
Form Methods Syst Des (2013) 43:1–28
DOI 10.1007/s10703-012-0181-1

Modeling and visualizing object-oriented programs
with Codecharts

A.H. Eden · E. Gasparis · J. Nicholson · R. Kazman

Published online: 10 January 2013
© Springer Science+Business Media New York 2013

Abstract Software design, development and evolution commonly require programmers to
model design decisions, visualize implemented programs, and detect conflicts between de-
sign and implementation. However, common design notations rarely reconcile theoretical
concerns for rigor and minimality with the practical concerns for abstraction, scalability and
automated verifiability. The language of Codecharts was designed to overcome these chal-
lenges by narrowing its scope to visual specifications that articulate automatically-verifiable
statements about the structure and organization of object-oriented programs. The tokens in
its visual vocabulary stand for the building-blocks of object-oriented design, such as inheri-
tance class hierarchies, sets of dynamically-bound methods, and their correlations. The for-
malism was tailored for those pragmatic concerns which arise from modeling class libraries
and design patterns, and for visualizing programs of any size at any level of abstraction.
We describe design verification, a process of proving or refuting that a Java program (i.e.
its native code) conforms to the Codechart specifying it. We also describe a toolkit which
supports modeling and visualization with Codecharts, as well as a fully-automated design
verification tool. We conclude with empirical results which suggest gains in both speed and
accuracy when using Codecharts in software design, development and evolution.

Keywords Design notations and documentation · Object-oriented programming ·
Patterns · Design concepts

A.H. Eden (�) · E. Gasparis
School of Computer Science & Electronic Engineering, University of Essex, Colchester, UK
e-mail: eden@essex.ac.uk

J. Nicholson
School of Computing, Engineering and Mathematics, University of Brighton, Brighton, UK

R. Kazman
University of Hawaii, Honolulu, USA

R. Kazman
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, USA

mailto:eden@essex.ac.uk

2 Form Methods Syst Des (2013) 43:1–28

The design of computing systems can only properly succeed if it is well-grounded in theory, and . . . the
important concepts in a theory can only emerge through protracted exposure to application.

– Robin Milner

1 Introduction

In No Silver Bullet [1], Brooks attributes the difficulties that software development projects
face to four inherent properties of software.1 We believe that these difficulties have remained
amongst the practitioners’ central challenges. Complexity: When combined, software sys-
tems constitute some of the most complex artifacts ever manufactured. Invisibility: Software
is intangible and, in itself, invisible. This means that software is hard to visualize, and also
that design flaws are particularly difficult to detect and resolve. Conformance: Apart from
the problem of designing complex programs, enforcing conformance to design decisions
is largely an open problem. Manual verification, if at all possible, is impractical for many
projects, and automated and semi-automated verification tools are yet to enter the main-
stream. Changeability: Many organizations choose to write programs in an iterative, agile
process of software design, implementation and evolution, which demands that the pro-
grammers involved engage in software modeling and visualization throughout the project’s
lifecycle, for example by using alternating use of forward and reverse engineering tools2 [2].

Codecharts were developed specifically to address these difficulties. The language is tai-
lored to fit the practical needs of modeling and visualizing the structure and organization
of programs written in class-based object-oriented (OO) languages such as Java, C++, C#,
Object Pascal, and Eiffel. Often, these needs arise during all stages of the software engi-
neering cycle. The language has therefore evolved from lessons drawn from research in
software analysis, design, modeling, formal specification, evolution, visualization, reverse
engineering and design recovery, as well as the authors’ practical experience. It also seeks to
combine the distinctive advantages of existing formal specification languages and modeling
notations, with emphasis on abstraction, scalability, and automated verifiability.

We also sought to bridge the gap between theory and practice.3 Our theoretical investi-
gation was guided by the practical needs for more effective tool support in modeling and
visualization activities. The language is defined in mathematical logic: Each Codechart is
unpacked as a formula in a fully-decidable subset of the first-order predicate logic (Sect. 5),
and the relation between design and implementation is precisely defined. Consequently,
checking the conformance of programs to Codecharts can be fully automated (Sect. 6).

Codecharts address a variety of common problems in software development. Some of
their benefits to specific problems have been described in technical reports [4–6], websites
[7, 8], conference proceedings [9–11], and a book describing how to use them in prac-
tice [12]. This paper focuses on the contribution of the language to software design, evo-
lution, understanding and verification, demonstrating how the use of Codecharts in each
activity increases its benefits to developers.

1Adapted to our presentation.
2In particular as implied by the first (“A program must be continuously adapted or else it becomes progres-
sively less satisfactory”) and second (“As a program evolves its complexity increases unless work is done to
maintain it”) laws of software evolution [2].
3Christopher Strachey said about this dissociation: “It has long been my personal view that the separation
of practical and theoretical work is artificial and injurious. Much of the practical work done in computing,
both in software and in hardware design, is unsound and clumsy because the people who do it have not any
clear understanding of the fundamental design principles of their work. Most of the abstract mathematical
and theoretical work is sterile because it has no point of contact with real computing” [3].

Form Methods Syst Des (2013) 43:1–28 3

Table 1 Central questions

1. The Ontological Question (Sect. 2). Can the language be used to model and visualize the logical
structure and organization of OO programs? Can its building-blocks capture such programs at any level
of abstraction effectively?

2. The Visualization Question (Sect. 3). Can representations be articulated visually? Can design decisions
(‘program blueprints’) be visualized? Can the design of existing programs (as ‘program roadmaps’) be
visually represented, for instance as a result from design recovery?

3. The Scaling Question (Sect. 4). Can arbitrarily-large programs be represented abstractly, uncluttered by
implementation minutiae?

4. The Conformance Question (Sect. 5). Can we verify the conformance of an implementation to a design
specification (e.g., of a Java program to a Codechart)? Can conflicts be detected and identified?

5. The Automation Question (Sect. 6). Can the Conformance Question be answered by a program? That is,
can conflicts between design and implementation be detected automatically?

1.1 Scope

To illustrate the scope and objectives of Codecharts, we pose five central questions that arise
from software modeling and visualization activities throughout the software lifecycle (Ta-
ble 1). The remainder of our discussion is focused on the (positive) answers that Codecharts
offer to these questions.

Unlike most notations, Codecharts can be used both for modeling possible programs and
design patterns, as well as for visualizing existing programs. The purposes such diagrams
serve can be illustrated using the metaphors of roadmaps and blueprints:

– During forward engineering, Codecharts can be compared to ‘program blueprints’: visual
specifications modeling design decisions concerning programs under construction and
design patterns prescribed by software designer. For example, Fig. 6 depicts the blueprint
of the Decorator pattern, specifying classes, sets of classes, sets of dynamically-bound
methods, and their relationships in every (correct) implementation of this pattern.

– During reverse engineering, Codecharts can be compared to ‘program roadmaps’: dia-
grams visualizing the logical structure and organization of existing programs, generated
by a design recovery tool by analyzing the implementation. For example, Fig. 10 offers
a roadmap of the Java 3D API generated by our design recovery tool, depicting inheri-
tance class hierarchies, sets of dynamically-bound methods, and their relationships in the
software package.

To illustrate how Codecharts can promote forward, reverse, and round-trip engineering,
we developed a set of tools modeling and visualizing programs with Codecharts called the
Two-Tier Programming Toolkit (henceforth, the Toolkit). We demonstrate below how the
Toolkit can be used to support these activities. We proceed with a pilot study, the results
of which suggest that Codecharts improve both the speed and accuracy of developers in
forward and reverse engineering tasks within the scope of the language. Using the language
does not require special training or long-term commitment to the notation, specific dialects,
programming languages, tools or development environments.

1.2 Context

Codecharts can be used both for modeling (or specifying) and visualizing object-oriented
programs. Below we clarify this central distinction and place Codecharts in the context of
related languages.

