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Abstract We present an SMT-based symbolic model checking algorithm for safety verifica-
tion of recursive programs. The algorithm is modular and analyzes procedures individually.
Unlike other SMT-based approaches, it maintains both over- and under-approximations of
procedure summaries. Under-approximations are used to analyze procedure calls without
inlining. Over-approximations are used to block infeasible counterexamples and detect con-
vergence to a proof. We show that for programs and properties over a decidable theory, the
algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends
on an oracle for quantifier elimination (QE). For Boolean programs, the algorithm is a polyno-
mial decision procedure, matching the worst-case bounds of the best BDD-based algorithms.
For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algo-
rithmby applyingQE lazily.Weuse existing interpolation techniques to over-approximateQE
and introduceModelBasedProjection to under-approximateQE.Empirical evaluation onSV-
COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.

Keywords Model checking ·May-must · Satisfiability ·Quantifier elimination · Recursion ·
Compositional

1 Introduction

We are interested in the problem of safety of recursive programs, i.e., deciding whether an
assertion at a program location always holds. The first step in Software Model Checking is to
approximate the input program by a program model where the program operations are terms
in a first-order theory D. Many program models exist today, e.g., Boolean programs [1]
of SLAM [2], Goto programs of CBMC [3], BoogiePL of Boogie [4], and, indirectly,

B Anvesh Komuravelli
anveshk12@gmail.com

1 Carnegie Mellon University, Pittsburgh, PA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0249-4&domain=pdf
http://orcid.org/0000-0002-0927-2075


176 Form Methods Syst Des (2016) 48:175–205

Fig. 1 A Boolean program with exponential unwinding size

internal representations of many tools such asUFO [5],HSF [6], etc. Given a safety property
and a program model over D, it is possible to analyze bounded executions using an oracle
for Satisfiability Modulo Theories (SMT) for D. However, in the presence of (unbounded)
recursion, safety is undecidable in general.

Throughout this paper, we assume that procedures cannot be passed as parameters. There
exist several program models where safety is efficiently decidable (with the stated assump-
tion [7]), e.g., Boolean programs with (unbounded) recursion and the unbounded use of
stack [1,8]. The general observation behind these algorithms is that one can summarize the
input-output behavior of a procedure, where a summary of a procedure is an input-output
relation describingwhat is currently known about its behavior. Thus, if a summary has enough
details, it can be used to analyze a procedure call without considering the procedure body of
the callee [9,10]. For a Boolean program, the number of states is finite and hence, a summary
can only be updated finitely many times. This observation led to a number of efficient algo-
rithms that are polynomial in the number of states, e.g., the analysis framework by Reps et al.
(RHS) [8], recursive state machines [11], and symbolic BDD-based algorithms of Bebop [1]
and Moped [12]. When safety is undecidable (e.g., when D is Linear Rational Arithmetic
(LRA) or Linear Integer Arithmetic (LIA)), several existing software model checkers work
by iteratively obtaining Boolean program abstractions using Predicate Abstraction [2,13]. In
this paper, we are concerned with alternative approaches that work directly on the original
program model without an explicit step of Boolean abstraction. Despite the undecidability,
we are interested in proving safety for many programs in practice with a guarantee of finding
a counterexample when the program is unsafe.

Several algorithms have been recently proposed for verifying recursive programs without
Predicate Abstraction. Notable examples are Whale [14], HSF [6], GPDR [15], Ultimate
Automizer [16,17] andDuality [18].With the exception of GPDR, these algorithms are based
on a combination of Bounded Model Checking (BMC) [19] and Craig Interpolation [20].
First, they use an SMT-solver to check for a counterexample of bounded size, where the
bound is on the depth of the call stack (ie the number of nested procedure calls). Second, they
use (tree) interpolation to obtain over-approximating summaries of procedures for the current
bound. This is repeated with increasing values of the bound until a counterexample is found
or the approximate summaries for the current bound are also invariant ( i.e., independent
of the bound). The reduction to BMC ensures that the algorithms are guaranteed to find a
counterexample if one exists. However, the size of the SMT instance can grow exponentially
with the bound on the call-stack depth in the worst-case, due to the tree-like unrolling of the
call-graph.

To illustrate the exponential growth in the SMT instances created by existing approaches
for BMC, consider the program in Fig. 1 with Boolean variables and finitely many
Level < i > procedures (adapted from [1]). Here, nd is a routine that returns an unknown
Boolean value, i.e., assume that the behavior of nd is unknown and hence, for the purpose
of verification, nd effectively returns either true or false non-deterministically. For a
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bound n on the number of such procedures, the figure also shows its tree-like unrolling which
grows exponentially in n. With one Boolean parameter per procedure, note that the number of
program states is linear in n, where a state corresponds to a valuation of the program counter
and the variables in scope. Therefore, many of present day BMC-based model checking
algorithms are at least worst-case exponential in the number of states for Boolean programs.
However, note that the operational semantics of a Boolean program can be defined in terms
of a pushdown automaton where the push and pop operations on the stack correspond to
procedure calls and returns, respectively, and the accepting states denote the safe program
states. This reduces safety in Boolean programs to state-reachability in pushdown automata
and there exist polynomial-time (cubic) algorithms for the latter [1,8,21].

On the other hand, the algorithm GPDR [15] follows the approach of IC3 [22] by solving
BMC incrementallywithout unrolling the call-graph. InGPDR, interpolation is used to obtain
over-approximating summaries and partial models denoting undesirable reachable states are
cached for future. For some configurations (e.g., explicit-state reasoning), GPDR is worst-
case polynomial for Boolean Programs. However, it gets more challenging when the program
operations and formulas are in a first-order language. In this case, GPDR might even fail to
find a counterexample despite the presence of an SMT oracle, unlike the guarantee given by
other BMC-based algorithms mentioned above (see Appendix for an example).

To address the problems mentioned above, we present a new SMT-based algorithm
RecMC that analyzes the program compositionally. That is,RecMC iteratively checks safety
properties of individual procedures by inferring and utilizing approximating summaries of
procedures. Our main insight is to maintain not only over-approximating summaries but also
under-approximating summaries of the procedures. Syntactically, our approximations are
formulas over the parameters of a procedure and auxiliary variables denoting the initial val-
ues of the parameters. Clarke showed that such formulas are sufficient to obtain a relatively
complete Hoare proof system by making use of a Rule of Adaptation [9].

We use the termsmay-summary andmust-summary, respectively, to refer to such an over-
and under-approximation. While may-summaries are used to block spurious counterexam-
ples, must-summaries are used to analyze a procedure call without inlining the body of the
callee. Thus, if the under-approximations given by the must-summaries can be reused at
call-sites, they help avoid redundant explorations of the state-space. However, given a bound
on the call-stack depth, the must-summaries can be too strong and the may-summaries can
be too weak to show falsification or satisfaction of safety. In this case, our compositional
algorithm creates and checks new safety properties of the callee procedures, updates the
approximations, and enters a new iteration.

For Boolean programs, as mentioned previously, the number of states is finite and hence,
the summaries can only be updated finitely many times. As the summaries are reused at
call-sites in a compositional manner, RecMC has a polynomial time complexity for Boolean
Programs, by using an argument similar to that of RHS [8]. Moreover, in general, assuming
an SMT oracle for the first-order language of the formulas and the program operations, we
show that RecMC terminates for a given bound on the call-stack depth. To the best of our
knowledge, this is the first SMT-based algorithm with such guarantees.

Almost every step of RecMC introduces existential quantifiers in the formulas created.
RecMC tries to eliminate these quantified variables as, otherwise, they would accumulate
exponentially in the value of the current bound.1 This is because, if no quantified variable
is eliminated, the compositional algorithm essentially breaks down into an algorithm that

1 We assume that all quantified variables are eliminated to obtain the complexity for Boolean Programs
mentioned above.
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unrolls the call-graph into a tree where, as we mentioned earlier, the size of the SMT prob-
lems created may grow exponentially in the value of the bound. A naïve solution is to use
algorithms for quantifier elimination (QE), which results in an equivalent quantifier-free for-
mula, but which is also expensive in practice. Instead, we develop an alternative approach
that under-approximatesQE, i.e., obtains a quantifier-free formula stronger than the original
formula. However, obtaining arbitrary under-approximations can lead to divergence of the
algorithm. To this end, we introduce the concept of Model Based Projection (MBP), for
covering ∃x · ϕ(x, y) by finitely-many quantifier-free under-approximations obtained using
satisfying models of ϕ(x, y) (see Sect. 5). We developed efficient MBPs for Linear Ratio-
nal Arithmetic (LRA) and Presburger Arithmetic (also known as Linear Integer Arithmetic
(LIA)) based on the QE methods by Loos-Weispfenning [23] for LRA and Cooper [24] for
LIA.WeuseMBP to under-approximate existential quantification inRecMC. In the best case,
a partial under-approximation suffices and a complete quantifier elimination can be avoided.

In summary, we present: (a) an efficient, compositional SMT-based algorithm for model
checking recursive programs, that uses under- and over-approximating summaries of proce-
dure behavior (Sect. 4), (b) MBP functions for under-approximating quantifier elimination
for LRA and LIA (Sect. 5), (c) a new, complete algorithm for Boolean Programs, with com-
plexity polynomial in the number of states, similar to the best knownmethod [1] (see Sect. 4),
and (d) an implementation and an empirical evaluation of the approach (Sect. 6).

