Form Methods Syst Des (2013) 42:262-300
DOI 10.1007/s10703-012-0179-8

Event clock message passing automata: a logical
characterization and an emptiness checking algorithm

S. Akshay - Benedikt Bollig - Paul Gastin

Published online: 8 December 2012
© Springer Science+Business Media New York 2012

Abstract We are interested in modeling behaviors and verifying properties of systems in
which time and concurrency play a crucial role. We introduce a model of distributed au-
tomata which are equipped with event clocks as in Alur et al. (Theor Comput Sci 211:253—
273, 1999), which we call Event Clock Message Passing Automata (ECMPA). To describe
the behaviors of such systems we use timed partial orders (modeled as message sequence
charts with timing).

Our first goal is to extend the classical Biichi-Elgot-Trakhtenbrot equivalence to the timed
and distributed setting, by showing an equivalence between ECMPA and a timed extension
of monadic second-order (MSO) logic. We obtain such a constructive equivalence in two
different ways: (1) by restricting the semantics by bounding the set of timed partial orders;
(2) by restricting the timed MSO logic to its existential fragment. We next consider the
emptiness problem for ECMPA, which asks if a given ECMPA has some valid timed execu-
tion. In general this problem is undecidable and we show that by considering only bounded
timed executions, we can obtain decidability. We do this by constructing a timed automaton
which accepts all bounded timed executions of the ECMPA and checking emptiness of this
timed automaton.

Keywords Message passing automata - Timed automata - MSO logic - Message sequence
charts

1 Introduction

In today’s world, we encounter computational devices all around us. These devices do not act
in isolation but interact in increasingly complex ways. For example, Automatic Teller Ma-

S. Akshay (X) - B. Bollig - P. Gastin

Laboratoire de Specification et Verification, ENS Cachan and CNRS, 61, Avenue du President Wilson,
94235 Cachan Cedex, France

e-mail: akshay @irisa.fr

B. Bollig
e-mail: Benedikt.Bollig@lsv.ens-cachan.fr

P. Gastin
e-mail: Paul.Gastin @Isv.ens-cachan.fr

@ Springer

mailto:akshay@irisa.fr
mailto:Benedikt.Bollig@lsv.ens-cachan.fr
mailto:Paul.Gastin@lsv.ens-cachan.fr

Form Methods Syst Des (2013) 42:262-300 263

chines (ATMs), online banking systems, car braking systems, railway gate controllers are all
composed of several components that communicate with each other over an extended period
of time. A common factor in many such systems is the interplay between concurrency and
timing. Concurrency plays an important role since systems usually consist of independent
components that interact periodically to coordinate their behavior. Timing considerations
play an important role in describing how these interactions proceed.

Our goal is to use formal methods to reason about systems where time and concurrency
play a significant role. The first challenge is to choose a suitable formalism that admits au-
tomated analysis. For instance, if a system exhibits regular, finite-state behavior, we can use
model checking to efficiently explore the state space and determine various behavioral prop-
erties. Finite-state automata provide an intuitively appealing machine model for generating
regular behaviors in this setting. The regular behaviors can be represented as a set of words
over an alphabet. Monadic second order logic is an elegant language to describe abstract
properties of sets of words. The Biichi-Elgot-Trakhtenbrot Theorem [10, 16] links the two
formalisms: a behavior can be described by a finite-state automaton if and only if it can be
expressed in monadic second order logic. This correspondence is effective and forms the
basis for model checking behavioral properties of finite-state systems. We would like to lift
this approach to the timed and distributed setting.

In the timed but sequential setting, event clock automata are a well-known formalism,
which have nice properties and describe timed behaviors as timed words. An event clock
automaton uses implicit “event clocks” that record or predict time lapses with respect to the
last or the next occurrence of an event. In [14], it was proved that a timed language, i.e.,
a set of timed words, can be recognized by an event clock automaton if and only if it can
be defined in a timed version of MSO logic. On the other hand, in the concurrent setting,
message passing automata (MPA) form a natural machine model for distributed systems.
MPA comprise of several finite state automata communicating via FIFO channels and their
runs can be described as Message sequence charts, which are labeled partial orders (over
a labeling alphabet of sends and receives). In this case, it was proved in [17, 19] that with
different restrictions on the MSC languages (which will be made precise later), such an
MSC can be described by a MPA if and only if it can be expressed in a MSO logic over
MSCs. In [7], this result was proved without any restriction on the language of MSCs by
considering only the existential fragment of the MSO logic.

