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Abstract This paper studies the correctness of automated synthesis for concurrent monitors.
We adapt a subset of the Hennessy–Milner logic with recursion (a reformulation of the modal
μ-calculus) to specify safety properties for Erlang programs. We also define an automated
translation from formulas in this sub-logic to concurrent Erlang monitors that detect formula
violations at runtime. Subsequently, we formalise a novel definition for monitor correctness
that incorporates monitor behaviour when instrumented with the program being monitored.
Finally, we devise a sound technique that allows us to prove monitor correctness in stages;
this technique is used to prove the correctness of our automated monitor synthesis.

Keywords Runtime verification · Automated monitor synthesis · Monitor correctness ·
μ-calculus · Concurrency · Actors

1 Introduction

Runtime verification (RV), is a lightweight verification technique that may be used to deter-
mine whether the current system run respects a correctness property. Two requirements are
crucial for the adoption of this technique. First, runtime monitor overheads need to be kept
to a minimum so as not to degrade system performance. Second, instrumented monitors need
to form part of the trusted computing base of the verification setup by adhering to an agreed
notion of monitor correctness; amongst other things, this normally includes a guarantee that
runtime checking corresponds (in some sense) to the property being checked for. Monitor
overheads and correctness are occasionally conflicting concerns. For instance, in order to
lower monitoring overheads, engineers increasingly use concurrent monitors [16,29,35] so
as to benefit from the underlying parallel and distributed architectures. However concurrent
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monitors are also more susceptible to elusive errors such as non-deterministic behaviour,
deadlocks or livelocks which may, in turn, affect their correctness.

Ensuring monitor correctness is, in general, non-trivial. One prominent obstacle is the
fact that system properties are typically specified using one formalism, e.g. a high-level
logic, whereas the respectivemonitors that check these properties are described using another
formalism, e.g. a programming language. This, in turn,makes it hard to ascertain the semantic
correspondence between the two descriptions. Automated monitor synthesis can mitigate this
problem by standardising the translation from the property logic to the monitor formalism.
It also gives more scope for a formal treatment of monitor correctness.

In thiswork, we investigate the correctness of synthesisedmonitors in a concurrent setting,
whereby (i) the system being verified executes concurrently with the synthesised monitor
(i i) the system and the monitor themselves consist of concurrent sub-components. The cor-
rectness of monitor synthesis has been studied previously by the seminal work of Geilen,
[23], and (more formally) by subsequent work such as that of Sen et al. [34], and Bauer
et al. [5]. Our approach differs from these studies in a number of respects. First, the afore-
mentioned work abstracts away from the internal working of a system, representing it as a
string of events/states (execution trace); this complicates reasoning about how monitors are
instrumented wrt. an executing system. It also focusses on a logic that is readily amenable to
runtime analysis, namely linear temporal logic (LTL) [13]. Moreover, it expresses synthesis
in terms of abstract or single-threaded monitors—using either pseudocode [23] or automata
[5,34] —executing wrt. such trace. By contrast, we strive towards a more intensional formal
definition of online correctness for synthesised concurrent monitors whereby, for arbitrary
property ϕ, the synthesised monitor Mϕ running concurrently wrt. some system S (denoted
as S ‖ Mϕ) respects the following condition:

Whenever S ‖ Mϕ executes to some S′ ‖ M ′ then⎛
⎜⎜⎝
If the execution from S to S′ violates ϕ then

M ′ should consistently flag the violation
and

If M ′ flags a violation then the execution from S to S′ should violate ϕ

⎞
⎟⎟⎠ (1)

The setting of (1) brings to the fore additional issues concerning monitor correctness:

(i) A property logic semantics may be defined over other computational entities apart
from traces, i.e. the current execution in (1), such as the entire computational tree of a
program. As a result, the logic semantics may not readily lend itself to the formulation
of monitor correctness outlined in condition (1) above, which only requires monitor
detection whenever a violation occurs. In general, a monitored system that violates a
property according to the original logic semantics, may do so along one computational
path but not along another; this is often the case for concurrent systems with multiple
execution paths as a result of different thread interleavings scheduled at runtime.

(ii) Concurrentmonitorsmay also havemultiple executionpaths.Condition (1) thus requires
stronger guarantees than those for single-threadedmonitors so as to ensure that all these
paths correspond to an appropriate runtime check of system property being monitored.
Statedotherwise, correct concurrentmonitorsmustalways/consistently detect violations
and flag them, irrespective of their runtime interleaving.

(iii) Apart from the formal semantics of the source logic (specifying property ϕ), we also
require a formal semantics for the target languages of both the system and the monitor
executing in side-by-side, i.e. S ‖ Mϕ . In most cases, the latter may not be available.
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(iv) Online monitor correctness needs to ensure that monitor execution cannot be interfered
with by the system, and viceversa. Whereas adequate monitor instrumentation typi-
cally prevents direct interferences, condition (1) must consider indirect interferences
such as system divergences [25,32], i.e. infinite internal looping making the system
unresponsive, which may prevent the monitors from progressing.

(v) Ensuring correctness along the lines of (1) can be quite onerous because every execution
path of themonitor running concurrentlywith themonitored system, S ‖Mϕ , needs to be
analysed to ensure consistent detections along every thread interleaving. Consequently,
one needs to devise scalable techniques facilitating monitor correctness analysis.

We conduct our study in terms of actor-based [26] concurrent monitors written in Erlang
[3,11], an industry-strength language for constructing fault-tolerant systems. To alleviate our
technical development, we also restrict monitoring to systems written in the same language.
We limit ourselves to a logic that describes reactive properties, i.e. system interactions with
the environment, and focus on the synthesis of asynchronous monitors, performing runtime
analysis through the Erlang virtual machine (EVM)’s tracing mechanism. Despite the typical
drawbacks associated with asynchrony, e.g. late detections, our monitoring setup is in line
with the asynchrony advocated by the actor concurrency model, which facilitates scalable
coding techniques such as fail-fast design patterns [11]. Asynchronous monitoring has also
been used in other RV tools, e.g. [14,17], and has proved to be less intrusive and easier
to instrument than synchronous monitoring setups. It is also the more feasible alternative
when monitoring distributed systems [16,20]. More importantly, though, it still allows us
to investigate the main issues arising from the correctness setup outlined in (1), and we
expect most of the issues investigated to carry over in a straightforward fashion to purely
synchronous settings.

As an expository logic for describing reactive properties, we consider an adaptation of
sHML [1]—a syntactic subset of the more expressive μ-calculus logic—describing safety,
i.e. monitorable [28], properties. Our choice for this logic was, in part, motivated by the
fact that the full μ-calculus had already been adapted to describe concurrent Erlang program
behaviour in [22], albeit for model-checking purposes. Given the usual drawbacks associated
with full-blownmodel checking, ourwork contributes towards an investigation of lightweight
verification techniques for μ-calculus properties of Erlang programs. It also allows us to
investigate how to extend runtime verification techniques to logics that were not originally
intended for this verification setup. More precisely, sHML is a syntactic subset of a larger
logic used to specify branching-time properties for concurrent systems [2]; our work can
thus be used as a first step towards a broader investigation of which other subsets of this
branching-time logic can actually be verified at runtime. Crucially, however, sHML acts as
an adequate vehicle to study the monitor correctness issues set out in (1) above.

The rest of the paper is structured as follows. Section 2 discusses the formal semantics
of our systems and monitor target language. Section 3 discusses reformulations to the logic
facilitating the formulation of monitor correctness, discussed later in Sect. 4. Section 5
describes a synthesis algorithm for the logic and a tool built using the algorithm. Subsequently,
Sect. 6 proves the correctness of this monitor synthesis. Section 8 concludes.

2 The language

We require a formal semantics for both our monitor-synthesis target language, and the sys-
tems we intend to monitor. We partially address this problem by expressing both monitors
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Fig. 1 Erlang syntax

and systems in terms of the same language, i.e. Erlang, thus only requiring one semantics.
However, we still need to describe the Erlang tracing semantics we intend to use for our asyn-
chronous monitoring. Although Erlang semantic formalisations exist, e.g. [8,22,36], none
describe this tracing mechanism. We therefore define a calculus—following [22,36]—for
modelling the tracing semantics of a (Turing-complete) subset of the Erlang language (we
leave out distribution, process linking and fault-trapping mechanisms).

Figure 1 outlines the language syntax, assuming disjoint denumerable sets of process/actor
identifiers i, j, h ∈ Pid, atoms a, b ∈ Atom, and variables x, y, z ∈ Var. An executing
Erlang program is made up of a system of actors, Actr, composed in parallel, A ‖ B,
where some identifiers are local (scoped) to subsystems of actors, and thus not known to
the environment, e.g. i in a system A ‖ (ν i)B. Individual actors, denoted as i[e � q]m ,
are uniquely identified by an identifier, i , and consist of an expression, e, executing wrt.
a local mailbox, q (denoted as a list of values); as we explain later, m denotes the actor
monitoring modality. Actor expressions typically consist of a sequence of variable binding
xi = ei , terminated by an expression, efinal:

x1 = e1, . . . , xn = en , efinal

An expression ei in a binding xi = ei , ei+1 is expected to evaluate to a value, v, which is then
bound to xi in the continuation expression ei+1. When instead ei generates an exception,
exit, it aborts subsequent computations1 in ei+k for 1 ≤ k ≤ (n − i). Apart from bindings,
expressions may also consist of self references (to the actor’s own identifier), self, outputs to
other actors, e1!e2, pattern-matching inputs from themailbox, rcv g end, or pattern-matching
for case-branches, case e of g end (where g is a list of expressions guarded by patterns,
pi → ei ), function applications, e1(e2), and actor-spawning, spw e, amongst others. Values
consist of variables, x, process ids, i , recursive functions, μy. λ x .e (where the preceding
μy denotes the binder for function self-reference), tuples {v1, . . . , vn} and lists, l, amongst
others.

Remark 1 The functions fv(A) and fId(A) return the free variables and free process identifiers
of A resp. and are defined in standard fashion. We write λ x.e and d, e for μy.λ x.e and
y= d, e resp. when y �∈ fv(e). In p→ e, we replace x in p with _ whenever x �∈ fv(e). We
use standard shorthand for lists of binders and writeμy. λ(x1, . . . , xn).e and (ν i1, . . . , in) A
resp. forμy.λ x1. . . . λ xn .e and (ν i1) . . . (ν in) A. We sometimes elide mailboxes and write
i[e], when these are empty, i[e � ε], or when they do not change in the transition rules that
follow.

Specific to our formalisation, we also subject each individual actor, i[e � q]m , to a
monitoring-modality, m, n ∈ {◦, •, ∗}, where ◦, • and ∗ denote monitored, unmonitored
and tracing actors resp. Modalities play a crucial role in our language semantics, defined as

1 Due to exit exceptions, variable bindings, x = e, d cannot be encoded as function applications, λ x .d(e).
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a labelled transition system over systems, A
γ−→ B, where actions γ ∈ Actτ , include bound

output labels, (h̃)i !v, and input labels, i?v and a distinguished internal label, τ . In line with
the reactive properties we consider later, our formalisation only traces system interactions
with the environment (send and receive messages) from monitored actors. Thus, whereas
unmonitored, •, and tracing, ∗, actors have standard input and output transition rules

SndU
m ∈ {•, ∗}

j[i !v � q]m i !v−−→ j[v � q]m
RcvU

m ∈ {•, ∗}
i[e � q]m i?v−−→ i[e � q:v]m

actors with a monitored modality, ◦, i.e. actors j and i in rules SndM and RcvM below,
produce a residualmessage reporting the send and receive interactions ({sd, i, v} and {rv, i, v}
resp.) at the tracer’s mailbox i.e. actor h with modality ∗ in the rules below; this models
closely the tracing mechanism offered by the Erlang virtual machine (EVM) [11]. In our
target language, the list of report messages at the tracer’s mailbox constitutes the system
trace to be used for asynchronous monitoring.

SndM
j[i !v � q]◦ ‖ h[d � r ]∗ i !v−−→ j[v � q]◦ ‖ h[d � r :{sd, i, v}]∗

RcvM
i[e � q]◦ ‖ h[d � r ]∗ i?v−−→ i[e � q:v]◦ ‖ h[d � r :{rv, i, v}]∗

Our LTS semantics assumes well-formed actor systems, whereby every actor identifier is
unique; it is termed to be a tracing semantics because a distinguished tracer actor, identified
by the monitoring modality ∗, receives messages recording external communication events

bymonitored actors. Formally, we write A
γ−→ B in lieu of 〈A, γ, B〉 ∈−→, the least ternary

relation satisfying the rules in Fig. 2. These rules employ evaluation contexts, denoted as C
(described below) specifying which sub-expressions are active. For instance, an expression
is only evaluated when at the top level variable binding, x = C, e or when the expression
denoting the destination of an output has evaluated to a value, v!C; the other cases are also
fairly standard.2 We denote the application of a context C to an expression e as C[e].