2 Overview

In this section, we give an overview of RecMC and illustrate it on an example. Let A be
a recursive program. We assume that there are no internal procedures and that procedures
cannot be passed as parameters. Furthermore, for simplicity of presentation, assume no loops,
no global variables and that arguments are passed by reference. Let P(v) ∈ A be a procedure
with parameters v, and let v0 be fresh variables not appearing in P with |v0| = |v|, denoting
the initial values of v. A safety property for P is a formula ϕ(v0, v). We say that P satisfies
ϕ, denoted P(v) |� ϕ(v0, v), iff the Hoare-triple {v = v0} P(v) {ϕ(v0, v)} is valid. Note
that every Hoare-triple corresponds to a safety property in this sense, as shown by Clarke [9]
using a Rule of Adaptation. We say that ϕ is a bounded safety property for P and a natural
number n ≥ 0, denoted P(v) |�n ϕ(v0, v), iff all executions of P using a call-stack bounded
by n satisfy ϕ.

The key steps ofRecMC are shown inFig. 2.RecMCdecides safety for themain procedure
M of A. RecMC maintains two formula maps σu and σo. The must-summary map σu maps
each procedure P(v) ∈ A to a set of formulas over v0 ∪ v that under-approximate its

M |=n ϕsafe ?
(update σu and σo) σo invariant?

UNSAFE SAFE

Y

N
Y

cex σu

proof
σo

n := n + 1

n := 0
σu := ∅
σo := ∅

N
A B

Fig. 2 Flow of the algorithm RecMC to check if M |� ϕsafe.σo and σu denote the may and must-summary
maps
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Fig. 3 Flow of the algorithm BndSafety to check P |�b ϕ

Fig. 4 A recursive program with 3 procedures

behavior. Similarly, the may-summary map σo maps a procedure P to a set of formulas that
over-approximate its behavior. Given P , the maps are partitioned according to the bound on
the call-stack. Therefore, if δ(v0, v) ∈ σu(P, n) for some n ≥ 0, then δ under-approximates
the behavior of all executions of P that use a call-stack of depth at most n. In other words,
for every modelm of δ, there is an execution of P that begins inm(v0), the value of v0 under
m, and ends in m(v), the value of v under m, using a call-stack bounded by n. Similarly, if
δ(v0, v) ∈ σo(P, n), then δ over-approximates the behavior of all executions of P using a
call-stack of depth at most n, i.e., P(v) |�n δ(v0, v).

RecMC alternates between two steps: (A) deciding bounded safety (that also updates σu
and σo maps) and (B) checking whether the current proof of bounded safety also proves
unbounded safety. It terminates when a counterexample or a proof is found.

Bounded safety, i.e., whether P |�b ϕ, is decided using the algorithm BndSafety shown
in Fig. 3. Step 1 checks whether ϕ is falsified using the current must-summaries (σu) of the
callees of P at bound b− 1. If so, it infers a new must-summary for P at bound b witnessing
the falsification of ϕ. Step 2 checks whether ϕ is satisfied using the current may-summaries
(σo) of the callees at bound b − 1. If so, it infers a new may-summary for P at bound b
witnessing the satisfaction of ϕ. If the prior two steps fail, there is a potential counterexample
π in P where the must-summaries of the callees are too strong to witness π but the may-
summaries are too weak to block it. Step 3 checks the feasibility of such a path π by creating
new bounded safety properties for the callees of P at bound b − 1, recursively checking the
new properties, and updating the formula maps.

We conclude this section with an illustration of RecMC on the program in Fig. 4 (adapted
from [9]). The program has 3 procedures: the main procedure M, and procedures T and D.
The procedure M calls T and D. The procedure T modifies its argument t and calls itself
recursively. The procedure D decrements its argument d. Suppose that we want to check if
the (main procedure of the) program satisfies the safety property ϕ ≡ m0 ≥ 2m + 4. The
formula maps σu and σo are initially empty.

In the first iteration of RecMC, the bound n on the call-stack is 0, i.e., the bounded
safety problem is to check whether all executions that do not have any procedure calls are
safe. Given that the only path in M has procedure calls, no such executions exist and safety
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Fig. 5 Arun of BndSafety for the program inFig. 4 and the bounded safety propertyM(m) |�1 m0 ≥ 2m+4

trivially holds for bound 0. Figure 5 shows the four iterations of BndSafety for the next
bound n = 1, i.e., for checking whether M(m) |�1 ϕ holds or not. In the first iteration of
BndSafety, the current may and must-summaries of the callees are insufficient to satisfy or
falsify the property, and there is a potential counterexample along the only path in M. Next,
we create a new property for a callee, by performing a backward analysis along the potential
counterexample path beginning with the negation of the safety property, and making use of
the current summaries of the callees. In practice, one need not be restricted to a backward
analysis; see Sects. 4 and 6 for details. As shown in Fig. 5, assume that a new bounded safety
property is created for D and σu(D, 0), the must-summary map of D at bound 0, is updated
with a new must-summary that witnesses the falsification of the property. In the second
iteration of BndSafety, the current summaries are still insufficient and assume that a new
property is created for T and σo(T, 0) is updated with a new may-summary that witnesses
the satisfaction of the property. To create the new property for T, we make use of the must-
summary of D computed in the previous iteration for both the calls to D in M. This is where
the compositionality of the algorithm helps avoid the potential re-computation of the must-
summary of D. Similarly, in the third iteration of BndSafety, let σo(D, 0) be updated with
a new may-summary. At this point, the may-summaries for T and D at bound 0 are sufficient
to establish bounded safety at n = 1 in the fourth iteration of BndSafety, resulting in an
update of σo(M, 1).

Now, the may-summary map σo is:

σo(M, 1) = {m0 ≥ 2m + 4}, σo(T, 0) = {t0 ≥ 2t}, σo(D, 0) = {d ≤ d0 − 1}
Ignoring the bounds, the may-summaries are invariant. For example, we can prove that the
body of T satisfies t0 ≥ 2t , assuming that the calls do, i.e., {t = t0} T(t) {t0 ≥ 2t} 	
{t = t0} Body(T) {t0 ≥ 2t}, where Body denotes the body of a procedure. Thus, step B of
RecMC succeeds and the algorithm terminates declaring the program SAFE.

In summary, RecMC checks safety of a recursive program in a compositional manner by
inferring under- and over-approximations of the behavior of procedures. We use an SMT-
solver for automating the steps of RecMC and BndSafety.

3 Preliminaries

Consider a first-order language with equality and let S be its signature, i.e., the set of non-
logical function and predicate symbols (including equality). An S-structure I consists of a
domain of interpretation, denoted dom(I ), and assigns elements of dom(I ) to variables, and
functions and predicates on dom(I ) to the symbols of S. Let ϕ be a formula in the first-order
language.We assume the usual definition of satisfaction of ϕ by I , denoted I |� ϕ. I is called
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a model of ϕ iff I |� ϕ and this can be extended to a set of formulas. A first-order S-theory
Th is a set of deductively closed S-sentences. I satisfies ϕ modulo Th, denoted I |�Th ϕ, iff
I |� Th ∪ {ϕ}. ϕ is valid modulo Th, denoted |�Th ϕ, iff every model of Th is also a model
of ϕ.

Let I be an S-structure and w be a list of fresh function/predicate symbols not in S. A
(S ∪w)-structure J is called an expansion of I to w iff dom(J ) = dom(I ) and J agrees with
I on the assignments to all variables and the symbols of S. We use the notation I {w 
→ u}
to denote the expansion of I to w that assigns the function/predicate ui to the symbol wi .

For an S-sentence ϕ, we write I (ϕ) to denote the truth value of ϕ under I . For a formula
ϕ(x) with free variables x , we overload the notation I (ϕ) to mean {a ∈ dom(I )|x | | I {x 
→
a} |� ϕ}. For simplicity of presentation, we sometimes identify the truth value true with
dom(I ) and false with ∅.

We assume that programs do not have internal procedures and that procedures cannot
be passed as parameters. Furthermore, without loss of generality, we assume that programs
do not have loops or global variables. In the following, we define programs using a logical
representation, as opposed to giving a concrete syntax.

Definition 1 (Programs and Procedures) A program A is a finite list of procedures with
a designated main procedure M where the program begins. A procedure P is a tuple
〈ιP , oP , �P , �P , βP 〉, where
1. ιP , oP , and �P are disjoint finite lists of variables denoting the input values of the

parameters, the output values of the parameters, and the local variables, respectively,
2. �P is a fresh predicate symbol of arity |ιP | + |oP |,
3. βP is a quantifier-free sentence over the signature (S ∪ {�Q | Q ∈ A} ∪ ιP ∪ oP ∪ �P )

denoting the body of the procedure,where a predicate symbol�Q appears only positively,
i.e., under even number of negations.

We use vP to denote ιP ∪ oP .