In this work, we unify the above approaches by defining a machine model for timed and
concurrent systems, namely the Event clock message passing automata (event clock MPA).
Event clock MPA are message passing automata which are equipped with event clocks (as
in the event clock automaton in the sequential timed setting) to reason about timed and
concurrent behavior. To describe the behavior of such automata, we generalize MSCs to
their timed extension, which we do in two ways. We first consider timed MSCs which are
just MSCs with time-stamps at events (as in timed words). These are ideal to describe real-
time system executions, while keeping the causal relation between events explicit. Next, we
consider MSCs with timing constraints or time-constrained MSCs, where we associate time-
intervals to some pairs of events (instead of attaching time-stamps to individual events). The
endpoints of the interval give us the upper and lower bounds on the time allowed to elapse
between the events.

Results on event clock message passing automata Our first result is to lift the Biichi-Elgot
equivalence [10, 16] to the timed and distributed setting. For the logical framework, we
use a timed version of MSO logic. We interpret both event clock MPAs and timed MSO
formulae over timed MSCs and prove a constructive equivalence between them, with and

@ Springer

264 Form Methods Syst Des (2013) 42:262-300

without restriction on the MSC languages. Thus, we provide a logical characterization for
event clock MPA. This is done by lifting the corresponding results from the untimed case
[7, 17, 19]. An important intermediary step in this translation is the reinterpretation of the
timed MSO and event clock MPA in terms of time-constrained MSCs rather than timed
MSCs. The time-constrained MSCs provide a dual link: they can be seen as MSCs whose
labelings are extended by timing information and they can also be seen as a representation
of infinite sets of timed MSCs. Once this translation is done, we can essentially follow the
technique of [14] where such an equivalence is shown for (sequential) timed words.

Next, we consider the emptiness problem, which is one of the most basic verification
questions that one may wish to ask. In our setting, the emptiness problem for event clock
MPAs asks if a given event clock MPA has any run, i.e., a timed MSC which is accepted
by it. It can be easily seen that without any restriction on the timed MSCs, this problem is
undecidable, since this is already the case in the untimed setting. However we prove that
if we restrict to timed MSCs with at least one bounded linearization (i.e., in which any
send and its matching receive are apart by at most K events), then the emptiness problem
is decidable. Indeed, this condition is subsumed by one of restricted settings under which
we proved the above equivalence result. Therefore, as a corollary, we also obtain that the
satisfiability problem for our logic is decidable. Our approach to prove decidability consists
of constructing a global finite timed automaton that can simulate the runs of an event clock
MPA (which is a distributed machine) and so, reduce the problem to checking emptiness
for a timed automaton. The hard part of the construction lies in “cleverly” maintaining the
partial-order information (of the timed MSC) along the sequential runs of the global timed
automaton, while using only finitely many clocks.

Related work Providing a timed partial order semantics as we have done above allows us
to apply partial order reduction techniques [18] to address the model-checking problem. But
indeed, there are several other models that also handle time and concurrency in a comparable
way. Many timed extensions of Petri nets have been considered, for instance, time Petri
nets [6], timed Petri nets [23]. Unfoldings of Petri nets provide a way to model the partial
order behavior of these systems and by lifting these unfoldings to the timed extensions,
they provide a timed partial order semantics [12]. However, these unfoldings are seldom
graphically representable in a compact manner unlike MSCs (and their timed extensions).
Further, unfoldings in Petri nets correspond to “branching time” whereas MSCs express
“linear time” behavior. Other models dealing with time and concurrency include networks
of timed automata [2] and products of timed automata [13]. In [8], unfolding techniques
were applied to study such networks of timed automata. However, none of these models
allow communication via explicit message passing, which is one of the main features of the
event clock MPA that we have introduced.

The formal semantics and analysis of timing in MSCs has been addressed earlier in
[4,5, 11, 20]. In [4] and [5], only single timed MSCs or high-level timed MSCs were con-
sidered, while in [20] one of the first models of timed MPAs was introduced. However,
the latter do not consider MSCs as semantics but rather look at restricted channel architec-
tures (e.g., one-channel systems) to transfer decidability of reachability problems from the
untimed to timed setting. The automaton model in [11] links the two approaches by con-
sidering a similar automaton model with semantics in terms of timed MSCs and proposes a
practical solution to a very specific matching problem using the tool UPPAAL.

A preliminary version of the results in this paper was presented in [1].

