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Abstract Runtime enforcement is a powerful technique to ensure that a running system
satisfies some desired properties. Using an enforcement monitor, an (untrustworthy) input
execution (in the form of a sequence of events) is modified into an output sequence that
complies with a property. Over the last decade, runtime enforcement has been mainly studied
in the context of untimed properties. This paper deals with runtime enforcement of timed
properties by revisiting the foundations of runtime enforcement when time between events
matters. We propose a new enforcement paradigm where enforcement mechanisms are time
retardants: to produce a correct output sequence, additional delays are introduced between the
events of the input sequence. We consider runtime enforcement of any regular timed property
defined by a timed automaton. We prove the correctness of enforcement mechanisms and
prove that they enjoy two usually expected features, revisited here in the context of timed
properties. The first one is soundness meaning that the output sequences (eventually) satisfy
the required property. The second one is transparency, meaning that input sequences are
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modified in a minimal way. We also introduce two new features, (i) physical constraints
that describe how a time retardant is physically constrained when delaying a sequence of
timed events, and (ii) optimality, meaning that output sequences are produced as soon as
possible. To facilitate the adoption and implementation of enforcement mechanisms, we
describe them at several complementary abstraction levels. Our enforcement mechanisms
have been implemented and our experimental results demonstrate the feasibility of runtime
enforcement in a timed context and the effectiveness of the mechanisms.

Keywords Runtime verification · Runtime enforcement ·
Timed properties · Timed automata · Software engineering

1 Introduction

Runtime verification [1–6] refers to the theories, techniques, and tools aiming at checking the
conformance of the executions of systems under scrutiny w.r.t. some desired property. Run-
time enforcement [7–10] extends runtime verification and refers to the theories, techniques,
and tools aiming at ensuring the conformance of the executions of systems under scrutiny
w.r.t. some desired property. The first step of monitoring approaches consists in instrumenting
the underlying system so as to partially observe the events or the parts of its global state that
may influence the property under scrutiny. A central concept is the verification or enforce-
ment monitor (EM) that is generally synthesized from the property expressed in a high-level
formalism. Then, the monitor can operate either online by receiving events in a lock-step
manner with the execution of the system or offline by reading a log/sequence of system
events/actions. When the monitor is only dedicated to verification, it is a decision procedure
emitting verdicts stating the correctness of the (partial) observed trace generated from the
system execution. When the monitor additionally has enforcement abilities, it corrects any
incorrect execution to meet a desirable behavior (and leaves correct executions unchanged).

Three categories of runtime verification frameworks can be distinguished according to
the formalism used to express the input property. In propositional approaches, properties
refer to events taken from a finite set of propositional names. For instance, a propositional
property may rule the ordering of function calls in a program. Monitoring such kind of
properties has received a lot of attention. Parametric approaches have received a growing
interest in the last 5 years. In this case, events in the property are augmented with formal
parameters, instantiated at runtime. In timed approaches, the observed time between events
may influence the truth-value of the property. It turns out that monitoring of timed properties
(where time is continuous) is a much harder problem because of (at least) two reasons.
First, modeling timed requirements requires a more complex formalism involving time as a
continuous parameter. Second, when monitoring a timed property, the problem that arises is
that the overhead induced by the monitor (i.e., the time spent executing the monitoring code)
influences the truth-value of the monitored property. Consequently, without assumptions and
limitations on the computation performed by monitors (see § Context and Objectives), not
much information can be gained from the verdicts produced by the monitor. Few attempts
have been made on monitoring systems w.r.t. timed properties (see Sect. 5 for a detailed
comparison with related work). Roughly speaking, two lines of work can be distinguished:
synthesis of automata-based decision procedures for timed formalisms (e.g., [1,3–5]), and,
tools for runtime verification of timed properties [11,12].

In runtime enforcement, an EM is used to transform some (possibly) incorrect execution
sequence into a correct sequence w.r.t. the property of interest. In the propositional case, the
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transformation performed by an EM should be sound and transparent. Soundness means that
the resulting sequence obeys the property. Transparency historically means that, the monitor
should modify the input sequence in a minimal way (meaning that the input sequence should
not be modified if it already conforms to the property). According to how a monitor is allowed
to modify the input sequence (i.e., the primitives afforded to the monitor), several models of
EMs have been proposed [7–10]. In a nutshell, an EM can definitely block the input sequence
(as done by security automata [7]), suppress an event from the input sequence (as done by
suppression automata [8]), insert an event to the input sequence (as done by insertion automata
[8]), or perform any of these primitives (as is the case with edit-automata [8] or so-called
generalized EMs [10]). Moreover, according to how transparency is effectively formalized,
several definitions of runtime enforcement have been proposed (see [9] for an overview). The
notion of time has been considered in previous runtime enforcement approaches such as in
[13] for discrete-time properties, and in [14] which considers elapsing of time as a series of
uncontrollable events (“ticks”).

Context and objectives. The general context is depicted in Fig. 1. We focus on online
enforcement of timed properties. More specifically, given a timed propertyϕ, we synthesize an
enforcement mechanism that operates at runtime. To be as general as possible, an enforcement
mechanism is supposed to be placed between an event emitter and an event receiver. The
emitter and receiver execute asynchronously. Note, this abstract architecture is generic and
can be instantiated to many concrete ones where the emitter and receiver are considered to be
e.g., a program or the environment. In all cases, we assume that delaying an event from the
emitter does not effect its subsequent events. This assumption is reasonable in many practical
application scenarios with architectures compatible with the one described above.

An enforcement mechanism inputs a sequence of timed event σ and transforms it into a
sequence of timed events o. No constraint is required on σ, whereas the enforcement mech-
anism ensures that o is correct w.r.t. property ϕ. Satisfaction of property ϕ by the output
sequence is considered at the output of the enforcement mechanism and not at the input of
the event receiver: we assume a reliable, without delay, and safe communication between
the emitter and receiver. As usual in runtime enforcement, we do not consider any security,
communication, nor reliability issue with events. The considered enforcement mechanisms
are time retardants, i.e., their main enforcement primitive consists in delaying the received
events. Contrary to edit-automata, enforcement mechanisms, as considered in this paper, are
not able to generate nor suppress events because of (i) inducing more costly computations in
a timed context, and (ii) delaying events is already sufficient in many application domains.
Since time between events matters, we assume the enforcement mechanism to be infinitely
faster than the emitter and receiver. In other words, the computation time of the enforcement
mechanism is negligible: at runtime, the computation performed by the enforcement mech-
anism is done in zero-time.1 Moreover, we assume that delaying the events of the emitter
does not influence its behavior.

1 As our experiments in Sect. 4 show, the computation time of the monitor upon the reception of an event is
relatively low. Moreover, given some average computation time per event and a property, one can determine
easily whether the computation time is negligible or not.
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To sum up, given some timed property ϕ and an input timed word σ, we aim to study
mechanisms that input σ and output a sequence o that (i) satisfies ϕ (soundness of the mech-
anism), (ii) has the same order of events as σ with possibly increased delays (transparency
of the mechanism), and (iii) is released as fast as possible (optimality of the mechanism).2

Motivations. To the best of our knowledge, no approach focusing on enforcement of
timed properties has been proposed. Motivations for extending runtime enforcement to timed
properties abound. First, timed properties are more precise to specify desired behaviors of
systems since they allow to explicitly state how time should elapse between events. Thus,
timed properties/specifications can be particularly useful in some application domains [15].
For instance, in the context of security monitoring, EMs can be used as firewalls to prevent
denial of service attacks by ensuring a minimal delay between input events (carrying some
request for a protected server). On a network, EMs can be used to synchronize streams of
events together, or, ensuring that a stream of events conforms to the pre-conditions of some
service.

The following requirements could specify the expected behavior of a server:

R1 “There should be a delay of at least 5 time units between any two user requests (r)”.
R2 “The user should perform a successful authentication, that is, he should send a request

(r) and receive a grant (g) between 10 and 15 time units”.
R3 “Resource grants (g) and releases (r) should alternate, starting with a grant, and every

grant should be released within 15 to 20 time units”.
R4 “Every 10 time units, there should be a request for a resource followed by a grant. The

request should occur within 5 time units”.

R1 (resp. R2) can be formalized as a safety (resp. co-safety) property. Safety (resp. co-
safety) properties express that “something bad should never happen” (resp. “something good
should happen within a finite amount of time”). Moreover, in the space of regular properties
(over timed words), many interesting properties of systems are neither safety nor co-safety
properties that typically specify some form of transactional behavior. Such behaviors are
illustrated by requirements R3 and R4. In this paper, we propose to synthesize enforcement
mechanisms for all regular timed properties.

Some motivating examples illustrating enforcement mechanisms. Let us consider again
requirements R1 and R3. In Sect. 2 we will describe how to formalize these requirements
as properties defined by timed automata. Before going further into the formal definitions,
we briefly describe how an enforcement mechanism corrects an input sequence to satisfy
a property. To enforce the properties, the enforcement mechanism is placed at the input of
the server and operates on command-messages that it receives (destinated to the server).
The enforcement mechanism releases the (correct sequence of) command-messages into the
server input. In the following discussion of the examples, t denotes the current instant of
time, i.e., the total time since the beginning of the considered sequence.

Let us consider requirement R1. Let r and a be the possible actions where r denotes request
of a resource. We now illustrate how an enforcement mechanism corrects the input sequence
σ = (1, a) · (3, r) · (1, r) (where each event is associated with a delay, indicating the time
elapsed after the previous event or the system initialization for the first event). The monitor
receives the first action a at t = 1. Since, the safety requirement is not violated, the monitor
outputs it immediately (the mechanism is sound and optimal as it output a correct sequence

2 Observe that the notions of transparency and optimality in a timed context are interpretations of the historical
notion of transparency when dealing with enforcement mechanisms as time retardants: the output sequence is
a minimally-delayed prefix of the input sequence.
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which is delayed in a minimal way). The second action r is received by the monitor at t = 4,

and the monitor outputs it immediately. The last action r, is received at t = 5. If the action
is output immediately, then the safety requirement would be violated (since only 1 time unit
has elapsed after the monitor output the previous r action), and thus the mechanism would
not be sound anymore. Thus, to satisfy R1, the monitor outputs the last r action at t = 9,

introducing a delay of 4 time units (which is the minimal required delay as per optimality
requires). The output of the monitor is (1, a) · (3, r) · (5, r). Note that the order of actions
is preserved, only the delays between them have been possibly augmented.

Let us now consider requirement R3. Recall that g and r are the actions denoting the
grant and release of the resource, respectively. We illustrate how an EM corrects the input
sequence σ = (3, g) · (10, r) · (3, g) · (5, g). The monitor receives the first action g at
t = 3, the second action r at t = 13, etc. The monitor cannot output the first received action
g because the event alone does not satisfy the requirement (and the monitor does not know
yet the next events). If the next event is r, then it can output the events g followed by r, if it
can choose good delays for both the events satisfying the timing constraints. At t = 13, the
monitor can decide that the first two events can be released as output. Hence in output, the
delay associated with the first g is 13 t.u. If the monitor should choose the same delay for the
second action r, then the property cannot be satisfied. The monitor chooses a delay of 15 t.u.
which is the minimal delay satisfying the constraint that is greater than the corresponding
delay in the input sequence. When the monitor observes the second g at t = 16, it releases it
as output, and again waits for the next event. Since the next input event observed at t = 21
is not r, the sequence violates the property and cannot be corrected by the monitor. Hence,
after t = 21, the output of the monitor remains (13, g) · (15, r).

Contributions. We introduce runtime enforcement of timed properties. For this purpose,
we adapt soundness and transparency to a timed context. We show how to synthesize run-
time enforcement mechanisms for any regular property defined by a timed automaton. In
contrast with previous runtime enforcement approaches [7,8,10], our mechanisms only have
the primitive of being able to delay input events so that the output sequence conforms to
the property. To ease the design and implementation of EMs, we describe them at several
abstraction levels: the notion of enforcement function describes the behavior of an enforce-
ment mechanism at an abstract level as an input–output relation between timed words. An EM
implements an enforcement function and describes the behavior of an enforcement mecha-
nism in an operational way as a rule-based transition system. Enforcement algorithms describe
the implementation of EMs and serve to guide the concrete implementation of enforcement
mechanisms. The difficulty that arises when considering regular properties is that the afore-
mentioned enforcement mechanisms should consider input (corrected) sequences of events
that alternate between satisfying and not satisfying the underlying property. Experiments
have been performed on prototype monitors to show their effectiveness and the feasibility of
our approach.

This paper combines and extends the results of the two papers [16,17]. More specifically,
this paper provides the following additional contributions:

– to propose a more complete and revised theoretical framework for runtime enforcement
of timed properties: we have re-visited the notations, unified and simplified the main
definitions;

– to propose a completely new implementation of our EMs that (i) offers better performance
(compared to the ones in [16]), and (ii) are now loosely-coupled to UPPAAL;

– to synthesize and evaluate EMs for more properties on longer executions;
– to include correctness proofs of the proposed mechanisms.
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Importantly, while our synthesis techniques yield sound, transparent, and optimal enforce-
ment mechanisms for all regular properties, some input execution sequences, while being
correct, are not producible by our enforcement mechanisms. Indeed, we exhibit a notion
of what we refer to as non-enforceable properties, for which physical time constraints pre-
vent the associated enforcement mechanisms from preserving correct sequences. Intuitively,
such undesired situation occurs when enforcing for instance co-safety properties: while the
enforcement mechanism reads a correct input sequence, at the moment when it receives the
event that allows it to determine that the sequence is correct, it is not possible anymore to
release the first read event because the delay of the first event is now greater than the maximal
value allowed by the guard on the corresponding transition in the underlying timed automa-
ton. As we shall see, requirement R4 can be formalized as a so-called non-enforceable timed
property (Remark 3).

Paper organization. Section 2 introduces preliminaries and notation and also explains how
properties are defined as timed automata on some examples. Section 3 details the enforcement
mechanisms (enforcement function, monitor, and algorithm). Our prototype implementations
of monitors and experiments are presented in Sect. 4. Section 5 discusses related work. Finally,
conclusions and open perspectives are drawn in Sect. 6. To facilitate the reading of this paper,
after each proposition we propose a sketch of proof. Full versions of the proofs along with
some further notation required for the proofs are available in Appendix 1.

2 Preliminaries and notation

2.1 Untimed notions

N denotes the set of non-negative integers. An alphabet is a set of elements. A (finite) word
over an alphabet A is a finite sequence of elements of A. The length of a word σ is denoted as
|σ |. The empty word over A is denoted by εA or ε when clear from the context. The set of all
(respectively non-empty) finite words over A is denoted by A∗ (respectively A+). A language
over A is a set L ⊆ A∗. The concatenation of two words σ and σ ′ is denoted by σ · σ ′. The

empty word over A is neutral for concatenation of words of A:∀σ ∈ A∗ : σ ·εA
def= εA ·σ def= σ.

