3iamanages to
solve problems for which it discovers several hundreds of predicates, reaching the peak of
800 predicates and solving most of safe instances with more than a hundred predicates (see
Fig. 10, left). These numbers are typically out of reach for explicit abstraction techniques,
which blow up with a few dozen predicates.
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6 Conclusion

In this paper we have presented a new approach to the verification of infinite-state transition
systems, based on an extension of IC3 with implicit predicate abstraction. The distinguishing
feature of our technique is that it works in an abstract state space, since the counterexamples
to induction and the relative inductive clauses are expressed solely with the abstraction
predicates. This is enabled by the use of implicit abstraction to check (abstract) relative
induction. Moreover, the refinement in our procedure is fully incremental, allowing to keep
all the clauses found in the previous iterations.

The approach has two key advantages. First, it is very general: the implementations for
the theories of LRA, BV, and LIA have been obtained with relatively little effort. Second, it
is extremely effective, being able to efficiently deal with large numbers of predicates. Both
advantages are confirmed by the experimental results, obtained on a wide set of benchmarks,
also in comparison against dedicated verification engines.

In the future, we plan to apply the approach to other theories (e.g. arrays, non-linear
arithmetic), investigating other forms of predicate discovery. Then, we plan to extend the
approach to deal with temporal properties, by generalizing to the infinite-state case model
checking techniques based on reduction to safety, such as K- Liveness [22] and liveness-to-
safety [7].

Acknowledgements This work was carried out within the D-MILS project, which is partially funded under
the European Commission’s Seventh Framework Programme (FP7).
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