Intuitively, for a procedure P ,�P is used to denote its semantics and βP encodes its body
using the predicate symbol�Q for a call to the procedure Q. We require that a predicate sym-
bol�Q appears only positively in βP to ensure a fixed-point characterization of the semantics
as shown later on. For example, for the signatureS = 〈0, Succ,−,+,≤,>,=〉, the program in
Fig. 4 is represented as 〈M, T, D〉with the main procedure M = 〈m0,m, �M , 〈�0, �1〉, βM 〉,
T = 〈t0, t, �T , 〈�0, �1〉, βT 〉, and D = 〈d0, d, �D,∅, βD〉, where

βM = �T (m0, �0) ∧ �D(�0, �1) ∧ �D(�1,m) βD = (d = d0 − 1)

βT = (t0 ≤ 0 ∧ t0 = t) ∨ (t0 > 0 ∧ �0 = t0 − 2 ∧ �T (�0, �1) ∧ t = �1 + 1) (1)

Here, we abbreviate Succi (0) by i and (m0, t0, d0) and (m, t, d) denote the input and the
output values of the parameters of the original program, respectively. For a procedure P , let
Paths(P) denote the set of all prime-implicants of βP . Intuitively, each element of Paths(P)

encodes a path in the procedure.
Let A = 〈P0, . . . , Pn〉 be a program and I be an S-structure. Let X be a list of

length n such that each Xi is either (i) a truth value if Pi has no parameters, i.e.,
|vPi | = 0, or (ii) a subset of tuples from dom(I )|vPi | if |vPi | ≥ 1. Let J (I, X) denote
the expansion I {�P0 
→ X0} . . .{�Pn 
→ Xn}. The semantics of a procedure Pi given I ,
denoted �Pi �I , characterizes all the terminating executions of Pi and is defined as fol-
lows. 〈�P0�I , . . . , �Pn�I 〉 is the (pointwise) least X such that for all Q ∈ A, J (I, X) |�
∀vQ ∪�Q · (βQ �⇒ �Q(vQ)). This has a well-known least fixed-point characterization [9].
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For a natural number b ≥ 0, denoting a bound on the call-stack, the bounded semantics
of a procedure Pi given I , denoted �Pi �bI , characterizes all the executions using a stack of
depth bounded by b and is defined by induction on b:

�Pi �
0
I = J (I, 〈∅, . . . ,∅〉)(∃�Pi · βPi ),

�Pi �
b
I = J (I, 〈�P0�b−1

I , . . . , �Pn�
b−1
I 〉)(∃�Pi · βPi ), b > 0

Intuitively, �Pi �0I consists of all input-output values of the parameters of Pi reachable along
paths that do not make any procedure calls, i.e., by interpreting every predicate symbol �Q

in the body βPi as ∅. Similarly, �Pi �bI , for b > 0, consists of all input-output values of the
parameters reachable along paths that use a stack of depth bounded by b.

An environment is a function that maps a predicate symbol �P to a formula over vP .
Given a formula τ and an environment E , we abuse the notation �·� and write �τ �E for the
formula obtained by instantiating every predicate symbol �P by E(�P ) in τ .

Let Th be an S-theory. A safety property for a procedure P ∈ A is a formula over
vP . P satisfies a safety property ϕ w.r.t Th, denoted P |�Th ϕ, iff for all models I of Th,
�P�I ⊆ I (ϕ). A safety property ψ of the main procedure M of a program A is also called a
safety property of the program itself. Given a safety property ψ(vM ), a safety proof for ψ is
an environment � that is both safe and invariant:

|�Th �∀x · �M (x) �⇒ ψ(x)�� (safety) (2)

∀P ∈ A· |�Th �∀vP ∪ �P · (βP �⇒ �P (vP ))�� (invariance) (3)

Given a formula ϕ(vP ) and a natural number b ≥ 0, denoting a bound on the call-stack,
a procedure P satisfies bounded safety w.r.t Th, denoted P |�b,Th ϕ, iff for all models I of
Th, �P�bI ⊆ I (ϕ). In this case, we also call ϕ a may-summary for 〈P, b〉. We call ϕ a must-
summary for 〈P, b〉 iff I (ϕ) ⊆ �P�bI , for all models I of Th. Intuitively, may-summaries and
must-summaries for 〈P, b〉, respectively, over- and under-approximate �P�bI for every model
I of Th.

A bounded formula map maps a procedure P and a natural number b ≥ 0 to a set of
formulas over vP . Given a bounded formula map m and b ≥ 0, we define two special
environments Ub

m and Ob
m as follows.

Ub
m : �P 
→

∨ {
δ ∈ m(P, b′) | b′ ≤ b

}
Ob
m : �P 
→

∧ {
δ ∈ m(P, b′) | b′ ≥ b

}

We use Ub
m and Ob

m to under- and over-approximate the bounded semantics. For conve-
nience, let U−1

m and O−1
m be environments that map every symbol to ⊥.

4 Model checking recursive programs

In this section,wepresent our algorithmRecMC(A, ϕsafe) for determiningwhether a program
A satisfies a safety property ϕsafe. Let S be the signature of the first-order language under
consideration and assume a fixed S-theory Th. To avoid clutter, we drop the subscript Th
from the notation |�Th and |�b,Th. We also show the soundness of RecMC and discuss its
complexity guarantees. An efficient instantiation ofRecMC to LinearArithmetic is presented
in Sect. 5.
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Fig. 6 Pseudo-code of RecMC

4.1 Top-level loop

RecMC maintains two bounded formula maps σu and σo for must and may-summaries,
respectively. For brevity, for a first-order formula τ , we write �τ �bu and �τ �bo to denote �τ �Ub

σu

and �τ �Ob
σo
, respectively, where the environmentsUb

m and Ob
m , for a bounded formula mapm,

are as defined in Sect. 3. Intuitively, �τ �bu and �τ �bo, respectively, under- and over-approximate
τ using σu and σo.

The pseudo-code of the main loop of RecMC (corresponding to the flow diagram in
Fig. 2) is shown in Fig. 6. RecMC follows an iterative deepening strategy. In each iteration,
BndSafety (described below) checks whether all executions of A satisfy ϕsafe for a bound
n ≥ 0 on the call-stack, i.e., if M |�n ϕsafe. BndSafety also updates the maps σu and
σo. Whenever BndSafety returns UNSAFE, the must-summaries in σu are sufficient to
construct a counterexample to safety and the loop terminates. Whenever BndSafety returns
SAFE, the may-summaries in σo are sufficient to prove the absence of a counterexample
for the current bound n on the call-stack. In this case, if σo is also invariant [see (3)], as
determined by CheckInvariance, On

σo
is a safety proof and the loop terminates. Otherwise,

the bound on the call-stack is incremented and a new iteration of the loop begins. Note that,
as a side-effect of CheckInvariance, some may-summaries are propagated to the bound
n + 1. This is similar to the push generalization phase in the IC3 algorithm [22].

4.2 Bounded safety

We describe the routine BndSafety(A, ϕsafe, n, σ Init
u , σ Init

o ) as an abstract transition sys-
tem [25] defined by the inference rules shown in Fig. 7. Here, n is the current bound on the
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Fig. 7 Rules defining BndSafety
(A, ϕsafe, n, σ Init

u , σ Init
o

)

call-stack, and σ Init
u and σ Init

o are the maps of must and may-summaries input to the routine.
A state of BndSafety is a triple Q‖σu‖σo, where σu and σo are the current maps and Q is
a set of triples 〈P, ϕ, b〉 for a procedure P , a formula ϕ over vP , and a number b ≥ 0. A
triple 〈P, ϕ, b〉 ∈ Q is called a bounded reachability query and asks whether P �|�b ¬ϕ, i.e.,
whether there is an execution in P using a call-stack bounded by b where the values of vP

satisfy ϕ.
BndSafety starts with a single query 〈M,¬ϕsafe, n〉 and initializes the maps of must

and may-summaries (rule Init). It checks whether M |�n ϕsafe by generating new queries
as necessary (rule Query) and answering existing queries using existing summaries (rules
May and Must), the latter resulting in new summaries. When there are no queries left to
answer, i.e., Q is empty, BndSafety terminates with a result of either UNSAFE or SAFE
(rules Unsafe and Safe). We explain the rulesMay, Must and Query below.

MAY infers a new may-summary when a query 〈P, ϕ, b〉 can be answered negatively. In
this case, there is an over-approximation of the bounded semantics of P at bound b, obtained
using the may-summaries of callees at bound b − 1, that is unsatisfiable with ϕ. That is,
|� �βP�b−1

o �⇒ ¬ϕ. The inference of the new summary is by interpolation [20] (denoted
by Itp in the side-condition of the rule). Thus, the newmay-summaryψ is a formula over vP

such that |� (
�βP�b−1

o �⇒ ψ(vP )
) ∧ (ψ(vP ) �⇒ ¬ϕ). Note that ψ over-approximates

the bounded semantics of P at b. Every query 〈P, η, c〉 ∈ Q such that η is unsatisfiable with
the updated environment Oc

σo
(�P ) is immediately answered and removed.

MUST infers a newmust-summarywhen a query 〈P, ϕ, b〉 can be answered positively. In this
case, there is an under-approximation of the bounded semantics of P at b, obtained using the
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Fig. 8 Approximations of the
only path π of the procedure M
in Fig. 4

must-summaries of callees at bound b−1, that is satisfiable with ϕ. That is, �|� �βP�b−1
u �⇒

¬ϕ. In particular, there exists a path π in Paths(P) such that �|� �π�b−1
u �⇒ ¬ϕ. The

new must-summary ψ is obtained by choosing such a path π non-deterministically and
existentially quantifying all local variables from �π�b−1

u . Note that ψ under-approximates
the bounded semantics of P at b. Every query 〈P, η, c〉 ∈ Q such that η is satisfiable with
the updated environment Uc

σu
(�P ) is immediately answered and removed.