C : : = [−] | C!e | v!C | C(e) | v(C) | case C of g end | x = C, e | · · ·
Communication in actor systems happens in two stages: an actor receives messages, keeping
them in order in its mailbox, and then selectively reads them at a later stage using pattern-
matching—rules Rd1 and Rd2 describe how mailbox messages are traversed in order to find
the first one matching a pattern in the pattern list g, releasing the respective guarded expres-
sion e as a result. We choose only to record external communication at tracer processes,
i.e. between the system and the environment, and do not trace internally communication
between actors within the system, irrespective of their modality (see Com); structural equiv-
alence rules, A ≡ B, are employed to simplify the presentation of our rules—see rule Str
and the corresponding structural rules. In Par, the side-condition enforces the single-receiver
property, inherent to actor systems; for instance, it prevents a transition with an action j !v
when actor j is part of the actor system B. We note that in rule Spw, spawned actors inherit
monitorability when launched by a monitored actor, but are launched as unmonitored other-
wise.

2 In our formalisation, expressions are not allowed to evaluate under a spawn context, spw [−]; this aspect
differs from standard Erlang semantics but allows a lightweight description of function application spawning.
An adjustment in line with the actual Erlang spawning would be straightforward.
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Fig. 2 Erlang Semantics for Actor Systems

Mailbox reading—defined by the rulesRd1 andRd2 in Fig. 2—includes pattern-matching
functionality, allowing the actor to selectively choose which messages to read first from its
mailbox whenever the first pattern p→ e from the pattern list g is matched, returning eσ ,
where σ substitutes free variables in e for value binding resulting from the pattern-match;
when no pattern is matched, mailbox reading blocks - see Definition 1.

Definition 1 (Pattern-Matching) We define mtch : PLst × Val → Exp⊥ and vmtch :
Pat × Val → Sub⊥ as follows:
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mtch(g, v)
def=

⎧⎪⎨
⎪⎩

eσ if g = p→ e : f, vmtch(p, v) = σ

d if g = p→ e : f, vmtch(p, v) = ⊥,mtch( f, v) = d

⊥ otherwise

vmtch(p, v)
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if p = v (whenever p is a, i or nil)

{v/x} if p = x⊎n
i=1 σi if p = {p1, . . . , pn}, v = {v1, . . . , vn} where

vmtch(pi , vi ) = σi

σ � {l/x} if p = o : x, v = u : l where vmtch(o, u) = σ

⊥ otherwise

σ1 � σ2
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 ∪ σ2 if dom(σ1) ∩ dom(σ2) = ∅
σ1 ∪ σ2 if ∀v ∈ dom(σ1) ∩ dom(σ2).σ1(v) = σ2(v)

⊥ if σ1 = ⊥ or σ2 = ⊥
⊥ otherwise

Branching for mailbox pattern-matching differs from pattern-match branching for the case
construct, described by the rulesCs1 and Cs2 in Fig. 2: similar to the mailbox read construct,
it matches a value to the first appropriate pattern in the pattern list, launching the respective
guarded expression with the appropriate variable bindings resulting from the pattern-match;
if, however, no match is found it generates an exception, exit, which aborts subsequent
computation, Ext. The rest of the transition rules, such as App for function application and
Slf for retreiving the actor name, are fairly standard.

Remark 2 Our tracing semantics sits at a higher level of abstraction than that offered by
the EVM [11] because trace entries typically contain more information. For instance, the
EVM records internal communication between monitored actors, as an output trace entry
immediately followed by the corresponding input trace entry; we here describe sanitised
traces whereby consecutive matching trace entries are filtered out.

Example 1 (Non-deterministic behaviour) Our systems exhibit non-deterministic behaviour
through either internal or external choices [25,30]. Consider the actor system:

A � (ν j1, j2, h)
(
i[rcv x→obs!xend � ε]◦ ‖ j1[i !v]◦ ‖ j2[i !u]◦ ‖ h[e � q]∗ )

Actors j1, j2 and h are local, i.e. scoped through the construct (ν j1, j2, h)(. . .), thus not
visible to the environment. Themonitored actor i may receive value v internally from actor j1,
(2) by rule Com, read it from its mailbox, (3) by Rd1, and then output it to some environment
actor obs, (4) by SndM, while recording this external output at h’s mailbox (the tracer).

A
τ−−−→ (ν j1, j2, h)

(
i[rcv x→obs!xend � v]◦ ‖ j1[v]◦ ‖ j2[i !u]◦ ‖ h[e � q]∗ )

(2)
τ−−−→ (ν j1, j2, h)

(
i[obs!v � ε]◦ ‖ j1[v]◦ ‖ j2[i !u]◦ ‖ h[e � q]∗ )

(3)

obs!v−−−−→ (ν j1, j2, h)
(
i[v � ε]◦ ‖ j1[v] ‖ j2[i !u] ‖ h[e � q : {sd,obs, v}]∗ )

(4)

But if actor j2 sends its value to i before j1, we observe a different external behaviour

A
τ−−→ · τ−−→ · obs!u−−−−→ (ν j1, j2, h)

×(
i[u � ε]◦ ‖ j1[i !v] ‖ j2[u] ‖ h[e � q : {sd,obs, u}]∗ )

123



Form Methods Syst Des (2015) 46:226–261 233

i.e. A eventually outputs u instead of v to obs (accordingly monitor h would hold the entry
{sd,obs, u} instead); these behaviours amount to an internal choice.

External choice results when A receives different external inputs: we can derive

A
i?v1−−−→ B1 � (ν j1, j2, h)

×(
i[rcv x→obs!xend � v1]◦ ‖ j1[i !v]◦ ‖ j2[i !u]◦ ‖ h[e � q : {rv, i, v1}]∗

)

but also A
i?v2−−−→ B2 for some appropriate B2. Subsequently, B1 can only produce the output

B1
τ−→∗ · obs!v1−−−−→ B3 whereas from B2 can only produce B2

τ−→∗ · obs!v2−−−−→ B4. Note that,
in the first case, h’s mailbox in B3 is appended by entries {rv, i, v1} : {sd,obs, v1} whereas,
in the second case, h’s mailbox in B4 is appended by {rv, i, v2} : {sd,obs, v2}. ��
Example 2 (Infinite Behaviour) Our systemsmay exhibit infinite behaviour. Actor A (below)
may produce an infinite number of output actions j !v (for v �= exit ) through repeated
sequences of function applications, (5) by rule App, outputs, (6) by rule SndU and variable
assignments, (7) by rule Ass.

A � i[(μy.λ x .z = j !x , y(z))(v) � q]• τ−−−→ i[z = j !v, (μy.λ x .z′ = j !x , y(z′))(z) � q]•
(5)

j !v−−→ i[z = v,
(
μy.λ x .z′ = j !x , y(z′))(z) � q]•

(6)
τ−−−→ i[(μy.λ x .z′ = j !x , y(z′))(v) � q]• = A

(7)

Systems with infinite behaviour may also transition to a different system with each compu-
tational step. System B (below) is a slight modification to A that delegates the output to a
newly spawned actor at each iteration. Using a similar sequence of transitions to (5), (6) and
(7) together with rule Spwwe are able to obtain the computation below, whereby the number
of actors grow with each iteration.

B � i[(μy.λ x .z = spw j !x , y(x))(v) � q]• ( τ−−→)3· j !v−−→ (ν h)
(
B ‖ h[v � ε]•)

( τ−−→)3· j !v−−→ (ν h, h′)
(
B ‖ h[v � ε]• ‖ h′[v � ε]•) ( τ−−→)3· j !v−−→ . . .

Such infinite behaviour togetherwith the non-deterministic behaviour discussed in Example 1
typically lead to state-explosion problems when systems are verified exhaustively. ��

3 The logic

In order to specify reactive properties for the actor systems discussed in Sect. 2, we consider
an adaptation of SafeHML [1] (sHML), a sub-logic of the Hennessy–Milner Logic (HML)
with recursion—the latter logic has been shown to be a reformulation of the expressive μ-
calculus [27]. It assumes a denumerable set of formula variables, X, Y ∈ LVar, and is
inductively defined by the following grammar:

ϕ,ψ ∈ sHML : : = ff | ϕ∧ψ | [α]ϕ | X | max(X, ϕ)

The formulas for falsity, ff, conjunction, ϕ∧ψ , and action necessity, [α]ϕ, are inherited from
HML[25], whereas variables X and the recursion construct max(X, ϕ) are used to define
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maximal fixpoints; as expected,max(X, ϕ) is a binder for the free variables X in ϕ, inducing
standard notions of open and closed formulas.We only depart from the logic of [1] by limiting
formulas to basic actions α, β ∈ BAct, including just input, i?v, and unbound outputs, i !v,
so as to keep our technical development manageable.

Remark 3 The handling of bound output actions, (h̃)i !v, is well understood [31] and does
not pose problems to monitoring, apart from making action pattern-matching cumbersome
(consult [24] for an example of how bound values can be matched); it also complicates
instrumentation (see Sects. 4 and 5). Certain (silent) τ labels can also be monitored using
minor adaptations (see, for instance, Remark 2); they however increase substantially the size
of the traces recorded, unnecessarily cluttering the tracing semantics of Sect. 2.

The semantics of our logic is defined for closed formulas, using the operation ϕ{ψ/X}, which
substitutes free occurrences of X in ϕ with ψ without introducing any variable capture. It is
specified as the satisfaction relation of Definition 2 (adapted from [1]). In what follows, we

write weak transitions A �⇒ B and A
α�⇒ B, for A

τ−→∗
B and A

τ−→∗ · α−→ · τ−→∗
B resp.

We let s, t ∈ (BAct)∗ range over lists of basic actions and write sequences of weak actions
A

α1�⇒ · · · αn�⇒ B, where s = α1, . . . , αn , as A
s�⇒ B (or as A

s�⇒ when B is unimportant).

Definition 2 (Satisfiability) A relation R ∈ Actr × sHML is a satisfaction relation iff:

(A, ff) ∈ R never

(A, ϕ∧ψ) ∈ R implies (A, ϕ) ∈ R and (A, ψ) ∈ R
(A, [α]ϕ) ∈ R implies (B, ϕ) ∈ R whenever A

α�⇒ B

(A,max(X, ϕ)) ∈ R implies (A, ϕ{max(X, ϕ)/X}) ∈ R
Satisfiability, |�s, is the largest satisfaction relation; we write A |�s ϕ for (A, ϕ) ∈ |�s. It
follows from standard fixed-point theory that the implications of satisfaction relation are
bi-implications for Satisfiability.

Example 3 (Satisfiability) Consider the safety formula

ϕsafe � max(X, [α][α][β]ff∧ [α]X ) (8)

stating that a satisfying actor system should never perform a sequence of two external actions
α followed by the external action β (through the subformula [α][α][β]ff), and that this needs
to hold after every α action (through [α]X ); effectively the formula states that trace sequences
of α-actions greater than two cannot be followed by a β-action.

A system A1 exhibiting just the external behaviour A1
αβ�⇒ satisfies ϕsafe , as would a

system A2 with just the infinite behaviour A2
α�⇒ A2. System A3, with a trace A3

ααβ�⇒, does
not satisfy this property, A3 �|�s ϕsafe , according to Definition 2. However, this system may
be capable of producing other external traces at runtime (e.g. as a result of some internal

choice). In fact, if A3 exhibits the alternate behaviour A3
β�⇒, onewould be unable to observe

any violation from A3 at runtime since the external trace β is allowed by ϕsafe .

Since actors may violate a property along one execution but satisfy it along another, the
inverse of |�s, i.e. A �|�s ϕ, is too coarse to be used for a definition of monitor correctness
along the lines of (1) discussed earlier. We thus define a violation relation, Definition 3,
characterising actors violating a property along a specific execution trace.
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Definition 3 (Violation) The violation relation, denoted as |�v, is the least relation of the
form (Actr × BAct∗ × sHML) satisfying the following rules:

A, s |�v ff always

A, s |�v ϕ∧ψ if A, s |�v ϕ or A, s |�v ψ

A, αs |�v [α]ϕ if A
α�⇒ B and B, s |�v ϕ

A, s |�v max(X, ϕ) if A, s |�v ϕ{max(X, ϕ)/X}
We write A, s |�v ϕ in lieu of (A, s, ϕ) ∈ |�v. It also follows from standard fixed-point
theory that the constraints of the violation relation are bi-implications.