A word σ ′ is a prefix of a word σ, denoted as σ ′ � σ, whenever there exists a word σ ′′ such that
σ = σ ′ ·σ ′′, and σ ′ is a strict prefix of σ denoted as σ ′ ≺ σ whenever σ ′ � σ∧|σ ′| < |σ |. For
a word σ and 1 ≤ i ≤ |σ |, the i-th letter (resp. prefix of length i, suffix starting at position i) of

σ is denoted σ(i) (respectively σ[···i], σ[i ··· ])—with the convention σ[···0]
def= ε. Given a word σ

and two integers i, j, such that i ≤ j and |σ | ≥ j, the sub-word from index i to j is defined as

σ[i ··· j]
def= σ[··· j][i ··· ]. Given a word σ, the last letter, σ(|σ |), is denoted last(σ ). The set pref(σ )

denotes the set of prefixes of σ and by extension, pref(L)
def= {pref(σ ) | σ ∈ L} is the set of

prefixes of words in L. A language L is said to be prefix-closed whenever pref(L) = L and
extension-closed whenever L = L·A∗. Given an n-tuple of symbols e = (e1, . . . , en), Πi (e)

is the projection of e on its ith element (Πi (e)
def= ei ). The projection function is extended to

sequences of tuples in the standard way.

2.2 Timed languages and properties as timed automata

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of actions. A

pair (δ, a) ∈ (R≥0 × Σ) is called an event. We note delay(δ, a)
def= δ and act(δ, a) = a
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the projections of events on delays and actions, respectively. A timed word over Σ is a finite
sequence of events ranging over (R≥0×�)∗. A timed language is any set L ⊆ (R≥0×Σ)∗.
We consider a timed word σ = (δ1, a1) · (δ2, a2) · · · (δn, an). For i ∈ [2, n], δi is the delay
between ai−1 and ai , and, δ1 the time elapsed before the first action a1. Note that even though
the alphabet (R≥0 ×Σ) is infinite in this case, previous notions and notations defined above
(related to length, concatenation, prefix, etc.) naturally extend to timed words. The untimed

projection of σ is ΠΣ(σ)
def= a1 · a2 · · · an in Σ∗ (i.e., delays are ignored). The duration of

a timed word σ, denoted by time(σ )
def= Σn

i=1δi , is the sum of its delays.
Timed automata. A timed automaton [18] is a finite automaton extended with a finite set

of real valued clocks. Let X = {x1, . . . , xk} be a finite set of clocks. A clock valuation for X
is a function ν from X to R≥0. R

X≥0 denotes the valuations of clocks in X. For ν ∈ R
X≥0 and

δ ∈ R≥0, ν+ δ is the valuation assigning ν(x)+ δ to each clock x of X. Given a set of clocks
X ′ ⊆ X, ν[X ′ ← 0] is the clock valuation ν where all clocks in X ′ are assigned to 0.

G(X) denotes the set of clock constraints defined as Boolean combinations of simple
constraints of the form x �
 c with x ∈ X, c ∈ N and �
∈ {<, ≤, =, ≥, >}. Given
g ∈ G(X) and ν ∈ R

X≥0, we write ν |� g when g holds according to ν.

Definition 1 (Timed automata) A timed automaton (TA) is a tuple A=(L , l0, X,Σ, Δ, G),

such that L is a finite set of locations with l0 ∈ L the initial location, X is a finite set of clocks,
Σ is a finite set of actions, Δ ⊆ L × G(X)×Σ × 2X × L is the transition relation. G ⊆ L
is a set of accepting locations.

The semantics of a TA is a timed transition system [[A]] = (Q, q0, Γ, →, FG) where
Q = L × R

X≥0 is the (infinite) set of states, q0 = (l0, ν0) is the initial state where ν0 is the

valuation that maps every clock in X to 0, FG = G × R
X≥0 is the set of accepting states,

Γ = R≥0 × Σ is the set of transition labels, i.e., pairs composed of a delay and an action.

The transition relation→⊆ Q×Γ × Q is a set of transitions of the form (l, ν)
(δ, a)−−−→(l ′, ν′)

with ν′ = (ν + δ)[Y ← 0] whenever there exists (l, g, a, Y, l ′) ∈ Δ such that ν + δ |� g
for δ ∈ R≥0.

In the following, we consider a timed automaton A = (L , l0, X, Σ, Δ, G) with its
semantics [[A]]. A is deterministic whenever for any two distinct transitions (l, g1, a, Y1, l ′1)
and (l, g2, a, Y2, l ′2) in Δ, g1∧g2 is unsatisfiable. A is complete whenever for any location
l ∈ L and any action a ∈ Σ, the disjunction of the guards of the transitions leaving l and
labeled by a evaluates to true (i.e., it holds according to any valuation). In the remainder of
this paper, we shall consider only deterministic timed automata, and, automata refer to timed
automata.

Remark 1 (Completeness and determinism) In this paper, we restrict the presentation to
deterministic TAs. However, results also hold for non-deterministic TAs, with slight adap-
tations required to the vocabulary and when synthesizing an EM. Regarding completeness,
if no transition can be triggered upon the reception of an event, a TA implicitly moves to a
non-accepting trap state (i.e., a state with no successor).

A run ρ from q ∈ Q is a sequence of moves in [[A]] : ρ = q
(δ1, a1)−−−−→ q1 · · · qn−1

(δn , an)−−−−→
qn, for some n ∈ N. The set of runs from q0 ∈ Q is denoted Run(A) and RunFG (A) denotes
the subset of runs accepted by A, i.e., when qn ∈ FG . The trace of a run ρ is the timed word
(δ1, a1) · (δ2, a2) · · · (δn, an). We note L(A) the set of traces of Run(A). We extend this
notation to LFG (A) in a natural way.
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Regular, safety, and co-safety timed properties. In the sequel, we shall be interested in the
set of regular timed properties, i.e., the timed properties that can be defined by a TA. Within
the set of regular timed properties, we are interested in safety and co-safety properties.
Informally, safety (resp. co-safety) properties state that “nothing bad should ever happen”
(resp. “something good should happen within a finite amount of time”). In this paper, the
classes are characterized as follows:

Definition 2 (Regular, safety, and co-safety properties)

– Regular properties are the properties that can be defined by languages accepted by a TA.
– Safety properties (a subset of regular properties) are the non-empty prefix-closed timed

languages (i.e., the languages L s.t. pref(L) = L), that can be defined by a TA.
– Co-safety properties (a subset of regular properties) are the non-universal extension-

closed timed languages (i.e., the languages L s.t. L = L · A∗), that can be defined by a
TA.

Remark 2 Usually, safety properties are defined as prefix-closed languages, and co-safety as
extension-closed languages. With the usual definitions, the two properties ∅ and (R≥0×Σ)∗
(the empty and universal properties, respectively vacuously and universally satisfied) are both,
at the same time safety and co-safety properties, and are the only ones in the intersection. In
this paper, to simplify the presentation and to avoid pathological cases, we separate the two
classes, by considering that (R≥0 ×Σ)∗ is a safety (but not a co-safety) property, and ∅ is a
co-safety (but not a safety) property.

Safety and co-safety timed automata. In the sequel, we shall only consider the properties
that can be defined by a deterministic timed automaton (Definition 1). Note that some of these
properties can be defined using a timed temporal logic such as a subclass of MTL, which can
be transformed into timed automata using the technique described in [3,19].

We now define how to determine whether a regular property defined by a TA defines a
safety or a co-safety property by examining its transition relation.

Definition 3 (Safety and co-safety TA) A complete and deterministic TA (L , l0, X, Σ, Δ,

G), where G ⊆ L is the set of accepting locations, is said to be:

– a safety TA if l0 ∈ G ∧ �(l, g, a, Y, l ′) ∈ Δ : l ∈ L \ G ∧ l ′ ∈ G;
– a co-safety TA if l0 /∈ G ∧ �(l, g, a, Y, l ′) ∈ Δ : l ∈ G ∧ l ′ ∈ L \ G.

It is easy to check that safety and co-safety TAs define safety and co-safety properties.3

Example 1 ((Safety and co-safety) timed automata) We consider requirements R1, R2, R3,

and R4, introduced in Sect. 1. These requirements are respectively formalized as properties
ϕ1, ϕ2, ϕ3, and ϕ4 defined by the timed automata in Fig. 2. Accepting locations are denoted
by squares. The safety TA in Fig. 2a defines property ϕ1 defined over Σ1 = {a, r}. The
co-safety TA in Fig. 2b defines property ϕ2 defined over Σ2 = {r, g, a}. The TA in Fig. 2c
defines property ϕ3 defined over Σ3 = {r, g}. The TA in Fig. 2d defines property ϕ4 defined
over Σ4 = {r, g}.

Combining properties using Boolean operations. The next definition, as described in [18],
provides a way to combine (complete and deterministic) timed automata and will be used in
the sequel to define properties expressed as a Boolean combination of other properties.

3 As one can observe, these definitions of safety and co-safety TAs slightly differ from the usual ones by
expressing constraints on the initial state. As a consequence of these constraints, consistently with Definition 2,
the empty and universal properties are ruled out from the set of safety and co-safety properties, respectively.
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l0 l1 l2

Σ1 \ {r}
r,

x := 0

Σ1 \ {r}

r, x ≥ 5,
x := 0

r, x<5

Σ1

A safety TA for ϕ1.

l0 l1

l2

l3
r, x := 0

Σ2 \ {r}

Σ2 \ {g};
g, x < 10 ∨ x > 15

g,
10≤x ≤15

Σ2

Σ2

A co-safety TA for ϕ2.

l0 l1

l2

Σ \ {g, r} g,
x := 0

r

Σ \ {g, r}

g;
r, x < 15 ∨ x > 20

r, 15 ≤ x ≤ 20;
x := 0

Σ

A TA for ϕ3.

l0 l1

l2

Σ \ {r, g} r,
x ≤ 5

g;
r, x > 5

Σ \ {r, g}

r;
g, x > 10

g, x ≤ 10;
x := 0

Σ

A TA for ϕ4.

(a)

(c) (d)

(b)

Fig. 2 Examples of TA modeling timed properties

Definition 4 (Operations on timed automata) Given two properties ϕ1 and ϕ2 defined by
TAs Aϕ1 = (L1, 
0

1, X1, Σ, Δ1, G1) and Aϕ2 = (L2, 
0
2, X2, Σ, Δ2, G2), respectively.

The ×op-product of Aϕ1 and Aϕ2 , where op ∈ {∪, ∩}, is the timed automaton defined as

Aϕ1 ×op Aϕ2

def= (L , l0, X, Σ, Δ, G) where L = L1 × L2, l0 = (l1
0 , l2

0), X = X1 ∪ X2

(disjoint union), Δ ⊆ L×G(X)×Σ×2X×L is the transition relation, where ((l1, l2), g1∧
g2, a, Y1 ∪ Y2, (l ′1, l ′2)) ∈ Δ iff (l1, g1, a, Y1, l ′1) ∈ Δ1 and (l2, g2, a, Y2, l ′2) ∈ Δ2. Gop

is a set of accepting locations with:

– G∩ = G1 × G2,

– G∪ = (L1 × G2) ∪ (G1 × L2).

Definition 5 (Negation of a timed automaton) Given a property ϕ defined by a TA Aϕ =
(L , 
0, X, Σ, Δ, G) its negation is defined as ¬Aϕ

def= (L , 
0, X, Σ, Δ, L \ G).

The proposition below states that when performing the ∩-product (resp. ∪-product)
between two TAs, it amounts to perform the intersection (resp. union) of the recognized
languages.

Proposition 1 Consider two properties ϕ1 and ϕ2 defined by TAs Aϕ1 = (L1, 
0
1, X1, Σ,

Δ1, G1) and Aϕ2 = (L2, 
0
2, X2, Σ, Δ2, G2), respectively. The following facts hold:

– L(Aϕ1×∩Aϕ2 )(G∩) = ϕ1 ∩ ϕ2,

– L(Aϕ1×∪Aϕ2 )(G∪) = ϕ1 ∪ ϕ2,

– L¬Aϕ1
= (R≥0 ×Σ1)

∗ \ L(Aϕ1 ),

– L¬Aϕ2
= (R≥0 ×Σ2)

∗ \ L(Aϕ2 ).

The above proposition entails that the classes of safety and co-safety properties are closed
under union and intersection. However, the properties resulting of any other operation
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between safety, co-safety, and regular properties is a regular property. Finally, note that
the negation of a safety (resp. co-safety) property is a co-safety (resp. safety) property. From
the results shown in [18], the following proposition holds.

Proposition 2 (Closure of safety, co-safety and regular properties under Boolean operations)

– Safety and co-safety properties are closed under (finite) union and intersection.
– The negation of a safety property is a co-safety property, and vice-versa.
– Regular properties are closed under Boolean operations.

2.3 Preliminaries to runtime enforcement

Given t ∈ R≥0, and a timed word σ ∈ (R≥0 ×Σ)∗, we define the observation of σ at time
t as the timed word:

obs(σ, t)
def= max�

{
σ ′ ∈ (

R≥0 ×Σ
)∗ | σ ′ � σ ∧ time(σ ′) ≤ t

}
,

where max� takes the maximal sequence according to the prefix ordering � (unique in this
case). That is obs(σ, t) is the longest prefix of σ of duration smaller than t. By definition,
time(obs(σ, t)) ≤ t, meaning that the duration of an observation at time t never exceeds t.

The maximal strict prefix of σ that belongs to ϕ is denoted as maxϕ≺,ε(σ ) and defined as:

maxϕ≺,ε(σ )
def= max�({σ ′ ∈ (R≥0 ×�)∗ | σ ′ ≺ σ ∧ σ ′ ∈ ϕ} ∪ {ε}).

Orders on timed words. Apart from the prefix order �, we define the following partial
orders on timed words:

Delaying order �d: For σ, σ ′ ∈ (R≥0×Σ)∗, we say that σ ′ delays σ (denoted σ ′ �d σ ) iff

ΠΣ(σ ′) � ΠΣ(σ) and ∀i ≤ |σ ′| : delay(σ (i)) ≤ delay(σ ′(i)),

which means that σ ′ is “a delayed prefix” of σ. This order will be used
to characterize outputs w.r.t. to inputs in enforcement monitoring.

Lexical order �lex: Given any two timed words σ, σ ′ with same untimed projection, i.e.,
ΠΣ(σ) = ΠΣ(σ ′), and any two timed events with identical actions
(δ, a) and (δ′, a), we define �lex inductively as follows: ε �lex ε, and
(δ, a) ·σ �lex (δ′, a) ·σ ′ iff δ ≤ δ′ ∨ (δ = δ′ ∧σ �lex σ ′). This ordering
is defined for timed words with identical actions, and is useful to choose
a unique timed word among some with same actions.

3 Enforcement monitoring in a timed context

Roughly speaking, the purpose of enforcement monitoring is to read some (possibly incorrect)
input sequence produced by a running system (input to the enforcement mechanism), and to
transform it into an output sequence that is correct w.r.t. a property ϕ. To ease the design and
implementation of enforcement monitoring mechanisms in a timed context, we introduce
two sorts of mechanisms: enforcement functions and EMs. From an abstract point of view,
an enforcement function describes the transformation of an input timed word into an output
timed word according to time. An EM is a transition system, whose input/output behavior
realizes an enforcement function. In other words, an enforcement function serves as an
abstract description (black-box view) of an EM, and, an EM is an operational description of
an enforcement function.
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Enforcement
function

ϕ, t

Eϕ(σ, t) σ

Fig. 3 Enforcement function Eϕ

3.1 Enforcement functions

The input of an enforcement function is considered to be a timed word σ where every action
is associated to the delay since the previous action (or the initialization). Moreover, at this
abstract level, even if σ is partially known, it is considered to be fully determined from the
beginning. At time t, the sequence observed by the enforcement mechanism is obs(σ, t). The
output of the enforcement function at time t should be a timed word representing a sequence
of actions with delays between them computed from obs(σ, t).