QUERY creates a new query when an existing query 〈P, ϕ, b〉 cannot be answered using
current summarymaps σu and σo. In this case, the current over-approximation of the bounded
semantics of P at b is satisfiable with ϕ while its current under-approximation is unsatisfiable
with ϕ. That is, �|� �βP�b−1

o �⇒ ¬ϕ and |� �βP�b−1
u �⇒ ¬ϕ. In particular, there exists

a path π in Paths(P) such that �|� �π�b−1
o �⇒ ¬ϕ and |� �π�b−1

u �⇒ ¬ϕ. Intuitively,
π is a potential counterexample path that needs to be checked for feasibility. Such a path π

is chosen non-deterministically. π is guaranteed to have a conjunct �R(a), corresponding to
a call to some procedure R, such that the under-approximation ��R(a)�b−1

u is too strong to
witness an execution along π that satisfies ϕ but the over-approximation ��R(a)�b−1

o is too
weak to block such an execution. That is, π can be partitioned into a prefix πpre, a conjunct
�R(a) corresponding to a call to R, and a suffix πsuf such that the following hold:

|� ��R(a)�b−1
u �⇒

((
�πpre�

b−1
o ∧ �πsuf �

b−1
u

) �⇒ ¬ϕ
)

�|� ��R(a)�b−1
o �⇒

((
�πpre�

b−1
o ∧ �πsuf �

b−1
u

) �⇒ ¬ϕ
)

Note that the prefix πpre and the suffix πsuf are over- and under-approximated, respectively.
A new query 〈R, ψ, b − 1〉 is created where ψ is obtained by existentially quantifying all
variables from �πpre�

b−1
o ∧ �πsuf �

b−1
u ∧ ϕ except the arguments a of the call, and renaming

appropriately. If the new query is answered negatively (using May), all executions along π

where the values of vP ∪ �P satisfy �πsuf �
b−1
u are spurious counterexamples. An additional

side-condition requires thatψ “does not overlap”with η for any other query 〈R, η, b−1〉 inQ.
This is necessary for termination of BndSafety (Theorem 2). In practice, the side-condition
is trivially satisfied by always applying the rule to 〈P, ϕ, b〉 with the smallest b.

For example, consider the program in Fig. 4 represented by (1) and the query 〈M, ϕ, 1〉
where ϕ ≡ m0 < 2m + 4. Let σo = ∅, σu(D, 0) = {d = d0 − 1} and σu(T, 0) = ∅.
Let π = (�T (m0, �0) ∧ �D(�0, �1) ∧ �D(�1,m)) denote the only path in the procedure
M . Figure 8 shows �πi �

0
u and �πi �

0
o for each conjunct πi of π . As the figure shows, �π�0o is

satisfiable with ϕ, witnessed by the execution e ≡ 〈m0 = 3, �0 = 3, �1 = 2,m = 1〉. Note
that this execution also satisfies �π2 ∧ π3�

0
u . But, �π1�

0
u is too strong to witness it, where π1 is

the call �T (m0, �0). To create a new query for T , we first existentially quantify all variables
other than the arguments m0 and �0 from π2 ∧ π3 ∧ ϕ, obtaining m0 < 2�0. Renaming the
arguments by the parameters of T results in the new query 〈T, t0 < 2t, 0〉. Further iterations
of BndSafety would answer this query negatively making the execution e spurious. Note
that this would also make all other executions where the values to 〈m0, �0, �1,m〉 satisfy
�π2 ∧ π3�

0
u spurious.

123



186 Form Methods Syst Des (2016) 48:175–205

4.3 Soundness of BNDSAFETY and RECMC

Soundness of RecMC follows from that of BndSafety, which can be shown by a case
analysis on the inference rules.

Theorem 1 BndSafety and RecMC are sound.

Proof Weonly show the soundness of BndSafety; the soundness of RecMC easily follows.
In particular, for BndSafety(M, ϕsafe, n,∅,∅) we show the following:

1. If the premises of Unsafe hold, then M �|�n ϕsafe, and
2. If the premises of Safe hold, then M |�n ϕsafe.

It suffices to show that the environments Ub
σu

and Ob
σo
, respectively, under- and over-

approximate the bounded semantics of the procedures, for every 0 ≤ b ≤ n. In particular, we
show that the following is an invariant of BndSafety: for every model I of the background
theory Th, for every procedure Q ∈ A and b ∈ [0, n],

I (Ub
σu

(�Q)) ⊆ �Q�bI ⊆ I (Ob
σo

(�Q)). (4)

Initially, σu and σo are empty and the invariant holds trivially. BndSafety updates σo
and σu in the rules May and Must, respectively. We show that these rules preserve (4). We
only show the case of May. The case of Must is similar.

Let 〈P, ϕ, b〉 ∈ Q be such that May is applicable, i.e., |� �βP�b−1
o �⇒ ¬ϕ. Let

ψ = Itp(�βP�b−1
o ,¬ϕ). Note that ϕ, and hence ψ , does not depend on the local variables

�P . Hence, we know that

|�
(
∃�P · �βP�b−1

o

)
�⇒ ψ. (5)

The case of b = 0 is easy and we will skip it. Let I be an arbitrary model of Th. Assume
that (4) holds at b − 1 before applying the rule. In particular, assume that for all Q ∈ A,
�Q�b−1

I ⊆ I (Ob−1
σo

(�Q)).

We will first show that the new may-summary ψ over-approximates �P�bI . Let J (I, X)

be an expansion of I as defined in Sect. 3.

�P�bI = J
(
I, 〈�P0�b−1

I , . . . , �Pn�
b−1
I 〉

) (∃�Pi · βPi

)

⊆ J
(
I, 〈I (Ob−1

σo
(�P0)), . . . , I (O

b−1
σo

(�Pn ))〉
) (∃�Pi · βPi

)
(hypothesis)

= I
(
�∃�P · βP�Ob−1

σo

)
(Ob−1

σo
is FO-definable)

= I
(
∃�P · �βP�Ob−1

σo

)
(logic)

= I
(
∃�P · �βP�b−1

o

)
(notation)

⊆ I (ψ) (from (5))

Next, we show that the invariant continues to hold. The map of may-summaries is updated
to σ ′

o = σo ∪ {〈P, b〉 
→ ψ}. Now, σ ′
o differs from σo only for the procedure P and for

bounds in [0, b]. Let b′ ∈ [0, b] be arbitrary. Since (4) was true before applying May,
we know that �P�b

′
I ⊆ I (Ob′

σo
(�P )). As �P�b

′
I ⊆ �P�bI ⊆ I (ψ), it follows that �P�b

′
I ⊆

I (Ob′
σo

(�P )) ∩ I (ψ) ⊆ I (Ob′
σo

(�P ) ∧ ψ) = I (Ob′
σ ′
o
(�P )). ��
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4.4 Termination and complexity of BNDSAFETY

We will now show that BndSafety is complete relative to an oracle for satisfiability mod-
ulo Th. Intuitively, a must-summary inferred by BndSafety corresponds to a path in a
procedure and given a bound on the call-stack, the number of such formulas is finite. This
bounds the number of may/must-summaries inferred by BndSafety, guaranteeing termina-
tion. Throughout the following, assume an oracle for SAT modulo Th.

The following lemma shows that when a query is removed fromQ, it is actually answered.
The proof is immediate from the definitions of Ob

σo
and Ub

σu
given in Sect. 3.

Lemma 1 (Answered queries) Whenever BndSafety removes a query from Q, it is
answeredusing the knownmust andmay-summaries. In particular, for every query 〈P, η, b〉 ∈
Q removed from Q by BndSafety,

1. If the query is removed by May, then |� ��P�bo �⇒ ¬η, and
2. If the query is removed by Must, then �|� ��P�bu �⇒ ¬η.

Next, we show that current summaries are insufficient to answer existing queries in Q.

Lemma 2 (Pending queries)Q only has the queries which cannot be immediately answered
by σu or σo, i.e., as long as 〈P, η, �〉 is in Q, the following are invariants of BndSafety.

1. �|� ��P��o �⇒ ¬η, and
2. |� ��P��u �⇒ ¬η.

Proof We first show that the invariants hold when a query is newly created by Query. Let
P , η and � be, respectively, R, ψ[a ← vR] and b − 1, as in the conclusion of the rule. The
last-but-one premise of Query is

|� �πpre�
b−1
o ∧ ��R(a)�b−1

u ∧ �πsuf �
b−1
u �⇒ ¬ϕ

which implies that

|� ��R(a)�b−1
u �⇒ ¬

(
�πpre�

b−1
o ∧ �πsuf �

b−1
u ∧ ϕ

)
.

The variables not in common, viz., (vP ∪�P )\a, can be universally quantified from the right
hand side resulting in |� ��R�b−1

u �⇒ ¬η. Similarly, �|� ��R�b−1
o �⇒ ¬η follows from

the last premise of the rule. Next, we show that May and Must preserve the invariants.
Let May answer a query 〈P, ϕ, �〉 with a new may-summary ψ and let the updated map

of may-summaries be σ ′
o = σo ∪ {〈P, �〉 
→ ψ}. Now, consider 〈P, η, �′〉 ∈ Q after the

application of the rule. If �′ > �, O�′
σ ′
o

= O�′
σo

and the invariant continues to hold. So,

assume �′ ≤ �. From the conclusion of May, we have �|� ��P��
′
o ∧ ψ �⇒ ¬η. Now,

O�′
σ ′
o
(�P ) = O�′

σo
(�P ) ∧ ψ . So, the invariant continues to hold.

Similarly, let Must answer a query 〈P, ϕ, �〉 with a new must-summary ψ and let the
updated map of must-summaries be σ ′

u = σu ∪ {ψ 
→ 〈P, �〉}. Now, consider 〈P, η, �′〉 ∈ Q
after the application of the rule. If �′ < �, U �′

σ ′
u

= U �′
σu

and the invariant continues to hold.

So, assume �′ ≥ �. From the conclusion of Must, we have |� ψ �⇒ ¬η. Assuming the
invariant holds before the rule application, we also have |� ��P��

′
u �⇒ ¬η. Therefore, we

have |� ��P��
′
u ∨ ψ �⇒ ¬η. Now, U �′

σ ′
u
(�P ) = U �′

σu
(�P ) ∨ ψ . So, the invariant continues

to hold. ��
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The next few lemmas show that the rules of the algorithm cannot be applied indefinitely,
leading to a termination argument. Let N be the number of procedures in the programA, p be
the maximum number of paths in a procedure, and c be the maximum number of procedure
calls along any path in A.