Example 4 (Violation) Recall the safety formula ϕsafe defined in (8). Actor A3, from Exam-
ple 3, together with the witness violating trace ααβ violate ϕsafe , i.e. (A3, ααβ) |�v ϕsafe .
However, A3 together with trace β do not violate ϕsafe , i.e. (A3, β) �|�v ϕsafe . Definition 3
relates a violating trace with an actor only when that trace leads the actor to a violation: if A3

cannot perform the trace αααβ, by Definition 3, we have (A3, αααβ) �|�v ϕsafe , even though
the trace is prohibited by ϕsafe . A violating trace may also lead a system to a violation before
its end, e.g. (A3, ααβα) |�v ϕsafe according to Definition 3. ��

Despite the technical discrepancies between Definition 2 and Definition 3—e.g. the use
of maximal versus minimal fixpoints and a differing model—we show that Definition 3
corresponds, in some sense, to the dual of Definition 2.

Theorem 1 (Correspondence) ∃s.(A, s) |�v ϕ iff A �|�s ϕ

Proof For the if case we prove the contrapositive, i.e. that ∀s.A, s �|�v ϕ implies A |�s ϕ

by co-inductively showing that R = {(A, ϕ) | ∀s.A, s �|�v ϕ} is a satisfaction relation. The
proof is by induction on the structure of ϕ. We outline two cases (see [19] for the rest):

ϕ∧ψ : From the definition of R we know that ∀s.A, s �|�v ϕ∧ψ and, by Definition 3, this
implies that∀s.(A, s �|�v ϕ and A, s �|�v ψ

)
. Distributing the universal quantification

yields ∀s.A, s �|�v ϕ and ∀s.A, s �|�v ψ , and by the definition ofRwe obtain (A, ϕ) ∈
R and (A, ψ) ∈ R, as required for satisfiability relations by Definition 2.

[α]ϕ: From the definition ofRwe know that ∀s.A, s �|�v [α]ϕ. In particular, for all s = αt ,
we know that ∀t.A, αt �|�v [α]ϕ. From Definition 3 it must be the case that whenever
A

α�⇒ B we have that ∀t.B, t �|�v ϕ, which in turn implies that (B, ϕ) ∈ R (from the
definition of R); this is the implication required by Definition 2.

For the only-if case we prove ∃s.A, s |�v ϕ implies A �|�s ϕ by rule induction on
A, s |�v ϕ. Note that A �|�s ϕ means that there does not exist any satisfiability relation
including the pair (A, ϕ). Again we outline the main cases (see [19] for the rest):

A, s |�v [α]ϕ because s = αs′, A α�⇒ B and B, s′ |�v ϕ: By B, s′ |�v ϕ and I.H. we
obtain B �|�s ϕ, and subsequently, by A

α�⇒ B, we conclude that A �|�s [α]ϕ.
A, s |�v max(X, ϕ) because A, s |�v ϕ{max(X, ϕ)/X}: By A, s |�v ϕ{max(X, ϕ)/X} and
I.H. we obtain A �|�s ϕ{max(X, ϕ) / X} which, in turn, implies that A �|�s max(X, ϕ). ��
Definition 3 and Theorem 1 allows us to show that every formula ϕ ∈ sHML denotes a

safety language, as defined in [12,28].3 Informally, this states that whenever we determine

3 Note that we do not show that sHML captures all the safety properties expressible in HMLwith recursion,
and there are infact other formulas that specify safety properties such as tt.
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that A �|�s ϕ along a particular trace s, such a judgement is preserved for all extensions of
that trace. This property, in turn, implies that all formulas in sHML are monitorable [5]. We
formally prove this result in Theorem 2, assuming the standard notion of trace prefixes i.e.
s ≤ t iff ∃.s′ such that t = ss′.
Theorem 2 (Safety Properties and sHML) A, s |�v ϕ and s ≤ t implies A, t |�v ϕ

Proof By rule induction on A, s |�v ϕ. We outline the main cases leaving the rest for [19]:

A, s |�v ϕ∧ψ because A, s |�v ϕ: By A, s |�v ϕ, s ≤ t and I.H. we obtain A, t |�v ϕ

which, by the same rule, implies A, t |�v ϕ∧ψ .
A, s |�v [α]ϕ because s = αs′, A α�⇒ B and B, s′ |�v ϕ: From s = αs′ and s ≤ t we
know that s′ ≤ t ′ for some t ′ where t = αt ′. By s′ ≤ t ′, B, s′ |�v ϕ and I.H. we obtain
B, t ′ |�v ϕ and by A

α�⇒ B and t = αt ′ we derive A, t |�v [α]ϕ. ��

4 Correctness

Specifying online monitor correctness is complicated by the fact that, in general, we have
limited control over the behaviour of the systems being monitored. For starters, a system that
does not satisfy a property may still exhibit runtime behaviour that does not violate it, as
discussed earlier in the case of system A3 of Example 3 and Example 4. We deal with system
non-determinism by only requiring monitor detection when the system performs a violating
execution: this can be expressed through the violation relation of Definition 3.

At runtime, a system may also interfere with the execution of monitors. Appropriate
instrumentation can limit system effects on the monitors. In our asynchronous actor setting,
direct interferences from the system to the monitors can be precluded by (i) locating the
monitors at process identifiers not known to the system (i i) preventing the monitors from
communicating these identifiers to the system. These measures inhibit the system’s ability
to send messages to the monitors.

A system may also interfere with monitor executions indirectly by diverging, i.e. infinite
internal computation (τ -transitions) without external actions. This can prevent the monitors
from progressing during their execution and thus postpone indefinitely violation detections
[32]. In our case, divergence is handled, in part, by the EVM itself, which guarantees fair
executions for concurrent actors [11]. In settings where fair executions may be assumed, it
suffices to require a weaker property for monitors, reminiscent of the condition in fair/should-
testing [33]. Definition 4 states that, for an arbitrary basic action α, an actor system A satisfies
the predicate should-α if, for all sequences of internal actions leading to some system B,
there always exists an execution from B that can produce the action α; in the case of monitors,
the external should-action is set to a reserved violation-detection action, e.g., fail!.
Definition 4 (Should-α) A ⇓α

def= (
A �⇒ B implies B

α�⇒ )

We limit monitoring tomonitorable systems, where all actors are subject to a monitorable
modality, i.e. modality ◦.

A ≡ (ν h̃)
(
i[e � q]m ‖ B

)
implies m = ◦

This guarantees that (i) they can be composedwith a tracer actor (i i) all the basic actions pro-
duced by the system are recorded as trace entries at the tracer’smailbox.4 Monitor correctness

4 Due to asynchronous communication, even scoped actors can produce visible actions by sending messages
to environment actors.
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is defined for (unmonitored) basic systems, satisfying the condition:

A ≡ (ν h̃)
(
i[e � q]m ‖ B

)
implies m = •

which are instrumented to execute in parallel with themonitor. Our instrumentation is defined
through the operation �−�, Definition 5, converting basic systems to monitorable ones using
trace/2 and set_on_spawn Erlang commands [11]; see Lemma 1. Importantly, instru-
mentation does not affect the visible behaviour of a basic system; see Lemma 2.

Definition 5 (Instrumentation) �−� : :Actr → Actr is defined inductively as:

�i[e � q]m� def= i[e � q]◦ �B ‖ C� def= �B� ‖ �C� �(ν i)B� def= (ν i)�B�
Lemma 1 If A is a basic system then �A� is monitorable.
Lemma 2 For all basic actors A where i �∈ fId(A):

A
α−→ Biff

⎧⎪⎪⎨
⎪⎪⎩

(ν i)
(�A� ‖ i[e � q]∗) j !v−−−→ (ν i)

(�B� ‖ i[e � q : {sd, j, v}]∗) if α = j !v
(ν i)

(�A� ‖ i[e � q]∗) j?v−−−→ (ν i)
(�B� ‖ i[e � q : {rv, j, v}]∗) if α= j?v

(ν i)
(�A� ‖ i[e � q]∗) τ−−→ (ν i)

(�B� ‖ i[e � q]∗) if α = τ

We are now in a position to state monitor correctness, for some predefined violation-
detection monitor action fail!, Definition 6; in what follows, fail is always assumed to be
fresh. We restrict our definition to expressions e located at a fresh scoped location i (not
used by the system, i.e. i �∈ fId(A)) with an empty mailbox, ε; expression e may then
spawn concurrent submonitors while executing. The definition can be extended to generic
concurrent monitors, i.e. multiple expressions, in straightforward fashion.

Definition 6 (Correctness) e ∈ Exp is a correct monitor for ϕ ∈ sHML iff for any basic
actors A ∈ Actr, i �∈ fId(A), and execution traces s ∈ (

Act \ {fail!})∗:
(ν i)

(�A� ‖ i[e]∗) s�⇒ B implies
(
A, s |�v ϕ iff B ⇓fail!

)

Definition 6 states that e correctly monitors property ϕ whenever, for any trace of environ-
ment interactions, s, of a monitored system, (ν i)

(�A� ‖ i[e � ε]∗), yielding system B, if s
leads A to a violation of ϕ, then system B should always detect it, and viceversa. It formalises
the definition of monitor correctness outlined earlier in (1) from Sect. 1.

5 Automated monitor synthesis

Wedefine a translation from sHML formulas to Erlangmonitors that asynchronously analyse
a system and flag an alert whenever they detect violations by the current system execution
(for the respective sHML formula). This translation describes the core algorithm for a tool
automating monitor synthesis from sHML formulas [21].

Despite its relative simplicity, sHML still provides opportunities for performing concur-
rent monitoring. The most obvious case is the translation of conjunction formulas, ϕ1∧ϕ2,
whereby the resulting code needs to check both sub-formulas ϕ1 and ϕ2 so as to ensure that
neither is violated; since conjunctions are prevalent in many monitoring logics, we conjec-
ture that the concepts discussed here extend in straightforward fashion to similar runtime
verification settings with asynchronous concurrent monitors. More specifically, a translation
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in terms of two concurrent (sub)monitors, each analysing different parts of the trace so as
to ensure the observation of its respective sub-formula, constitutes a natural synthesis of
the conjunction formula in our target language: it adheres to recommended Erlang practices
advocating for concurrency wherever possible [11], but also allows us to benefit from the
advantages of concurrent monitors discussed in Sect. 1.

Example 5 (Conjunction Formulas) Consider the two sHML formulas

ϕno_dup_ans � [αcall]
(
max(X, [βans] [βans] ff ∧ [βans] [αcall] X)

)

ϕreact_ans � max(Y, [βans] ff ∧ [αcall] [βans] Y )

Formula ϕno_dup_ans requires that call actions αcall are at most serviced by a single answer
action βans, and that this condition is invariant for any sequence of (αcall, βans) pairs. On the
other hand, formula ϕreact_ans requires that answer actions are only produced in response to
call actions; again this is required to be invariant for sequences of (αcall, βans) pairs. Although
one can rephrase the conjunction of the two formulas as a formula without a top-level con-
junction, it is more straightforward to use two concurrent monitors executing in parallel (one
for each sub-formula in ϕno_dup_ans∧ϕreact_ans). There are also other reasons why it would
be beneficial to keep the sub-formulas separate: for instance, keeping the formulas disentan-
gled improves maintainability and separation of concerns when subformulas originate from
distinct requirement specifications.5 ��

Multiple conjunctions also arise indirectly when used under fix-point operators. When
synthesising concurrent monitors analysing separate branches of such recursive properties,
it is important to generate monitors that can dynamic spawn further submonitors themselves
as required at runtime, so as to keep the monitoring overheads to a minimum.

Example 6 (Conjunctions and Fixpoints) Recall ϕsafe , from (8) in Example 3.

ϕsafe � max(X, [α][α][β]ff∧ [α]X )

Semantically, the formula represents the infinite-depth tree with an infinite number of con-
junctions, as depicted in Fig. 3a. Although in practice, we cannot generate an infinite number
of concurrent monitors, ϕsafe will translate into possibly more than two concurrent monitors
executing in parallel. The same applies for the conjunctions used in formulas ϕno_dup_ans and
ϕreact_ans from Example 5. ��

Our monitor synthesis, [[−]]m : :sHML → Exp, given in Definition 7, takes a closed,
guarded6 sHML formula and returns an Erlang function. This function takes a map as an
argument (encoded as a list of tuples from formula variables to other synthesised monitors
of the same form) and releases an expression that performs the monitoring.