4 Form Methods Syst Des (2013) 43:1–28

Modeling and specification languages represent design decisions about programs that
are yet to be implemented. Such decisions can be represented using various notations such
as Class and Interaction Diagrams, architectural description languages [13], design pat-
tern specification languages [14], and Dataflow diagrams. Some modeling languages lack
a means to distinguish between specific implementations (e.g., class InputStream) and
generic participants in a design motif (e.g., the component participant in the Decorator pat-
tern). Also, many notations were tailored to represent implementation minutiae, thereby
limiting their use in effectively representing the abstract building-blocks of object-oriented
programs such as inheritance class hierarchies and sets of dynamically-bound methods. Con-
sequently, tools that attempt to visualize large programs using these modeling notations may
not always provide useful insights [15]. Finally, modeling notations can capture and convey
human intuitions, but those are often ambiguous and their implementation cannot be veri-
fied [16], which limits the productivity gains that programmers can expect from modeling
and visualization tools.

In contrast, program visualization notations are specifically designed to visualize infor-
mation about programs via reverse engineering. They are useful for representing metrics
such as size of source code, complexity and distribution of method calls. Visualization no-
tations however were not designed to support modeling design decisions (such as the use of
patterns) for unimplemented programs.

Formal specification languages (e.g., [17–25]) are rigorously defined notations, accom-
panied by a mathematical framework based on well-understood theories such as first-order
logic, temporal logic, set theory, and graph grammars. Specifications in formal languages
such as Z [26] can be used to “fix” the requirements and analyze them. For example, RBML
[27, 28] formalizes both structural and behavioral descriptions of patterns. However, the
conformance of programs to specifications in many formal systems cannot be verified fully
automatically (Sect. 6).

Most formal languages employ a symbolic mathematical notation whose adoption is
likely to require specialized training. Visual languages, in contrast, are notations for graph-
ical and diagrammatic representation which can depict programs in a range of level of ab-
stractions (e.g. [17, 29, 30] and [31]). Visual notations are motivated by the mind’s natural
aptitude for spatial reasoning. Roadmaps, building blueprints, floorplans, and electrical cir-
cuit diagrams visually convey complex information. It is well established that visual ‘expla-
nations’ of complexity are more readily and intuitively grasped than symbolic formulas and
require less training to be used effectively [32]. For example, Statecharts [17] is a formal
and visual modeling language for specifying details about the relation between the input to
the program and its internal ‘state’.

UML [31] is a powerful and expressive collection of notations suitable for many soft-
ware development tasks. Many visual modeling languages base their notations on UML or
dialects thereof. For example, the Design Pattern Modeling Language [33] is defined as a
UML metamodel, offering a conservative extension to the language which is accessible to
programmers and also capable of effectively modeling both programs and design patterns
as first class objects. Tools in the DEMIMA framework [34] can check the conformance of
source code to design patterns specified in the Pattern and Abstract-level Description Lan-
guage (PADL), which translates UML diagrams to a constraint-based language. Specifica-
tions are expressed as Java data structures implemented using the Ptidej tool suite. However,
the authors do not describe a tool that can create PADL models from visual specifications.

UML and its dialects are generally insufficient for answering some of the central ques-
tions listed in Table 1. Automated verification is hampered by the fact that “no formal defi-
nition exists of how UML maps to any particular programming language. You cannot look

Form Methods Syst Des (2013) 43:1–28 5

at a UML diagram and say exactly what the equivalent code would look like” [16]. Being
a modeling language for programs rather than design motifs, its vocabulary lacks variables,
hence “UML cannot be used to describe an infinite set of pattern instances because the lan-
guage is not designed for that purpose” [35]. Finally, as a modeling language, it is yet to be
demonstrated that UML can be effective for program visualization (Sect. 4).

1.3 Caveat

Codecharts are not supposed to replace any of the existing modeling and visualization lan-
guages. Rather, the language seeks to offer a novel conceptual tool for communicating
and enforcing design decisions, and for understanding programs. Codecharts are poorly
suited to expressing statements that are not visually articulated and Turing-decidable for-
mal statements about programs in class-based languages. For example, Codecharts cannot
represent functional specifications, including dynamic or behavioral properties such as con-
straints on sequences of events, algorithms, and objects. Owing to their minimal vocab-
ulary, Codecharts cannot effectively represent design decisions concerning programming
paradigms, architectural styles, and design patterns that are not purely object-oriented. Ob-
viously, due to its rigorously defined semantics, Codecharts cannot represent informal and
un-verifiable specifications.

1.4 Outline

Sections 2 through 6 offer answers to the ontological, visualization, scaling, conformance
and automation questions (Table 1) respectively. In Sect. 7 we show how Codecharts support
software evolution using our round-trip engineering tool. In Sect. 8 we discuss the empirical
results of two controlled experiments with the Toolkit and explore some of the practical
benefits the Toolkit stands to deliver to programmers. Section 9 concludes with a discussion
of the pros and cons of Codecharts and future work.

2 The ontological question

Let us demonstrate the answer Codecharts offers to the Ontological Question using a small
example drawn from Java’s java.io package [36], depicted in Table 2. The building-
blocks in the design of this program are as follows:

Individual classes, methods and method signatures are the most elementary entities.
A method’s signature is defined by its name and argument types. For example, Input-

Table 2 Code excerpts from the java.io package [36]

public abstract class InputStream
implements Closeable {
public abstract int read(); ...

}

public abstract class FilterInputStream
extends InputStream {
protected InputStream in;
public int read() { return in.read(); }

}public class FileInputStream
extends InputStream {
public int read() ...

}

public class BufferedInputStream
extends FilterInputStream {
public int read() { ...

}public class ByteArrayInputStream
extends InputStream {
public int read() ...

}

public class LineNumberInputStream
extends FilterInputStream {
public int read() {

...c = in.read(); ...
}

6 Form Methods Syst Des (2013) 43:1–28

Stream and Int are classes, read() is a signature, and InputStream.read() and
FilterInputStream.read() are methods.

Relations represent properties of entities and relationships between them. For example,
the entity InputStream is said to be in the unary relations Class and Abstract. The pair
〈FileInputStream,InputStream〉 in relation Inherit represents the ‘extends’ rela-
tion between the respective classes. Other binary relations include Create (indicating the
relation between a method creating objects and the type of the objects created) and Forward
(a call from one method to another). Relations can also represent other decidable properties,
such as Interface(x) (x is a Java interface) Private(x, y) (x is a private member of class y),
Throws(x, y) (x may throw an exception of type y) and so on.

Rather than treating classes as containers of methods and attributes, each class (and
static type) and method is a separate entity that may be related by the binary rela-
tion Member. For example, the pairs 〈FilterInputStream,InputStream〉 and
〈FilterInputStream,FilterInputStream.read()〉 are both in the relation
Member, representing the relation between class FilterInputStream, its attribute (‘data mem-
ber’) InputStream and method (‘function member’) read().

Higher-dimensional classes and methods are finite sets of entities. For example, In-
putStream is a class of dimension 0, whereas DecoratorsHrc, defined as the set

DecoratorsHrc = {FilterInputStream,BufferedInputStream,
LineNumberInputStream}

is a class of dimension 1. Java packages and C++ namespaces can be represented as classes
of dimension 1. Methods and signatures of higher dimensions are symmetrically defined.
Consider the following examples modeled in Fig. 4: The set of dynamically bound methods
with signature createRetained defined in SceneGraphObject and its subclasses is
a method of dimension 1. And the set of sets of dynamically bound methods with some sig-
nature in the set setLive defined in SceneGraphObjectRetained and its subclasses
is a method of dimension 2.

An Inheritance Class Hierarchy (in short, hierarchy) is a class of dimension 1 which
contains a ‘root’ class that all other classes in the set inherit from. For example, Decora-
torsHrc is not only a class of dimension 1 but also a hierarchy.

In philosophical terms, these building-blocks describe the ontological commitments [37]
underlying Codecharts. In practice, they force the software engineer to think about OO de-
sign in terms of sets of dynamically bound methods, class hierarchies etc. This paper demon-
strates some of the programs and patterns that can be adequately described in these terms.
Additional examples can be found in [5, 9–12] and [38].