Lemma 3 (Finitely-many must summaries) Given a predicate symbol �P and a bound b,
the environment Ub

σu
is updated only O(Nb · pb+1)-many times.

Proof The environment Ub
σu

can be updated for �P and b whenever a must-summary is
inferred for P at a bound b′ ≤ b. Now, amust-summary is obtained per path (after eliminating
the local variables) of a procedure, using the currently known must-summaries about the
callees. Moreover, Lemmas 1 and 2 imply that no must-summary is inferred twice. This is
because whenever a query is answered usingMust, the query could not have been answered
using already existing must-summaries and a new must-summary is inferred.

This gives the following recurrenceMust(b) for the number of updates toUb
σu

for a given
�P :

Must(b) =
{
p, b = 0

(p · N + 1) · Must(b − 1), b > 0.

In words, for b = 0, the number of updates is given by the number of must-summaries that
can be inferred, which is bounded by the number of paths p in the procedure P . For b > 0,
the environmentUb

σu
is updated when a must-summary is learnt for the procedure at a bound

smaller than or equal to b. For the former, the number of updates is simplyMust(b− 1). For
the latter, a new must-summary is inferred at bound b along a path whenever Ub−1

σu
changes

for a callee. For N procedures and p paths, this is given by (p · N · Must(b − 1)).
This gives us Must(b) = O(Nb · pb+1). ��

Lemma 4 (Finitely-many queries) For 〈P, ϕ, b〉 ∈ Q, Query is applicable only O(c · Nb ·
pb+1)-many times.

Proof First, assume that the environmentsUb−1
σu

and Ob−1
σo

are fixed. The number of possible
queries that can be created for a given path of P is bounded by the number of ways the path
can be divided into a prefix, a procedure call, and a suffix. This is bounded by c, the maximum
number of calls along the path. For p paths, this is bounded by c · p.

Consider a path π and its division, and let a query be created for a callee R along π . Now,
while the query is still in Q, updates to the environments Ob−1

σo
and Ub−1

σu
do not result in a

new query for R for the same division along π . This is because, the new query would overlap
with the existing one and this is disallowed by the second side-condition of Query.

Suppose that the new query is answered byMay. With the updated map of may-summary,
the last premise of Query can be shown to fail for the current division of π . If Ob−1

σo
is

updated, the last premise continues to fail. So, a new query can be created for the same prefix
and suffix along π only if Ub−1

σu
is updated for some callee along π . The other possibility is

that the query is answered by Must which updates Ub−1
σu

as well.
Thus, for a given path, and a given division of it into prefix and suffix, the number of queries

that can be created is bounded by the number of updates toUb−1
σu

which is (N ·Must(b−1)).
Here,Must is as in Lemma 3. So, the number of timesQuery is applicable for a given query
〈P, ϕ, b〉 is O(p · c · N · Must(b − 1)). As Must(b) = Nb · pb+1, we obtain the bound
O(c · Nb · pb+1). ��
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Lemma 5 (Progress) As long as Q is non-empty, either May, Must or Query is always
applicable.

Proof First, we show that for every query inQ, either of the three rules is applicable, without
the second side-condition inQuery. Let 〈P, ϕ, b〉 ∈ Q. If |� �βP�b−1

o �⇒ ¬ϕ, thenMay is
applicable. Otherwise, there exists a pathπ ∈ Paths(P) such that �π�b−1

o is satisfiable with ϕ,
i.e., �|� �π�b−1

o �⇒ ¬ϕ. Now, if �π�b−1
u is also satisfiable with ϕ, i.e., �|� �π�b−1

u �⇒ ¬ϕ,
Must is applicable. Otherwise, |� �π�b−1

u �⇒ ¬ϕ. Note that this can only happen if b > 0,
as otherwise, there will not be any procedure calls along π and �π�b−1

o and �π�b−1
u would

be equivalent.
Let π = π0 ∧ π1 ∧ . . . πl for some finite l. Then, �π�b−1

o is obtained by taking the
conjunction of the formulas

〈�π0�
b−1
o , �π1�

b−1
o , . . . 〉.

Similarly, �π�b−1
u is obtained by taking the conjunction of the formulas

〈�π0�
b−1
u , �π1�

b−1
u , . . . 〉.

From Theorem 1, we can think of obtaining the latter sequence of formulas by conjoining
�πi �

b−1
u to �πi �

b−1
o for every i . When this is done backwards for decreasing values of i , an

intermediate sequence looks like

〈�π0�
b−1
o , . . . , �π j−1�

b−1
o , �π j �

b−1
u . . . 〉.

As �π�b−1
u is unsatisfiable with ϕ, there exists a maximal j such that the conjunction of

constraints in such an intermediate sequence are unsatisfiable with ϕ. Moreover, π j must
be a literal of the form �R(a) as otherwise, �π j �

b−1
o = �π j �

b−1
u violating the maximality

condition on j . Thus, all premises of Query hold and the rule is applicable.
Now, the second side-condition in Query can be trivially satisfied by always choosing a

query inQwith the smallest bound for the next rule to apply. This is because, if 〈R, η, b − 1〉
is the newly created query, there is no other query in Q for R and b − 1. ��

Lemmas 4 and 5 imply that every query in Q is eventually answered by May or Must,
as shown below.

Lemma 6 (Eventual answer) Every 〈P, ϕ, b〉 ∈ Q is eventually answered byMay orMust,
in O(b · cb · (Np)O(b2)) applications of the rules.

Proof Firstly, to answer any given query in Q, Lemma 4 guarantees that the algorithm can
only create finitely many queries. Lemma 5 guarantees that some rule is always applicable,
as long as Q is non-empty. Thus, when Query cannot be applied for any query in Q, either
May orMustmust be applicable for some query. Thus, eventually, all queries are answered.

The total number of rule applications to answer 〈P, ϕ, b〉 is then linear in the cumulative
number of applications of Query, which has the following recurrence:

T (b) =
{
Q(0), b = 0

Q(b)(1 + T (b − 1)), b > 0.

where Q(b) denotes the number of applications of Query for a fixed query in Q at bound
b. From Lemma 4, Q(b) = O(c · Nb · pb+1). This gives us T (b) = O(b · cb · (Np)O(b2)).

��
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The main termination theorem is an immediate consequence of the above lemma:

Theorem 2 Given a satisfiability oracle for Th,BndSafety(A, ϕ, n,∅,∅) decides bounded
safety in finitely many iterations and terminates.

As an immediate corollary, RecMC is guaranteed to find a counterexample if one exists.

Corollary 1 RecMC(A, ϕ) is guaranteed to return UNSAFE with a counterexample ifA �|�
ϕ.

In contrast, the closest related algorithm GPDR [15], mentioned briefly in Sect. 1, does
not have such guarantees. Finally, for Boolean programs RecMC is a complete decision
procedure. Unlike the general case, the number of reachable states of a Boolean program,
and hence the number of summaries, is finite. Let N denote the number of procedures of a
program A and k = max{|vP | | P(vP ) ∈ A}.
Theorem 3 Let A be a Boolean program. Then RecMC(A, ϕ) terminates in O(N 2 · 22k)-
many applications of the rules in Fig. 7.

Proof First, assume a bound n on the call-stack. The number of queries that can be created for
a procedure at any given bound is O(2k), the number of possible valuations of the parameters
(note that Query disallows overlapping queries to be present simultaneously in Q). For N
procedures and n possible values of the bound, the complexity ofBndSafety(A, ϕ, n,∅,∅),
for a Boolean program, is O(N · 2k · n).

Now, the total number of may-summaries that can be inferred for a procedure is also
bounded by O(2k). As Ob

σo
is monotonic in b, the number of iterations of RecMC is bounded

by O(N · 2k), the cumulative number of states of all procedures. Thus, we obtain the com-
plexity of RecMC as O(N 2 · 22k). ��

Note that the number of states of a Boolean program is O(N · 2k), so the above complex-
ity is polynomial in the number of states. In contrast, other SMT-based algorithms, such as
Whale [14], are worst-case exponential in the number of states of a Boolean program. Also,
note that the complexity is quadratic in the number of procedures as opposed to the known
upper-bound which has a linear dependency [1]. This is a manifestation of the iterative deep-
ening strategy of RecMC and in particular, the may-summaries computed by the algorithm,
which is necessary for handling programs over first-order theories. In contrast, the known
optimal algorithms for Boolean programs do not compute may-summaries.

In summary, RecMC checks safety of a recursive program by inferring the necessary
under- and over-approximations of procedure semantics and using them to analyze procedures
individually.

5 Model based projection

The algorithm RecMC described in the previous section works for an arbitrary first-order
signature S and a S-theory Th as long as there is an oracle for satisfiability modulo Th. In
this section, we consider the case of Th being either Linear Rational Arithmetic (LRA) or
Linear Integer Arithmetic (LIA). Note that the program can also have Boolean parameters or
local variables. RecMC can be used as-is, but recall that BndSafety introduces quantifiers
in the formulas maintained by the algorithm. This is because the may and must-summaries
are formulas over the parameters of a procedure and auxiliary variables denoting their initial
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values, and when creating a new summary, all other variables will be quantified away. Same
is the case with creating new bounded safety properties. Unless eliminated, these quantifiers
accumulate exponentially in the value of the bound corresponding to the bounded safety
problem. This is because, if no quantified variable is eliminated, the compositional algorithm
essentially breaks down into an algorithm that unrolls the call-graph into a tree where, as
we mentioned earlier, the size of the SMT problems created may grow exponentially in the
bound on the call-stack. On the other hand, it is expensive to use quantifier elimination (QE)
to obtain an equivalent quantifier-free formula. Instead, we propose an alternative approach
that approximates QE with quantifier-free formulas lazily and efficiently.