Definition 6 (Enforcement function) An enforcement function for a property ϕ is a function
Eϕ from (R≥0 ×Σ)∗ × R≥0 to (R≥0 ×Σ)∗.

An enforcement function Eϕ for property ϕ transforms some (possibly incorrect) timed
word σ given as input (see Fig. 3). In this paper, we assume that enforcement mechanisms
do not modify the actions they receive but are rather time retardants, i.e., their output at
time t is a timed word Eϕ(σ, t) with same actions as a prefix of their observation, but with
possibly increased delays between actions, in such a way that the output timed word satisfies
the property.

Constraints on enforcement functions. Similarly to the untimed setting, several constraints,
namely soundness and transparency, are required on how Eϕ transforms timed words. Since
our EMs are time retardants, the physical constraints in the following definition also apply
to Eϕ.

Definition 7 (Constraints on an enforcement mechanism) For a timed property ϕ, an enforce-
ment mechanism behaves as a function Eϕ from (R≥0×Σ)∗×R≥0 to (R≥0×Σ)∗, satisfying
the following constraints:

– Physically time retardant

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t, t ′ ∈ R≥0 : t ≤ t ′ �⇒ Eϕ(σ, t) � Eϕ(σ, t ′) (Phy1),

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : time

(
Eϕ(σ, t)

) ≤ t (Phy2).

– Soundness

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : Eϕ(σ, t) �= ε �⇒ (∃t ′ ≥ t : Eϕ(σ, t ′) |�ϕ

)
(Snd).

– Transparency

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : Eϕ(σ, t) �d obs(σ, t) (Tr).

The requirements on the enforcement function are specified by three constraints: physi-
cally time retardant, soundness, and transparency. (Phy1) means that the outputs of the
enforcement function are concatenated over time, i.e., what is output cannot be modified.
(Phy2) expresses that the duration of the output never exceeds t. Soundness (Snd) means
that if a timed word is released as output by the enforcement function, in the future, the
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output of the enforcement function should satisfy property ϕ. In other words, no event
is output before being sure that the property will be satisfied by subsequent events. In
the particular case of a safety property ϕ, since ϕ is prefix closed, soundness reduces to
∀σ ∈ (R≥0 × Σ)∗, ∀t ∈ R≥0 : Eϕ(σ, t) |� ϕ. Transparency (Tr) expresses that, at any
time t, the output is a delayed prefix of the observed input obs(σ, t).

3.2 Functional definition

We propose first a general definition of an enforcement function (Sect. 3.2.1) and then a
simplified definition for safety properties (Sect. 3.2.2).

3.2.1 General definition

The enforcement function can be described as a composition of functions, each performing the
following steps: (i) processing the input, (ii) computing the delayed timed word satisfying the
property, and (iii) and processing the output sequence. Moreover, the enforcement function
describes how these functions are composed to transform an input sequence. We will then
prove that it satisfies the physical, soundness, and transparency constraints.

Definition 8 (Enforcement function) The enforcement function for a property ϕ is Eϕ :
(R≥0 ×Σ)∗ × R≥0 → (R≥0 ×Σ)∗ defined as:

Eϕ(σ, t) = obs (Π1(store(obs(σ, t))), t) ,

where:

– store : (R≥0 ×Σ)∗ → (R≥0 ×Σ)∗ × (R≥0 ×Σ)∗ is defined as

store(ε) = (ε, ε)

store(σ · (δ, a)) =
{

(σs ·min�lex,time K , ε) if K �= ∅,
(σs, σc · (δ, a)) otherwise,

with
(σs, σc) = store(σ ),

K = κϕ (time(σ )+ δ, σs, σc · (δ, a)) ,

– κϕ(T, σs, σc) is the set defined as:

κϕ (T, σs, σc)
def= {w ∈ (

R≥0 ×Σ
)∗ | w �d σc ∧ |w| = |σc| ∧

σs · w |�ϕ∧ delay(w(1))T − time (σs)}, and

– min�lex,time stands for minimal timed word according to the lexical order among the timed
words with minimal duration.

In the definition of Eϕ, obs(σ, t) is the prefix of the input that has been observed at time t,
and thus can be processed by the enforcement function. The store function takes as input this
observation, and computes a pair of timed words, whose first component extracted by Π1 is
processed by obs to produce the output.

The first element of the output of the store function is the transformation of a prefix of the
observation for which delays have been computed (the property is satisfied by this prefix by
appropriate delaying); the second element is the suffix of the observation for which delays
still have to be computed. The store function is defined inductively: initially, for an empty
observation, both elements are empty; if σ has been observed, store(σ ) = (σs, σc), and a
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new event (δ, a) is observed, there are two possible cases, according to the vacuity of the
set K = κϕ(time(σ ) + δ, σs, σc · (δ, a)) (the set of candidate timed words appropriately
delaying σc · (δ, a) and satisfying ϕ, see below):

– if K �= ∅, among the set of timed words with minimal duration in K, the minimal timed
word w.r.t the lexical order is appended to σs, and the second element is set to ε.

– otherwise, (δ, a) is appended to σc and σs is not modified.

The function κϕ has three parameters: T (the duration of the current observation), σs, and
σc. It computes the set of candidate timed words w “appropriately delaying” σc such that
σs ·w satisfies ϕ. The appropriate delaying is such that w and σc have identical actions, same
length but delays of w are greater than or equal to those of σc. Moreover the delay of the
first action in w should exceed the difference between the duration of the observation and
the duration of σs . The reason for this constraint is that σs will be output entirely after a
duration of time(σs), while the decision to output w is taken after T t.u., thus a smaller value
for delay(w(1)) would cause this delay to be elapsed before the decision is taken. Notice
that upon reading an input event (δ, a), in case if no appropriate delays exist, and correcting
the sub-sequence σc · (δ, a) is impossible (when κϕ is empty), then the input event (δ, a) is
appended to σc. If the sub-sequence σc · (δ, a) can be corrected, it is appended immediately
to σs (with appropriate delays) without relying on events that will be read later. The adopted
“policy” here is to correct the observation of the input sequence as soon as possible (see also
Proposition 4 later). Consequently, the input sequence is treated as a series of sub-sequences,
each sub-sequence allowing to satisfy the property.

Proposition 3 (Physicality, soundness, and transparency of enforcement functions) Given
some property ϕ, its enforcement function Eϕ as per Definition8 satisfies:

(1) the physical constraints (Phy1) and (Phy2),

(2) the soundness (Snd) and transparency (Tr) constraints,

as per Definition7.

In addition, the functional definition also ensures that each sub-sequence is output as soon
as possible, as expressed by the following proposition:

Proposition 4 (Optimality of enforcement functions) Given some property ϕ, its enforce-
ment function Eϕ as per Definition8 satisfies the following optimality constraint (Op) :
∀σ ∈ (

R≥0 ×Σ
)∗

, ∀t ∈ R≥0 : Eϕ(σ, t) �= ε ∧ Eϕ(σ, t) |� ϕ

�⇒ ∃wmx, w ∈ (
R≥0 ×Σ

)∗ :
wmx = maxϕ≺,ε

(
Eϕ(σ, t)

)

∧Eϕ(σ, t) = wmx · w
∧ time(w) = min{time(w′) | delay(w′(1)) ≥ time

(
σ[1···|Eϕ(σ,t)|]

)− time (wmx)

∧wmx · w′ |� ϕ ∧ΠΣ(w′) = ΠΣ(w)}.
Intuition of optimality. For any input σ, at any time t, if the output Eϕ(σ, t) is not ε, and

satisfies ϕ, then the output is considered as two sub-sequences wmx, followed by w, such that
wmx is the maximal strict prefix of Eϕ(σ, t), satisfying property ϕ and w is the remaining
sub-sequence such that Eϕ(σ, t) = wmx · w.

The last sub-sequence of the output which again makes the output to satisfy ϕ after wmx is w.
The optimality constraint expresses that the sum of the delays (i.e., the time required to output)
of w is minimal. The delay for the events in w should be chosen such that Eϕ(σ, t) = wmx ·w
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obs(σ, t) =
storeϕ(obs(σ, t)) = ( )
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, g)
storeϕ(obs(σ, t)) = ( (3, g))
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, g) · (10, r)
storeϕ(obs(σ, t)) = ((13, g) · (15, r) )
Eϕ(σ, t) = obs((13, g) · (15, r), t)

obs(σ, t) = (3, g) · (10, r) · (3, g)
storeϕ(obs(σ, t)) = ((13, g) · (15, r), (3, g))
Eϕ(σ, t) = obs((13, g) · (15, r), t)

obs(σ, t) = (3, g) · (10, r) · (3, g) · (5, g)
storeϕ(obs(σ, t)) = ((13, g) · (15, r), (3, g) · (5, g))
Eϕ(σ, t) = obs((13, g) · (15, r), t)

t ∈ [0, 3[

t ∈ [3, 13[

t ∈ [13, 16[

t ∈ [16, 21[

t ∈ [21,∞[

Fig. 4 Evolution of the enforcement function for ϕ3

satisfies ϕ and the transparency condition, and the delay of the first event is greater than the
difference between the duration of the input sequence σ[1···|Eϕ(σ,t)|] and the duration of wmx.

Notice that if time(σ[1···|Eϕ(σ,t)|]) − time(wmx) is negative or null, then this means that
the delay corresponding to some events in the sequence preceding w (which is wmx) are
increased, providing sufficient amount of time to observe the last sub-sequence (which is
σ[|wmx|+1···|wmx|+|w|]) entirely. In case time(σ[1···|Eϕ(σ,t)|])− time(wmx) is positive, all events
in wmx have been released as output before the last sub-sequence σ[|wmx|+1···|wmx|+|w|] is
observed entirely as input. After releasing wmx, time(σ[1···|Eϕ(σ,t)|]) − time(wmx) time units
have elapsed and thus the last sub-sequence w can be released as output only after a delay of
time(σ[1···|Eϕ(σ,t)|])− time(wmx) time units.

Proof (of Propositions 3 and 4: sketch only) The proofs are given in Appendices 1.1 (for
physical constraints), 1.2 (for soundness and transparency), 1.3 (for optimality), in p. 31,
32, 33, respectively. The proofs rely on an induction on the length of the input word σ. The
induction step uses a case analysis, depending on whether the input is completely observed
or not at time t, whether the input can be delayed into a correct output or not, and whether
the memory content (computed by store) is completely dumped or not at time t. ��
The following example illustrates the notion of enforcement function.

Example 2 (Enforcement function) We now illustrate how Definition 8 is applied to enforce
property ϕ3 defined by the automaton depicted in Fig. 2c with Σ = {g, r}, and the input
timed word σ = (3, g) · (10, r) · (3, g) · (5, g). Variable t describes global time. Figure 4
shows the evolution of obs, store, and Eϕ over time for the input σ. The resulting output is
(13, g) · (15, r), which satisfies property ϕ1.

It is worth noticing that not all regular properties are enforceable, as illustrated by the fol-
lowing example.

Example 3 (Enforcement function: a non-enforceable property) Let us consider again prop-
erty ϕ4, formalized by the TA in Fig. 2d, with Σ= {g, r}, and the input timed word
σ = (3, r) · (4, g) · (2, r) · (6, g). Figure 5 shows the evolution of obs, store, and Eϕ.

Variable t describes global time. The resulting output of the enforcement function is ε at any
time instant.
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obs(σ, t) =
storeϕ(obs(σ, t)) = ( )
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, r)
storeϕ(obs(σ, t)) = ( (3, r))
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, r) · (4, g)
storeϕ(obs(σ, t)) = ( (3, r) · (4, g))
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, r) · (4, g) · (2, r)
storeϕ(obs(σ, t)) = ( (3, r) · (4, g) · (2, r))
Eϕ(σ, t) = obs( )

obs(σ, t) = (3, r) · (4, g) · (2, r) · (6, g)
storeϕ(obs(σ, t)) = ( (3, r) · (4, g) · (2, r) · (6, g))
Eϕ(σ, t) = obs( )

t ∈ [0, 3[

t ∈ [3, 7[

t ∈ [7, 9[

t ∈ [9, 15[

t ∈ [15,∞[

Fig. 5 Evolution of the enforcement function for ϕ4

Remark 3 (Non-enforceable properties) From Example 3, notice that the output of the
enforcement function is ε, though the input sequence itself satisfies the property. The monitor
observes action r followed by action g only at t = 7. Hence, the delay associated with the
first action in output should be at least 7 t.u., but increasing the delay associated with the first
action to 7, would falsify the guard on transition between l0 to l1, which is a possible move
upon the first event req, and there is no transition with a reset of clock x before.

It can be noticed that guards with <, ≤, and = impose urgency on releasing an event
as output at or before some time. For some properties, some input sequences that can be
delayed to satisfy ϕ cannot be corrected by enforcement, because the delay of the first
event of each sub-sequence may be increased, which may falsify a guard with <, ≤, = .

However, even for such properties, the enforcement function will never produce incorrect
outputs. Moreover, note that the notion of non-enforceability exhibited here does not stem
from the fact that we focus on enforcement mechanisms that act as delayers. Indeed, even
if our enforcement mechanisms were able to reduce delays between events (by for instance
releasing g immediately after r), the property would remain non-enforceable because of the
guard “x ≤ 5” on the transition between locations l0 and l1.

Remark 4 (Alternative enforcement strategies) The optimality constraint presented in
Proposition 4 allows only to augment delays of events. For each event, a delay greater than
or equal to the actual delay is chosen. This condition can be modified or relaxed according
to our requirements. This condition can be easily adapted to a given time bound in R≥0.

It may also be possible to shorten the delay of some events (as long as the duration of the
output is greater than the input, i.e., when it satisfies Phy2). Additionally, processing input
and output actions is assumed to be done in zero time. Some delay (either fixed or depending
on additional parameters) can be considered for this action by modifying the store function,
and adding this constraint in the definition of κϕ. Such modification would reduce the set of
enforceable properties.

Remark 5 (Elimination of some acceptable behaviors by the enforcement function) As we
saw earlier in Remark 3, some input sequences that can be delayed to satisfy ϕ cannot be
accepted (and released as output) by the enforcement function. This behavior of the enforce-
ment function stems from the following facts:
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– At anytime, decision is taken based on the input events received until that time, and the
enforcer has no information regarding the events that it will receive in the future.

– Moreover, we defined optimality in such a way that, the decision about releasing events is
taken as soon as possible (when a mechanism knows that there is a possibility to correct,
it does not wait for any further input events).

Note, this is also the case for control mechanisms in supervisory control theory for discrete
event systems.

3.2.2 Simplified functional definitions

The functional definitions for enforcement in the case of safety or co-safety properties can be
simplified. As an example, we briefly explain how the functional definition can be simplified
for safety properties.

Simplified functional definition for safety properties. For safety properties, the store
function can be simplified: the output is a timed word instead of a pair of timed words
(storesa

ϕ : (R≥0 ×�)∗ → (R≥0 ×�)∗). In fact for a safety property, the delay of each input
event, if there exists one, can be computed immediately. Thus the second element of the
store output pair (which stores events with undetermined delays) is unnecessary. The store
function for safety properties can be defined as follows:

storesa
ϕ (ε) = ε,

storesa
ϕ (σ · (δ, a)) =

{
storesa

ϕ (σ ) · (min(K ), a) if K �= ∅,
storesa

ϕ (σ ) otherwise,

where K
def= {δ′ ∈ R≥0 | δ′ ≥ δ∧storesa

ϕ (σ )·(δ′, a) �d σ ·(δ, a)∧storesa
ϕ (σ )·(δ′, a) |� ϕ}.