3 The visualization question

Visual notations are popular because of the advantage of diagrams in conveying complex
details [39]. Consider roadmaps, which are useful because their vocabulary lends itself
naturally to the reasoning of drivers. Consequently, drivers rarely need to consult with a
roadmap’s glossary: thin lines evidently stand for narrow roads, thick lines for motorways
and pictures of petrol pumps stand for petrol stations. Similarly, floorplans typically visu-
alize walls, doors and windows. Seeking to avoid the confusion that arises from bloated
vocabularies, these notations limit themselves to a set of visual tokens directly relevant to
the process of reasoning that each is designed to support. The motivation for our vocabulary
is best summarized by Hoare [40]:

Form Methods Syst Des (2013) 43:1–28 7

Fig. 1 The vocabulary of Codecharts

We need a puritanical rejection of the temptations of features and facilities, and a
passionate devotion to the principles of purity, simplicity and elegance.

Designed after this principle, the vocabulary of Codecharts (Fig. 1) is restricted to capture
and convey statements about the building-blocks of OO design (Sect. 2).

The grammar and semantics of Codecharts are laid out in precise terms in [4]. Below we
sketch the vocabulary using examples drawn from the Codecharts below:

– Relation symbols stand for unary and binary relations. For example, the unary rela-
tion symbol Abstract over the signature constant close() in Fig. 8 indicates that the
method with such signature in class Closeable is abstract. Similarly, the binary re-
lation symbol Member connecting FileInputStream to InputStream in Fig. 9
indicates that class FileInputStream has an attribute (a.k.a. data member) of type
InputStream.

– Terms (constants and variables) stand for entities: 0-dimensional terms represent indi-
vidual entities and 1-dimensional terms represent finite sets of entities. For example, the
class Reader in java.io is modeled in Fig. 8 using the 0-dimensional class constant
marked as such, and the set of classes that inherit from it are modeled as the 1-dimensional
class constant SubClassesOfReader. 2-dimensional hierarchy terms stand for sets of
hierarchies, such as OTHER-HIERARCHIES in Fig. 10.

– Predicate symbols stand for predicates. The Total predicate denotes a left total binary
relation (unpacked as demonstrated by condition (f) in Table 3). The Isomorphic predicate
is used to indicate a bijective functional relation.

– Formulas combine a relation symbol with terms and a predicate symbol.

Methods are represented by superimposing the respective (set of) signature(s) over the
respective (set of) classes (or class hierarchies). For example, the method with signature
close() in Closeable is modeled in Fig. 8 by superimposing the signature constant
over the class constant, respectively. The set of dynamically-bound methods with the sig-
nature createRetained() defined in classes in the hierarchy NodeHrc are similarly
modeled in Fig. 10 by superimposing the respective constants. And the set of methods with
any one of the signatures in the set represented by the 1-dimensional signature constant

8 Form Methods Syst Des (2013) 43:1–28

Fig. 2 Codechart modeling top level packages in the Java 3D API

ReaderOps in class Reader is modeled in Fig. 8 by superimposing the respective con-
stants.

Variables and constants are used in the usual manner. Constants may refer to any entity
of same type and dimension whose identity is fixed by an interpretation function. Variables
can be assigned to any number of instances of same type and dimension as demonstrated in
Sect. 5.

Each Codechart is unpacked as a formula in a subset of the first-order predicate logic
(FOPL) as defined in Chap. 9 in [4].4 The unpacking is demonstrated in the examples below.
However, since checking conformance to Codecharts is fully automated (Sect. 6), details
of the formalism need not concern most programmers, who can use the notation without
mathematical training.

Below we demonstrate how the vocabulary of Codecharts is used in software modeling
and visualization.

3.1 Example: modeling Java 3D

We now show how Codecharts can be used to encode design decisions by demonstrating how
informal descriptions of the API to the Java 3D library are specified. The Java 3D library was
developed at Sun Microsystems for rendering interactive 3D graphics. It consists of several
hundred classes and learning to use it effectively poses a challenge even for experienced
programmers.

The following passage describes the organization of the API into three top level pack-
ages:

The core Java 3D API classes are in the javax.media.j3d package. Java 3D also
includes a collection of vector and matrix classes that . . . are in the javax.vecmath
package. . . . A set of useful utility classes is included in the com.sun.j3d package
tree. In practice, all three packages are available to all Java 3D programs, and the set
of packages is considered the Java 3D API. [41]

Figure 2 illustrates how this simple description is encoded formally as a Codechart, which
also indicates some dependency between two of the packages.

For example, the class constant com.java.j3d in Fig. 2 is unpacked in the FOPL as
the following sentence:

∀x ∈ com.java.j3d • Class(x)

Next let us consider the organization of classes that support the scene graph, a data struc-
ture central to the use of the library which comprises a representation of all the objects in
the graphical scene. These classes are described in the Javadoc documentation of the library
as follows:

4This work was further developed into a Theory of Classes in the Typed Predicate Logic [38].

Form Methods Syst Des (2013) 43:1–28 9

Fig. 3 Codechart modeling class SceneGraphObject and some of its subclasses

SceneGraphObject is the common superclass for all scene graph objects. Scene
graph objects are classified into two main types: nodes and node components. The
Node object is the common superclass of all nodes, which includes TransformGroup
[and] Shape3D. . . The NodeComponent object is the common superclass of all node
components, which includes Geometry [and] Appearance.

This description is formalized by the Codechart depicted in Fig. 3.
The formulas represented by the combination of the constants SceneGraphObject

and Node and the relation symbol Inherit in Fig. 3 are unpacked in the FOPL as the follow-
ing sentences:

Class(Node)
Class(SceneGraphObject)
Inherit(Node,SceneGraphObject)

Where Inherit(x, y) is understood as the transitive closure of the relation Inherit, i.e.

Inherit(x, y) � 〈x, y〉 ∈ Inherit ∨ ∃z • 〈x, z〉 ∈ Inherit ∧ Inherit(z, y)

Finally, let us consider the following descriptions related to the set of ‘retained’ classes,
which mirror the set of scene graph object classes. According to [42], the motivation for ‘du-
plicating’ the scene graph object hierarchy is to maintain an internal delegate class separate
from the public implementation class defined by the specification, which allows the devel-
opers more leeway in modifying the implementation without breaking the API or exposing
protected or package level access to methods or fields. The author also explains that each

10 Form Methods Syst Des (2013) 43:1–28

Fig. 4 Codechart modeling the scene graph and scene graph retained twin hierarchies, a set of dynamical-
ly-bound factory methods in the first hierarchy, and a set of sets of dynamically-bound methods in the second
hierarchy. The double-headed arrow represents an isomorphism between three sets: Each class in the set of
scene graph classes defines a createRetained method which creates entities of exactly one class in the
retained hierarchy, and each class in the retained hierarchy is created by exactly one such method

SceneGraphObjectRetained class implements several setLive methods that can
be overridden to respond in a specific manner. The isomorphism between the two hierarchies
is visualized by the Codechart in Fig. 4.

For example, the formulas represented by the combination of the constants Scene-
GraphObjectHrc, SceneGraphObjectRetainedHrc, createRetained and
the isomorphic predicate Create depicted in Fig. 4 are unpacked in the FOPL as the fol-
lowing sentences:

Hierarchy(SceneGraphObjectHrc)
Hierarchy(SceneGraphObjectRetainedHrc)
ISOMORPHIC(Create,
createRetained ⊗ SceneGraphObjectHrc,
SceneGraphObjectRetainedHrc)

where—

Hierarchy(Hrc)�
∃root∈Hrc•∀cls∈Hrc•Class(cls)∧(cls
=root⇒Inherit+(cls,root))

ISOMORPHIC(R,X,Y) �
∀x ∈ X∃y ∈ Y • (R(x, y) ∨ x, y ∈ Abstract)∧

(ISOMORPHIC(R,X − {x}, Y − {y}) ∨ X,Y = {})
3.2 Example: modeling the Decorator pattern

An accurate, meaningful and appropriately understood representation of design decisions
about programs under construction is useful not only when implementation commences
but throughout the software lifecycle. Properly communicated, such a representation can
be taken to represent a ‘contract’ between the designers and programmers and between
different teams of programmers. In absence of clarity and precision, design decisions are
typically violated in practice [43].