In particular, we (a) introduce a model-based under-approximation of QE for existentially
quantified formulas, calledModelBasedProjection (MBP), (b) give efficient (linear in the size
of formulas involved) MBP procedures for Propositional Logic, Linear Rational Arithmetic
(LRA), and Linear Integer Arithmetic (LIA; also well known as Presburger Arithmetic),
and (c) present a modified version of BndSafety that uses MBP to under-approximate
the existential quantification of variables out of scope, and show that it remains sound and
terminating. Our MBP procedures for LRA and LIA are based on the QE algorithms by Loos
and Weispfenning [23] and Cooper [24], respectively.

Definition 2 (Model Based Projection) Let η(y) = ∃x · ηm(x, y) be an existentially quanti-
fied formulawhere ηm is quantifier free.A functionProjη frommodels of ηm to quantifier-free
formulas over y is aModel Based Projection (for η) iff

1. Projη has a finite image,
2. η ≡ ∨

M|�ηm
Projη(M), and

3. for every model M of ηm , M |� Projη(M).

In other words,Projη covers the space of all models of ηm(x, y) by a finite set of quantifier-
free formulas over y. Note that there is a trivial MBP that maps every model of ηm to a
quantifier-free formula equivalent to η. However, when QE is expensive, it is not the most
efficientMBPandour objective is to obtain anMBP thatmapsmodels to quantifier-freeunder-
approximations of η. In the following, we describe MBP procedures whose computation is
linear in time and space given a model.

5.1 MBP for propositional logic

Let η(y) = ∃x ·ηm(x, y) be an existentially quantified formula where the quantified variables
in x are all Boolean (propositional). Without loss of generality, assume that x is singleton.
Our MBP procedure is based on the following equivalence:

∃x · ηm(x, y) ≡ ηm[x 
→ ⊥] ∨ ηm[x 
→ �] (6)

where ηm[x 
→ t] denotes the result of substituting the term t for x in ηm .
We now define an MBP BoolProjη for Propositional Logic as a map from models of ηm

to one of the disjuncts above depending on the assignment to x in the given model:

BoolProjη(M) =
{

ηm[x 
→ ⊥], M |� x = ⊥
ηm[x 
→ �], M |� x = �

This procedure is also used in the GPDR model checking algorithm [15] implemented in
the tool Z3 [26] and a similar approach is used in SAT-based iterative quantifier elimination
in hardware verification [27]. The following is now immediate.

Theorem 4 BoolProjη is a Model Based Projection.

123



192 Form Methods Syst Des (2016) 48:175–205

5.2 MBP for linear rational arithmetic (LRA)

We begin with a brief overview of Loos-Weispfenning (LW) method [23] for quantifier
elimination in LRA. We borrow our presentation from Nipkow [28] to which we refer the
reader for more details. Let η(y) = ∃x · ηm(x, y) as above. Assume that Th is LRA. Without
loss of generality, assume that x is singleton containing a rational variable x , ηm is inNegation
Normal Form, and x only appears in the literals of the form � < x , x < u, and x = e,
where �, u, and e are x-free. Let lits(η) denote the literals of η. The LW-method states that
∃x · ηm(x, y) ≡

∨

(x = e)∈lits(η)

ηm[x 
→v e] ∨
∨

(�<x)∈lits(η)

ηm[x 
→v (� + ε)] ∨ ηm[x 
→v −∞] (7)

where ηm[x 
→v t] denotes the result of a virtual substitution of the term t for x in ηm . Note
that the symbols ε and−∞ do not appear in the results of the substitutions (which is why the
substitution is called virtual). Intuitively, ηm[x 
→v e] covers the case when a literal (x = e)
is true. Otherwise, the set of �’s in the literals (� < x) identify intervals in which x can lie
which are covered by the remaining substitutions.

To perform the virtual substitution, the LW-method defines a substitution map Subt of
literals containing x corresponding to ηm[x 
→v t], defined as follows:

Sube(x = e) = �, Sube(� < x) = (� < e), Sube(x < u) = (e < u) (8)

Sub�+ε(x = e) = ⊥, Sub�+ε(�
′ < x) = (�′ ≤ �), Sub�+ε(x < u) = (� < u) (9)

Sub−∞(x = e) = ⊥, Sub−∞(� < x) = ⊥, Sub−∞(x < u) = � (10)

For example, let ηm be (x = e∧φ1)∨(� < x∧x < u)∨(x < u∧φ2), where �, e, u, φ1, φ2

are x-free. Then, ηm[x 
→v e]
= (Sube(x = e) ∧ φ1) ∨ (Sube(� < x) ∧ Sube(x < u)) ∨ (Sube(x < u) ∧ φ2)

≡ (
φ1 ∨ (� < e ∧ e < u) ∨ (e < u ∧ φ2)

)
,

ηm[x 
→v (� + ε)]
= (Sub�+ε(x = e) ∧ φ1) ∨ (Sub�+ε(� < x) ∧ Sub�+ε(x < u)) ∨ (Sub�+ε(x < u) ∧ φ2)

≡ (
� < u ∨ (� < u ∧ φ2)

)
,

and ηm[x 
→v −∞]
= (Sub−∞(x = e) ∧ φ1) ∨ (Sub−∞(� < x) ∧ Sub−∞(x < u)) ∨ (Sub−∞(x < u) ∧ φ2)

≡ φ2.

Together, we obtain ∃x · ηm ≡ φ1 ∨ (� < u) ∨ φ2.
We now define anMBP LRAProjη for LRA as amap frommodels of ηm to disjuncts in (7).

Given M |� ηm , LRAProjη picks a disjunct that covers M based on values of the literals of
the form x = e and � < x in M . Ties are broken by a syntactic ordering on terms (e.g., when
M |� �′ = � for two literals � < x and �′ < x).

LRAProjη(M) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηm[x 
→v e], if (x = e) ∈ lits(η) ∧ M |� x = e

ηm[x 
→v (� + ε)], else if (� < x) ∈ lits(η) ∧ M |� � < x ∧
∀(�′ < x) ∈ lits(η)·
M |� (

(�′ < x) �⇒ (�′ ≤ �)
)

ηm[x 
→v −∞], otherwise
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Theorem 5 LRAProjη is a Model Based Projection.

Proof By definition, LRAProjη has a finite image, as there are only finitely many disjuncts
in (7). Thus, it suffices to show that for every M |� ηm , M |� LRAProjη(M).

Let M |� ηm and LRAProjη(M) = ηm[x 
→v t] where t is either e or � + ε or −∞. As
ηm is in NNF, it suffices to show that for every literal μ of ηm containing x , the following
holds:

M |� (μ �⇒ Subt (μ)) (11)

We consider the different possibilities of t below. For a term v, let M[v] denote the value
of v in M .

In this case, we know that M |� x = e. Now, for a literal � < x ,

M[� < x] �⇒ M[�] < M[x]
= M[�] < M[e]
= M[� < e]
= M[Subt (� < x)] {Subt (� < x) = (� < e)}.

Similarly, literals of the form x < u and x = e′ can be considered.
Case t = e.Case t = �+ε. In this case, we know thatM[� < x] is true, i.e.,M[�] < M[x]

and whenever M[�′ < x] is true, M[�′ ≤ �] is also true. Now, for a literal �′ < x ,

M[�′ < x] �⇒ M[�′ ≤ �]
= M[Subt (�′ < x)] {Subt (�′ < x) = (�′ ≤ �)}.

For a literal x < u,

M[x < u] �⇒ M[x] < M[u]
�⇒ M[�] < M[u] {M[�] < M[x]}
�⇒ M[� < u]
= M[Subt (x < u)] {Subt (x < u) = (� < u)}

For a literal x = e, (11) vacuously holds as M[x = e] is false.
Case t = e.Case t = −∞. In this case, we know that M[x = e] and M[� < x] are false

for every literal of the form x = e and � < x . So, for such literals (11) vacuously holds. For
a literal x < u, Subt (x < u) = � and hence, (11) holds again. ��
5.3 MBP for linear integer arithmetic (LIA)

Wewill nowpresent ourMBPLIAProjη for LIA. It is based onCooper’smethod forQuantifier
Elimination procedure for LIA [24]. Let η(y) = ∃x · ηm(x, y), where ηm is quantifier free
and in negation normal form. Assume that Th is LIA and x is an integer variable. Without
loss of generality, let the only literals containing x be the form � < x , x < u, x = e or
(d | ±x + w), where a | b denotes that a divides b, the terms �, u, e and w are x-free,
and d ∈ Z \ {0}. Let E = {e | (x = e) ∈ lits(ηm)} be the set of equality terms of x and
L = {� | (� < x) ∈ lits(ηm)} be the set of lower-bounds of x . Then, by Cooper’s method,
∃x · ηm(x, y) ≡

∨

(x = e)∈lits(η)

ηm[x 
→v e] ∨
∨

(�<x)∈lits(η)

(
D−1∨

i= 0

ηm[x 
→v (� + 1 + i)]
)

∨
D−1∨

i = 0

η−∞
m [x 
→v i]

(12)
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where D is the least common multiple of all the divisors in the divisibility literals of ηm ,
[x 
→v t] denotes a virtual substitution of the term t for x and η−∞

m is obtained from ηm by
substituting all non-divisibility literals as follows:

(� < x) 
→ ⊥ (x < u) 
→ � (x = e) 
→ ⊥ (13)

Intuitively, the disjunction partitions the space of the possible values of x . A disjunct for
(x = e) covers the case when x is equal to an equality term. Otherwise, the lower-bounds
identify various intervals in which x can be present. The disjuncts for (� < x) cover the case
when x satisfies a lower-bound, and the last disjunct is for the case when x is smaller than
all lower-bounds. The disjunction over the possible values of i covers the different ways in
which the divisibility literals can be satisfied.