K is the set of delays δ′ that can be associated to a such that the extension storesa
ϕ (σ )·(δ′, a)

of the previous storesa
ϕ (σ ) delays σ · (δ, a) and still satisfies property ϕ. It depends on ϕ, σ

(more precisely storesa
ϕ (σ )), and (δ, a).

Remark 6 For the particular case of safety properties, Propositions 3 and 4 also hold when
using the simplified functional definition (using the storesa

ϕ function).

Moreover, with the alternative functional definition for safety properties using function
storesa

ϕ , the optimality constraint in Proposition 4 which the enforcement function satisfies
can be simplified and defined alternatively as follows.

Simplified optimality constraint of an enforcement function for safety properties. If Eϕ is
sound, transparent, and satisfies the physical constraints (Phy1) and (Phy2), Eϕ is said to be
optimal if the following constraint holds:

∀σ ∈ (R≥0 ×�)∗,∀t ∈ R≥0 :
|Eϕ(σ, t)|=max

{|o′| | o′ �d obs(σ, t)∧ o′ |� ϕ ∩ (
Êϕ(σ, t)· (R≥0 ×�)∗

) }
(Op− saf)

where Êϕ(σ, t)
def= max�

{
Eϕ(σ, t ′) | t ′ < t

}
.

The optimality constraint (Op-saf) expresses that at any time instant t, the output sequence
Eϕ(σ, t) should be the longest correct timed word delaying the input sequence obs(σ, t)
that extends Êϕ(σ, t), the maximal output sequence strictly before t. Notice that the term
(R≥0 ×�)∗ takes into account the fact that several timed actions may be output at time t.
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3.3 Enforcement monitor

In what follows, we consider a property ϕ defined by a TA Aϕ whose semantics is a transition
system [[Aϕ]] = (Q, q0, Γ, →, FG).

An enforcement function Eϕ for ϕ is implemented by an EM, defined as a transition
system E . An EM is an operational view of the enforcement function. It is equipped with
a memory and a set of enforcement operations used to store and dump some timed events
to and from the memory, respectively. The memory of an EM consists of two queues, each
containing a timed word, one storing the received actions (with increased delays) which are
corrected and can be released as output. The other queue stores the actions that are read by
the EM, but are yet to be corrected (and cannot be released as output). In addition, an EM also
keeps track of the state of the underlying TA, and clock values used to count time between
input events and between output events.

Before presenting the definition of EM, we introduce update as a function from Q×(R≥0×
Σ)+ × R≥0 to (R≥0 × Σ)+ × B. The update function takes as input a triple (q, σc, mt )

where q ∈ Q is the (current) state of [[Aϕ]], σc ∈ (R≥0 ×Σ)+ is a non-empty timed word,
and mt ∈ R≥0 is the difference between the duration of the input sequence observed minus
the duration of the corrected sequence, and returns a timed word of length |σc| and a Boolean
as output.

update (q, σc, mt )
def=

{
(σc, ff) if Λ(σc, mt , q) = ∅,
(
σ ′c, tt

)
otherwise;

where σ ′c = min�lex,timeΛ(σc, mt , q) with Λ : (R≥0 × Σ)+ × R≥0 × Q → 2(R≥0×�)∗

defined as:

Λ(σc, mt , q) = {
w ∈ (

R≥0 ×Σ
)+ | w �d σc ∧ |w| = |σc| ∧ delay(w(1)) ≥ mt

∧q
w→ FG

}
.

Λ(σc, mt , q) is the set of timed words w of length |σc|with same actions as σc, each delay in
the sequence is equal to or greater than the delay at the corresponding index in the provided
input sequence σc, and the first delay in w should be greater than or equal to mt , and an
accepting state is reachable from state q upon sequence w.

– The first case applies when there are no good delays such that an accepting state is reachable
from the state q upon with a sequence delaying σc (Λ(σc, mt , q) = ∅). In this case, the
update function returns the same timed word σc (which is provided as input), and a Boolean
value ff, indicating that no accepting state is reachable.

– The second case applies when there are good delays and an accepting state in q1 ∈ QF

is reachable from q upon a sequence delayed from σc. In this case, the update function
returns a timed word of minimal duration belonging to Λ(σc, mt , q), chosen according to
the lexical order; and a Boolean value tt, indicating that an accepting state is reachable.

Definition 9 (Enforcement Monitor) An EM E for ϕ is a transition system (CE , cE
0 , Γ E ,

↪→E ) s.t.:

– CE = (R≥0×Σ)∗ × (R≥0×Σ)∗ ×R≥0×R≥0×R≥0× Q is the set of configurations,
– cE

0 = 〈ε, ε, 0, 0, 0, q0〉 ∈ CE is the initial configuration,
– Γ E = ((R≥0×Σ)∪{ε})×Op×((R≥0×Σ)∪{ε}) is the alphabet, which is composed of

triples, comprised of an optional input event, an operation, and an optional output event,
where the set of possible operations is Op = {store-ϕ(·), store-ϕ(·), dump(·), idle(·)},
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– ↪→E⊆ CE × ΓE ×CE is the transition relation defined as the smallest relation obtained
by the following rules applied with the priority order below:

– (1) store-ϕ :
(σs, σc, δ, d, mt , q)

(δ, a)/store-ϕ(δ, a)/ε
↪→E

(
σs, σc · (δ, a), 0, d, m′t , q

)
,

if Π2 (update (q, σc · (δ, a), mt + δ)) = ff, where:
• m′t = mt + δ,

– (2) store-ϕ :
(σs, σc, δ, d, mt , q)

(δ, a)/store-ϕ(δ, a)/ε
↪→E

(
σs · σ ′c, ε, 0, d, m′t , q ′

)
,

if (update (q, σc · (δ, a), mt + δ)) = (σ ′c, tt), where:
• m′t = m′t + δ − time(σ ′c),

• q ′ is defined as q
σ ′c→ q ′,

– (3) dump:

((δ, a) · σs, σc, s, δ, mt , q)
ε/ dump(δ, a)/(δ, a)

↪→E (σs, σc, s, 0, mt , q) ,

– (4) idle:

(σs, σc, s, d, mt , q)
ε/ idle(δ)/ε

↪→E (σs, σc, s + δ, d + δ, mt , q) .

A configuration (σs, σc, s, d, mt , q) of the EM consists of the current stored sequence (i.e.,
the memory content) σs, and σc. The sequence that is corrected and can be released as output
is denoted by σs . The sequence σc is sort of an internal memory for the store function: this is
the input sequence read by the EM, but yet to be corrected. The configuration also contains
two clock values s and d indicating respectively the time elapsed since the last store and
dump operations, and one more counter mt indicating the difference between the duration
of the observed input sequence and the duration of the corrected sequence. q is the current
state of [[Aϕ]] reached after processing the sequence already released followed by the timed
word in memory σs .

Semantic rules can be understood as follows:

– Upon reception of an event (δ, a), one of the following store rules is executed.

– The store-ϕ rule is executed if the update function returnsff (indicating thatσc·(δ, a)

cannot be corrected). The clock s is reset to 0, and the event (δ, a) is appended to the
internal memory σc. The delay corresponding to the input event δ is added to mt .

– The store-ϕ rule is executed if the update function returns tt, indicating that ϕ can
be satisfied for the sequence already released as output, followed by the sequence in
σs, followed by σc · (δ, a) with possibly increased delays. When executing this rule,
s is reset to 0, and the timed word σ ′c returned by the update function is appended
to the content of the output memory σs . The delay of the input event δ is added to
mt , and the duration of the corrected sub-sequence returned by the update function,
time(σ ′c), is subtracted from mt .

– The dump rule is executed if the time elapsed since the last dump operation d, is equal to
the delay corresponding to the first event of the timed word σs in the memory. The event
(δ, a) is released as output and removed from σs, and the clock d is reset to 0.

– The idle rule adds the time elapsed δ to the current values of s and d when neither the
store nor the dump rule applies.

Example 4 (Execution of an EM) We now illustrate how the rules of Definition 9 are applied
to enforce property ϕ3, defined by the automaton depicted in Fig. 2c. Let us consider the
input timed word σ = (3, g) · (10, r) · (3, g) · (5, g). Figure 6 shows how semantic rules are
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/( 0, 0, 0, (l0, 0))/(3, g) · (10, r) · (3, g) · (5, g)

/( 3, 3, 0, (l0, 0))/(3, g) · (10, r) · (3, g) · (5, g)
idle(3)

/( , (3, g), 0, 3, 3, (l0, 0))/(10, r) · (3, g) · (5, g)
store-ϕ(3, g)

/( , (3, g), 0, 13, 3, (l0, 0))/(10, r) · (3, g) · (5, g)
idle(10)

/((13, g) · (15, r) 0, 13,−15, (l0, 15))/(3, g) · (5, g)
store-ϕ(10, r)

(13, g)/((15, r) 0, 0,−15, (l0, 15))/(3, g) · (5, g)
dump(13, g)

(13, g)/((15, r) 3, 3,−15, (l0, 15))/(3, g) · (5, g)
idle(3)

(13, g)/((15, r), (3, g), 0, 3,−12, (l0, 15))/(5, g)
store-ϕ(3, g)

(13, g)/((15, r), (3, gr), 5, 8,−12, (l0, 15))/(5, g)
idle(5)

(13, g)/((15, r), (3, g) · (5, g), 0, 8,−7, (l0, 15))/
store-ϕ(5, g)

(13, gr)/((15, rel), (3, gr) · (5, gr), 7, 15,−7, (l0, 15))/
idle(7)

(13, g) · (15, r)/( , (3, g) · (5, g), 7, 0,−7, (l0, 15))/
dump(15, r)

t = 0

t = 3

t = 3

t = 13

t = 13

t = 13

t = 16

t = 16

t = 21

t = 21

t = 28

t = 28

Fig. 6 Execution of an enforcement monitor

applied, and the evolution of the configurations of the EM. In a configuration, the input (resp.
output) is on the right (resp. left). Variable t describes global time. The resulting output is
(13, g) · (15, r), which satisfies property ϕ3. From t = 28, only the idle rule can be applied.

Remark 7 (Simplified definitions of EM) To synthesize an EM for a safety or co-safety prop-
erty, one can use simplified definitions. For example, for a safety property, only one timed
word is needed in the configuration. Indeed, recall that σc is a sort of internal memory used to
store the input events used when it may be possible to reach an accepting state if more events
are observed in the future. Since a safety property is prefix-closed, upon an event that cannot
be delayed to keep satisfying the property, no future extension can. Hence, σc is not nec-
essary for safety properties. Therefore, some simplifications, that may lead to performance
improvements, are possible.

3.4 Relating enforcement functions and EMs

We present how the definitions of enforcement function and EM can be related: given a prop-
erty ϕ, any input sequence σ, at any time instant t, the output of the associated enforcement
function and the output-behavior of the associated EM are equal.

We first describe how an EM reacts to an input sequence. In the remainder of this section,
we consider an EM E = (CE , cE

0 , Γ E , ↪→E). EMs, as defined in Sect. 3.3, are deterministic.
By determinism, we mean that the observable behavior of our EMs, i.e., given an input
sequence the observable output sequence is unique. Moreover, given σ ∈ (R≥0 × Σ)∗ and
t ∈ R≥0, how an EM reads σ until time t is unique: it goes through a unique sequence
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of configurations. However, given an input sequence σ and a time instant t, because of
ε’s in the input alphabet there is possibly an infinite set of corresponding sequences over the
input–operation–output alphabet (as in Definition 9). All these sequences are equivalent: they
involve the same configurations for the EM and the same output sequence. Consequently,
the rules of the transition relations are ordered in such a way that reading ε will always be
the transition with least priority. As a consequence given an input sequence reading ε (and
doing other operations such as outputting some event) will always be possible when the
monitor cannot read an input. This constraint is consistent with our hypothesis stating that
EMs execute infinitely faster than their environment.

More formally, let us define Eioo(σ, t) ∈ (Γ E)∗ to be the unique sequence over the alphabet
of actions (triples comprised of an optional input event, an operation, and an optional output
event) that is “triggered” when the EM reads σ until time t.

Definition 10 (Input–operation–output sequence) Given an input sequence σ ∈ (R≥0×Σ)∗
and some time instant t ∈ R≥0, we define the input–operation–output sequence denoted as
Eioo(σ, t) and which triggered when an EM of initial configuration cE

0 reads σ until time t.
Eioo(σ, t) is defined as the unique sequence of (Γ E)∗ such that:

∃c ∈ CE : cE
0

Eioo(σ, t)
↪→∗E c

∧ Π1 (Eioo(σ, t)) = obs(σ, t)
∧ timeop (Π2 (Eioo(σ, t))) = t

∧ �c′ ∈ CE , ∃e ∈ (R≥0 ×Σ) : c
(ε,dump(e),e)

↪→ c′,

where the timeop function indicates the duration of a sequence of enforcement operations
and says that only the idle enforcement operation consumes time. Formally:

timeop(op · ops) =
{

d + timeop(ops) if ∃d ∈ R≥0 : op = idle(d),

timeop(ops) otherwise;
timeop(ε) = 0.

The input timed word corresponding to obs(σ, t) at any time t is the concatenation of all
the input events read/consumed by the EM over various steps. Observe that because of the
assumptions on Γ E , only the idle rule applies to the configuration c: the dump rule does not
apply by definition of Eioo(σ, t) and none of the store rules applies because Π1(Eioo(σ, t)) =
obs(σ, t).

Relating enforcement functions and EMs. Now, we can relate the enforcement function
and the EM, for a property ϕ. Seen from the outside, an EM E behaves as a device reading
and producing timed words. Overloading notations, we can characterize this input/output
behavior as a function E : (R≥0 ×Σ)∗ × R≥0 → (R≥0 ×�)∗ defined as:

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : E(σ, t) = Π3 (Eioo(σ, t)) .

The corresponding output timed word E(σ, t) at any time t is the concatenation of all the
output events produced by the EM over various steps of the EM (erasing ε’s). As before, the
ε’s output by the store operation are erased. In the following, we do not make the distinction
between an EM and the function that characterizes its behavior.

Finally, we are able to relate enforcement functions, and the functions derived from an
EM. For this purpose, we define an implementation relation between EMs and enforcement
functions as follows.
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Enforcement Monitor

Dump
Process

Store
Process

Memory (σs)
σcEϕ(σ, t) σ, t

Fig. 7 Realizing an EM

Definition 11 (Implementation relation between enforcement functions and EMs) Given an
enforcement function Eϕ (as per Definition 6) and an EM (as per Definition 9) whose behavior
is characterized by a function E, we say that E implements Eϕ iff:

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : Eϕ(σ, t) = E(σ, t).

Proposition 5 (Relation between enforcement function and EM) Given a property ϕ, its
enforcement function Eϕ (as per Definition8), and its EME (as per Definition9),E implements
Eϕ in the sense of Definition11.

Proof (of Proposition 5: sketch only) The proof is given in Appendix 1, p. 37. The proof is
done by induction on the length of the input sequence and uses a similar case analysis as the
proof of Proposition 6. The proof also uses several intermediate lemmas that characterize
some special configurations (e.g., value of the store and dump variables, memory content)
of an EM at some time instants.