Codecharts can be used to represent certain design decisions concisely and unambigu-
ously, such as the structural aspects of design patterns as demonstrated in the Decorator
(Fig. 5). Consider the design decisions modeled in the Codechart in Fig. 6 that represent a
‘blueprint’ of the Decorator pattern. Rather than unpacking it in long and complex formulas
in the FOPL we sketch its truth conditions [12, 44] in Table 3. In the next sections we show
how to prove that java.io conforms to this Codechart and how the Toolkit automates this
process.

Note that all the terms occurring in Fig. 6 are variables. This reflects the fact that what
is being modeled is a pattern: an abstraction representing a design motif, not a specific

Form Methods Syst Des (2013) 43:1–28 11

Fig. 5 The Decorator pattern (adapted from [45])

program. The distinction between generic (‘participant’) and specific (a specific class) is
significant from many perspectives. Contrast this with the respective UML class diagram
(Fig. 5) where such a distinction is not maintained.

3.3 Example: visualizing the InputStream classes

Many design recovery tools are reverse engineering tools that analyze source code, generate
representations that are more abstract than the source code [46], and visualize the results.
Design recovery is useful for understanding the structure and logical organization of an
unfamiliar program: While physical organization (e.g. files and folders) is easy to obtain
using existing tools, the logical organization of OO programs indicating correlations and
clusters of cooperating classes and methods is typically less evident. Any implicit notion
of ‘design’ can take a long time to extract manually from source code. Therefore, program
‘roadmaps’ that are produced by a design recovery tool can help program understanding.

The language of Codecharts was designed to facilitate software visualization using de-
sign recovery tools. Such tools can create Codecharts that analyze source code and create
roadmaps at any level of abstraction we choose. For example, the Codecharts in Sect. 4

12 Form Methods Syst Des (2013) 43:1–28

Fig. 6 A Codechart modeling
the Decorator pattern

Table 3 Truth conditions for the Codechart in Fig. 6 (Decorator pattern)

Terms

(a) The variables component and decorator range over individual types (in Java: class, interface, or
primitive type)

(b) The variables ConcreteComponents and ConcreteDecorators range over sets of types

(c) The variable Ops ranges over sets of method signatures

Formulas

(d) Every class in ConcreteComponents inherits (Java: extend or implement; possibly indirectly) from
component

(e) decorator inherits from component

(f) Every class in ConcreteDecorators inherits from decorator

(g) decorator has a data member (aka field) of type component

(h) component defines a method for each signature in the set Ops

(i) decorator defines a method for each signature in Ops, and every such method forwards the call to the
method it overrides

(j) Every class in ConcreteComponents defines (or inherits) a method for each signature in Ops

(k) Every class in ConcreteDecorators defines a method for each signature in Ops, and every such method
forwards the call to the method it overrides

were generated by such a tool, the Design Navigator [9, 11, 47] (part of the TTP Toolkit),
by analyzing the source code of package java.io.

The Codechart depicted in Fig. 7 (‘Top Chart’) offers the most abstract view of any pro-
gram (or class library): AllClasses represents the entire set of classes and static types in
the implementation—package java.io in our case. As such, a Top Chart is not particu-
larly useful except as a starting point to design recovery. From here, the Design Navigator
offers its users a range of operators (left panel, Fig. 7), each seeking to uncover how various
parts of the software relate and visualize them in more detail. For example, if the user is
interested in understanding the Closeable interface and its subclasses, the Design Navi-
gator can produce a more detailed Codechart.

Form Methods Syst Des (2013) 43:1–28 13

Fig. 7 Top Chart

However, there are over 140 classes and subtypes that inherit from the Closeable in-
terface. Since it is quite a large number, visualizing them as individual classes would be
pointless. Instead, the Codechart depicted in Fig. 8 offers a compact abstraction: It shows
that the Closeable hierarchy consists of four nested class hierarchies, each composed of
subclasses of Reader, Writer, InputStream and OutputStream. It visualizes the
principal division of labor between the 140 classes in this set. Other views of the same set
of classes can also be generated according to needs.

It is often useful to visualize a smaller number of classes in greater detail, namely at
even lower levels of abstraction. For example, programmers may be interested in visualiz-
ing the organization of the individual classes that handle input streams. The Codechart that
the Toolkit generates for this purpose, shown in Fig. 9, depicts class InputStream, five of
its subclasses, and the relations between them. For instance, it shows the relations between
FilterInputStream and InputStream: class FilterInputStream has a mem-
ber of type InputStream, inherits from InputStream, and has methods that forward
the call to methods in InputStream.

Recovering information of this sort can be useful for a variety of software engineering
tasks. Codecharts can also bring to the fore structural properties that the programmer may
recognize. For example, the pattern of relations between FilterInputStream and In-
putStream depicted in Fig. 9 bears similarity to the Decorator design pattern (Fig. 6).
Does InputStream conform to the Decorator? In Sect. 5 we show how this question is
answered.

4 The scaling question

Some notations restrict themselves to a vocabulary of individual classes, fields, and methods.
Such representations can visualize implementation minutiae in great detail, but are less use-
ful for visualization tools when larger programs are concerned. To demonstrate this, Fig. 11

14 Form Methods Syst Des (2013) 43:1–28

Fig. 8 Closeable hierarchy

(created using Fujaba) and Fig. 12 (created using NetBeans) depict the results of attempting
to visualize the individual elements of a program of several dozen Java files.

Scalability is not idiosyncratic to software modeling. Roadmaps can cover entire con-
tinents, and blueprints can be used effectively in building gargantuan monuments. When
modeling highly complex domains, it is useful to apply the Feynman-Tufte Principle [48],
which requires that “A visual display of data should be simple enough to fit on the side of
a van”. In other words, scalability in the theory of information visualization [32] translates
in our context to the demand that, regardless the size of the program, a visual representation
must remain legible and uncluttered.

Some notations scale by using a separate symbol for each kind of module: subsystems,
subprograms, processes, components, connectors, packages, libraries, namespaces, ports,
sockets, layers, data structures, and so forth. Such notations can contribute to the communi-
cation between programmers. However, a profusion of symbols limits the support that tools
can provide programmers and confuse them.

Codecharts trades expressiveness for the elegance afforded by a more minimal approach.
Its vocabulary is limited to the mechanism of abstraction in its underlying ontology: zero-
and higher-dimensional classes and methods. For example, a higher-dimensional class con-
stant (shaded rectangle) can either be used to represent a Java package (or C++ names-
paces), all the classes and interfaces that implement some Java interface, or an entire class
hierarchy. It can also represent any set of special interest. For example, a higher-dimensional
method can stand for a set of factory methods, or for the set of dynamically-bound methods
in a class hierarchy, as well as a set of the above.

Consider for example the Codechart in Fig. 10, which models the same set of classes
(the API to the Java3D library) as the diagrams in Fig. 11 and Fig. 12. Figure 10 employs

Form Methods Syst Des (2013) 43:1–28 15

Fig. 9 InputStream and its subclasses, for simplicity, signatures other than read were abstracted

Fig. 10 Java 3D API modeled using a Codechart

several of the abstraction mechanisms to convey information that is not evident in Fig. 11
and Fig. 12. Specifically, it visualizes six central hierarchies and four sets of dynamically-
bound methods. It also shows that the three hierarchies ‘mirror’ each other using the isomor-
phic predicate (double-headed arrows) which represents a 1:1 and onto correlation between
them.

16 Form Methods Syst Des (2013) 43:1–28

Fig. 11 Java3D class diagram generated by Fujaba [39]

Fig. 12 Java3D class diagram
generated by NetBeans 6.1 [39]

5 The conformance question

The need to check whether design decisions were followed arises frequently throughout the
software lifecycle. Checking conformance of a program to a Codechart is straightforward.
Below we sketch some of the steps in proving (or rather refuting, in this example) the confor-
mance of classes in java.io to the Decorator design pattern. The mathematical definitions
and a more detailed design verification process can be found in [49] and in [5].

The similarity between Fig. 9 and Fig. 6 suggests that the InputStream classes may
implement the Decorator pattern. Others, [50] for example, have also suggested this. Such
conformance claims are difficult to check effectively and nearly impossible to enforce in
practice unless some formal method is used to establish the meaning of the specification and
of the implementation conclusively.

Our approach to this problem is guided by Guttag, Horning and Wing [18, 51], who
define a formal method to consist of the following three elements:

– A specification (‘design’) � is a statement in a formal language representing [items in]
the contract between the designers and the implementers of a program.