The map encodes an environment that maps formula variables to logical formula, intro-
duced by the binding in the construct max(X, ϕ); it is used for lazy recursive unrolling of
formulas so as to minimize monitoring overhead. For instance, when synthesising formula
ϕsafe from Example 3, the algorithm initially spawns only two concurrent submonitors, one
checking for the subformula [α][α][β]ff, and another one checking for the formula [α]X ,
as is depicted in Fig. 3b. Whenever the rightmost submonitor in Fig. 3b observes the action
α and reaches X , it consults its environment and retrieves the respective formula bound to

5 One potential disadvantage of splitting formulas is that of increasing communication amongst monitors.
6 In guarded sHML formulas, variables appear only as a sub-formula of a necessity formula.
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(c)

(a) (b)

Fig. 3 Monitor Combinator generation for ϕsafe of Ex. 3. a Denotation of ϕsafe defined in (8). b Constructed
concurrent monitors for ϕsafe where ϕ = [α][α][β]ff∧[α]X . c First expansion of the constructed monitor for
ϕsafe

123



240 Form Methods Syst Des (2015) 46:226–261

X ; this allows it to unfolds X and spawns an additonal submonitor as depicted in Fig. 3c,
thereby increasing monitor overheads incrementally as needed.

As discussed earlier in Sect. 2, traces are encoded asmessages ordered inside the respective
mailbox of the monitor. Monitoring thus involves reading these messages from the mailbox
in order, analysing them, and determining what action to take. In a system of hierarchically-
organised concurrent monitors, monitor actions can either flag a violation, forward messages
to other sub-monitors, or spawn new monitors.

Definition 7 (Synthesis) [[−]]m is defined on the structure of the sHML formula:

[[ff]]m def= λ xenv.fail!

[[ϕ1∧ϕ2]]m def=

⎧⎪⎨
⎪⎩

λ xenv. ypid1 = spw
([[ϕ1]]m(xenv)

)
,

ypid2 = spw
([[ϕ2]]m(xenv)

)
,

fork(ypid1, ypid2)

[[[α]ϕ]]m def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ xenv.rcv

tr(α) → [[ϕ]]m(xenv);
_ → stop

end

[[max(X, ϕ)]]m def= λ xenv. ymon = [[ϕ]]m, ymon({
′X ′, ymon} : xenv)

[[X ]]m def= λ xenv. ymon = lookUp(′X ′, xenv), ymon(xenv)

Auxiliary function definitions and meta-operators:

fork def= μyrec.λ(xpid1, xpid2).rcv z→ (
xpid1!z, xpid2!z

)
end, yrec(xpid1, xpid2)

lookUp def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μyrec.λ(xvar, xmap).case xmap of ({xvar, zmon} : _) → zmon

_ : ztl → yrec(xvar, ztl)

nil → exit

end

In Definition 7, the synthesised monitor for formula ff immediately reports a violation to
some supervisor actor handling the violation; we assume that the supervisor actor is identified
by the name fail. Conjunction formulas, ϕ1∧ϕ2, translate into the spawning of the respective
monitors for ϕ1 and ϕ2, i.e. the command ypidi = spw

([[ϕi ]]m(xenv)
)
in Definition 7, and the

subsequent forwarding of trace messages to these spawned monitors through the auxiliary
function fork. The translated monitor for [α]ϕ behaves as the monitor translation for ϕ once
it receives a trace message encoding the occurrence of action α, i.e. the guarded expression
tr(α) → [[ϕ]]m(xenv) in Definition 7, which uses the meta-function tr(−) defined below:

tr(i?v)
def= {rv, i, v} tr(i !v)

def= {sd, i, v}

Importantly, the monitor for [α]ϕ terminates if the trace message does not correspond to α,
i.e. the guarded expression _ → stop in Definition 7.

The translations for formulasmax(X, ϕ) and X are best understood together. Themonitor
formax(X, ϕ) behaves like that for ϕ, under the extended environment where X is mapped to
the monitor for ϕ, i.e. the operation {′X ′, ymon} : xenv in Definition 7; this effectively models
the formula unrolling ϕ{max(X, ϕ)/X} from Definition 3. The monitor for X retrieves the
respective monitor translation bound to X in the map using the auxiliary function lookUp,
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and then behaves like the monitor retrieved from the environment; the retrieved monitor is
launched by applying it to the environment itself, i.e. expression ymon(xenv) in Definition 7.
Closed formulas ensure that map entries for the formula variables used are always present
in the respective environment generated, whereas guarded formulas guarantee that formula
variables, X , are guarded by necessity conditions, [α]ϕ; this implements the lazy recursive
unrolling of formulas and prevents infinite bound-variable expansions.

Monitor instrumentation, performed through the function Mon (defined below), spawns
the synthesised function initialised to the empty environment, i.e. a nil list, and then acts as
a message forwarder to the spawned process, through the function mLoop (defined below),
for any trace messages it receives through the tracing semantics discussed in Sect. 2.

Mon def= λ xfrm. zpid = spw
([[xfrm]]m(nil)

)
, mLoop(zpid)

mLoop def= μyrec.λ xpid. rcv zmsg → (
xpid!zmsg

)
end, yrec(xpid)

Example 7 (Synthesised monitor) Recall ϕreact_ans from Example 5:

ϕreact_ans � max(Y, [βans] ff ∧ [αcall] [βans] Y )

According to Definition 7, its respective monitor translation is the one described below.
Once the translated function above is applied to the function Mon (defined above), it

is spawned as a concurrent actor where variable xenv (below) is instantiated to the empty
environment, nil. In turn, the spawned function launches two further concurrent actors that
monitor for the subformulas [βans] ff and [αcall] [βans] Y , binding their respective pIds to
variables ypid1 and ypid2 below. Note that these two actors are instantiated with the extended
environment {′Y ′, eunf} : nil, mapping the formula variable Y to the unfolding function eunf
(labelled below). This function is retrieved and executed by the actor monitoring for the
subformula [αcall] [βans] Y , after reading two consecutive messages from its mailbox of the
form αcall and βans. In this setup, the residual expressions of Mon and [[ϕreact_ans]]m (after
their respective actor spawnings) behave as trace forwarders to the two concurrent actors
monitoring for subformula [βans] ff and subformula [αcall] [βans] Y .
[[ϕreact_ans]]m = [[max(Y, [βans] ff ∧ [αcall] [βans] Y )]] =
λ xenv.

ymon =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ x′
env.

ypid1 = spw⎛
⎜⎜⎝

⎛
⎜⎜⎝

λ x′′
env.

rcv tr(βans) → λ x′′′
env.fail!(x′′

env);
_ → stop

end

⎞
⎟⎟⎠

(
x′
env

)
⎞
⎟⎟⎠ ,

ypid2 = spw⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ zenv.
rcv tr(αcall) →⎛
⎜⎜⎜⎜⎜⎜⎝

λ z′
env.

rcv tr(βans) →
λ z′′

env.

(
ymon = lookUp(′Y ′, z′′

env),
ymon(z

′′
env)

)
(z′

env)

_ → stop
end

⎞
⎟⎟⎟⎟⎟⎟⎠

(zenv) ;

_ → stop
end

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
x′
env

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

fork(ypid1, ypid2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

eunf
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ymon({
′Y ′, ymon} : xenv)

��
5.1 Tool implementation

We have constructed a tool called detectEr [21], that implements the monitor synthesis of
Definition 7: given an sHML formula it generates a monitor that can be instrumented with
minimal changes to the system (actual Erlang code), as discussed earlier in Sect. 4. Despite
not being the main focus of this work, we conducted preliminary empirical experiments eval-
uating the performance of our synthesised monitors. This was carried out using a simulated
server that launches individual workers to handle a series of requests from individual clients;
we also injected faults making certain workers non-deterministically behave erratically. We
synthesisedmonitors to check that eachworker respects the no-duplicate-reply property from
Example 5:

ϕwrkr � [wrk?req] (max(X, [clnt!rply] [clnt!rply] ff ∧ [clnt!rply] [wrk?req] X)
)

and calculated the overheads incurred for varying number of client requests (i.e. concurrent
workers); we also compared this with the performance amonitor that checks for property vio-
lations in sequential fashion. Tests were carried out on an Intel Core i7 processor with 8GB of
RAM, running Microsoft Windows 8 and EVM version R15B02. The results, summarised in
the table below, show that our synthesised concurrentmonitoring yields acceptable overheads
that are consistently lower than those of a sequential monitor.We conjecture that this discrep-
ancy can be increased further when monitoring for recursive properties with longer chains
of necessity formulas. For more extensive empirical results relating to the tool detectEr, see
[9].

No. of reqs. Unmonitored Sequential Concurrent

Time (μs) Time (μs) Ovhd (%) Time (μs) Ovhd. (%) Improv. (%)
250 117.813 121.667 3.27 118.293 0.40 2.86

350 185.232 202.500 9.32 194.793 5.16 4.16

450 237.606 248.333 4.51 242.380 2.01 2.51

550 286.461 319.167 11.42 308.853 7.82 3.60

650 345.543 372.232 7.72 354.333 2.54 5.18

6 Proving correctness

The preliminary results obtained in Sect. 5 advocate for the feasibility of using concurrent
monitors.Wehowever still need to show that themonitors synthesised are correct.Definition 6
allows us to state one of the main results of the paper, Theorem 3.

Theorem 3 (Correctness) For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proving Theorem 3 directly can be an arduous task: for any sHML formula, it requires
reasoning about all the possible execution paths of anymonitored system in parallel with the
instrumented monitor. We propose a formal technique for alleviating the task of ascertaining
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the monitor correctness of Definition 6 by teasing apart three separate (weaker) monitor-
conditions: they are referred to asViolationDetectability,DetectionPreservation andMonitor
Separability.

These conditions are important properties in their own right—for instance, detection
preservation requires the monitor to behave deterministically wrt. violation detections,
whereas Monitor Separability requires that the monitor computation does not affect the
execution of the monitored system. Moreover, the three conditions pose advantages to the
checking of monitor correctness: since these conditions are independent to one another, they
can be checked in parallel by distinct analysing entities; alternatively, the conditions that
are inexpensive to check may be carried out before the more expensive ones, thus acting as
vetting phases that abort early and keep the analysis cost to a minimum. More importantly
though, the three conditions together imply our original monitor-correctness criteria.

The first sub-property is Violation Detectability, Lemma 3, guaranteeing that every vio-
lating trace s of formula ϕ is detectable by the respective synthesised monitor,7 (the only-if
case) and that there are no false detections (the if case). This property is easier to verify than
Theorem 3 since it requires us to consider the execution of the monitor in isolation and, more
importantly, requires us to verify the existence of an execution path that detects the violation;
concurrent monitors typically have multiple execution paths and Theorem 3 requires us to
prove this property for all of the possible monitor execution paths.

Lemma 3 (Violation Detectability) For basic A ∈ Actr and i �∈ fId(A), A
s�⇒ implies:

A, s |�v ϕ iff i[Mon(ϕ) � tr(s)]∗ fail!�⇒
Detection preservation (Lemma 4), the second sub-property, is not concernedwith relating

detections to the violations specified by our logic semantics, A, s |�v ϕ. Instead it guarantees
that if a monitor can potentially detect a violation, further reductions do not exclude the pos-
sibility of this detection. In the case where monitors always have a finite reduction wrt. their
mailbox contents (as it turns out to be the case for monitors synthesised by Definition 7) this
condition guarantees that themonitor will detect violations deterministically.More generally,
however, in a setting that guarantees fair actor executions, Lemma 4 ensures that detection
will always eventually occur, even when monitors execute in parallel with other, potentially
divergent, systems.

Lemma 4 (Detection Preservation) For all ϕ ∈ sHML, q ∈ Val∗
(
i[Mon(ϕ) � q]∗ fail!�⇒ and i[Mon(ϕ) � q]∗ �⇒ B

)
implies B

fail!�⇒

The third sub-property is Separability, Lemma 5, which implies that the behaviour of a
(monitored) system is independent of the monitor and, dually, the behaviour of the monitor
depends, at most, on the trace generated by the system.