3.5 Implementation of EMs

Let us now see the algorithms, which are a straightforward translation of the EM semantics,
showing how EMs can be implemented. The implementation of an EM consists of two
processes running concurrently (Store and Dump) as shown in Fig. 7, and a memory. The
Store process models the store rules. The memory contains the timed word σs : the corrected
sequence that can be released as output. The memory σs is realized as a queue, shared by
the Store and Dump processes, where the Store process adds events which are processed
and corrected to this queue. The Dump process reads events stored in the memory σs and
releases them as output after the required amount of time. The Store process also makes use
of another internal buffer σc (not shared with any other process), to store the events which are
read, but cannot be corrected (to satisfy the property). In the algorithms the await primitive is
used to wait for a trigger event from another process or to wait until some condition becomes
true. The wait primitive is used by a process to wait for a certain amount of time, that is
determined by the process itself.

The StoreProcess algorithm (see Algorithm 1) is an infinite loop that scrutinizes the
system for input events. In the algorithm, (l, ν) represents the state of the automaton defining
the property, where l represents the location and ν is the current clock valuation. It is initialized
to (l0, [X ← 0]). The variable mt is used to keep track of the difference between the duration
of the input sequence read (the sequence which is already corrected followed by the sequence
in σc), and the duration of the corrected sequence. The update function takes the events stored
in the internal memory of the store process σc, the current state, and mt , and returns a timed
word of same length as σc and a Boolean indicating whether an accepting state is reachable
from the current state upon the timed word it returns as a result. The function post takes a
state of the automaton defining the property (l, ν), a timed word, and computes the state
reached by this automaton.

The algorithm proceeds as follows. The StoreProcess initially waits for an input event. A
received event is appended to the internal buffer σc, with the corresponding delay δ, and this
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Algorithm 1 StoreProcess
(l, ν)← (l0, [X ← 0])
(σs , σc)← (ε, ε)

mt ← 0
while tt do

(δ, a)← await(event)
σc ← σc · (δ, a)

mt ← mt + δ

(σ ′c, isPath)← update(l, ν, σc, mt )
if isPath = tt then

mt ← mt − time(σ ′c)
σs ← σs · σ ′c
(l, ν)← post(l, ν, σ ′c)
σc ← ε

end if
end while

delay δ is added to mt . Then the update function is invoked providing the events stored in σc

as input. If the update function indicates that there is a path leading to an accepting state, (i.e.,
if isPath = tt), then the timed word σ ′c returned by the update function, is appended to the
shared memory σs (since it now corrected with respect to the property, and can be released
as output). Then, the duration of σ ′c is subtracted from mt . Before proceeding to the next
iteration, the state of the automaton (l, ν) is updated, and the internal memory σc is cleared.

Algorithm 2 DumpProcess
d ← 0
while tt do

await(σs �= ε)

(δ, a)← dequeue (σs )
wait(δ − d)
dump (a)
d ← 0

end while

The DumpProcess algorithm (see Algorithm 2) is an infinite loop that scrutinizes the
memory and proceeds as follows: initially, the clock d is set to 0. If the memory is empty
(σs = ε), the DumpProcess waits until a new element (δ, a) is stored in the memory.
Else (the memory is not empty), it proceeds with the first element in the memory. Using
the dequeue operation, the first element stored in the memory is removed, and is stored
as (δ, a). Meanwhile, d keeps track of the time elapsed since the last dump operation.
The DumpProcess waits for (δ − d) time units before performing the dump(a) operation,
releasing the action a as output (which amounts to appending (δ, a) to the output of the EM).
Finally, the clock d is reset to 0 before the next iteration starts.

Remark 8 (Using non-deterministic TAs to define properties) In this paper, the presentation
considers only deterministic TAs. Extending the results to non-deterministic TAs comes
directly from the policy used to choose a unique solution to define the update function
(which computes the correct and optimal delays). The update function first computes all
accepting paths from the current state, for the given input sub-sequence. And from this set
of all accepting paths, a unique solution with minimal duration is chosen using the lexical
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order. Thus, note that the same mechanisms and algorithms remain valid (without requiring
any change) to also enforce properties defined with non-deterministic TAs.

Remark 9 (Simplified algorithms) For safety and co-safety properties, if we want to imple-
ment monitors following the simplified functional and EM definitions, the algorithm for the
StoreProcess can also be simplified. In particular, in the algorithm for safety properties, the
content of the memory can be maintained by a single sequence of events instead of a tuple.
Also, in case of safety properties, the update function is always invoked with a single event
as input, instead of a sequence of events. The simplified algorithms for safety and co-safety
properties are described in detail in [16].

Remark 10 (Enforcing several properties) Earlier in this section, we described how any
regular property can be enforced. When a Boolean combination of properties has to be
enforced on a system, we can combine the properties in a single one and synthesize one EM
for the resulting property. Definition 4 in Sect. 2 describes how two properties defined by TAs
can be combined using Boolean operations (e.g., union, intersection and negation).

4 Implementation and evaluation

We implemented the algorithms in Sect. 3.5 and developed an experimentation framework
called TIPEX: (TImed Properties Enforcement during eXecution) in order to:

(1) validate through experiments the architecture and feasibility of enforcement monitoring,
and

(2) measure and analyze the performance of the update function of the StoreProcess in the
case of safety and co-safety properties.

From [16], we completely re-implemented the EMs. Still following the algorithms proposed
in [16], TIPEX is more independent and offers better performance. It is now completely
independent from UPPAAL at runtime. Moreover, TIPEX does not invoke UPPAAL to realize
update anymore, and some other redundancies, such as updating the UPPAAL model file after
each event, are also eliminated.

In this paper, we focus on evaluating the performance using some safety and co-safety
properties. In Sect. 3, we described how the definitions of enforcement mechanisms can be
simplified if we know that the property is safety (or co-safety). Thus, instead of using the
algorithms proposed for regular properties in Sect. 3.5, TIPEX is implemented using the
algorithms based on the simplified definitions for safety and co-safety properties described
in [16]. Extending TIPEX for regular properties based on the algorithms proposed in this
paper, and evaluation using some regular properties which are neither safety nor co-safety,
is ongoing.

We focus on benchmarking the update function of the StoreProcess for safety and
co-safety properties proposed in [16], which are the simplified versions of the general
StoreProcess described in Sect. 3.5. Indeed, examining the algorithms, the steps in the
algorithm of the DumpProcess of monitors are algorithmically simple and lightweight
from a computational point of view. Regarding the StoreProcess function for safety and
co-safety properties, their most computationally intensive step is their call to their update
function.

Experimental framework. Let us briefly look into the experimental framework, which is
depicted in Fig. 8. The Main module uses the module Trace Generator that provides a set of
input traces, to test the Store module. The Trace Generator module takes as input the alphabet
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actions
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# of traces
events
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of update

monitoring
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property

Trace
Generator

Main
Test Method

Store

Fig. 8 Experimental framework

of actions, the range of possible delays between actions, the desired number of traces, and
the increment in length per trace. For example if the number of traces in 5, and increment in
length per trace is 100 then 5 traces will be generated, where the first trace is of length 100
and the second trace of length 200 and so on. It returns a set of traces. For each event, the
Trace Generator picks an action (from the set of possible actions), and a delay (from the set
of possible delays) randomly using methods from the Python random module.

The Store module takes as input a property and one trace, and returns the total execution
of the update function to process the given input trace. The TA modeling the property is
a UPPAAL [20] model written in XML. The Store module uses the pyuppaal library to
parse the UPPAAL model (input property), and the UPPAAL DBM library to implement the
update function.4 More details about the implementation of the Store module for safety and
co-safety properties are in Appendix 2. The UPPAAL model also contains another automaton
representing the sequence of events received by the EM. The Main Test Method sends the
sequence to the Store module (using the property), and keeps track of the result returned by
the Store module for each trace.

Experiments were conducted on an Intel Core i7-2720QM at 2.20 GHz CPU, with 4 GB
RAM, and running on Ubuntu 12.04 LTS. The reported numbers are mean values over 10
runs and are represented in seconds. We have chosen to compute the average values over
10 runs because, for all metrics, with 95 % confidence, the measurement error was less than
1 %. For example, referring to Table 1, for safety property ϕ1.1

s , the mean value of the total
execution time of the update function is 8.6306 s, and the error is 0.018 s. Thus, with 95 %
confidence, the execution time of update for input trace of length 10,000 lies within the interval
[8.6126, 8.6486] (s). For the average time per call, as shown in the table, ϕ1.1

s , the mean value
is 0.863 ms, and the error is 0.005 ms. Thus, with 95 % confidence, the average time per call
to update, for input trace of length 10,000 lies within the interval [0.858, 0.868] (ms).

4.1 Performance evaluation of the update function for safety properties

We describe the properties used in our experiments and discuss the results of the performance
analysis. The considered safety properties follow different patterns [21].

Property ϕ1
s belongs to the absence pattern. It expresses that “There cannot be n or more

a-actions in every k time units”, where n is a parameter of the pattern. Following this pattern,

4 The pyuppaal and DBM libraries are provided by Aalborg University. They can be downloaded at http://
people.cs.aau.dk/~adavid/python/.
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Table 1 Performance analysis of enforcement monitors for safety properties

ϕ1.1
s ϕ1.2

s ϕ1.3
s

|tr | t_update t_avg t_update t_avg t_update t_avg

10, 000 8.6306 0.000863 8.008 0.00080 8.106 0.000810

20, 000 16.157 0.000807 16.538 0.000828 16.887 0.000844

30, 000 25.251 0.000841 24.855 0.000828 24.3794 0.00812

40, 000 32.199 0.000804 33.947 0.000848 33.619 0.000840

50, 000 39.982 0.000799 44.704 0.000854 43.314 0.000866

60, 000 50.785 0.000846 49.616 0.000826 53.521 0.000892

70, 000 55.821 0.000797 58.317 0.000833 60.928 0.000870

80, 000 66.080 0.000826 66.876 0.000835 66.461 0.000830

90, 000 74.082 0.000823 76.327 0.000848 76.807 0.000853

ϕ2.1
s ϕ2.2

s ϕ2.3
s

|tr | t_update t_avg t_update t_avg t_update t_avg

10, 000 8.589 0.000858 8.019 0.000801 8.050 0.000805

20, 000 17.435 0.000871 16.603 0.000830 17.472 0.000873

30, 000 26.760 0.000892 25.507 0.000850 24.353 0.000811

40, 000 36.956 0.000923 33.576 0.000839 32.811 0.000820

50, 000 43.806 0.000876 42.955 0.000859 41.141 0.000822

60, 000 55.410 0.000923 51.417 0.000856 51.550 0.000859

70, 000 62.816 0.000897 59.677 0.000852 59.572 0.000851

80, 000 70.282 0.000878 66.800 0.000835 67.450 0.000843

90, 000 80.659 0.000896 73.423 0.000815 76.137 0.000845

the considered properties are ϕ1.1
s , ϕ1.2

s and ϕ1.3
s , each varying in the value of n: n = 2 for

ϕ1.1
s , n = 10 for ϕ1.2

s , n = 20 for ϕ1.3
s . Property ϕ2

s belongs to the precedence pattern. It
expresses that “A sequence of n a-actions enables action b after a delay of k time units”.
Following this pattern, the considered properties are ϕ2.1

s , ϕ2.2
s and ϕ2.3

s , each varying in the
value of n: n = 1 for ϕ2.1

s , n = 5 for ϕ2.2
s , and n = 10 for ϕ2.3

s .

Results and analysis. Results of the performance analysis of our running example prop-
erties are reported in Table 1. The entry t_update indicates the total execution time of the
update function, and the entry t_avg is the average time per call. From the results presented
in Table 1, as expected for safety properties, we can observe that the time taken per call to
update is independent on the length of the trace. This behavior is as expected: since we update
the state of the TA after each event, and after receiving a new event, we explore the possible
transitions leading to a good state from the current state. Moreover, from the curves shown
in Fig. 9, notice that, for a given trace length, the execution time of update is similar for the
two patterns and their variants in size.

4.2 Performance evaluation of the update function for co-safety properties

We describe the properties used in our experiments and discuss the results of the performance
analysis. The considered co-safety properties follow different patterns [21].
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Fig. 9 Length of the input trace (Vs) total execution time of update

Table 2 Performance analysis of enforcement monitors for co-safety properties

|tr | ϕ1.1
cs ϕ1.2

cs

t_update t_avg t_last t_update t_avg t_last

100 3.332 0.0333 0.0776 3.4099 0.034 0.080

200 12.838 0.0641 0.148 13.27 0.0663 0.155

300 29.926 0.0997 0.231 30.687 0.102 0.229

400 51.925 0.129 0.303 53.280 0.133 0.310

500 79.66 0.159 0.372 81.91 0.163 0.382

600 115.05 0.191 0.448 117.24 0.19 0.45

700 159.64 0.228 0.530 161.97 0.231 0.53

800 206.95 0.258 0.608 212.64 0.265 0.62

900 262.2 0.291 0.683 267.61 0.297 0.695

Property ϕ1
cs belongs to the existence pattern [21]. It expresses that “There should be n r-

actions, which should be immediately followed by a g-action with a delay of at least k time
units”. Following this pattern, the considered properties are ϕ1.1

cs and ϕ1.2
cs each varying in the

value of n: n = 1 for ϕ1.1
cs , and n = 5 for ϕ1.2

cs .

Results and analysis. Results of the performance analysis of our running example proper-
ties are presented in Table 2. Entry t_update indicates the execution time of function update.
Entry t_avg is the average time per call, and the entry t_last is the execution time of update
upon the last event. Note that the execution on the last event is the most time consuming.
The considered input traces are generated in such a way that an accepting state is reachable
only upon the last event. From the results presented in Table 2, notice that t_last and t_avg
increase with |tr |. This behavior is as expected for a co-safety property because the update
function starts the computation from the initial state for a given input trace. This behavior
is also clearly shown by the curves in Fig. 10, showing the total time taken by the update
function versus the length of the input trace. Moreover, notice that, for a given trace length,
the execution time of update is similar for the two properties of the same pattern varying in
size.
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Remark 11 In case of a co-safety property, the monitor starts to output events only after read-
ing an input sequence which can satisfy the property (after the optimal delays are computed
for the input sequence). Once an accepting state is reached, then it is not necessary to invoke
the update and to correct the delays anymore.

4.3 Discussion

On precision. In theory, the delays between actions and the optimal delay computed by the
update function are real numbers. In the implementation, in order to compute optimal delay,
we need to set precision.

We use UPPAAL [20] to model the input TA, and some UPPAAL libraries to realize
the algorithms. In UPPAAL, only integers can be used to compare the values of clocks in
the guards. But, in practice, we may have to use real-numbers to express requirements and
timing constraints. This issue can be handled by setting the precision of real-numbers, and
representing values on guards with equivalent integers. For example, if we set the precision
with four digits after the decimal point, 0.0024 can be represented as 24, and 5.0012 can be
represented as 50,012. Note that having a large integer value on a guard such as in x > 50, 000
is not an issue with region and zone computations, as computation is done on-the-fly. After
each event, we check for possible paths from the current state.

On performance and overhead. Assessing the performance of runtime EMs is paramount
in a timed context as. Using the experimental results, one can determine the guards and
the properties for which the assumptions stated in the introduction hold. Regarding safety
properties, one can see that, on the used experimental setup, the computation time of the
update function is below 1 ms. By taking guards with constraints using integers above 0.1 s,
one can see that the computation time can be negligible in some sense as the impact on the
guard is below 1 %, and makes the overhead of enforcement monitoring acceptable.