Form Methods Syst Des (2013) 43:1–28 17

– A specificand (‘implementation’) p is a statement in a programming language.
– A Satisfies relation formalizes the conditions under which p Satisfies �.

The formal method we employ for Codecharts can be summarized in these terms as
follows:

– A specification is a Codechart: a visual statement in the language of Codecharts. For
example, the Codechart modeling the Decorator design pattern (Fig. 6) represents the set
of statements whose truth conditions are unpacked in Table 3.

– A specificand is any Java program: a ‘well-formed’ statement in the grammar of the pro-
gramming language (i.e., a compilable Java source code).

– The Satisfies relation is borrowed from model theory, denoted � in the standard manner.

This approach to the Conformance Question takes design verification to differ consid-
erably from program verification in the tradition of Hoare Logic [52]. Hoare takes every
statement in the implementation to be a mathematical expression which “describes with un-
precedented precision and in every minutest detail the behavior, intended or unintended, of
the computer on which they are executed.” [53] By this approach, verifying that p � � is
a process that translates each token in the program’s text into a symbolic formula in Hoare
Logic. Furthermore, in the general case, Satisfies statements are not fully Turing-decidable.
This means that program correctness cannot be established by a fully automated tool in the
general case.

In contrast, the design verification approach to conformance checking allows a weaker
notion of the Satisfies relation by introducing semantic abstraction functions. Thus, design
verification can be defined as the process that seeks a proof to A(p) � � which, given
semantic abstraction function A, does not require an exhaustive formalization of p. Instead,
it requires the representation of specific aspects of statements in the source code of p. By
this approach, program p is abstracted into a set of facts about the program using a semantic
abstraction function A, which replaces the complex representation of the program by a ‘flat’
collection of relevant facts. These abstractions are then semantically analyzed to ensure that
the constraints imposed by the specification—e.g., the truth conditions in Table 3—are not
violated.

Formally, the semantics of a program is represented as a finite structure, a model-
theoretic set of entities and relations (Sect. 2) which can be thought of as a relational
database. We define AJava : JAVA → F∗, a semantic abstraction function that maps every
Java program p (an element of JAVA) into a finite structure AJava(p) (an element of F∗).
The conformance claim is therefore recast in this framework as claim (IS1),

AJava(p)(java.io) � Decorator (IS1)

where AJava(p)(java.io) is the semantic abstraction of java.io and Decorator is the
Codechart in Fig. 6.

Note that Fig. 6 includes variable terms (empty shapes), which stand for the pattern’s par-
ticipants without referring to any specific implementation. Statement IS1 can therefore be
understood as some general claim that java.io implements the Decorator pattern without
specifying where exactly. To check the validity of such a claim we must map each variable
(participant in the Decorator pattern) to specific classes or methods (or sets thereof) in the
program. This is done using a mapping g from variables in Decorator into classes and meth-
ods in AJava(java.io), formally known as an assignment. For example, assignment g

defined in Table 4 maps the variables from Fig. 6 to the corresponding Constants in Fig. 9.

18 Form Methods Syst Des (2013) 43:1–28

Table 4 Assignment g maps variables in Decorator to InputStream

g(component) = FilterInputStream

g(decorator) = FileInputStream

g(ConcreteComponents) = {FileInputStream,ByteArrayInputStream}

g(ConcreteDecorators) = {BufferedInputStream,LineNumberInputStream}

g(Ops) = {read}

The general statement formalized in (IS1), which concerns the implementation of the
Decorator anywhere in java.io, can therefore be replaced by a claim which specifically
states which elements of the program must implement it, formalized in (IS2).

AJava(java.io) � Decorator
[
g(component)/component, . . . g(Ops)/Ops

]
(IS2)

Finally, note that the class InputStream and its subclasses do not satisfy the Dec-
orator pattern (Fig. 6) because the methods BufferedInputStream.read() and
LineNumberInputStream.read() do not forward the call to the method they over-
ride. This is shown formally by noting that claim IS1 is not satisfied under assignment g,
because the pairs 〈BufferedInputStream.read,FilterInputStream.read〉
and 〈LineNumberInputStream.read,FilterInputStream.read〉 are not in
the relation Forward. This proves that InputStream and its subclasses with the method
do not, in fact, conform to the Decorator pattern as represented in Fig. 6.

More generally, a statement such as IS1 is true if and only if there exists some assign-
ment f such that AJava(java.io) satisfies the consistent replacement of each variable x

in Decorator with f (x). Since the number of structures is finite, the Satisfies relation is
fully-decidable.

This example demonstrates the nature of the conditions that Codecharts impose and how
those are compared against the implementation. It also clearly distinguishes between dif-
ferent kinds of Conformance Questions (Table 1): verification vs. detection. Detecting in-
stances of a given pattern (pattern mining) is required to determine more general statements,
e.g., (IS1) namely whether Decorator is implemented anywhere in java.io. Verification,
on the other hand, concerns the process required to prove or refute a more specific claim,
such as (IS2), which specifies how each one of the participants of Decorator is supposedly
implemented. Verification tools can be useful to software designers who wish to enforce
specific design decisions, whereas detection tools can help the process of reverse engineer-
ing.

This example also highlights that the Conformance Question is both easy in the sense of
being ‘mechanical’ (i.e. requiring little insight) and hard in the sense of being tedious and
error-prone. Fortunately, the tedious process can be mechanized using an automated design
verification tool, as demonstrated in the next section.

6 The automation question

Codecharts were tailored to the requirement of automated verifiability. What exactly does
this mean and what is entailed by this commitment?

We indicated that the Conformance Question is fully-decidable. More specifically, design
verification is Turing-complete, terminating within a predetermined (finite) number of steps

Form Methods Syst Des (2013) 43:1–28 19

for any input. In other words, inconsistencies can in principle be detected by a computer
program.

Unfortunately, many desirable properties of programs are semi-decidable or undecid-
able, such as the requirement for a program to not ‘crash’ or hang forever (enter an infinite
loop). The description of design patterns and other design motifs commonly include many
undecidable statements. Undecidable properties are useful and important to articulate, in
particular in safety-critical software systems where human life or significant assets are at
stake. Consequently, most specification and modeling languages do not restrict themselves
to decidable properties. However, in the general case, undecidable specifications cannot be
verified automatically. In allowing undecidable specifications, notations rule out the possi-
bility of full automation in the general case.

Verification requires a detailed analysis of the syntactic and semantic properties of the
program’s source code, which takes time, effort and special training. Manual conformance
checking of large programs, whose source code spans hundreds of thousands or even mil-
lions of lines, is usually too expensive and time consuming, as well as error-prone. Conse-
quently, in absence of tools for automated verification, formal methods have limited [54]
use in conformance checking.

The changeability (Sect. 1) of software further exacerbates the problem (see for instance
[2, 55] and [56]). At any stage in the software lifecycle the software’s design and implemen-
tation may change. Since even the most subtle changes in the implementation may violate
the design, and vice versa, conformance must be re-checked with each change. If conflicts
are found then either the design or the implementation must be updated to restore consis-
tency. Tools supporting fully automated conformance checking can reduce the cost of the
detection process, and possibly help the team to prevent architectural drift and erosion [57]
from developing.

Full-decidability (Sect. 5) implies that the answer to the Conformance Question can be
automated in principle, but it does not guarantee that it is feasible. Fortunately, the compu-
tational complexity of the design verification algorithm of Codecharts is at most squared in
the number of the entities and relations in the program and linear in the number of tokens
in the Codechart [47]. The feasibility of automated verification for Codecharts and Java was
also explored by the Toolkit.

Let us illustrate how the Toolkit supports the process of verification described in the
previous sections, namely to create a Codechart specifying the Decorator pattern, to analyze
package java.io, and to check that it conforms to the Decorator [49]. The process consists
of five steps, the results of which are illustrated in Fig. 13.

(1) Modeling (or specification) with the Toolkit captures design decisions. It is done simply
by creating any number of Codecharts. To support modeling, the Toolkit provides a
Codechart editor which offers a palette with the visual tokens of the language and a
canvas to which these tokens may be dragged-and-dropped.