Lemma 5 (Monitor Separability) For all basic A ∈ Actr, i �∈ fId(A), ϕ ∈ sHML, and
s ∈ (

Act \ {fail!})∗,
(ν i)

(�A� ‖ i[Mon(ϕ)]∗) s�⇒ B implies ∃B ′, B ′′s.t.

B ≡ (ν i)
(
B ′ ‖ B ′′) and A

s�⇒ A′ s.t. B ′ = �A′� and i[Mon(ϕ) � tr(s)]∗ �⇒ B ′′

7 We elevate tr to basic action sequences s in pointwise fashion, tr(s), where tr(ε) = ε.
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These three properties suffice to show monitor correctness.

Theorem 3 (Correctness). For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proof According to Definition 6 we have to show:

(ν i)
(�A� ‖ i[Mon(ϕ)]∗) s�⇒ B implies

(
A, s |�v ϕ iff B ⇓fail!

)

We assume that (ν i)
(�A� ‖ i[Mon(ϕ)]∗) s�⇒ B holds and consider the two sides of the

bi-implication separately. For the only-if case, we assume

(ν i)
(
A ‖ i[Mon(ϕ)]∗) s�⇒ B (9)

A, s |�v ϕ (10)

In order to show B ⇓fail!, we use Definition 4 (Should-α) to expand B ⇓fail!. We thus also

assume B �⇒ B ′, for arbitrary B ′, and then be required to prove that B ′ fail!�⇒. From (9),
B �⇒ B ′ and Lemma 5 (Monitor Separability) we know

∃B ′′, B ′′′s.t. B ′ ≡ (ν i)
(
B ′′ ‖ B ′′′) (11)

A
s�⇒ A′ for some A′ where �A′� = B ′′ (12)

i[Mon(ϕ) � tr(s)]∗ �⇒ B ′′′ (13)

From (12), (10) and Lemma 3 (Violation Detectability) we obtain

i[Mon(ϕ) � tr(s)]∗ fail!�⇒ (14)

and from (13) , (14) and Lemma 4 (Detection Preservation) we get B ′′′ fail!�⇒. Hence, by (11),
and standard transition rules for parallel composition and scoping, Par and Scp, we can

reconstruct B ′ fail!�⇒, as required.
For the if case we assume:

(ν i)
(�A� ‖ i[Mon(ϕ)]∗) s�⇒ B (15)

B ⇓fail! (16)

and have to prove A, s |�v ϕ. From (16) we know B
fail!�⇒. Together with (15), this implies that

there exists a sequence of reductions (τ -transitions) from (ν i)
(�A� ‖ i[Mon(ϕ)]∗) leading

to a (monitored) system that flags a violation:

∃B ′ s.t. (ν i)
(�A� ‖ i[Mon(ϕ)]∗) s�⇒ B ′ fail!−−→ (17)

From Lemma 5 (Monitor Separability) and (17) we obtain

∃B ′′, B ′′′s.t. B ′ = (ν i)
(
B ′′ ‖ B ′′′) (18)

A
s�⇒ A′ for some A′ where �A′� = B ′′ (19)

i[Mon(ϕ) � tr(s)]∗ �⇒ B ′′′ (20)

From (17), (18) and the assumption that action fail! is fresh to A, we deduce that it can only
be B ′′′ that is capable of flagging the violation:

B ′′′ fail!−→. (21)
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Thus, by (20) and (21), we get

i[Mon(ϕ) � tr(s)] fail!�⇒ (22)

Therefore, by (19) , (22) and Lemma 3 (Violation Detectability) we obtain A, s |�v ϕ. ��

7 Proving the monitor sub-properties

The proof of monitor correctness given in Sect. 6 hinges on the three monitor sub-properties
discussed in the same section. We now consider the proofs for these three monitor properties
for the monitor synthesis presented in Sect. 5. In what follows, we assume that the tracer, i.e.
where the synthesised monitor is placed in the instrumentation of Definition 6, is located at
the process identifier imtr. Moreover sequences of identifiers are denoted as h̃; for instance,
(ν j̃)A is used to denote the system (ν j1) . . . (ν jn)A whenever the scoped identifiers are
unimportant.

These proofs rely on an encoding of formula substitutions, θ : :LVar ⇀ sHML, partial
maps from formula variables to (possibly open) formulas, to lists of tuples containing a
string representation of the variable and the respective monitor translation of the formula as
defined in Definition 7. Formula substitutions are denoted as lists of individual substitutions,
{ϕ1/X1} . . . {ϕn/Xn} where every Xi is distinct, and empty substitutions are denoted as ε.

Definition 8 (Formula Substitution Encoding)

enc(θ)
def=

{
nil when θ = ε

{′X ′, [[ϕ]]m} : enc(θ ′) if θ = {max(X, ϕ)/X}θ ′

Our monitor lookup function of Definition 7 models variable substitution, Lemma 6. We
can also show that different representations of the same formula substitution do not affect the
outcome of the execution of lookUp on the respective encoding, Lemma 7, which justifies
the abuse of notation that assume a unique representation of a formula substitution.

Lemma 6 If θ(X) = ϕ then i[lookUp(′X ′, enc(θ)) � q]m �⇒ i[[[ϕ]]m � q]m
Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ . The base case, i.e.
when we have zero mappings, is trivial since it contradicts the left side of the implication.
The inductive case has two subcases and follows from the pattern-matching branches of the
lookUp code, defined in Definition 7. ��
Lemma 7 If θ(X) = ϕ then i[lookUp(′X ′, enc(θ ′)) � q]m �⇒ i[[[ϕ]]m � q]m whenever
θ and θ ′ denote the same substitution.

Proof By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ , analogously to the
proof for Lemma 6. ��

Our proofs use another technical result, Lemma 8, stating that silent actions are, in some
sense, preserved when actor-mailbox contents of a free actor are increased; note that the
lemma only applies for cases where the mailbox at this free actor decreases in size or remains
unaffected by the τ -action, specified through the sublist condition q ′ ≤ q .

Lemma 8 (Mailbox Increase) (ν h̃)(i[e � q]m ‖ A)
τ−−→ (ν j̃)(i[e′ � q ′]m ‖ B) where

i �∈ h̃ and q ′ ≤ q implies (ν h̃)(i[e � q : v]m ‖ A)
τ−−→ (ν j̃)(i[e′ � q ′ : v]m ‖ B)

Proof By rule induction on (ν h̃)(i[e � q]m ‖ A)
τ−−→ (ν j̃)(i[e′ � q ′]m ‖ B). ��
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7.1 Violation detection

In one direction, Lemma 3 (Violation Detection) from Sect. 6 relies on Lemma 13 (see
AppendixA.1) in order to establish the correspondence between violations and the possibility
of detections. In the other direction, Lemma 3 relies on Lemma 16 (see Appendix A.1), which
establishes a correspondence between violation detections and actual violations, as stated in
Definition 3. We recall that Lemma 3 was stated wrt. closed sHML formulas.

Lemma 3 (Violation Detection). Whenever A
s�⇒ then :

A, s |�v ϕ i f f imtr[Mon(ϕ) � tr(s)]∗ fail!�⇒
Proof For the only-if case, we assume A

s�⇒ and A, s |�v ϕ and are required to prove

imtr[Mon(ϕ) � tr(s)]∗ fail!�⇒. We recall from Sect. 5 that Mon was defined as

λ xfrm.zpid = spw
([[xfrm]]m(nil)

)
, mLoop(zpid). (23)

and as a result we can deduce (using rules such as App, Spw and Par) that

imtr[Mon(ϕ) � tr(s)]∗ �⇒(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(nil)]•) (24)

Assumption A, s |�v ϕ can be rewritten as A, s |�v ϕθ for θ = ε, and thus, by Definition 8
we know nil = enc(θ). By Lemma 13 we obtain

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(nil)]•) fail!�⇒ (25)

and the result thus follows from (24) and (25).

For the if case, we assume A
s�⇒ and imtr[Mon(ϕ) � tr(s)]∗ fail!�⇒ and are required to prove

A, s |�v ϕ.
Since ϕ is closed, we can assume the empty list of substitutions θ = ε where, by default,

fv(ϕ) ⊆ dom(θ) and, by Definition 8, nil = enc(θ). By (23) we can decompose the transition

sequence imtr[Mon(ϕ) � tr(s)]∗ fail!�⇒ as

imtr[Mon(ϕ) � tr(s)]∗( τ−−→)3(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(nil)]•) fail!�⇒ (26)

The result, i.e. A, s |�v ϕ, follows from (26) and Lemma 16. ��
7.2 Detection preservation

In order to prove Lemma 4 from Sect. 6, we are able to require a stronger guarantee, i.e.
confluence (Definition 9) under weak transitions for the concurrent monitors described in
Definition 7; this is formalised as Lemma 18 in Appendix A.2.

Definition 9 (Confluence modulo Inputs with Identical Recipients)

cnf(A)
def= A

γ1−→ A′ and A
γ2−→ A′′ implies

⎧⎪⎨
⎪⎩

γ1 = i?v1, γ2 = i?v2 or;

γ1 = γ2, A′ = A′′ or;

A′ γ2−→ A′′′, A′′ γ1−→ A′′′ for some A′′′

In Definition 9, a system is deemed confluent if, whenever it can perform two separate
actions γ1 and γ2 that are not input actions at the same actor, both residual systems can resp.
still perform the other action to reach the same system.

Lemma 18 (Appendix A.2) allows us to prove Lemma 9, and subsequently Lemma 10;
the latter Lemma implies Detection Preservation, Lemma 4, used by Theorem 3 of Sect. 6.
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Lemma 9 For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) � q]∗ �⇒ A, A
fail!�⇒ and A

τ−→ B implies B
fail!�⇒

Proof From imtr[Mon(ϕ) � q]∗ �⇒ A and Lemma 18 we know that cnf(A). The proof is

by induction on A(
τ−−→)n · fail!−−→.

n = 0: Wehave A
fail!−−→ A′ (for some A′). By A τ−→ B and cnf(A)weobtain B

fail!−−→ B ′
for some B ′ where A′ τ−→ B ′.

n = k + 1: We have A
τ−−→ A′( τ−−→)k · fail!−−→ (for some A′). By A

τ−→ A′, A τ−→ B and
cnf(A)weeither know that B = A′, inwhich case the result follows immediately,
or else obtain

B
τ−→ A′′ (27)

A′ τ−→ A′′ for some A′′ (28)

In such a case, by A
τ−−→ A′ and imtr[Mon(ϕ) � q]∗ �⇒ A we deduce that

imtr[Mon(ϕ) � q]∗ �⇒ A′,

and subsequently, by (28), A′( τ−−→)k · fail!−−→ and I.H. we obtain A′′ fail!�⇒; the
required result then follows from (27). ��

Lemma 10 (Detection Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) � q]∗ �⇒ A, A
fail!�⇒ and A�⇒ B implies B

fail!�⇒

Proof By induction on A(
τ−−→)n B and Lemma 9. ��

We are now in a position to prove Lemma 4 of Sect. 6.

Lemma 4 (Detection Preservation). For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) � q]∗ fail!�⇒ and imtr[Mon(ϕ) � q]∗ �⇒ B implies B
fail!�⇒

Proof From Lemma 10, for the case where imtr[Mon(ϕ) � q]∗ �⇒ imtr[Mon(ϕ) � q]∗. ��
7.3 Monitor separability

For the proof for Lemma 5 of Sect. 6, we make use of Lemma 2, relating the behaviour of
a monitored system to the same system when unmonitored, Lemma 8 delineating behaviour
preservation after extendingmailbox contents at specific actors, andLemma11 (AppendixA),
so as to reason about the structure and generic behaviour of synthesised monitors.

Lemma 5 (Monitor Separability). For all basic actors ϕ ∈ sHML, A ∈ Actr where imtris
fresh to A, and s ∈ (

Act \ {fail!})∗,

(ν imtr)
(�A� ‖ imtr[Mon(ϕ)]∗) s�⇒ B implies ∃B ′, B ′′s.t.