5 Related work

Several runtime verification and enforcement approaches are related to the one proposed in
this paper. We propose a comparison with approaches for the runtime enforcement of untimed
properties (Sect. 5.1), for the runtime verification of timed properties (Sect. 5.2), and runtime
enforcement of timed properties (Sect. 5.3)
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5.1 Runtime enforcement of untimed properties

Most of the work in runtime enforcement was dedicated to untimed properties (see [9] for a
short overview). Schneider introduced security automata as the first runtime mechanism for
enforcing safety properties [7]. Then the set of enforceable properties was later refined by
Schneider, Hamlen, and Morrisett by showing that security automata were actually restrained
by the computational limits exhibited by Viswanathan and Kim [22]: the set of co-recursively
enumerable safety properties is a strict upper limit of the power of (execution) EMs defined as
security automata. Ligatti et al. [8] later introduced edit-automata as EMs. Edit-automata can
either insert a new action by replacing the current input, or suppress it. The set of properties
enforced by edit-automata is called the set of infinite renewal properties: it is a super-set of
safety properties and contains some liveness properties (but not all). Similar to edit-automata
are generic EMs [10] are able to enforce the set of (untimed) response regular properties in
the safety-progress classification. Moreover, some variants of edit-automata differ in how
they ensure the transparency constraints (see e.g., [23]).

5.2 Runtime verification of timed properties

Several approaches have been proposed for the runtime verification of timed properties.
We shall categorize them into (i) rather theoretical efforts aiming at synthesizing monitors
(Sect. 5.2.1), and (ii) tools for runtime monitoring of timed properties (Sect. 5.2.2).

5.2.1 Synthesis of timed automata from timed logical formalisms

Bauer et al. propose an approach to runtime verify timed-bounded properties expressed in
a variant of timed linear temporal logic (TLTL) [4]. Contrarily to TLTL, the considered
logic, TLTL3, processes finite timed words and the truth-values of this logic are suitable for
monitoring. After reading some timed word u, the monitor synthesized for a TLTL3 formula
ϕ states the verdict� (resp.⊥) when there is no infinite timed continuation w such that u ·w
satisfy (resp. does not satisfy) ϕ. Another variant of LTL in a timed context is metric temporal
logic (MTL), a dense extension of LTL. Nickovic et al. [3,19] propose a translation of MTL to
timed automata. The translation is defined under the bounded variability assumption stating
that, in a finite interval, a bounded number of events can arrive to the monitor. Still for
MTL, Thati et al. propose an online monitoring algorithm which works by rewriting of the
monitored formula and study its complexity [1]. Basin et al. propose an improvement of the
aforementioned approach with a better complexity but considering only the past fragment of
MTL [5].

Runtime enforcement of timed properties as presented in this paper is compatible with
the previously-described approaches. These approaches synthesize automata-based decision
procedures for logical formalisms. Decision procedures synthesized for regular properties
can be used as input to our framework.

5.2.2 Tools for runtime monitoring of timed properties

The analog monitoring tool [11] is a tool for monitoring specifications over continuous
signals. The input logic of AMT is STL/PSL where continuous signals are abstracted into
propositions and operations are defined over signals. Input signal traces can be monitored in
an offline or incremental fashion (i.e., online monitoring with periodic trace accumulation).
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RT-MaC [24] is a tool for verifying timed properties at runtime. RT-MaC allows to verify
timeliness and reliability correctness. Using the time-bound temporal operators provided by
the tool, one can specify a deadline after which a property must hold.

LARVA [12,25] takes as input properties expressed in several notations, e.g., Lustre,
duration calculus. Properties are translated to DATE (dynamic automata with timers and
events) which basically resemble timed automata with stop watches but also feature resets,
pauses, and can be composed into networks. Transitions are augmented with code that modify
the internal system state. DATE target only safety properties. In addition, LARVA is able
to compute an upper-bound on the overhead induced on the target system. The authors also
identify a subset of the duration calculus, called counter-examples traces, where properties
are insensitive to monitoring [26].

Our monitors not only differ by their objectives but also by how they are interfaced with
the system. We propose a less restrictive framework where monitors asynchronously read
the outputs of the target system. We do not assume our monitors to be able to modify the
internal state of the target program. The objective of our monitors is rather to correct the
timed sequence of output events before this sequence is released to the environment (i.e.,
outside the system augmented with a monitor).

5.3 Runtime enforcement of timed properties

Matteucci inspires from partial-model checking techniques to synthesize controller opera-
tions to enforce safety and information-flow properties using process-algebra [13]. Monitors
are close to Schneider’s security automata [7]. The approach targets discrete-time properties
and systems are modeled as timed processes expressed in CCS. Compared to our approach,
the description of enforcement mechanisms remains abstract, directly restricts the monitored
system, and no description of monitor implementation is proposed. Besides, in a general
study, Rinard discusses monitoring and enforcement strategies for real-time systems [27],
and mentions the fact that enforcement mechanisms could delay input individual events in an
input stream when they arrive too early w.r.t. the constraints of the system. In the same way,
we consider in our work that an enforcer is time retardant. However, the work in [27] remains
at a high-level of abstraction and does not propose any detailed description of enforcement
mechanisms.

More recently, Basin et al. [14] proposed a general approach related to enforcement of
security policies with controllable and uncontrollable events, investigating enforceability
(with complexity results), and how to synthesize enforcement mechanisms for several spec-
ification formalisms (automata-based or logic-based). A monitor observes the system and
terminates it to prevent violations. Timed properties described in MLTL logic are handled in
this work. Discrete time is considered, clock ticks are used to determine the enforceability
of an MLTL formula. In our approach, we consider dense time, using the expressiveness of
timed automata and efficiency of UPPAAL. Moreover, our enforcement mechanisms may
modify the execution of the observed system, and termination is decided if correcting the
execution by delaying is not possible.

6 Conclusion and future work

Conclusion. This paper presents a general enforcement monitoring framework for systems
with (dense) timing requirements. We showed how to synthesize enforcement mechanisms
for any regular timed property (modeled with a timed automaton). We propose adapted
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notions of enforcement mechanisms that delay input actions in order to satisfy the required
property. Enforcement mechanisms are described at several levels of abstraction (enforcement
function, monitor, and algorithm), thus facilitating the design and implementation of such
mechanisms. We describe how to realize the EM using concurrent processes. We propose a
prototype implementation and our experiments demonstrate the feasibility of enforcement
monitoring for timed properties.

Future work. Several avenues for future work are opened by this paper.
First, we believe it is important to study and delineate the set of enforceable timed prop-

erties. As shown informally by this paper, some timed properties should be characterized
as non-enforceable. For this purpose, an enforceability condition should be defined and
used to delineate enforceable properties. Such a criterion should ideally also be expressible
on timed automata. We conjecture that several enforceability notions exist. Some notions
depend on the underlying mechanism used to enforce properties. We believe that there is also
one (formalism-independent) enforceability notion that stems only from the physical time
constraints faced by enforcement mechanisms.

Note that even for properties which are non-enforceable, the EMs proposed in this paper
can be built, which may not be able to correct some input sequences, but their outputs are
always sound.

Properties are currently defined with timed automata. We consider synthesizing enforce-
ment mechanisms from more expressive formalisms. For instance, we will consider for-
malisms such as context-free timed languages (which can be useful for recursive specifica-
tions) or introduce data into requirements (which can be useful in some application domains).
Implementing efficient EMs is another important aspect and should be done w.r.t. a particular
application domain.

We implemented the tool in Python with the objectives of (i) making a quick prototype
that shows feasibility of enforcement monitoring in a timed context, and (ii) reusing some
existing UPPAAL libraries. In the future, we will consider implementing our EMs in other
languages such as C or Java, and we expect even better performance and a more stand-alone
implementation.

Alternative enforcement primitives can be afforded to timed retardants, which could be
of interest in some application domains. For instance, we could relax the constraint of only
augmenting delays of events. For instance, time retardants that delay the total duration of
the observation (while being allowed to shorten the delay of some events) have yet to be
studied. Suppressing events also can be considered, by erasing some events which are stored
in the memory. An event should be suppressed if it is not possible to satisfy the property in
the future, whatever is the remainder of the input sequence (i.e., the TA has reached q non-
accepting state from which no accepting states can be reached). Formalizing suppression is
however quite involved, requiring to redefine relations between input and output sequences
which impacts on transparency.

Also related to expressiveness is the question of how the set of timed enforceable properties
is impacted when the underlying memory is limited and/or the primitive operations endowed
to the monitor are modified.

Proofs

Proof of Proposition 3: item 1 (physical constraints)

We shall prove that, given a property ϕ, the associated enforcement function Eϕ : (R≥0 ×
Σ)∗ × R≥0 → (R≥0 × Σ)∗ defined as per Definition 8 satisfies the physical constraints
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(Phy1) and (Phy2). That is, we shall prove that:

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t, t ′ ∈ R≥0 : t ≤ t ′ �⇒ Eϕ(σ, t) � Eϕ(σ, t ′) (Phy1),

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : time

(
Eϕ(σ, t)

) ≤ t (Phy2).

– Proof that the enforcement function satisfies (Phy1).
Let us consider σ ∈ (R≥0 ×Σ)∗, t, t ′ ∈ R≥0, such that t ≤ t ′. We will prove that there
exists o ∈ (R≥0 ×Σ)∗ s.t. Eϕ(σ, t ′) = Eϕ(σ, t) · o. The fact that Eϕ satisfies (Phy1) is
a direct consequence of the following observations:

– ∀σ ∈ (R≥0 × �)∗, ∀t, t ′ ∈ R≥0 : t ≤ t ′ �⇒ obs(σ, t) � obs(σ, t ′), i.e., obs is
monotonic in its second argument;

– ∀w, w′ ∈ (R≥0×�)∗ : w � w′ �⇒ store(w) � store(w′), i.e., store is monotonic;
– ∀σ, σ ′ ∈ (R≥0 × �)∗, ∀t ∈ R≥0 : σ � σ ′ �⇒ obs(σ, t) � obs(σ ′, t), i.e., obs is

monotonic in its first argument.

– Proof that the enforcement function satisfies (Phy2).
From Definition 8, since Eϕ(σ, t) = obs(Π1(store(obs(σ, t))), t), from the defin-
ition of obs and the property of obs that ∀σ : time(obs(σ, t)) ≤ t, applied to
Π1(store(obs(σ, t))), we can conclude that time(Eϕ(σ, t)) ≤ t. Thus, Eϕ satisfies
(Phy2).

Proof of Proposition 3: item 2 (soundness and transparency)

We shall prove that, given a property ϕ, the associated enforcement function Eϕ : (R≥0 ×
�)∗ × R≥0 → (R≥0 ×�)∗ as per Definition 8 is sound and transparent as per Definition 7,
i.e., Eϕ satisfies the constraints (Snd) and (Tr).

Recall that Eϕ : (R≥0 ×�)∗ × R≥0 → (R≥0 ×�)∗ is defined as:

Eϕ(σ, t) = obs (Π1 (store(obs(σ, t))) , t) ,

where:

– function obs : (R≥0 × �)∗ × R≥0 → (R≥0 × �)∗ is the observation function defined
in Sect. 2,

– function store : (R≥0 × �)∗ → (R≥0 × �)∗ × (R≥0 × �)∗ is defined as follows in
Sect. 3.2.1:

store(ε) = (ε, ε)

store(σ · (δ, a)) =
{(

σs ·min�lex,time K , ε
)

if K �= ∅,
(σs, σc · (δ, a)) otherwise,

with
(σs, σc) = store(σ ),

K = κϕ (time(σ )+ δ, σs, σc · (δ, a)) ,

with κϕ(T, σs, σc)
def= {w ∈ (R≥0 × Σ)∗ | w �d σc ∧ |w| = |σc| ∧ σs · w |�

ϕ ∧ delay(w(1)) ≥ T − time(σs))}.
From (Snd) and (Tr), we define the constraints that hold for a particular word σ and a partic-
ular time instant t (i.e., universal quantifications are removed). We denote these propositions
by (Snd)σ,t and (Tr)σ,t , respectively. Thus, we shall prove that Eϕ satisfies (Snd)σ,t and
(Tr)σ,t for any σ ∈ (R≥0 ×�)∗ and t ∈ R≥0. For this purpose, we perform an induction on
the length of σ.
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Induction basis. Let us suppose that |σ | = 0, thus σ = ε in (R≥0 ×Σ)∗. First, we have
∀t ∈ R≥0 : obs(σ, t) = ε. Second, we have store(ε) = (ε, ε). Consequently, we have
∀t ∈ R≥0 : Eϕ(σ, t) = ε. We now prove that, at any time t ∈ R≥0, Eϕ satisfies (Snd)ε,t
and (Tr)ε,t , successively.

– For σ = ε, we have ∀t ∈ R≥0 : Eϕ(σ, t) = ε. Thus, Eϕ satisfies (Snd)ε,t , for any time
t ∈ R≥0.

– Since obs(ε, t) = ε and ε �d ε, we have ∀t ∈ R≥0 : Eϕ(ε, t) �d ε. That is, Eϕ

satisfies (Tr)ε,t , for any time t ∈ R≥0.

Induction step. Let us consider n ∈ N and suppose that for any σ ∈ (R≥0 × �)∗ with
|σ | ≤ n, any t ∈ R≥0, Eϕ satisfies (Snd)σ,t and (Tr)σ,t .

Let us now prove that for any σ ′ ∈ (R≥0 ×�)∗ with |σ ′| = n + 1, for any t ∈ R≥0, Eϕ

satisfies (Snd)σ ′,t and (Tr)σ ′,t . For this purpose, let us consider some input timed word σ ′
with |σ ′| = n + 1. Thus σ ′ = σ · (δ, a) for some σ with |σ | = n, δ ∈ R≥0 and a ∈ Σ. Let
us consider some time instant t ∈ R≥0.

We distinguish two cases according to whether the sum of delays of the timed word
σ · (δ, a) is greater than t or not, i.e., whether time(σ · (δ, a)) > t or not.

– Case time(σ · (δ, a)) > t. In this case, obs(σ · (δ, a), t) = obs(σ, t). Consequently,
Eϕ(σ ·(δ, a), t) = obs(Π1(store(obs(σ ·(δ, a), t))), t) = Eϕ(σ, t). From the induction
hypothesis, we directly deduce that Eϕ satisfies (Snd)σ ′,t and (Tr)σ ′,t .

– Case time(σ · (δ, a)) ≤ t. In this case obs(σ · (δ, a), t) = σ · (δ, a). We distinguish
two cases, based on whether K = ∅, or not.

– Case K = κϕ(time(σ )+δ, σs, σc ·(δ, a)) = ∅. From the definition of store, we have
store(σ · (δ, a)) = (σs, σc · (δ, a)), and Π1(store(σ · (δ, a))) = σs . We also have
Π1(store(σ )) = σs . From the definition of Eϕ, we have Eϕ(σ ·(δ, a), t) = Eϕ(σ, t).
From the induction hypothesis, we deduce that Eϕ satisfies (Snd)σ ′,t and (Tr)σ ′,t .

– Case K = κϕ(time(σ ) + δ, σs, σc · (δ, a)) �= ∅. From the definition of store, we
have store(σ · (δ, a)) = ((σs · min�lex,time K , ε), and Π1(store(σ · (δ, a))) = (σs ·
min�lex,time K ). We distinguish two cases based on whether time(σs ·min�lex,time K ) > t
or not.
• Case time(σs ·min�lex,time K ) > t.