Model based projection LIAProjη is defined as follows, conflicts are resolved by some
arbitrary, but fixed, syntactic ordering on terms:

LIAProjη(M) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηm[x 
→v e], if x = e ∈ lits(η) ∧ M |� (x = e)

ηm[x 
→v (� + 1 + i�)], else if (� < x) ∈ lits(η) ∧ M |� (� < x) ∧
∀(�′ < x) ∈ lits(η)·(

M |� ((�′ < x) �⇒ (�′ ≤ �))
)

η−∞
m [x 
→v i−∞], otherwise

where i� = M[x − (� + 1)] mod D, i−∞ = M[x] mod D, and M[x] is the value of x in M .
The following theorem shows that LIAProjη is indeed amodel based projection. The proof

is similar to that of Theorem 5.

Theorem 6 LIAProjη is a Model Based Projection.

5.4 Bounded safety with MBP

Given an MBP Projη for an existentially quantified formula η, we have seen above that each
quantifier-free formula in the image of Projη under-approximates η. As above, we use ηm for
the quantifier-free matrix of η. We can now modify the side-condition ψ = η of Must and
Query in the algorithm BndSafety to use quantifier-free under-approximations as follows:
(i) for Must, the new side-condition is ψ = Projη(M) where M |� ηm ∧ ϕ, and (ii) for
Query, the new side-condition is ψ = Projη(M) where M |� ηm ∧ ��R(a)�b−1

o . Note that
to avoid redundant applications of the rules, we require M to satisfy a formula stronger than
ηm . Intuitively, (i) ensures that the newly inferred reachability fact answers the current query
and (ii) ensures that the new query cannot be immediately answered by known facts. In both
cases, the required model M can be obtained as a side-effect of discharging the premises of
the rules. Soundness of BndSafety is unaffected and termination of BndSafety follows
from the image-finiteness of Projη.

Theorem 7 Assuming an oracle and an MBP for Th, BndSafety is sound and terminating
after modifying the rules as described above.

Proof sketch Here, we show that BndSafety with MBP is sound and terminating.
First of all, in presence of MBP, May is unaffected and a reachability fact inferred by

Must is only strengthened. Thus, soundness of BndSafety (Theorem 1) is preserved.
Then, it is easy to show that the modified side-conditions to Must and Query preserve

Lemmas 1 and 2 and we skip the proof.
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Then, wewill show that the finite-image property of anMBP preserves the finiteness of the
number of reachability facts inferred and the number of queries generated by the algorithm.
Let d be the size of the image of anMBP. In the proof of Lemma 3, the recurrence relationwill
now have an extra factor of d . The rest of the proof of finiteness of the number of reachability
facts remains the same. Similarly, in the proof of Lemma 4, the number of times Query
can be applied along a path for a fixed division and fixed environments Ob−1

σ and Ub−1
ρ will

increase by a factor of d . Again, the rest of the proof of finiteness of the number of queries
generated remains the same. That is, Lemmas 3 and 4, and hence, Lemma 6, are preserved
with scaled up complexity bounds.

Note that Theorem 5 is unaffected by under-approximations.
Together, we have that Theorem 2 is preserved, with a scaled up complexity bound. ��
Thus,BndSafetywith a linear-timeMBP (such asLRAProjη) keeps the size of the formu-

las small by efficiently inferring only the necessary under-approximations of the quantified
formulas.

6 Implementation and experiments

We have implemented RecMC for analyzing C programs as part of our tool Spacer. The
back-end is based on Z3 [26] which is used for SMT-solving and interpolation. It supports
propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based
on the tool UFO [29]. It encodes safety of a C program by converting it to the Horn-SMT
format of Z3, which corresponds to the logical program representation described in Sect. 3.
Loops are handled by creating fresh predicate symbols denoting the loop invariants and
encoding the corresponding verification conditions. The implementation and benchmarks
are available online.2 We evaluated Spacer on three sets of benchmarks:

(a) 2908 Boolean programs obtained from the SLAM toolkit,3

(b) 1535 procedural programs from Microsoft’s SDV project,4 and
(c) 797 C programs from the Software Verification Competition (SVCOMP) 2014 [30].

The numbers of programs mentioned for the second and third sets of benchmarks above
exclude programs with non-linear operations and memory-related properties as Spacer can-
not handle them yet. The 797 programs in the third set of benchmarks also exclude programs
that can be easily verified by our frontend (which converts a C program to the Horn-SMT
format) using common compiler optimizations. Note that the programs in the last set have
non-recursive procedures (which may still have loops) and our current frontend inlines all
procedure calls.We call the resulting set of encodings Svcomp-1. Note that Svcomp-1 essen-
tially corresponds to while-programs. We introduced procedural modularity in Svcomp-1
by two distinct means: (a) factoring out maximal loop-free fragments into new loop-free,
recursion-free procedures (the main procedure may still have loops) to obtain Svcomp-2,
and (b) factoring out loops into tail-recursive procedures (in an inside-out fashion for nested
loops) to obtain Svcomp-3. Our simple outlining procedure could not handle some large
programs and Svcomp-3 has 45 fewer programs.

Figure 9 shows somecharacteristics of theHorn-SMTencodings for the benchmarks,when
viewed according to the logical program representation described in Sect. 3. The number of

2 http://www.cs.cmu.edu/~akomurav/projects/spacer/home.html.
3 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/BOOL/slam.zip.
4 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/ALIA/sdv.
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Fig. 9 Some characteristics of the Horn-SMT encodings of the benchmarks, averaged over all programs in
the corresponding set

Fig. 10 Number of programs verified for Slam and Sdv benchmarks

Fig. 11 Number of programs verified for SVCOMP benchmarks

calls along a path roughly identifies the procedural modularity of the encodings. The number
of calls of a procedure (in the entire program) identifies the potential number of times a
summary (may or must) of the procedure can be reused for a given bound on the call-stack.
Note that summaries can also be reused across different bounds on the call-stack. Despite
the fact that the average number of procedure calls is low from the figure, we can show the
practical advantage of RecMC using these benchmarks, as we show below.

We compared Spacer against the implementation of GPDR in Z3 [15]. GPDR is inspired
by the IC3 hardware model checking algorithm [22] and avoids unrolling the call-graph.
Thus, it creates and checks reachability queries for individual procedures similar to RecMC.
However, it only computes may summaries and because of the lack of must summaries, its
query creation mechanism is quite different from the rule Query. Moreover, it does not use
MBP.

In our experiments, the resource limits were set to 30min of time and 16GB ofmemory, on
an Ubuntu machine with a 2.2 GHz AMD Opteron(TM) Processor 6174 and 516GB RAM.
Figure 10 and 11 show a high level summary of the results in terms of the number of programs
verified by Spacer and Z3. Since there are some programs verified by only one of the tools,
the figures also report the number of programs verified by at least one tool in the third row.
We provide a more detailed discussion of the experimental results in the following. In the
scatter plots shown below, a diamond indicates a time-out and a star indicates a mem-out.

6.1 Boolean program benchmarks

Figure 12 shows the scatter plot of runtimes for Spacer and Z3 for the SLAM benchmarks.
The runtimes of both the tools are within ±5 min for over 98% of the benchmarks. Of the
remaining, Spacer is better on 1 benchmark, Z3 is better on 42 benchmarks which includes
13 benchmarks where Spacer runs out of time. Recall that Z3 utilizes may summaries which
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Fig. 12 Spacer versus Z3 for the Slam benchmarks (with ±5 min boundaries)

Fig. 13 Spacer versus Z3 for the Boolean program in Fig. 1 which is parametric in the number of procedures

heuristically avoid the possible exponential blow-up associatedwith unwinding the call-graph
and as the plot shows, such a heuristic approach can be better than Spacer in some cases.
However, when we compared the tools on the parametric Boolean program from Fig. 1, in
which the size of the unrolled call-tree necessarily grows exponentially in the number of
procedures, Spacer handles the increasing complexity significantly better than Z3, as shown
in Fig. 13.

6.2 SDV Benchmarks

Figure 14 shows the scatter plot of runtimes for Spacer and Z3 for the SDV benchmarks.
Spacer clearly outperforms Z3 including a benchmark where Z3 runs out of time.

6.3 SVCOMP 2014 Benchmarks

We begin with the scatter plot in Fig. 15 for Svcomp-1 encodings. As mentioned above,
Svcomp-1 encodings correspond to while-programs and therefore, do not require must sum-
maries. As the GPDR algorithm also computes may summaries, the plot in Fig. 15 essentially

123



198 Form Methods Syst Des (2016) 48:175–205

Fig. 14 Spacer versus Z3 for the Sdv benchmarks

Fig. 15 The advantage of MBP over Svcomp-1 encodings. As each of these encodings corresponds to a
single procedure, must summaries are not required and MBP is the only key difference between Spacer and
Z3. Axes are logarithmically scaled

shows the advantage of using MBP in creating a new query as opposed to Z3’s variable sub-
stitution based on a given model.5

To understand the effect of must summaries, we also created a version of Spacer that
only infers and utilizes may summaries. We obtained this by modifying Z3 to use MBP in
creating new queries. As shown in Fig. 16, the advantage of using must summaries is quite
significant on Svcomp-2 encodings.