⎧⎪⎨
⎪⎩

B ≡ (ν imtr)
(
B ′ ‖ B ′′)

A
s�⇒ A′ s.t. B ′ = �A′�

imtr[Mon(ϕ) � tr(s)]∗ �⇒ B ′′
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Proof By induction on n in (ν imtr)
(�A� ‖ imtr[Mon(ϕ)]∗)( γn−−→ )n B, the length of the

sequence of actions:

n = 0: Since s = ε and A = (ν imtr)
(�A� ‖ imtr[Mon(ϕ)]∗), the conditions hold

trivially.

n = k + 1: We have (ν imtr)
(�A� ‖ imtr[Mon(ϕ)]∗)( γk−−→ )kC

γ−→ B. By I.H. we know
that

C ≡ (ν imtr)
(
C ′ ‖ C ′′) (29)

A
t�⇒ A′′ s.t. C ′ = �A′′� (30)

imtr[Mon(ϕ) � tr(t)]∗ �⇒C ′′ (31)

γ = τ implies t = s and γ = α implies tα = s (32)

and by (31) and Lemma 11 we know that

C ′′ ≡ (ν h)
(
imtr[e � q]∗ ‖ C ′′′) (33)

fId(C ′′) = {imtr} (34)

We proceed by considering the two possible subcases for the structure of γ :

γ = α: By (32) we know that s = tα. By (34) and (33), it must be the case that C ≡
(ν imtr)

(
C ′ ‖ C ′′) α−→ B happens because

for some B ′ C ′ α−→ B ′ (35)

B ≡ (ν imtr)
(
B ′ ‖ (ν h)

(
imtr[e � q : tr(α)]∗ ‖ C ′′′)) (36)

By (35), (30) and Lemma 2 we know that ∃A′ such that �A′� = B ′ and that
A′′ α−→ A′. Thus by (30) and s = tα we obtain

A
s�⇒ A′ s.t. B ′ = �A′�

By (31), (33) and repeated applications of Lemma 8 we also know that

imtr[Mon(ϕ) � tr(t) : tr(α)]∗ = imtr[Mon(ϕ) � tr(s)]∗ �⇒
(ν h)

(
imtr[e � q : tr(α)]∗ ‖ C ′′′) = B ′′

The result then follows from (36).
γ = τ : Analogous to the other case, where we also have the case that the reduction is

instigated by C ′′, in which case the results follows immediately. ��

8 Conclusion

Wehave studied amore intensional notion of correctness formonitor synthesis in a concurrent
online setting; we worked close to the actual implementation level of abstraction so as to
enhance our confidence in the correctness of our instrumented monitors. More precisely, we
have identified a number of additional issues raised when proving monitor correctness in this
concurrent setting, and built a tool [21], automatingmonitor synthesis froma reactive property
logic (sHML) to asynchronous monitors in a concurrent language (Erlang), illustrating these
issues. The specific contributions of the paper, in order of importance, are:
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1. A novel formal definition of monitor correctness, Definition 6, dealing with issues such
as system non-determinism and system interference.

2. A proof technique teasing apart aspects of the monitor correctness definition, Lemma 3,
Lemma 4 and Lemma 5, allowing us to prove correctness in stages. We subsequently
apply this technique to prove the correctness of our tool, Theorem 3.

3. An alternative violation characterisation of the logic, sHML, that is more amenable
to runtime analysis and reasoning about monitor correctness, together with a proof of
correspondence for this reformulation, Theorem 1.

4. An extension of a formalisation for Erlang describing its tracing semantics, Sect. 2.
5. A formal monitor synthesis definition from sHML formulas to Erlang code, Definition 7.

8.1 Related work

The aforementioned work, [5,23,34], discusses monitor synthesis from a different logic,
namely LTL, to either pseudocode, automata or Büchi automata; none of this work considers
online concurrent monitoring, circumventing issues associated with concurrency and system
interference. There is considerable work on runtime monitoring of web services, e.g. [7,18]
verifying the correctness of reactive (communication) properties, similar to those expressed
through sHML; to the best of our knowledge, none of this work tackles correct monitor
synthesis from a specified logic. In [14], Colombo et al. develop an Erlang RV tool using
the EVM tracing mechanism but do not consider the issue of correct monitor generation.
Fredlund [22] adapted a variant of HML to specify correctness properties in Erlang, albeit
for model checking purposes.

There is also work relating HML formulas with tests, namely [1], but also [10]. Our
monitors differ from tests, as in [1], in a number of ways: (i) they are defined in terms
of concurrent actors, as opposed to sequential CCS processes; (i i) they analyse systems
asynchronously, acting on traces, whereas tests interact with the system directly, forcing
certain system behaviour; (i i i) they are expected to always detect violations when they
occur whereas tests are only required to have one possible execution that detects violations.

In recent work, Bocchi et al. [6] studied monitors that enforce multi-party session types
at runtime for high-level specifications of message-passing programs, expressed using a dis-
tributed π-calculus. Their methodology differs from ours in a number of ways. In particular,
(i) they give a direct operational semantics to their session specifications in terms of an LTS,
which allows them to interact directly with the processes that they monitor; by contrast, we
synthesise monitors from our specification formulas as programs in the host language, and
focus on proving the correctness of this synthesis; (i i) the parallelisation criteria for their
session projections is based on the participants being monitored whereas we parallelise on
the basis of the structure of the formula, namely across formula conjunctions; (i i i) they work
at the level of an abstract model, namely a distributed π-calculus, whereas we work at a level
of abstraction that is close to actual Erlang code that can be compiled and executed.

There is other work on the decomposition of monitor synthesis. In [4], they synthesise
a dedicated monitor from an LTL specification for each synchronous component executing
in a system, thereby localising monitoring to a component level. By contrast, our monitor
synthesis is agnostic to the internal structure of the monitored system, and decomposition is
purely based on the structure of the correctness formulas. In [35], they define a distributed
logic for specifying correctness properties of distributed systems and provide a distributed
monitor synthesis algorithm for the logic, implemented as actor-based tool called DiAna.
Their setting is however different from ours: their systems do not assume a global clock
and monitoring work over partially ordered traces (one for each location). Monitoring in the
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absence of global clocks is also considered in [20], where they develop bisimulation-based
coinductive techniques to reason about monitored systems. Crucially, none of these works
considers issues relating to the correctness of monitor synthesis studied in this paper.

8.2 Future work

Themonitoring semantics of Sect. 2 can be used as a basis to prove the correctness of existing
Erlang monitoring tools such as [14,15]. sHML can also be extended to handle limited,
monitorable forms of liveness properties (often termed co-safety properties [28]); the work
carried out in [10] provides an ideal starting point. It is also worth exploring mechanisms for
synchronous monitoring, as opposed to asynchronous variant studied in this paper. Erlang
also facilitatesmonitor distributionwhich can be used to lowermonitoring overheads [16,35].
Distributedmonitoring can also be used to increase the expressivity of our tool so as to handle
correctness properties for distributed programs. However, this poses a departure from our
setting because the unique trace described by our framework would be replaced by separate
independent traces at each location, where the lack of a total ordering of events may prohibit
the detection of certain violations [20].

Acknowledgments The research work disclosed in this publication is partially funded by the Strategic
Educational Pathways Scholarship Scheme (Malta). The scholarship is part nanced by the European Union
European Social Fund.

A Auxiliary proofs

For the proofs in Sect. 7, we find it convenient to prove a technical result, Lemma 11,
identifying the possible structures a monitor can be in after an arbitrary number of silent
actions; the lemma also establishes that the only possible external action that a synthesised
monitors can perform is the fail action: this property helps us to reason about the possible
interactions that concurrent monitors may engage in.

Lemma 11 (Monitor Transitions and Structure) For all ϕ ∈ sHML, q∈(Val)∗, θ : :
LVar ⇀ sHML, if i[[[ϕ]]m(enc(θ)) � q]•(−→)n A then

1. A
α−−→ B implies α = fail! and;

2. A has the form i[[[ϕ]]m(enc(θ)) � q]• or, depending on ϕ:

ϕ = ff: A ≡ i[fail! � q]• or A ≡ i[fail � q]•
ϕ = [α]ψ: A ≡ i[rcv (tr(α)→ [[ψ]]m(enc(θ)) ; _→ok) end � q]• or(

A ≡ B where i[[[ψ]]m(enc(θ)) � r ]•( τ−→)k B for some k < n and q = tr(α) : r)
or
A ≡ i[ok � r ]• where q = u : r

ϕ = ϕ1∧ϕ2: A ≡ i

[
y1 = spw

([[ϕ1]]m(enc(θ))
)
,

y2 = spw
([[ϕ2]]m(enc(θ))

)
, fork(y1, y2)

� q

]•

or
A ≡ (ν j1)

(
i[e � q]• ‖ (ν h̃1)( j1[e1 � q1]• ‖ B)

)
where

−e is y1 = j1, y2 = spw
([[ϕ2]]m(enc(θ))

)
, fork(y1, y2) or

y2 = spw ([[ϕ2]]m(enc(θ))) , fork( j1, y2)
− j1[[[ϕ1]]m(enc(θ))]• (

τ−→)k (ν h̃1)( j1[e1 � q1]• ‖ B) for some k < n
or
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A ≡ (ν j1, j2)

(
i[y2 = j2, fork( j1, y2) � q]•
‖ (ν h̃1)( j1[e1 � q1]• ‖ B) ‖ (ν h̃2)( j2[e2 � q2]• ‖ C)

)

where
− j1[[[ϕ1]]m(enc(θ))]• (

τ−→)k (ν h̃1)( j1[e1 � q1]• ‖ B) for some k < n

− j2[[[ϕ2]]m(enc(θ))]• (
τ−→)l (ν h̃2)( j2[e2 � q2]• ‖ C) for some l < n

or
A≡(ν j1, j2)

(
i[e � r ]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B) ‖ (ν h̃2)( j2[e2 � q ′
2]• ‖C)

)
where

−e is either fork( j1, j2) or
(
rcv z→ j1!z, j2!z end, fork( j1, j2)

)
or j1!u, i2!u, fork( j1, j2) or j2!u, fork( j1, j2)

− j1[[[ϕ1]]m(enc(θ)) � q1]• (
τ−→)k (ν h̃1)( j1[e1 � q ′

1]• ‖ B) for k < n, q1 < q

− j2[[[ϕ2]]m(enc(θ)) � q2]• (
τ−→)l (ν h̃2)( j2[e2 � q ′

2]• ‖ C) for l < n, q2 < q
ϕ = X: A ≡ i[y = lookUp(′X ′, enc(θ ′)), y(enc(θ)) � q]• where θ ′ < θ or

A ≡ i

⎡
⎢⎢⎢⎣y =

⎛
⎜⎜⎜⎝

case enc(θ ′) of {′X ′, zmon} : _→ zmon;
_ : ztl → lookUp(′X ′, ztl);
nil→exit;

end

⎞
⎟⎟⎟⎠ , y(enc(θ)) � q

⎤
⎥⎥⎥⎦

•

where θ ′ < θ , or
A ≡ B where
−i[y = [[ψ]]m, y(enc(θ)) � q]• (

τ−→)k B
−θ(X) = ψ or A ≡ i[y =exit, y(enc(θ)) � q]• or A ≡ i[exit � q]•

ϕ = max(X, ψ): A ≡ B where i[[[ψ]]m({′X ′, [[ψ]]m} : enc(θ)) � q]•( τ−→)k B
for k < n.

Proof The proof is by strong induction on i[[[ϕ]]m(lenv) � q]•( τ−→)n A. The inductive case
involves a long and tedious list of case analysis exhausting all possibilities. ��
A.1 Proofs for establishing violation detection

Lemma 13 uses Lemma 12 which relates possible detections by monitors synthesised from
subformulas to possible detections by monitors synthesised from conjunctions using these
subformulas.

Lemma 12 For an arbitrary θ , (ν i)
(
imtr[mLoop( j1) � tr(s)]∗ ‖ i[[[ϕ1]]m(enc(θ))]•) fail!�⇒

implies (ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ1∧ϕ2]]m(enc(θ))]•) fail!�⇒ for any ϕ2 ∈ sHML.

Proof By Definition 7, we know that we can derive the sequence of reductions

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ1∧ϕ2]]m(enc(θ))]•)�⇒

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ (ν j, h)

(
i[fork( j, h)]• ‖ j[[[ϕ1]]m(enc(θ))]• ‖ h[[[ϕ2]]m(enc(θ))]•))

We then prove, by induction on the structure of s, the following (see [19] for details):

(ν i)
(
imtr[mLoop(i) � tr(s)]• ‖ i[[[ϕ1]]m(enc(θ)) � q]•) fail!�⇒ implies

(ν i)

(
imtr[mLoop(i) � tr(s)]∗ ‖
(ν j, h)

(
i[fork( j, h)]• ‖ j[[[ϕ1]]m(enc(θ)) � q]• ‖ h[[[ϕ2]]m(enc(θ)) � q]•)

)
fail!�⇒

��
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Lemma 13 If A, s |�v ϕθ and lenv = enc(θ) then

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(lenv)]•

) fail!�⇒ .