(2) Implementation (programming) can be carried out using any development environ-
ment. Since the Toolkit analyses native source code, it does not interfere with the use of
any editor, compiler or any other traditional programming tool and activity.

(3) Program analysis is a process of static analysis which creates the abstract semantics
representation of the program from source code. Programmers can choose to analyze
any number of files and directories at the click of a button. The Toolkit will analyze
the files in the specified locations and create a relational database storing information
about classes, methods, signatures and their membership in unary and binary relations.
In the example depicted in Fig. 13 the Toolkit analyzes two programs: one is package

20 Form Methods Syst Des (2013) 43:1–28

Fig. 13 Screenshot of the Toolkit, showing the result of checking conformance of java.io to the Decorator
pattern. It shows that the implementation as distributed by Oracle (modeled in Codechart InputSptream) does
not conform to the pattern, but that after some minor tweaks (modeled in Codechart InputStream2), it does

java.io as distributed by Oracle, the second is a slightly modified version of the same
package.

(4) Assignment consists of mapping variables in the Codecharts to classes and signatures in
the implementation. For example, the top assignment in Fig. 13 maps the variables in the
Decorator Codechart to elements in the existing implementation (modeled in Codechart
InputStream) as defined in Table 4.

(5) Verification is the process of checking the conformance of the implementation to
all the Codecharts and assignments. The process is invoked by clicking Verify All.
If conformance is established, the message “PASSED” is presented next to the re-
spective Codechart, otherwise the message FAILED is shown (Fig. 13, top). A dia-
logue box (not shown in Fig. 13) explains that the first assignment failed because the
pair 〈BufferedInputStream.read,FilterInputStream.read〉 is not in
the relation Forward. This allows programmers to revise the specification or the im-
plementation to restore conformance.

(6) Revision in this example was made to the program, which is made to conform to the
Decorator specification. The programmer can now define the method BufferedIn-

Form Methods Syst Des (2013) 43:1–28 21

putStream2.read() that forwards the call to the method it overrides, and symmet-
rically with LineNumberInputStream.read(). The revised implementation is
modeled in Codechart InputStream2.

(7) Assignment no. 2 (bottom left of Fig. 13) maps the variable ConcreteDecorators to the
class of dimension 1 InputStreamConcDecs2, defined in the design model as the
set

InputStreamConcDecs2

= {BufferedInputStream2,LineNumberInputStream2}

(8) Verification of the revised program yields the message “PASSED”, as shown next to
the second assignment in Fig. 13, showing that the revised program indeed conform to
the Decorator Codechart.

6.1 Automating pattern detection

Building a tool automating the process of pattern detection poses an interesting problem that
is strictly more challenging than building a pattern verification tool. The reason is because
the supporting tool must first search for a suitable set of candidate classes and methods in the
implementation before attempting to verify them. Preliminary research into possible solu-
tions to the problem of detection [58] indicates that the complexity of a detection algorithm
need not exceed polynomial time in the number of methods in the implementation. An ef-
ficient implementation of such an algorithm however has not been fully integrated into the
Toolkit at this time.

7 Round-trip engineering

We believe that an iterative, agile process of software evolution can greatly benefit from a
round-trip software engineering tool. Codecharts were designed to enable tool support in
such a process while overcoming the limitations of some such tools. Let us illustrate exactly
what round-trip engineering stands for in this context and how it is supported.

Many software engineering tools seek to support the effort of maintaining consistency
between design and implementation. Some tools attempt to do so by generating source code
from specifications. However, machine-generated code is difficult to maintain manually, and
any direct modifications may be lost the next time code is generated.

In contrast with code generation, round-trip software engineering tools and environments
maintain design and implementation as separate representations while facilitating the prop-
agation of changes between them. D’Hondt et al. [59] refer to this process as software co-
evolution. Round-trip engineering tools usually support reverse-engineering by generating
visualization from analyzed source code. Significantly, if the output of the reverse engineer-
ing tool (Class Diagrams, Statecharts, Codecharts, etc.) can feed directly into the forward
engineering tool, and vice versa, then the engineering cycle can be said to be closed, hence
round-trip engineering. Closing the engineering cycle can ensure that anytime a gap between
design and implementation is generated, it can quickly be detected and remedied.

The Toolkit takes the two-tier programming approach to round-trip engineering. This
means that any conventional programming technique may be used: we assume that source
code can be authored in the native programming language (Java in this example) using

22 Form Methods Syst Des (2013) 43:1–28

any appropriate tool. The toolkit does not generate source code, nor does it extend the im-
plementation language in any way. Separately maintained from the source code is the de-
sign specification, which consists of a collection of Codecharts. The Toolkit supports either
manual (i.e. modeling) or automatic generation of Codecharts (i.e. visualization), as well
as the means for detecting conflicts between the design and implementation (i.e. verifica-
tion).

Furthermore, round-trip engineering means that Codecharts generated by the Toolkit by
program visualization can be edited by the programmer, and the result can in turn be verified
against the implementation. For example, each one of the Codecharts in Fig. 7 can be edited
using the modeling tool, and in turn can be verified against the implementation as illustrated
Sect. 6. It also means that the implementation can always be edited in the traditional way,
re-analyzed, and re-verified, and consistency can be maintained by repeated executions of
the design verification tool.

8 Pilot study

We sought to examine whether the use of Codecharts and tools supporting it can provide any
productivity gains in practical settings. However, the Toolkit we developed is not a commer-
cial product. It is a research prototype that has not (to our knowledge) been tested in an
industrial setting. We therefore attempted to measure its benefits by conducting a small pilot
study formed of three controlled experiments. These experiments aim to compare the per-
formance of software engineers when using Codecharts and the Toolkit against their perfor-
mance when using existing practices and common commercial tools in carrying out typical
software comprehension and evolution tasks. As the results show, two of these experiments
suggest gains both in speed (Sect. 8.1) and accuracy (Sect. 8.2).

In all experiments, participants in the experiment groups used version 0.5.2 of the Toolkit
whereas those in the control groups used Sun’s NetBeans 6.1, an industry-standard inte-
grated development environment for Java programs, as well as Javadoc files. Participants
were mostly graduate computer science students at the University of Essex who had no
prior experience with the Toolkit. All participants were paid a fixed amount regardless of
the time it took them to complete the tasks.

8.1 Gains in software comprehension

The first experiment tested the hypothesis that using Codecharts generated by the Toolkit’s
visualization tool increases the speed it took software engineers to demonstrate their un-
derstanding of a program by answering questions about it. All participants underwent one
hour of training in using the Toolkit, balanced with one hour of training in using NetBeans
and Javadoc for same tasks. After training, all participants received Java source code taken
from the Standard Java Development Kit (the Java SDK) and were asked to answer some
questions about them. Their understanding of the program was assessed by the time it took
them to answer these questions accurately. Answers were checked for correctness by the
administrators of the experiment; participants were notified of incorrect answers and could
not continue until a correct answer was provided or the time allotted for the experiment
expired.

The experiment itself was divided into two parts, each part consisting of a different task
(of roughly same difficulty). Neither task affected the result of the other.

Form Methods Syst Des (2013) 43:1–28 23

Table 5 Results of the
comprehension experiment Participant no. Time in seconds

Toolkit NetBeans

1 441 445

3 443 3106

4 595 690

6 420 1140

15 250 4260

18 705 753

22 274 3224

Mean 447 1945

Median 441 1140

Standard Deviation 162 1540

Ratio (Toolkit/NetBeans) 0.23

The first part of the experiment itself began after all participants were randomly divided
into two groups: Participants in the experiment group were asked to use the Toolkit in car-
rying out their task, whereas participants in the control group used NetBeans and Javadoc.
All participants were handed source code files containing classes Container and Com-
ponent from Java SDK. The task was to find four methods in class Component, each of
which (i) calls another method in Component and (ii) returns an instance of class Con-
tainer. The time to complete the task was measured by the administrators.