We further distinguish two more cases based on whether time(σs) > t or not.
· Case time(σs) > t. In this case, we have obs(σs · min�lex,time K , t) =

obs(σs, t). Thus we have Eϕ(σ ·(δ, a), t) = Eϕ(σ, t). So, from the induc-
tion hypothesis, we deduce that Eϕ satisfies (Snd)σ ′,t and (Tr)σ ′,t .
· Case time(σs) ≤ t. In this case we have Eϕ(σ · (δ, a), t) = σs · O,

where O ≺ min�lex,time K . From the definition of K and κϕ we know that
σs · min�lex,time K ∈ ϕ. Since ∀t ′ ≥ time(σs · min�lex,time K ) and Eϕ(σ ·
(δ, a)) = σs ·min�lex,time K , Eϕ satisfies (Snd)σ ′,t , for any t ∈ R≥0. From
the induction hypothesis, we know that σs �d σ. From the definition of
K and κϕ, and using the induction hypothesis, we can conclude that σs ·
min�lex,time K �d σ · (δ, a), and thus we also have σs · O �d σ · (δ, a).

Thus Eϕ satisfies (Tr)σ ′,t .
• Case time(σs · min�lex,time K ) ≤ t. In this case, we have Eϕ(σ · (δ, a), t) =

σs ·min�lex,time K .From the definition of K andκϕ we know thatσs ·min�lex,time K ∈
ϕ. Thus Eϕ satisfies (Snd)σ ′,t . From the induction hypothesis, we know that
σs �d σ. From the definition of K and κϕ, and using the induction hypothesis,
we can conclude that σs ·min�lex,time K �d σ · (δ, a). Thus Eϕ satisfies (Tr)σ ′,t .
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Proof of Proposition 4

We shall prove that, given a property ϕ, the associated enforcement function Eϕ : (R≥0 ×
�)∗ ×R≥0 → (R≥0×�)∗ as per Definition 8 satisfies the optimality constraint (Op) (from
Definition 4).

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : Eϕ(σ, t) �= ε ∧ Eϕ(σ, t) |� ϕ

�⇒ ∃wmx, w ∈ (
R≥0 ×Σ

)∗ :
wmx = maxϕ≺,ε

(
Eϕ(σ, t)

)

∧Eϕ(σ, t) = wmx · w
∧ time(w) = min

{
time(w′) | delay(w′(1)) ≥ time

(
σ[1···|Eϕ(σ,t)|]

)− time (wmx)

∧wmx · w′ |� ϕ ∧ΠΣ(w′) = ΠΣ(w)
}
.

where the function Eϕ is defined in Sect. 3.2.1 and recalled in the previous proof.
From (Op), we define the constraint dedicated to a particular word σ and a particular time

instant t (i.e., universal quantifications are removed). We denote this proposition by (Op)σ,t .

Thus, we shall prove that Eϕ satisfies (Op)σ,t for any σ ∈ (R≥0 × �)∗ and t ∈ R≥0. For
this purpose, we perform an induction on the length of σ.

Induction basis. Let us suppose that |σ | = 0, thus σ = ε in (R≥0 ×Σ)∗. First, we have
∀t ∈ R≥0 : obs(σ, t) = ε. Second, we have store(ε) = (ε, ε). Consequently, we have
∀t ∈ R≥0 : Eϕ(σ, t) = ε. For σ = ε, we have ∀t ∈ R≥0 : Eϕ(σ, t) = ε. Thus, Eϕ

vacuously satisfies (Op)ε,t , for any t ∈ R≥0.

Induction step. Let us consider n ∈ N and suppose that for any σ ∈ (R≥0 × �)∗ with
|σ | ≤ n, any t ∈ R≥0, Eϕ satisfies (Op)σ,t .

Let us now prove that, for any σ ′ ∈ (R≥0 ×�)∗ with |σ ′| = n + 1, for any t ∈ R≥0, Eϕ

satisfies (Op)σ ′,t . For this purpose, let us consider some input timed wordσ ′with |σ ′| = n+1.

Thus σ ′ = σ · (δ, a) for some σ with |σ | = n, δ ∈ R≥0 and a ∈ Σ. Let us consider some
time instant t ∈ R≥0.

We distinguish two cases according to whether the sum of delays of the timed word
σ · (δ, a) is greater than t or not, i.e., whether time(σ · (δ, a)) > t or not.

– Case time(σ · (δ, a)) > t. In this case, obs(σ · (δ, a), t) = obs(σ, t). Consequently,
Eϕ(σ ·(δ, a), t) = obs(Π1(store(obs(σ ·(δ, a), t))), t) = Eϕ(σ, t). From the induction
hypothesis, we directly deduce that Eϕ satisfies (Op)σ ′,t .

– Case time(σ · (δ, a)) ≤ t. We have obs(σ · (δ, a), t) = σ · (δ, a).

We distinguish two cases, based on whether K = ∅, or not, where K = κϕ(time(σ ) +
δ, σs, σc · (δ, a)).

– Case K = ∅.From the definition of store,we have store(σ ·(δ, a)) = (σs, σc·(δ, a)),

and Π1(store(σ ·(δ, a))) = σs . We also have Π1(store(σ )) = σs . From the definition
of Eϕ, we have Eϕ(σ · (δ, a), t) = Eϕ(σ, t). From the induction hypothesis, we
deduce that Eϕ satisfies (Op)σ ′,t .

– Case K �= ∅. From the definition of store, we have store(σ · (δ, a)) = ((σs ·
min�lex,time K , ε), and Π1(store(σ · (δ, a))) = (σs · min�lex,time K ). We distinguish
two cases based on whether time(σs ·min�lex,time K ) > t or not.
• Case time(σs ·min�lex,time K ) > t. We further distinguish two more cases based

on whether time(σs) > t or not.
· Case time(σs) > t. We have obs(σs ·min�lex,time K , t) = obs(σs, t). Thus,

we have Eϕ(σ · (δ, a), t) = Eϕ(σ, t). Hence, from the induction hypoth-
esis, we deduce that Eϕ satisfies (Op)σ ′,t .
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· Case time(σs) ≤ t. We have Eϕ(σ · (δ, a), t) = σs · O, where O ≺
min�lex,time K . According to the definition of store, σs · O �|� ϕ. Thus, Eϕ

vacuously satisfies (Op)σ ′,t .
• Case time(σs ·min�lex,time K ) ≤ t. We have Eϕ(σ ·(δ, a), t) = σs ·min�lex,time K .

From the definition of K and κϕ, we know that σs · min�lex,time K |� ϕ. From
the definition of store, we know that σs is the maximal strict prefix of σs ·
min�lex,time K , which satisfies ϕ. The last subsequence which again makes the
output satisfy the property is min�lex,time K . From the definition of K and κϕ, we
also know that the delay(min�lex,time K (1)) ≥ time(σ )+ δ− time(σs). Thus, we
can conclude that Eϕ satisfies (Op)σ ′,t .

Preliminaries to the proof of Proposition 5: characterizing the configurations of EMs

We first convey some remarks (Sect. 6), define some notions (Sect. 6) and lemmas (Sect. 6)
related to the configurations of EMs.

Some remarks

Remark 12 In the following proofs, without loss of generality, we assume that at any time
only one of the rules of the EM applies. This simplification does not come at the price of
reducing the generality nor the validity of the proofs because (i) the store and dump rules
of the EM assign different variables and do not rely on the same conditions, and (ii) the
operations of EMs are assumed to be executed in zero time. The considered simplification
however reduces the number of (equivalent cases) in the following proofs.

Remark 13 Between the occurrence of two (input or output) events the configuration of the
EM evolves according to the idle rule (since it is the rule with lowest priority). To simplify
notations we will use a rule to simplify the representation of Eioo ∈ ((R≥0 × Σ) ∪ {ε}) ×
Op × ((R≥0 ×Σ) ∪ {ε}) stating that

σ · (ε, idle (δ1) , ε) · (ε, idle (δ2) , ε) · σ ′ is equivalent to σ · (ε, idle (δ1 + δ2) , ε) · σ ′,
for any σ, σ ′ ∈ ((R≥0 × Σ) ∪ {ε}) × Op × ((R≥0 × Σ) ∪ {ε}) and δ1, δ2 ∈ R≥0. Thus
for Eioo we will only consider sequences of ((R≥0 ×Σ) ∪ {ε})× Op × ((R≥0 ×Σ) ∪ {ε})
where delays appearing in the idle operation are maximal (i.e., there is no sequence of two
consecutive events with an idle operation).

Some notations

Since it is assumed that at most one rule of the EM applies at any time, let us define the
functions configin, configout : (R≥0 × Σ)∗ × R≥0 → CE that give respectively the input
and output configurations of an EM reading an input sequence at some time instant. More
formally, given some σ ∈ (R≥0 ×�)∗, t ∈ R≥0 :

– configin(σ, t) = ct
σ such that cE

0

w(σ, t)
↪→∗ ct

σ where w(σ, t)
def= min�{ioo � Eioo(σ, t) |

timeop(ioo) = t};
– configout(σ, t) = ct

σ such that cE
0

Eioo(σ, t)
↪→∗ ct

σ .

Observe that, when at some time instant, only the idle rule applies, configin(σ, t) =
configout(σ, t) holds.
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Moreover, for any two t, t ′ ∈ R≥0 such that t ′ ≥ t, we note E(σ, t, t ′) for E(σ, t ′) \
E(σ, t), i.e., the output sequence of an EM between t and t ′.

Some intermediate lemmas

Before tackling the proof of Proposition 5, we give a list of lemmas that describes the behavior
of an EM, describing the configurations or the output at some particular time instant for some
input and memory content.

Similarly to the first physical constraint, the following lemma states that the EM cannot
change what it has output. More precisely, when the EM is seen as function E, the output is
monotonic w.r.t. � .

Lemma 1 (Monotonicity of the outputs of EMs) Function E : (R≥0 × Σ)∗ × R≥0 →
(R≥0 ×Σ)∗ is monotonic in its second parameter: ∀σ ∈ (R ×Σ)∗, ∀t, t ′ ∈ R≥0 : t ≤ t ′
�⇒ E(σ, t) � E(σ, t ′).

The lemma states that for any input sequence σ, if we consider two time instants t, t ′ such
that t ≤ t ′, then the output of the EM at time t is a prefix of the output at time t ′.

Proof (of Lemma 1) The proof directly follows from the definitions of the function E associ-
ated to an EM (see Sect. 3.4, p. 20) which directly depends on Eioo, which is itself monotonic
over time (because of the definition of EMs). ��
As a consequence, one can naturally split the output of the EM over time, as it is stated by
the following corollary.

Corollary 1 (Separation of the output of the EM over time)

∀σ ∈ (R≥0 ×�)∗, ∀t1, t2, t3 ∈ R≥0 : t1 ≤ t2 ≤ t3 �⇒ E (σ, t1, t3)

= E (σ, t1, t2) · E (σ, t2, t3) .

The corollary states that for any sequence σ input to E, if we consider three time instants
t1, t2, t3 ∈ R≥0 such that t1 ≤ t2 ≤ t3, the output of E between t1 and t3 is the concatenation
of the output between t1 and t2 and the output between t2 and t3.

Proof (of Corollary 1) The corollary directly follows from Lemma 1. ��
The following lemma states that, at some time instant t, the output of the EM only depends

on what has been observed until time t. In other words, the EM can work in an online fashion.

Lemma 2 (Dependency of the output on the observation only)

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : E(σ, t) = E(obs(σ, t), t).

Proof (of Lemma 2) The proof of the lemma directly follows from the definitions of Eioo

(Definition 10, p. 20) and obs (in Sect. 2). Indeed, using obs(σ, t) = obs(obs(σ, t), t), we
deduce that Eioo(σ, t) = Eioo(obs(σ, t), t), for any σ ∈ (R≥0 × �)∗ and t ∈ R≥0. Using
E(σ, t) = Π3(Eioo(σ, t)), we can deduce the expected result. ��

The following lemma indicates the value of the store variable inside the configurations at
some special time instants (corresponding to the time necessary to read prefixes of the input
sequence).
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Lemma 3 (Values of configin when reading events)

∀σ, σ ′ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 :

(σ ′ � σ ∧ t = time(σ ′)) �⇒ configin(σ, t) = (_, _, time(last(σ ′)), _, _, _).

Proof (of Lemma 3) The proof can be done using a straightforward induction on the length
of the maximal considered prefix σ ′ of σ. Moreover, the proof uses the facts that between
two prefixes of the input sequence, (i) no modification is brought to the store variable, and
(ii) the store variable is reset upon the store of each event. ��

The following lemma states that only the memory content σs and the value of the dump
variable influence the output of the EM. More specifically, if, after reading some sequence, an
EM reaches some configuration, its future output is fully determined by the memory content
σs (containing the corrected sequence) and the value of the dump variable (d), during the
total time needed to output it.

Lemma 4 (Values of configout when releasing events)

∀σ, σs, σc ∈ (R≥0 ×�)∗, ∀t ∈ R≥0, ∀s, d, mt ∈ R≥0, ∀q ∈ Q :
t ≥ time(σ ) ∧ configout(σ, t) = (σs, σc, s, d, mt , q)

�⇒ ∀σ ′s � σs, ∃σ ′c ∈ (R≥0 ×�)∗, ∃s′ ∈ R≥0, ∃m′t ∈ R≥0, ∃q ′ ∈ Q :
configout

(
σ, t + time

(
σ ′s

)− d
) = (

σs \ σ ′s, σ ′c, s′, 0, m′t , q ′
)
.

The lemma states that whatever is the output configuration (σs, σc, s, d, mt , q) reached by
reading some input sequence σ at some time instant t ≥ time(σ ), then for any prefix σ ′s of
σs the output configuration reached at time t + time(σ ′s)− d (we add the time needed to read
σ ′s minus the value of the dump clock) is such that σ ′s has been released from the memory
(the memory is σs \ σ ′s) and the value of the dump variable has just been reset to 0.

Proof (of Lemma 4) The proof is a straightforward induction on the length of σ ′s . It uses the
fact that the considered configurations occur at time instants greater than time(σ ), hence
implying that no input event can be read any more. Consequently, following the definition of
the EM (Definition 9, p. 18), on the configurations of the EM, only the idle and dump rules
apply. Between time(σ ′s) and time(σ ′s ·(δ, a))whereσ ′s � σ ′s ·(δ, a) � σs, the configuration of
the EM evolves only using the idle rule (no other rule applies) until configin(σ, t+time(σ ′s)) =
(σs \σ ′s, σc, s′+δ, δ, mt , q) with σs \σ ′s . The dump rule is then applied to get the following

derivation (σs\σ ′s, σc, s′+δ, δ, mt , q)
ε/dump(δ,a)/ε

↪→ (σs\(σ ′s ·(δ, a)), σc, s′+δ, 0, mt , q).

��
The following lemma states that when an EM has nothing to read in input anymore, what is
output is the observation of its memory content over time.

Lemma 5

∀σ, σs, σc ∈ (R≥0 ×�)∗, ∀t ∈ R≥0, ∀s, d, mt ∈ R≥0, ∀q ∈ Q :
t ≥ time(σ ) ∧ configout(σ, t) = (σs, σc, s, d, mt , q)

�⇒ ∀σ ′s ∈ (R≥0 ×�)∗, ∀t ′ ∈ R≥0 :
σ ′s � σs ∧ d ≤ t ′ ≤ time

(
σ ′s

) �⇒ E(σ, t, t + t ′ − d) = obs
(
σ ′s, t ′

)
.