Proof Proof by rule induction on A, s |�v ϕθ :

A, s |�v ffθ : Using Definition 7 for the definition of [[ff]]m and the rule App (and Par and
Scp), we have

(ν i)(imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ff]]m(lenv)]•)
�⇒(ν i)(imtr[mLoop(i) � tr(s)]∗ ‖ i[fail!]•)

The result follows trivially, since the process i can transition with a fail! action in a single
step using the rule SndU.
A, s |�v (ϕ1∧ϕ2)θ because A, s |�v ϕ1θ : By A, s |�v ϕ1θ and I.H. we have

(ν i)(imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ1]]m(lenv)]•) fail!�⇒
The result thus follows from Lemma 12, which allows us to conclude that

(ν i)(imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ1∧ϕ2]]m(lenv)]•) fail!�⇒
A, s |�v (ϕ1∧ϕ2)θ because A, s |�v ϕ2θ : Analogous.
A, s |�v ([α]ϕ)θ because s = αt, A

α�⇒ B and B, t |�v ϕθ : Using the rule App Scp and
Definition 7 for the property [α]ϕ we derive (37), by executing mLoop— see Definition 7
— we obtain (38), and then by rule Rd1 we derive (39) below.

(ν i)
(
imtr[mLoop(i) � tr(αt)]∗ ‖ i[[[ϕ]]m(lenv)]•

) τ−−→ (37)

(ν i)
(
imtr[mLoop(i) � tr(αt)]∗ ‖ i[rcv (tr(α)→ [[ϕ]]m(lenv) ; _→ok)end]•)�⇒

(38)

(ν i)
(
imtr[mLoop(i) � tr(t)]∗ ‖ i[rcv (tr(α)→ [[ϕ]]m(lenv) ; _→ok)end � tr(α)]•) τ−−→

(39)

(ν i)
(
imtr[mLoop(i) � tr(t)]∗ ‖ i[[[ϕ]]m(lenv)]•

)

By B, t |�v ϕθ and I.H. we obtain

(ν i)
(
imtr[mLoop(i) � tr(t)]∗ ‖ i[[[ϕ]]m(lenv)]•

) fail!�⇒
and, thus, the result follows by (37), (38) and (39).
A, s |�v (max(X, ϕ))θ because A, s |�v ϕ{max(X, ϕ)/X}θ : By Definition 7 and App for
process i , we derive

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[max(X, ϕ)]]m(lenv)]•

)�⇒
(ν i)

(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m({′X ′, [[ϕ]]m} : lenv)]•

)
(40)

Assuming the appropriate α-conversion for X inmax(X, ϕ), we note that from lenv = enc(θ)

and Definition 8 we obtain

enc({max(X, ϕ)/X}θ) = {′X ′, [[ϕ]]m} : lenv (41)

By A, s |�v ϕ{max(X, ϕ)/X}ρ, (41) and I.H. we obtain

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m({′X ′, [[ϕ]]m} : lenv)]•

) fail!�⇒ (42)

The result follows from (40) and (42). ��
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Lemma 16 relies on a technical result, Lemma 15 which allows us to recover a violating
reduction sequence for a subformula ϕ1 or ϕ2 from that of the synthesised monitor of a
conjunction formula ϕ1∧ϕ2. Lemma 15 relies on Lemma 14.

Lemma 14 For some l ≤ n:

(ν j, h)
(
i
[
fork( j, h) � qfrk

]• ‖ j[[[ϕ1]]m(lenv) � q]• ‖ h[[[ϕ2]]m(lenv) � r ]•) (
τ−−→)n

fail!−→
implies (ν j)

(
imtr[mLoop( j) � qfrk]∗ ‖ j[[[ϕ1]]m(lenv) � q]•)( τ−−→)l

fail!−→
or (ν h)

(
imtr[mLoop(h) � qfrk]∗ ‖ h[[[ϕ2]]m(lenv) � r ]•)( τ−−→)l

fail!−→

Proof By induction on the structure of the mailbox qfrk at actor i . ��

Lemma 15 For some l ≤ n

(ν i)

(
imtr[mLoop(i) � tr(s)]∗ ‖ (ν j, h)

(
i
[
fork( j, h) � tr(t)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

))

(
τ−−→)k

fail!−→
implies (ν i)

(
imtr[mLoop(i) � tr(ts)]∗ ‖ i[[[ϕ1]]m(lenv)]•

)
(

τ−−→)l
fail!−→

or (ν i)
(
imtr[mLoop(i) � tr(ts)]∗ ‖ i[[[ϕ2]]m(lenv)]•

)
(

τ−−→)l
fail!−→

Proof Proof by induction on the structure of s.

s = ε: From the structure of mLoop, we know that after the function application, the
actor imtr[mLoop(i)]∗ is stuck. Thus we conclude that it must be the case that

(ν j, h)

(
i
[
fork( j, h) � tr(t)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)k
fail!−→

where k = n or k = n − 1. In either case, the required result follows from Lemma 14.
s = αs′: We have two subcases:

If

(ν j, h)

(
i
[
fork( j, h) � tr(t)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)k
fail!−→

for some k ≤ n then, by Lemma 14 we obtain

(ν j)
(
imtr[mLoop( j) � tr(t)]∗ ‖ j[[[ϕ1]]m(lenv)]•

)
(

τ−−→)l
fail!−→

or (ν h)
(
imtr[mLoop(h) � tr(t)]∗ ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)l
fail!−→

for some l ≤ k. By Lemma 8 we thus obtain

(ν j)
(
imtr[mLoop( j) � tr(ts)]∗ ‖ j[[[ϕ1]]m(lenv)]•

)
(

τ−−→)l
fail!−→

or (ν h)
(
imtr[mLoop(h) � tr(ts)]∗ ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)l
fail!−→

as required.
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Otherwise, it must be the case that

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s)]∗
‖ (ν j, h)

(
i
[
fork( j, h) � tr(t)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
⎞
⎠ (

τ−−→)k (43)

(ν i)

(
imtr[mLoop(i) � tr(s′)]∗
‖ (ν j, h)

(
i [efork � q : tr(α)]• ‖ A

)
)

(
τ−−→)n−k fail!−→ (44)

For some k = 3 + k1 where

(ν j, h)

(
i
[
fork( j, h) � tr(t)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)k1

(ν j, h)
(
i [efork � q]• ‖ A

) (45)

By (45) and Lemma 8 we obtain

(ν j, h)

(
i
[
fork( j, h) � tr(t) : tr(α)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
(

τ−−→)k1

(ν j, h)
(
i [efork � q : tr(α)]• ‖ A

)

and by (44) we can construct the sequence of transitions:

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s′)]∗
‖ (ν j, h)

(
i
[
fork( j, h) � tr(t) : α]•

‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•
)

⎞
⎠ (

τ−−→)n−3 fail!−→

Thus, by I.H. we obtain, for some l ≤ n − 3

(ν i)
(
imtr[mLoop(i) � tr(tαs′)]∗ ‖ i[[[ϕ1]]m(lenv)]•

)
(

τ−−→)l
fail!−→

or (ν i)
(
imtr[mLoop(i) � tr(tαs′)]∗ ‖ i[[[ϕ2]]m(lenv)]•

)
(

τ−−→)l
fail!−→

The result follows since s = αs′. ��

Equipped with Lemma 15, we can now prove Lemma 16.

Lemma 16 If A
s�⇒, lenv=enc(θ) and (ν i)

(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(lenv)]•

) fail!�⇒
then A, s |�v ϕθ , whenever fv(ϕ) ⊆ dom(θ).

Proof By strong induction on the number of transitions n, leading to the action fail!
(ν i)

(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(lenv)]•

)
(

τ−→)n−→fail!
n = 0: By inspection of the definition for mLoop, and by case analysis of [[ϕ]]m(lenv)
from Definition 7, it can never be the case that

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ]]m(lenv)]•

) fail!−→.

Thus the result holds trivially.
n = k + 1: We proceed by case analysis on ϕ.

ϕ = ff: The result holds immediately for any A and s by Definition 3.
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ϕ = [α]ψ : By Definition 7, we know that

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[[α]ψ]]m(lenv)]•

)
(

τ−−→)k1 (46)

(ν i)
(
imtr[mLoop(i) � tr(s2)]∗ ‖ i[[[[α]ψ]]m(lenv) � tr(s1)]•

) τ−−→ (47)

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s2)]∗ ‖
i

[
rcv

(
tr(α)→ [[ψ]]m(lenv) ;
_→ok

)
end � tr(s1)

]•
⎞
⎠ (

τ−→)k2
fail!−→ (48)

where k + 1 = k1 + k2 + 1 and s = s1s2 (49)

From the analysis of the code in (48), the only way for the action fail! to be triggered
is by choosing the guarded branch tr(α)→ [[ϕ]]m(lenv) in actor i . This means that
(48) can be decomposed into the following reduction sequences.

(ν i)

(
imtr[mLoop(i) � tr(s2)]∗ ‖
i
[
rcv (tr(α)→ [[ψ]]m(lenv) ; _→ok) end � tr(s1)

]•
)

(
τ−→)k3 (50)

(ν i)

(
imtr[mLoop(i) � tr(s4)]∗ ‖
i
[
rcv (tr(α)→ [[ψ]]m(lenv) ; _→ok) end � tr(s1s3)

]•
)

τ−−→ (51)

(ν i)imtr[mLoop(i) � tr(s4)]∗ ‖ i
[[[ψ]]m(lenv) � tr(s5)

]•
(

τ−−→)k4
fail!−→ (52)

where k2 = k3 + k4 + 1 and s1s3 = αs5 and s2 = s3s4 (53)

By (49) and (53) we derive

s = αt where t = s5s4 (54)

From the definition of mLoop we can derive

(ν i)
(
imtr[mLoop(i) � tr(t)]∗ ‖ i[[[ψ]]m(lenv)]•

)
(

τ−−→)k5

(ν i)
(
imtr[mLoop(i) � tr(s4)]∗ ‖ i

[[[ψ]]m(lenv) � tr(s5)
]•) (55)

where k5 ≤ k1 + k3. From (54) we can split A
s�⇒ as A

α�⇒ A′ t�⇒ and from
(55), (52), the fact that k5 + k4 < k + 1 = n from (49) and (53), and I.H. we obtain

A′, t |�v ψθ (56)

From (56), A
α�⇒ A′ and Definition 3 we thus conclude A, s |�v

([α]ψ)
θ .

ϕ = ϕ1∧ϕ2 From Definition 7, we can decompose the transition sequence as follows

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ϕ1∧ϕ2]]m(lenv)]•

)
(

τ−→)k1 (57)

(ν i)
(
imtr[mLoop(i) � tr(s2)]∗ ‖ i[[[ϕ1∧ϕ2]]m(lenv) � tr(s1)]•

) τ−−→ (58)

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s2)]∗
‖ i

[
y1 = spw

([[ϕ1]]m(lenv)
)
,

y2 = spw
([[ϕ2]]m(lenv)

)
, fork(y1, y2)

� tr(s1)

]•
⎞
⎠ (

τ−→)k2 (59)

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s4)]∗
‖ i

[
y1 = spw

([[ϕ1]]m(lenv)
)
,

y2 = spw
([[ϕ2]]m(lenv)

)
, fork(y1, y2)

� tr(s1s3)

]•
⎞
⎠ (

τ−→)2 (60)
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(ν i)

⎛
⎜⎜⎝
imtr[mLoop(i) � tr(s4)]∗

‖ (ν j)

⎛
⎝ i

[
y2 = spw

([[ϕ2]]m(lenv)
)
,

fork( j, y2)
� tr(s1s3)

]•

‖ j[[[ϕ1]]m(lenv)]•

⎞
⎠

⎞
⎟⎟⎠ (

τ−−→)k3
fail!−→

(61)

where k + 1 = k1 + 1 + k2 + 2 + k3, s = s1s2 and s2 = s3s4 (62)

From (61) we can deduce that there are two possible transition sequences how action
fail! was reached:
1. If fail!was reached because j[[[ϕ1]]m(lenv)]•( τ−−→)k4−→fail! on its own, for some

k4 ≤ k3 then, by Par and Scp we deduce

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ j[[[ϕ1]]m(lenv)]•

)
(

τ−−→)k4
fail!−→

From (62) we know that k4 < k + 1 = n, and by the premise A
s�⇒ and I.H.

we obtain A, s |�v ϕ1θ . By Definition 3 we then obtain A, s |�v
(
ϕ1∧ϕ2

)
θ

2. Alternatively, (61) can be decomposed further as

(ν i)