So, a combination ofMBPandmust summaries is expected to result in significant improve-
ments over using may summaries alone. This is shown experimentally in Fig. 17 and 18 for
the Svcomp-2 and Svcomp-3 encodings which show that Spacer is significantly better than
Z3 on most of the programs.

Recall that the rule Query checks the feasibility of a potential counterexample path π

by recursively creating a new reachability query for a procedure R called along π . Due to
our logical representation of a program, one can consider an arbitrary permutation of the

5 Z3 first tries to eliminate existential quantifiers by using equalities with ground terms present in the input
formula and resorts to model substitution otherwise.
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Fig. 16 The advantage of must summaries over Svcomp-2 encodings. Axes are logarithmically scaled

Fig. 17 Spacer versus Z3 for Svcomp-2 encodings. Axes are logarithmically scaled

Fig. 18 Spacer versus Z3 for Svcomp-3 encodings. Axes are logarithmically scaled
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(a)

(b)

Fig. 19 Effect of changing the order of query creation in Query in (a) Spacer and (b) the corresponding
change in Z3, on Svcomp-2 encodings. Axes are logarithmically scaled

conjuncts of π when applying the rule and the choice of the procedure R is not deterministic.
Our current implementation in Spacer can order the conjuncts either in the given order or
in the reversed order and for lack of good heuristics, we do not consider other permutations.
These two orderings correspond to top-down and bottom-up feasibility analyses. In particular,
the plot shown in Fig. 17 corresponds to a bottom-up analysis.

Asmentioned in the beginning, the Svcomp-2 encodings are obtained by taking the while-
program encodings in Svcomp-1 and factoring out maximal loop-free fragments into new
loop-free, recursion-free procedures. Furthermore, as also mentioned in the beginning, loops
are encoded in Svcomp-1 by introducing new predicate symbols that denote loop invariants
and by encoding the corresponding verification conditions. So, a path in a procedure in
the resulting logical encoding (see Sect. 3) contains at most two calls, one corresponding
to an invariant at a control location and the other corresponding to a newly introduced
procedure for a loop-free fragment. Thus, a top-down analysis refines the may summaries
of the new procedures only when necessary, similar to a CEGAR-style reasoning where the
may summaries of the new procedures abstract the loop-free fragments. We call this a lazy
refinement strategy. In contrast, a bottom-up analysis on these encodings corresponds to an
eager refinement strategy which is shown in Fig. 17. Figure 19a shows a scatter plot of
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Fig. 20 Comparison of
Spacer’s behavior on the
encodings Svcomp-1 and
Svcomp-2 of the same SVCOMP
benchmarks. This plot only
includes data for the benchmarks
where Spacer takes more than
5 min on the Svcomp-1
encodings. We use Spacer in the
lazy mode for Svcomp-2
encodings

Fig. 21 Comparison of Spacer’s behavior on the encodings Svcomp-1 and Svcomp-3 of the same SVCOMP
benchmarks

runtimes on Svcomp-2 comparing the behavior of Spacer for the two orderings. While it
is unclear from the figure which ordering is better, Spacer continues to outperform Z3 even
with the lazy strategy, as shown in Fig. 19b.

Finally, as an interesting exercise, we compared the behavior of Spacer on various encod-
ings of the SVCOMP benchmarks. For the comparison of runtimes between Svcomp-2 and
Svcomp-1, we restricted ourselves to the benchmarks where Spacer takes more than 5 min
on the Svcomp-1 encodings and we considered the lazy mode of Spacer for the Svcomp-2
encodings. Note that checking safety of the Svcomp-2 encodings in the lazy mode essen-
tially corresponds to abstract reasoning by inferring sufficient summaries of the loop-free
fragments. So, the rationale behind restricting to this subset of benchmarks is that we can
see how helpful abstraction is on hard benchmarks. Figure 20 shows the runtime comparison
for the benchmarks where we see that there is no clear winner. However, as we saw in an
earlier work [31], abstraction can be quite powerful for SMT-based model checking and we
plan to incorporate those ideas into the framework of RecMC in the future. Then, Fig. 21
shows the runtime comparison for the encoding Svcomp-3 against Svcomp-1. Recall that
Svcomp-3 encodings are obtained by factoring out loops into tail-recursive procedures. In
other words, we are replacing the inference of loop invariants by that of summaries of the
corresponding tail-recursive procedures. Whereas a loop invariant depends on the variables
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in scope, the signature of the corresponding tail-recursive procedure, and hence its summary,
depends on two copies of the variables in scope which denote their values before and after a
loop iteration. As the plot shows, this can negatively affect the performance of verification.

Overall, we have shown significant practical benefits of the core ideas behind RecMC
using our implementation in Spacer and various realistic benchmarks.

7 Related work

There is a large body of work on interprocedural program analysis. It was pointed out early on
that safety verification of recursive programs is reducible to the computation of a fixed-point
over relations representing the input-output behavior of each procedure [9]. Such relations
are also called summaries in the functional approach of Sharir and Pnueli [10]. Reps et al. [8]
showed that for a large class of finite, interprocedural dataflow problems, the summaries can
be computed in time polynomial in the number of dataflow facts and procedures. Ball and
Rajamani [1] adapted the RHS algorithm to the verification of Boolean programs as part of
the SLAM project.

Following SLAM, other software model checkers – such as blast [32] and magic [33] –
also implemented the CEGAR loop with predicate abstraction. These approaches do not use
under-approximating summaries as we do.

In the context of predicate abstraction, the algorithm Smash also combines over- and
under-approximations for analyzing procedural programs [34]. However, the summaries
in Smash can have auxiliary variables which differ from one calling context to another,
restricting the reusability of the summaries.Smash also under-approximates existential quan-
tification in computing the results of thepost andpreoperations, but unlikeRecMC, the under-
approximations are obtained using concrete values encountered during testing of the program.

As mentioned earlier in the paper, several SMT-based algorithms have been proposed for
safety verification of recursive programs, includingWhale [14], HSF [6], Duality [18], Ulti-
mate Automizer [16], and Corral [35]. These algorithms share a similar structure – they use
SMT-solvers to look for counterexamples and interpolation to compute over-approximating
procedure summaries. The algorithms differ in the SMT encoding and the heuristics used.
However, in the worst-case, they completely unroll the call graph into a tree.

The work closest to ours is GPDR [15], which extends the hardware model checking
algorithm IC3 of Bradley [22] to SMT-supported theories and recursive programs. Unlike
RecMC, GPDR does not maintain must-summaries. In the context of Fig. 7, this means
that σu is always empty and there is no Must rule. Instead, the Query rule is modified
to use a model M that satisfies the premises (instead of our use of the entire path π when
creating a query). Furthermore, the reachable queries are cached. In the context of Boolean
programs, this ensures that every query is asked at most once (and either cached or blocked
by a may-summary). Since there are only finitely many models, the algorithm is guaranteed
to terminate. However, in the case of Linear Arithmetic, a formula can have infinitely many
models and GPDR might end up applying the Query rule indefinitely (see Appendix). In
contrast, RecMC creates only finitely many queries for a given bound on the call-stack depth
and is guaranteed to find a counterexample if one exists.

8 Conclusion

We presented RecMC, a new SMT-based algorithm for model checking safety properties of
recursive programs. For programs and properties over decidable theories, RecMC is guar-
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anteed to find a counterexample if one exists. To our knowledge, this is the first SMT-based
algorithmwith such a guarantee while being polynomial for Boolean programs. The key idea
is to use a combination of under- and over-approximations of the semantics of procedures,
avoiding re-exploration of parts of the state-space. We described an efficient instantiation
of RecMC for Linear Arithmetic (over rationals and integers) by introducing Model Based
Projection to under-approximate the expensive quantifier elimination. We have implemented
it in our tool Spacer and shown empirical evidence that it significantly improves on the
state-of-the-art.

In the future, we would like to explore extensions to other theories. Of particular interest
are the theory EUF of uninterpreted functions with equality and the theory of arrays. The
challenge is to deal with the lack of quantifier elimination. Another direction of interest is to
combine RecMC with Proof-based Abstraction [31,36,37] to explore a combination of the
approximations of procedure semantics with transition-relation abstraction.
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A divergence of GPDR for bounded call-stack

Consider the program 〈〈M, L ,G〉, M〉 with procedures M = 〈y0, y, �M , 〈x, n〉, βM 〉, L =
〈n, 〈x, y, i〉, �L , 〈x0, y0, i0〉, βL 〉, G = 〈x0, x1, �G ,∅, βG〉 with the following bodies:

βM = �L(x, y0, n, n) ∧ �G(x, y) ∧ n > 0

βL = (i = 0 ∧ x = 0 ∧ y = 0)∨
(�L(x0, y0, i0, n) ∧ x = x0 + 1 ∧ y = y0 + 1 ∧ i = i0 + 1 ∧ i > 0)

βG = (x = x0 + 1)

The GPDR [15] algorithm can be shown to diverge when checking the bounded safety
problem M |�2 y0 ≤ y, for e.g., by inferring the diverging sequence of over-approximations
of �L�1:

(x < 2 �⇒ y ≤ 1), (x < 3 �⇒ y ≤ 2), . . .

We also observed this behavior experimentally (Z3 revision d548c51 at http://z3.
codeplex.com). The Horn-SMT file for the example is available at http://www.cs.cmu.edu/
~akomurav/projects/spacer/gpdr_diverging.smt2.
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