The lemma states that, if after some time t, after reading an input sequence σ, the EM is in
an output configuration that contains σs as a memory content, then whatever is the prefix σ ′s
of σs we consider, the output of the EM between t and t + time(σ ′s) is the observation of σ ′s .
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Proof (of Lemma 5) The proof is performed by induction on the length of σ ′s and uses
Lemma 4.

– Case |σ ′s | = 0. In this case, σ ′s = ε and since time(ε) = 0 and E(σ, t, t − d) is not
defined, the lemma vacuously holds.

– Induction case Let us suppose that the lemma holds for all prefixes σ ′s of some maximum
length n ∈ [0, |σs | − 1]. Let us consider σ ′ the prefix of σs of length n + 1. On the one
hand, at time t + time(σ ′)− d, i.e., when t ′ = time(σ ′)− d, according to Lemma 4, we
have configout(σ, t + time(σ ′)− d) = ((δ, a), σc, s, 0, mt , q) for some s, mt ∈ R≥0

and σc ∈ (R≥0 ×�)∗. On the other hand, let us consider some t ′ ∈ [0, δ], we have:

E(σ, t, t + time(σ ′)+ t ′ − d) = E(σ, t, t + time(σ ′)− d) · E(σ, t + time(σ ′)
−d, t + time(σ ′)+ t ′ − d).

Using the induction hypothesis, we find E(σ, t, t+time(σ ′)−d) = obs(σ ′, time(σ ′)) =
σ ′.Using the semantics of the EM (dump and idle rules), we obtain E(σ, t+time(σ ′)+t ′−
d) = obs((δ, a), t ′+d). Thus, E(σ, t, t+time(σ ′)+t ′−d) = σ ′ ·obs((δ, a), t ′+d) =
obs(σ ′ · (δ, a), t ′ + d). ��

Proof of Proposition 5: relation between enforcement function and EM

Proof We shall prove that, given a property ϕ, the associated EM as per Definition 9 (p. 18)
implements the associated enforcement function Eϕ : (R≥0 ×Σ)∗ × R≥0 → (R≥0 ×Σ)∗
as per Definition 8 (p. 12). That is:

∀σ ∈ (
R≥0 ×Σ

)∗
, ∀t ∈ R≥0 : Eϕ(σ, t) = E(σ, t).

The proof is done by induction on the length of the input timed word σ. ��
Induction basis. Let us suppose that |σ | = 0, thus σ = ε in (R≥0 × Σ)∗. On the one

hand, we have ∀t ∈ R≥0 : Eϕ(σ, t) = ε. On the other hand, the word Eioo(ε, t) over the
input–operation–output alphabet is such that ∀t ∈ R≥0 : Eioo(ε, t) = ε. Thus, according
to the definition of the EM, store-ϕ and store-ϕ rules cannot be applied. Consequently, the
memory of the EM remains empty as in the initial configuration. It follows that the dump

rule cannot be applied. We have then CE
0

ε/ idle(t)/ε
↪→ (ε, ε, t, t, 0, q), and thus E(ε, t) = ε.

Induction step. Let us suppose that Eϕ(σ, t) = E(σ, t) for any timed wordσ ∈ (R≥0×Σ)∗
of some length n ∈ N, at any time t ∈ R≥0. Let us now consider some input timed word
σ · (δ, a) for some σ ∈ (R≥0 ×�)∗ with |σ | = n, δ ∈ R≥0, and a ∈ Σ. We want to prove
that Eϕ(σ · (δ, a), t) = E(σ · (δ, a), t), at any t ∈ R≥0.

Let us consider some time instant t ∈ R≥0. We distinguish two cases according to whether
time(σ · (δ, a)) > t or not, that is whether σ · (δ, a) is completely observed or not at time t.

– Case time(σ · (δ, a)) > t. In this case, obs(σ · (δ, a), t) = obs(σ, t), i.e., at time t, the
observations ofσ andσ ·(δ, a) are identical. On the one hand, we have: Eϕ(σ ·(δ, a), t) =
obs(Π1(store(obs(σ · (δ, a), t))), t) = obs(Π1(store(obs(σ, t))), t) = Eϕ(σ, t). On
the other hand, regarding the EM, since obs(σ · (δ, a), t) = obs(σ, t), using Lemma 2
(p. 35), we obtain E(σ · (δ, a), t) = E(σ, t). Using the induction hypothesis, we can
conclude that Eϕ(σ · (δ, a), t) = E(σ · (δ, a), t).

– Case time(σ · (δ, a)) ≤ t. In this case, we have obs(σ · (δ, a), t) = σ · (δ, a) [i.e.,
σ · (δ, a) has been observed entirely]. Using Lemma 3 (p. 36), we know that the con-
figuration of the EM at time time(σ · (δ, a)) is configin(σ · (δ, a), time(σ · (δ, a))) =
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(σs, σc, δ, d, mt , qσ ) for some σs, σc ∈ (R≥0 × �)∗, δ, d, mt ∈ R≥0, qσ ∈ Q.

Observe that configin(σ, time(σ ·(δ, a))) = configin(σ ·(δ, a), time(σ ·(δ, a))) because
of (i) the definition of configin using the definition of Eioo and (ii) the event (δ, a) has not
been yet consumed through none of the store rules by the EM at time time(σ · (δ, a)).

We distinguish two cases according to whether σc · (δ, a) can be delayed into a word
satisfying ϕ or not, i.e., whether K = κϕ(time(σ )+ δ, σs, σc · (δ, a)) = ∅, or not.

– Case K = κϕ(time(σ )+δ, σs, σc ·(δ, a)) = ∅. From the definition of store function,
we have store(σ ·(δ, a)) = (σs, σc ·(δ, a)), and Π1(store(σ ·(δ, a))) = σs . We also
have Π1(store(σ )) = σs . From the definition of Eϕ, we have Eϕ(σ · (δ, a), t) =
Eϕ(σ, t).
Now, regarding E, according to the definition of update, we have update(qσ , σc ·
(δ, a), mt + δ) = (σc, ff). According to the definition of the transition relation,
we have:

(σs, σc, δ, d, mt , qσ )
(δ,a)/store-ϕ(δ, a)/ε

↪→ (σs, σc · (δ, a), 0, d, mt + δ, qσ ) .

Thus configout(σ · (δ, a), time(σ · (δ, a)) = (σs, σc · (δ, a), 0, d, mt + δ, qσ ).

Let us consider tε ∈ R≥0 such that between time(σ · (δ, a))− tε and time(σ · (δ, a)),

the EM does not read any input nor produce any output, i.e., for all t ∈ [time(σ ·
(δ, a))− tε, time(σ · (δ, a))], config(t) is such that only the idle rule applies.
Let us examine E(σ · (δ, a), t). We have:

E(σ · (δ, a), t) = E (σ · (δ, a), time(σ · (δ, a))− tε)
·E (σ · (δ, a), time(σ · (δ, a))− tε, time(σ · (δ, a)))

·E(σ · (δ, a), time(σ · (δ, a)), t).

Let us examine E(σ, t). We have:

E(σ, t) = E (σ, time(σ · (δ, a))− tε)
·E (σ, time(σ · (δ, a))− tε, time(σ · (δ, a)))

·E(σ, time(σ · (δ, a)), t).

Observe that E(σ ·(δ, a), time(σ ·(δ, a))−tε) = E(σ, time(σ ·(δ, a))−tε) because
obs(σ · (δ, a), time(σ · (δ, a))− tε) = σ according to the definition of obs. More-
over, E(σ · (δ, a), time(σ · (δ, a)) − tε, time(σ · (δ, a))) = ε since only the idle
rule applies during the considered time interval. Furthermore, according to Lemma 5,
since configout(σ ·(δ, a), time(σ ·(δ, a))) = (σs, σc ·(δ, a), 0, d, mt+δ, qσ ), we
get E(σ ·(δ, a), time(σ ·(δ, a)), t) = obs(σs, t−time(σ ·(δ, a))+d) = obs(σs, t−
time(σ · (δ, a)) + d). Moreover, we know that configin(σ, time(σ · (δ, a))) =
(σs, σc, δ, d, mt , qσ ). Since the EM is deterministic, and from Remark 12 (p. 34),
we also get that configout(σ, time(σ · (δ, a))) = (σs, σc, δ, d, mt , qσ ). Using
Lemma 5 (p. 36) again, we get E(σ, time(σ · (δ, a)), t) = obs(σs, t − time(σ ·
(δ, a))+ d).

Consequently we can deduce that E(σ · (δ, a), t) = E(σ, t) = Eϕ(σ, t) = Eϕ(σ ·
(δ, a)).

– Case K = κϕ(time(σ )+ δ, σs, σc · (δ, a)) �= ∅.
Regarding Eϕ, from the definition of store function, we have store(σ · (δ, a)) =
((σs ·min�lex,time K , ε), and Π1(store(σ · (δ, a))) = (σs ·min�lex,time K ).
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Regarding the EM, according to the definition of update, we have update(qσ , σc ·
(δ, a), mt + δ) = (σ

′
c, tt). From the definition of the transition relation, we have:

(σs, σc, δ, d, mt , qσ )
(δ,a)/store-ϕ(δ, a)/ε

↪→
(
σs · σ ′c, ε, 0, d, m

′
t , q

′)
,

where:
• m

′
t = m

′
t + δ − time(σ

′
c),

• q
′

is defined as q
σ
′
c→ q

′
.

Thus configout(σ · (δ, a), time(σ · (δ, a)) = (σs · σ ′c, ε, 0, d, m
′
t , q

′
).

Let us consider tε such that during time(σ · (δ, a))− tε and time(σ · (δ, a)), the EM
does not read any input nor produce any output, i.e., for all t ∈ [time(σ · (δ, a)) −
tε, time(σ · (δ, a))], config(t) is such that only the idle rule applies.
Let us examine E(σ · (δ, a), t). We have:

E(σ · (δ, a), t) = E (σ · (δ, a), time(σ · (δ, a))− tε)
·E (σ · (δ, a), time(σ · (δ, a))− tε, time(σ · (δ, a)))

·E(σ · (δ, a), time(σ · (δ, a)), t).

Let us examine E(σ, t). We have:

E(σ, t) = E (σ, time(σ · (δ, a))− tε)
·E (σ, time(σ · (δ, a))− tε, time(σ · (δ, a)))

·E(σ, time(σ · (δ, a)), t).

Observe that E(σ ·(δ, a), time(σ ·(δ, a))−tε) = E(σ, time(σ ·(δ, a))−tε) because
obs(σ · (δ, a), time(σ · (δ, a))− tε) = σ according to the definition of obs.
Moreover, E(σ · (δ, a), time(σ · (δ, a)) − tε, time(σ · (δ, a))) = ε since only the
idle rule applies during the considered time interval.
Furthermore, according to Lemma 5, since configout(σ · (δ, a), time(σ · (δ, a))) =
(σs ·σ ′c, ε, 0, d, m

′
t , q

′
), we get E(σ ·(δ, a), time(σ ·(δ, a)), t) = obs(σs ·σ ′c, t−

time(σ · (δ, a))+ d).

Now we further distinguish two more sub-cases, based on whether time(σs · σ ′c) >

t−time(σ ·(δ, a))+d or not (whether all the elements in the memory can be released
as output by time t or not).

• Case time(σs · σ ′c) > t − time(σ · (δ, a))+ d.

We further distinguish two more sub-cases based on whether time(σs) > t −
time(σ · (δ, a))+ d, or not.

· Case time(σs) > t− time(σ ·(δ, a))+d. In this case, we know that obs(σs ·
σ
′
c, t − time(σ · (δ, a))+ d) = obs(σs, t − time(σ · (δ, a))+ d). Hence,

we can derive that E(σ · (δ, a), t) = E(σ, t). Also, from the induction
hypothesis, we know that E(σ, t) = Eϕ(σ, t).
Regarding Eϕ, we have store(σ · (δ, a)) = Π1(store(σ )) · min�lex,time K .

Moreover

Eϕ(σ · (δ, a), t) = obs (Π1(store(obs(σ, t))), t)
= obs

(
Π1(store(σ )) ·min�lex,time K , t

)
.

We can have Eϕ(σ ·(δ, a), t) = Π1(store(σ ))·O where O � min�lex,time K
which is equal to Eϕ(σ, t) · O, only if the delays computed by the update
function are different from the delays computed by Eϕ. This would vio-
late the induction hypothesis stating that E(σ, t) = Eϕ(σ, t). Hence,
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we have Eϕ(σ · (δ, a), t) = obs( Π1(store(σ )), t) = Eϕ(σ, t). Thus,
Eϕ(σ · (δ, a), t) = E(σ · (δ, a), t).
· Case time(σs) ≤ t − time(σ · (δ, a)) + d. In this case, we can fol-

low the same reasoning as in the previous case to obtain the expected
result.

• Case time(σs · σ ′c) ≤ t − time(σ · (δ, a))+ d.

In this case, similarly following Lemma 5 (p. 36), we have E(σ · (δ, a), time(σ ·
(δ, a)), t) = obs(σs ·σ ′c, t − time(σ · (δ, a)+ d) = σs ·σ ′c. We can also derive
that E(σ, time(σ · (δ, a)), t) = σs . Consequently, we have E(σ · (δ, a), t) =
E(σ, t) · σ ′c. From the induction hypothesis, we know that Eϕ(σ, t) = E(σ, t),
and we have E(σ · (δ, a), t) = Eϕ(σ, t) · σ ′c.
We have store(σ · (δ, a)) = Π1(store(σ )) · min�lex,time K , and thus Eϕ(σ ·
(δ, a), t) = obs(Π1(store(σ )) ·min�lex,time K , t). Hence, in this case, we have
Eϕ(σ · (δ, a), t) = store(σ ) ·min�lex,time K = Eϕ(σ, t) ·min�lex,time K , since the
delays computed for the subsequence σc · (δ, a) by Eϕ and E are equal. Finally,
we have Eϕ(σ · (δ, a), t) = E(σ · (δ, a), t).

Implementation of store processes

We provide a brief description related to how the store process, which processes the input
events (checking for the satisfaction of the property and computing delays) is implemented.

Implementation of StoreProcesssafety

We now describe the implementation of StoreProcesssafety used by an EM for safety prop-
erties. The StoreProcesssafety first parses the input model, and performs the necessary
initialization. For each event of the trace in order, first the automaton representing the input
trace is updated with the new event. Then the updates function is invoked, with the current
state information and the event. The updates function returns ff if an accepting state is not
reachable upon the event (δ, a) from the current state. In case if an accepting state is reach-
able, then the updates function returns the optimal delay with information about the state that
is reachable. Before continuing with the next event, the StoreProcess updates the current
state information. In the StoreProcesssafety, the execution time of updates is measured.
The StoreProcesssafety keeps track of the total time of updates, by adding the updates time
measured after each event to the total time, which is returned as a result of invoking the
StoreProcesssafety.

Implementation of StoreProcessco−safety

The StoreProcessco−safety is implemented following the algorithm and steps described
in [16]. Below we provide an abstract description of the code implementing the updatecs

function. The updatecs function takes a timed word (the events read by the EM), and returns
a new delay for each input event, if an accepting state is reachable for the given input timed
word. First, all paths starting from the initial state for the given input sequence are computed.
Then the set of all accepting paths is computed. In each path, if the location in the last state
is accepting, then the path is accepting, and is a non-accepting path otherwise. If the set of
accepting paths is empty, then updatecs returns ff. If there are accepting paths, for each
state in the path, a corresponding delay is computed, and the paths whose sums of delays are
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minimal are filtered. Among these paths, one path is chosen according to the lexical order,
and the delays corresponding to this path are returned as the result.
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