⎛
⎜⎜⎝
imtr[mLoop(i) � tr(s4)]∗

‖ (ν j)

⎛
⎝ i

[
y2 = spw

([[ϕ2]]m(lenv)
)
,

fork( j, y2)
� tr(s1s3)

]•

‖ j[[[ϕ1]]m(lenv)]•

⎞
⎠

⎞
⎟⎟⎠ (

τ−−→)k4 (63)

(ν i)

⎛
⎜⎜⎝
imtr[mLoop(i) � tr(s6)]∗

‖ (ν j)

⎛
⎝ i

[
y2 = spw

([[ϕ2]]m(lenv)
)
,

fork( j, y2)
� tr(s1s3s5)

]•

‖ j[[[ϕ1]]m(lenv)]•

⎞
⎠

⎞
⎟⎟⎠ (

τ−→)2

(64)

(ν i)

⎛
⎝
imtr[mLoop(i) � tr(s6)]∗
‖ (ν j, h)

(
i
[
fork( j, h) � tr(s1s3s5)

]•
‖ j[[[ϕ1]]m(lenv)]• ‖ h[[[ϕ2]]m(lenv)]•

)
⎞
⎠ (

τ−−→)k5
fail!−→

(65)

where k3 = k4 + 2 + k5 and s4 = s5s6 (66)

From (65) and Lemma 15 we know that, for some k6 ≤ k5 either

(ν i)
(
imtr[mLoop(i) � tr(s1s3s5s6)]∗ ‖ i[[[ϕ1]]m(lenv)]•

)
(

τ−−→)k6
fail!−→

or (ν i)
(
imtr[mLoop(i) � tr(s1s3s5s6)]∗ ‖ i[[[ϕ2]]m(lenv)]•

)
(

τ−−→)k6
fail!−→

From (62) and (66) we know that s = s1s3s5s6 and that k6 < k+1 = n. By I.H.,
we obtain either A, s |�v ϕ1θ or A, s |�v ϕ2θ and, in either case, by Definition 3
we deduce A, s |�v

(
ϕ1∧ϕ2

)
θ .

ϕ = X By Definition 7, we can deconstruct

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[X ]]m(lenv)]•

)
(

τ−→)k+1 fail!−→
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as

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[X ]]m(lenv)]•

)�⇒ τ−→ (67)

(ν i)
(
imtr[mLoop(i) � tr(s2)]∗ ‖ i[y = lookUp(′X ′, lenv), y(lenv) � tr(s1)]•

)

�⇒ τ−→ (68)

(ν i)
(
imtr[mLoop(i) � tr(s4)]∗ ‖ i[y = v, y(lenv) � tr(s1s3)]•

)�⇒ τ−→ (69)

(ν i)
(
imtr[mLoop(i) � tr(s6)]∗ ‖ i[v(lenv) � tr(s1s3s5)]•

)�⇒ fail!−−→ (70)

where s = s1s2, s2 = s3s4 and s4 = s5s6

Since X ∈ dom(θ), we know that θ(X) = ψ for some ψ . By the assumption
lenv = enc(θ) and Lemma 6 we obtain that v = [[ψ]]m. Hence, by (67), (68), (69)
and (70) we can reconstruct

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ψ]]m(lenv)]•

)
(

τ−→)k1

(ν i)
(
imtr[mLoop(i) � tr(s6)]∗ ‖ i[[[ψ]]m(lenv) � tr(s1s3s5)]•

)
(

τ−→)k2
fail!−−→
(71)

where k1 + k2 < k + 1 = n. By (71) and I.H. we obtain A, s |�v ψ , which is the
result required, since by θ(X) = ψ we know that Xθ = ψ .
ϕ = max(X, ψ) By Definition 7, we can deconstruct

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[max(X, ψ)]]m(lenv)]•

)
(

τ−→)k+1 fail!−→
as follows:

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[max(X, ψ)]]m(lenv)]•

)
(

τ−→)k1
τ−→

(ν i)
(
imtr[mLoop(i) � tr(s2)]∗ ‖ i[[[ψ]]m({′X ′, ψ} : lenv) � tr(s1)]•

)
(

τ−→)k2
fail!−→

from which we can reconstruct the transition sequence

(ν i)
(
imtr[mLoop(i) � tr(s)]∗ ‖ i[[[ψ]]m({′X ′, ψ} : lenv)]•

)
(

τ−→)k1+k2 fail!−→ (72)

By the assumption lenv = �(θ) we deduce that {′X ′, ψ} : lenv = enc({max(X, ψ)/}θ)

and, since k1 + k2 < k + 1 = n, we can use (72), A
s�⇒ and I.H. to obtain A, s |�v

ψ{max(X, ψ)/X}θ . By Definition 3 we then conclude A, s |�v max(X, ψ)θ . ��
A.2 Proofs for establishing Detection Preservation

Lemma 18 relies heavily on Lemma 17.

Lemma 17 (Translation Confluence) For all ϕ ∈ sHML, q ∈ (Val)∗ and
θ : :LVar ⇀ sHML, i[[[ϕ]]m(enc(θ)) � q]• �⇒ A implies cnf(A).

Proof Proof by strong numerical induction on n in i[[[ϕ]]m(enc(θ)) � q]•( τ−→)n A.

n = 0: The only possible τ -action that can be performed by i[[[ϕ]]m(enc(θ)) � q]• is
that for the function application of the monitor definition, i.e.

i[[[ϕ]]m(enc(θ)) � q]• τ−−→ i[e � q]• for some e. (73)
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Apart from that i[[[ϕ]]m(enc(θ)) � q]• can also only perform input action at i , i.e.

i[[[ϕ]]m(enc(θ)) � q]• i?v−−−→ i[[[ϕ]]m(enc(θ)) � q : v]•

On the one hand, we can derive i[e � q]• i?v−−−→ i[e � q : v]•. Moreover, from (73) and

Lemma 8 we can deduce i[[[ϕ]]m(enc(θ)) � q : v]• τ−−→ i[e � q : v]• which allows us
to close the confluence diamond.
n = k + 1: We proceed by case analysis on the property ϕ, using Lemma 11 to infer
the possible structures of the resulting process. Again, most involving cases are those for
conjunction translations, as they generate more than one concurrent actor; we discuss
one of these below:

ϕ = ϕ1∧ϕ2: By Lemma 11, A can have any of 4 general structures, one of which is

A ≡ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃2)( j2[e2 � q ′
2]• ‖ C)

)
(74)

where

j1[[[ϕ1]]m(lenv) � q1]• (
τ−→)k (ν h̃1)( j1[e1 � q ′

1]• ‖ B) for k < n, q1 < q (75)

j2[[[ϕ2]]m(lenv) � q2]• (
τ−→)l (ν h̃2)( j2[e2 � q ′

2]• ‖ C) for l < n, q2 < q (76)

By Lemma 11, (75) and (76) we also infer that the only external action that can be
performed by the processes (ν h̃1)( j1[e1 � q ′

1]• ‖ B) and (ν h̃2)( j2[e2 � q ′
2]• ‖ C)

is fail!. Moreover by (75) and (76) we can also show that

fId
(
(ν h̃1)( j1[e1 � q ′

1]• ‖ B)
)

= { j1} fId
(
(ν h̃2)( j2[e2 � q ′

2]• ‖ C)
)

= { j2}
Thus these two subactors cannot communicate with each other or send messages to
actor i . This also means that the remaining possible actions that A can perform are:

A
τ−−→ (ν j1, j2)

(
i[u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃2)( j2[e2 � q ′
2 : u]• ‖ C)

)
or

(77)

A
τ−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) � q]• ‖ (ν h̃′

1)( j1[e′
1 � q ′′

1 ]• ‖ B ′)
‖ (ν h̃2)( j2[e2 � q ′

2]• ‖ C)

)

because (ν h̃1)( j1[e1 � q ′
1]• ‖ B)

τ−−→ (ν h̃′
1 )( j1[e′

1 � q ′′
1 ]• ‖ B ′) or (78)

A
τ−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃′
2)( j2[e′

2 � q ′′
2 ]• ‖ C ′)

)

because (ν h̃2)( j2[e2 � q ′
2]• ‖ C)

τ−−→ (ν h̃′
2 )( j2[e′

2 � q ′′
2 ]• ‖ C ′) or (79)

A
i?v−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) � q : v]•
‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B) ‖ (ν h̃2)( j2[e2 � q ′
2]• ‖ C)

)

(80)

We prove confluence for the pair of actions (77) and (79) and leave the other combi-
nations for the interested reader. From (79) and Lemma 8 we derive

(ν h̃2)( j2[e2 � q ′
2 : u]• ‖ C)

τ−−→ (ν h̃′
2 )( j2[e′

2 � q ′′
2 : u]• ‖ C ′)
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and by Par and Scp we obtain

(ν j1, j2)

(
i[u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃2)( j2[e2 � q ′
2 : u]• ‖ C)

)
τ−−→

(ν j1, j2)

(
i[u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃′
2)( j2[e′

2 � q ′′
2 : u]• ‖ C ′)

)

(81)

Using Com, Str, Par and Scp we can derive

(ν j1, j2)

(
i[ j2!u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃′
2)( j2[e′

2 � q ′′
2 ]• ‖ C ′)

)
τ−−→

(ν j1, j2)

(
i[u, fork( j1, j2) � q]• ‖ (ν h̃1)( j1[e1 � q ′

1]• ‖ B)

‖ (ν h̃′
2)( j2[e′

2 � q ′′
2 : u]• ‖ C ′)

)

(82)

thus we close the confluence diamond by (81) and (82). ��
Lemma 18 (Weak Confluence) For all ϕ ∈ sHML, q ∈ Val∗

imtr[Mon(ϕ) � q]∗ �⇒ A implies cnf(A)

Proof By strong induction on n, the number of transitions in imtr[Mon(ϕ) � q]∗ (
τ−−→)n A.

n = 0 We know A = imtr[Mon(ϕ) � q]∗. It is confluent because it can perform either
of two actions, namely a τ -action for the function application (see App in Fig. 2), or else
an external input at imtr, (see RcvU in Fig. 2). The matching moves can be constructed
by RcvU on the one hand, and by Lemma 8 on the other, analogously to the base case
of Lemma 17.
n = k+1 By performing an analysis similar to that of Lemma 11, but for imtr[Mon(ϕ) �
q]∗ instead, we can determine that this actor can only weakly transition to either of the
forms below whereby, for cases (i i) to (v), we obtain B as a result of i[[[ϕ]]m(lenv) �
r ]• �⇒ B for some r :

(i) A = imtr[M = spw ([[ϕ]]m(nil)), mLoop(M) � q]∗
(ii) A ≡ (ν i)

(
imtr[mLoop(i) � q]∗ ‖ B

)
(iii) A ≡ (ν i)

(
imtr[rcv z→ i !zend,mLoop(i) � q]∗ ‖ B

)
(iv) A ≡ (ν i)

(
imtr[i !v, mLoop(i) � q]∗ ‖ B

)
(v) A ≡ (ν i)

(
imtr[v, mLoop(i) � q]∗ ‖ B

)

We here focus on the 4th case of monitor structure; the other cases are analogous. From
i[[[ϕ]]m(lenv) � r ]• �⇒ B and Lemma 11 we know that

B
γ−−→ implies γ = fail! or γ = τ

B ≡ (ν h)
(
i[e � r ]• ‖ C

)
where fId(B) = i

This means that (ν i)
(
imtr[i !v, mLoop(i) � q]∗ ‖ B

)
can only exhibit the following

actions:

(ν i)
(
imtr[i !v,mLoop(i) � q]∗ ‖ B

) imtr?u−−−−→
(ν i)

(
imtr[i !v, mLoop(i) � q : u]∗ ‖ B

) (83)
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(ν i)
(
imtr[i !v, mLoop(i) � q]∗ ‖ B

) τ−→
(ν i)

(
imtr[v, mLoop(i) � q]∗ ‖ (ν h)

(
i[e � r : v]• ‖ C

)) (84)

(ν i)
(
imtr[i !v, mLoop(i) � q]∗ ‖ B

) τ−→ (ν i)
(
imtr[i !v, mLoop(i) � q]∗ ‖ B ′)

(85)

Most pairs of action can be commuted easily by Par and Scp as they concern distinct
elements of the actor system. The only non-trivial case is the pair of actions (84) and
(85), which can be commuted using Lemma 8, in analogous fashion to the base case. ��
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