@ Springer

Form Methods Syst Des (2013) 42:262-300 265

2 Preliminaries

We denote by N = {0, 1, 2, ...} the set of natural numbers. For an alphabet X', a ¥'-labeled
poset is a structure (E, <, A) over X, where E is a set of events, < is a partial order on
the set of events E called its ordering relation and A : E — X' is the labeling function.
A linearization of a X-labeled poset (E, <, 1) is any X'-labeled poset (E, <’, 1) such that
<’ is a linear extension of <. Then, the set of events E = {ey, ..., e¢,} can be rewritten as a
sequence ¢;, <'¢;, <'---<'e;, s.t., Ale;,) ... A(e;,) € X*. Thus, any linearization of (E, <, A)
can be identified with a unique word over X.

Message sequence charts (MSCs) Let Proc = {p,q,r,...} be a non-empty finite set of
processes (agents) that communicate through messages via reliable FIFO channels using
an alphabet of messages M. For p € Proc, let Act,, = {p!q(m), p?q(m) | q € Proc,q # p,
m € M} be the set of communication actions of process p . The action plq(m) is read as
p sends the message m to q and the action p?qg(m) is read as p receives the message m
from q. We set Act = ,cp,,. Act),. We also denote the set of channels by Ch = {(p.q) €
Proc x Proc | p # q}. For an action a € Act, we will sometimes write a € plq (respectively,
a € p?q) to denote a = plq(m) (respectively, p?q(m)) for some m € M.

Let M = (E, <, A) be an Act-labeled partial order. For e € E, let (e ={¢' € E | ¢’ <e¢]}.
For X CE,let | X = UeeX Je. We call X C E a prefix of M if X = | X. For p € Proc
and a € Act, we set E, ={e € E | A(e) € Act,} to be the set of all p-events and E, =
{e € E | A(e) = a} to be the set of a-events. For each (p,q) € Ch, we define a relation
< pq as follows, to capture the fact that channels are FIFO with respect to each message—if
e <, €', the message m read by ¢ at ¢’ is the one sent by p at e.

e <pq € ifIm, r(e) = plg(m), A(e’) =q?p(m) and |[Le N Epgom| = |i,e' N Eq7p(,,,)|

Finally, for each p € Proc, we define the relation <,, = (E, x E,) N <, with <, stand-
ing for the largest irreflexive subset of <,,. Also, <,, denotes the immediate successor
relation on process p: for e, e’ € E,, e <p, €' if e <,, ¢’ and for all ¢” € E,,, we have
e <,p e’ <p,e implies e’ =¢'.

Definition 2.1 A message sequence chart (MSC) over Act is a finite Act-labeled poset M =
(E, <, A) such that:

1. Each relation <, is a total order on E,,.
2. If p # q then for each m € M, | E ,150m)| = |Eg2p(m) |-
3. If e <, €, then

¢e' N < U Eq?p(m))‘

memM

len (U Ep!q(m)‘ =

memM

4. The partial order < is the reflexive, transitive closure of | J pgeProc <pa-

As each linearization of an MSC M = (E, <, A) over Act corresponds to a word over
Act, we will use these notions interchangeably. Under the FIFO assumption an MSC can be
reconstructed, up to isomorphism, from any of its linearizations. In diagrams, the events of
an MSC are presented in visual order. Events of a process are arranged in a vertical line and
messages are displayed as horizontal or downward-sloping directed edges. Figure 1 shows
an example of an MSC with three processes {p,q,r} and six events {e|, e}, e, €}, €3, €3}

@ Springer

266 Form Methods Syst Des (2013) 42:262-300

Fig.1 An MSC p q T
€1 1 €2
;o me2
€s 4]
ms ,
€1 €3

corresponding to three messages—m; from p to g, m, from g to r and m3 from p to r. Then,
for instance, plq(m) q?p(my) q'r(my) p'r(ms) r?q(m,) r?p(ms) is one linearization or
execution of this MSC seen as a word over Act.

An MSC language over Act is a set of MSCs over Act. An important subclass of MSCs
is the set of bounded MSCs that correspond to systems whose channel capacity is restricted.
These systems turn out to enjoy nice algorithmic properties and have liberal logical cor-
respondences too. Let B € N_(be a positive integer. Then, a word w € Act” is said to be
B-bounded if for each prefix u of w and any p, g € Proc, the number of occurrences of
plg exceeds the number of occurrences of ¢?p by at most B. This means that along the
sequential execution of M described by w, no channel ever contains more than B-messages.