In the second part of the experiment, participants swapped groups and carried out a sec-
ond, comparable task using a second set of tools. In other words, a participant who used
Codecharts and the Toolkit in the first part of the experiment used NetBeans and Javadoc in
the second and vice versa. All participants were handed source code files containing classes
InputStream and BufferedInputStream from the Java SDK. The task was to find
two methods in class BufferedInputStream, each of which forwards the call to a
method in InputStream. The time to complete the task was measured by the administra-
tors.

Of the ten original participants in this experiment, three were excluded from our analysis
as they did not attend both sessions and therefore did not complete both tasks. The accuracy
of the remaining seven participants was within acceptable tolerances (±10 %). In the anal-
ysis of our results (Table 5) we observed that those participants who used the Toolkit took
23 % of the time of those participants who used NetBeans/Javadoc. That is, in this experi-
ment those who used the Toolkit were, on average, 77 % quicker to become familiar with
the code provided after only one hour of training.

8.2 Gains in software conformance

The second experiment tested the hypothesis that using the Toolkit increases the accuracy of
judgments that software engineers make about an implementation’s conformance to design
decisions, in particular to implement a design pattern. As in the experiment described before,
participants in this experiment underwent the training relevant to the tasks performed, and
randomly divided in two groups.

In the first part of this experiment all participants received four Java files from the Ab-
stract Windowing Toolkit library and a copy of the chapter about the Composite design

24 Form Methods Syst Des (2013) 43:1–28

Table 6 Results of the
conformance experiment Participant Answered correctly?

Toolkit NetBeans

3 Yes No

4 Yes Yes

6 Yes Yes

8 Yes No

9 Yes Yes

13 Yes No

18 Yes Yes

Mean of accuracy 100 % 57.14 %

Median of accuracy 100 % 100 %

Ratio (Toolkit/NetBeans) 1.75

pattern from [45]. Participants were asked to judge whether the implementation conforms to
the pattern, where the correct answer was “Yes”.

In the second part of this experiment all participants (who now switched groups) received
six Java files from the java.io library and a copy of the chapter describing the Decorator
design pattern from [45]. Participants were asked to judge whether the program conforms
to the design pattern, where in this case the correct answer was “No”. The data produced in
this experiment are presented in Table 6.

Of the original eight participants one was excluded as s/he did not attend both sessions
and therefore did not complete both tasks. In the analysis of our results (Table 6) we observed
that those participants who used the Toolkit gave the correct answer 1.75 times more often
than those who used NetBeans/Javadoc after only one hour of training.

8.3 Threats to validity

Although positive results were obtained from this pilot study there are several considerations
regarding how they may be interpreted, such as:

– Our sample was not sufficiently representative of software engineers in industry due to
the small number of participants and their limited background (i.e. students). We plan to
hold more large-scale experiments in future work with the aim to show similar results in
a more representative sample.

– We compared the Toolkit to a single tool out of many possible candidates. We are there-
fore unable to make claims regarding the Toolkit beyond that comparison. Further inves-
tigation against a range of tools is required to see if the Toolkit yields similar results.

– During the second experiment we observed that while the Toolkit helped participants to
answer the question correctly it did not speed up their work as in the first experiment.
We suggest that this can be attributed to the lack of feedback, showing if their answer is
right or wrong, which may have made participants linger in answering. This phenomena,
however, requires further study.

– We also observe that the method of measuring accuracy in the second experiment was a
Yes/No response, which left little room for analysis. Tasks of the form “identify as many
components of program p that implement a participant in design pattern d” would provide
greater insight into the participant’s precision and accuracy.

Form Methods Syst Des (2013) 43:1–28 25

– We omitted from this report a third experiment, which measured the software engineers’
performance in conducting a trivial software evolution task. Its results turned out to be in-
conclusive. Participants in both groups completed their tasks unexpectedly quickly and no
significant difference between the tools was recorded. We believe that our experimental
design was flawed. We plan to prepare a more carefully designed version of this experi-
ment in the future.

Accounting for the above limitations, the pilot study is nonetheless encouraging. Soft-
ware comprehension and conformance are key tasks in the design, implementation, evo-
lution, and re-engineering phases of the software engineering lifecycle. Understanding the
structure and organization of a software system is a prerequisite to any development, main-
tenance, or evolution activity. This task becomes more important as the age and size of the
code base increases. Being certain that a program conforms to its intended design is in-
valuable for all stakeholders in a program’s development. This results suggest that using
Codecharts and the Toolkit could play an important role in helping to make software engi-
neers more productive and accurate in such tasks.

9 Summary

Motivated by the difficulties of software engineering, by practical concerns of continu-
ously evolving software, and by the challenges arising from the gap between theory and
practice, we presented the modeling and visualization language of Codecharts. We iden-
tified its scope by posing five central questions. To answer the Ontological Question, we
demonstrated how Codecharts model the organization of class libraries and design patterns
in terms of the basic building-blocks of OO design, such as sets of dynamically-bound
methods, hierarchies, and their relationships. We concluded that our minimal ontology lim-
its the scope of Codecharts, but also that it may confer clarity and conceptual elegance
on the notation. In response to the Visualization Question we showed Codecharts model-
ing the Decorator design pattern, and demonstrated how a design recovery tool can create
Codecharts that visualize an existing program by analyzing its source code. To answer the
Scaling Question we illustrated how Codecharts can visualize programs of arbitrary size
and level of abstraction. To answer the Conformance Question we sketched the process
of design verification seeking to check whether a Java package implements a design pat-
tern correctly and showed that it does not satisfy the Codechart modeling it. Finally, to
answer the Automation Question we illustrated how the Toolkit automates design verifica-
tion.

We also discussed how Codecharts enable maintaining consistency between design and
implementation by facilitating the propagation of changes from design to implementa-
tion and vice versa. We concluded with the hypothesis that tools supporting Codecharts
can be effective in helping to prevent architectural drift and erosion, by ensuring that the
design of a program is current, correct and accurate throughout the process of software
co-evolution.

The results of a pilot study suggest that stakeholders in the development and evolu-
tion of OO software could benefit from Codecharts in forward, reverse, round-trip and re-
engineering tasks without requiring special training or long-term commitment to the nota-
tion, programming languages, or tools.

26 Form Methods Syst Des (2013) 43:1–28

10 Future work

The work described here has a number of natural extensions, such as:

– Gather further empirical evidence of potential productivity gains in an industrial setting.
– Investigate the potential of using automated design verification in a version control sys-

tem, which can ensure that conformance to specifications is enforced with every revision
checked in.

– Examine the potential of using Codecharts and supporting tools in calculating software
metrics, and how this might be presented to the user in an elegant and intuitive fashion.

To encourage exploration and improvement of Codecharts, a version of the Toolkit
was made available to download from http://ttp.essex.ac.uk under a Creative Commons li-
cense [60].

Acknowledgements The authors wish to thank Raymond Turner for his support throughout this research,
which was funded in part by the Research Promotion Fund and the Knowledge Transfer Innovation Fund
from the University of Essex, and by the EPSRC. We also wish to thank Olumide Iyaniwura, Gu Bo, Maple
Tao Liang, Dimitrious Fragkos, Omololu Ayodeji, Xu Yi and Christina Maniati for their contributions.

References

1. Brooks FP (1987) No silver bullet: essence and accidents of software engineering. IEEE Comput Mag
20(4):10–19

2. Lehman MM (1996) Laws of software evolution revisited. In: Proc 5th European workshop software
process technology—EWSPT’96, Nancy, France

3. Grant M, Goguen JA (1996) An executable course in the algebraic semantics of imperative programs. In:
Dean NC, Hinchey MG (eds) Teaching and learning formal methods. Morgan Kaufmann, San Mateo, pp
161–179

4. Eden AH, Gasparis E, Nicholson J (2007) LePUS3 and Class-Z reference manual. Department of Com-
puter Science, University of Essex, CSM-474, ISSN 1744-8050, Dec

5. Eden AH, Gasparis E, Nicholson J (2007) The ‘Gang of Four’ companion: formal specification of design
patterns in LePUS3 and class-Z. Department of Computer Science, University of Essex, CSM-472, Dec

6. Eden AH, Gasparis E (2009) Three controlled experiments in software engineering with the two-tier
programming toolkit: final report. University of Essex, CES-496, ISSN 1744-8050

7. Nicholson J, Gasparis E, Eden AH LePUS3 and class-Z home page [Online]. Available:
http://www.lepus.org.uk/. Accessed: 27 Aug 2010

8. Nicholson J, Gasparis E, Eden AH The two-tier programming project website [Online]. Available:
http://ttp.essex.ac.uk/. Accessed: 14 Apr 2008

9. Gasparis E, Eden AH, Nicholson J, Kazman R (2008) The design navigator: charting Java programs.
In: Tool demonstrations, proc of 30th IEEE int’l conf on software engineering—ICSE 2008, Leipzig,
Germany

10. Gasparis E, Nicholson J, Eden AH (2008) LePUS3: an object-oriented design description language. In:
Proc 5th int’l conf diagrammatic representation & inference, Herrsching, Germany, vol 5223

11. Gasparis E, Nicholson J, Eden AH, Kazman R (2008) Navigating through the design of object-oriented
programs. In: Proc of the 15th working conf on reverse engineering—WCRE, Antwerp, Belgium

12. Eden AH, Nicholson J (2011) Codecharts: roadmaps and blueprints for object-oriented programs. Wiley-
Blackwell, New York

13. Medvidovic N, Taylor RN (2000) A classification and comparison framework for software architecture
description languages. IEEE Trans Softw Eng 26(1):70–93

14. Taibi T (ed) (2007) Design patterns formalization techniques. IGI Global, Hershey
15. Demeyer S, Ducasse S, Tichelaar S, Tichelaar E (1999) Why unified is not universal: UML shortcomings

for coping with round-trip engineering. In: Proc 2nd int’l conf on the unified modeling language, vol
1723, pp 630–645

16. Fowler M (2004) UML distilled: a brief guide to the standard object modeling language, 3rd edn.
Addison-Wesley, Boston

17. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231–274

http://ttp.essex.ac.uk
http://www.lepus.org.uk/
http://ttp.essex.ac.uk/

Form Methods Syst Des (2013) 43:1–28 27

18. Guttag JV, Horning JJ, Wing J (1982) Some notes on putting formal specifications to productive use. Sci
Comput Program 2(1):53–68

19. Guttag JV, Horning JJ (1993) Larch: languages and tools for formal specification. Springer, New York
20. Pnueli A (1986) Applications of temporal logic to the specification and verification of reactive systems:

a survey of current trends. In: Bakker JW (ed) Current trends in concurrency. Overviews and tutorials.
Springer, New York, pp 510–584

21. Jones CB (1990) Systematic software development using VDM, 2nd edn. Prentice Hall International,
New York

22. Peterson J (1981) Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs
23. Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677
24. Jackson D (2002) Alloy: a lightweight object modeling notation. ACM Trans Softw Eng Methodol

11(2):256–290
25. Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cam-

bridge
26. Derrick J, Boiten E (2001) Refinement in Z and object-Z: foundations and advanced applications.

Springer, Berlin
27. France RB, Kim D-K, Ghosh S, Song E (2004) A UML-based pattern specification technique. IEEE

Trans Softw Eng 30(3):193–206
28. Kim D-K (2004) A meta-modeling approach to specifying patterns. PhD Dissertation, Colorado State

University, Fort Collins, CO, USA
29. Kent S (1997) Constraint diagrams: visualizing invariants in object-oriented models. In: ACM SIGPLAN

notices, New York, NY, USA, pp 327–341
30. Howse J, Molina F, Taylor J, Kent S, Gil J (2001) Spider diagrams: a diagrammatic reasoning system.

J Vis Lang Comput 12(3):299–324
31. Object Management Group (2005) UML 2.0 superstructure specification, Aug 2005
32. Tufte E (1997) Visual explanations: images and quantities, evidence and narrative. Graphics Press,

Cheshire
33. Maplesden D, Hosking J, Grundy J (2007) A visual language for design pattern modeling and instantia-

tion. In: Taibi T (ed) Design patterns formalization techniques. IGI Global, Hershey
34. Guéhéneuc Y-G, Antoniol G (2008) DeMIMA: a multilayered approach for design pattern identification.

IEEE Trans Softw Eng 34(5):667–684
35. Blewitt A, Bundy A, Stark I (2001) Automatic verification of Java design patterns. In: Proceedings of

the 16th IEEE international conference on automated software engineering, pp 324–333
36. Gosling J, Joy B, Steele G, Bracha G (2005) The Java language specification, 3rd edn. Addison-Wesley

Professional, Reading
37. Smith B (2004) Ontology. In: Floridi L (ed) The Blackwell guide to the philosophy of computing and

information. Blackwell Publishers, Malden
38. Nicholson J (2011) On the theoretical foundations of LePUS3 and its application to object-oriented de-

sign verification. PhD Dissertation, School of Computer Science and Electronic Engineering, University
of Essex

39. Lieberman BA (2006) The art of software modeling, annotated edn. Auerbach Publications, Boca Raton
40. Hoare CAR (1975) Software design: a parable. Softw World 5(9–10):53–56
41. Walsh AE, Gehringer D (2002) Java 3D: API jump-start. Prentice Hall, Upper Saddle River
42. Selman D (2002) Java 3D programming. Manning Publications, Greenwich
43. Cai Y, Ianuzzi D, Wong S (2011) Leveraging design structure matrices in software design education.

Presented at the conf on software engineering education and training—CSEET 2011, Honolulu, HI
44. Nicholson J, Eden AH, Gasparis E (2007) Verification of LePUS3/class-Z specifications: sample models

and abstract semantics for Java 1.4. Department of Computer Science, University of Essex, Technical
Report CSM-471, Dec 2007

45. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software. Addison Wesley Longman, Reading

46. Chikofsky EJ, Cross JH (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw
7(1):13–17

47. Gasparis E (2010) Design navigation: recovering design charts from object-oriented programs. PhD
Dissertation, School of Computer Science and Electronic Engineering, University of Essex

48. Shermer M (2005) The Feynman-Tufte principle. Sci Am 292(4):38
49. Nicholson J, Gasparis E, Eden AH, Kazman R (2009) Automated verification of design patterns with

LePUS3. In: Proc 1st NASA formal methods symp—NFM 2009, Moffett Field, CA
50. Eckel B (2003) Thinking in Java. Prentice Hall Professional, Upper Saddle River
51. Wing JM (1990) A specifier’s introduction to formal methods. Computer 23(9):8–23
52. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580

28 Form Methods Syst Des (2013) 43:1–28

53. Mahoney MS (2002) Software as science: science as software. In: Proc int’l conf history of computing:
software issues, Paderborn, Germany, pp 25–48

54. Clarke EM, Wing JM (1996) Formal methods: state of the art and future directions. ACM Comput Surv
28(4):626–643

55. Parnas DL (1994) Software aging. In: Proc 16th int’l conf software engineering, pp 279–287
56. Mens T, Demeyer S (2008) Software evolution. Springer, Berlin
57. Perry DE, Wolf AL (1992) Foundations for the study of software architecture. SIGSOFT Softw Eng

Notes 17(4):40–52
58. Salazar Saltijeral J (2012) Design pattern detection in Java. MSc dissertation, School of Computer Sci-

ence and Electronic Engineering, University of Essex
59. D’Hondt T, De Volder K, Mens K, De K, Kim V, Wuyts R (2000) Co-evolution of object-oriented

software design and implementation. In: Proc int’l symposium on software architectures and component
technology— SACT, Amsterdam, The Netherlands

60. Commons C (2001) Creative commons—attribution-NoDerivs 2.0 UK: England & Wales [Online].
Available: http://creativecommons.org/licenses/by-nd/2.0/uk/. Accessed: 20 Apr 2011

http://creativecommons.org/licenses/by-nd/2.0/uk/

	Modeling and visualizing object-oriented programs with Codecharts
	Abstract
	Introduction
	Scope
	Context
	Caveat
	Outline

	The ontological question
	The visualization question
	Example: modeling Java 3D
	Example: modeling the Decorator pattern
	Example: visualizing the InputStream classes

	The scaling question
	The conformance question
	The automation question
	Automating pattern detection

	Round-trip engineering
	Pilot study
	Gains in software comprehension
	Gains in software conformance
	Threats to validity

	Summary
	Future work
	Acknowledgements
	References