Definition 2.2 An MSC M is called universally B-bounded (or V-B-bounded) if every
linearization of M is B-bounded. It is said to be existentially B-bounded (or 3- B-bounded)
if there exists a linearization which is B-bounded.

A set of MSCs is said to be 3-B-bounded (respectively, Y- B-bounded) if each MSC in
the set is 3- B-bounded (respectively, V- B-bounded). Further such a set is called existentially
bounded (respectively, universally bounded) if there exists a B such that it is 3- B-bounded
(respectively, V-B-bounded). As shown in [19], any regular MSC language (i.e., the set of
all possible linearizations is regular) is universally bounded.

3 Formalisms to describe timed and concurrent behaviors

The first natural attempt while trying to add timing information to MSCs would be to add
time stamps to the events of the MSCs. This is motivated from timed words where we have
words with time stamps added at each letter (action). This approach is quite realistic when
we want to model the real-time execution of concurrent systems.

Definition 3.1 A timed MSC (TMSC) over Act is a pair (M, t) where M = (E, <, A) is an
MSC over Act and ¢ : E — Ry is a function such that if e < ¢’ then 7(e) < (¢’) for all
e, ¢ € E. The set of all TMSCs over Act is denoted TMISC(Act).

In the above definition note that over events e, ¢/, < is the partial order relating events,
while over reals 7 (e), t (¢/), < refers to the usual ordering between real numbers.

Example 3.1 Consider the TMSC T presented in Fig. 2 which shows a scenario where
two user processes p and r interact with a railway ticket-booking server process g
to book the last available ticket for a certain train journey. Actions are of the form
plq(req) meaning that Userl sends the Server a request for a ticket. In the scenario
shown, both users send booking requests to the Server at time instant 1. The Server

@ Springer

Form Methods Syst Des (2013) 42:262-300 267

Userl Rail Server User2 Userl Rail Server User2
4 q r 4 q r
re re
1, ug 4 a1, 1 req s1,1 Ul 4 al req S1
2,a2 az / \
\
!
grant/book? grant/book? [3.61 \ \
3.5, ua a3, 3.5 ug 3 \
[0,1] \ \ ,10.20]
\ \
req 52,5 , [0.3] req _As2 !
confirm confirm P /
6,u3 aq,6 u3 g /
’
7, a5 s3,7 as 53
/ deny / deny
8, ae ag
T My

Fig.2 (a) A timed MSC T and (b) a TCMSC 90t describing the interaction of two users with a server

grants Userl’s request since it is received first. Then, User/ confirms his/her booking
which leads to the server denying the booking to User2. Meanwhile, User2 repeats her
request at instant 5 which reaches the Server at time 8. An execution or linearization
of this scenario is: (plq(req), 1)(rlq(req), 1)(q?p(req), 1)(q?r(req),2)(q!p(grant),3.5)
(p?q(grant), 3.5)(r!p(req), 5)(p'q(conf), 6)(q? p(conf), 6)(q!r (deny), T)(r 7q (deny), T)
(qg?r(req), 8).

Note that in the above execution, the ordering on the time stamps is preserved, thus
making it a timed word over the alphabet of actions. Such an execution is called a timed
linearization of T. A single TMSC might have more than one timed linearization if con-
current events on different processes have the same time stamp. For instance, if we swap
the first two pairs in the above execution we obtain another execution which respects the
time stamps. Finally, observe that not all linearizations are timed linearizations as seen by
swapping the last two pairs in the above execution.

Formally, let T = (M, t) be a TMSC over Act with M = (E, <, 1). Consider a lineariza-
tion (E, <’,A) of (E, <,}) according to which the events of E can be written as a se-
quence ¢; < e; <'--- <’ ¢,. Then (E, <’ A, 1) is said to be a linearization of TMSC T.
If in addition, for all 1 < j < k < n, we have 7(e;) < t(e), then it is said to be a timed
linearization. Indeed, this can be seen as a timed word ¢ over Act by uniquely identi-
fying it with o = (A(ey), t(e1)) ... (A(en), (t(ey))). We let TW,,, denote the set of timed
words over Act and t-lin(7T) € TW,,, denote the set of timed linearizations of a TMSC
T, seen as a timed word language over Act. As with untimed MSCs, a timed MSC can
be faithfully reconstructed from any of its timed linearizations under FIFO assumption on
channels. A TMSC language L over Act is a set of TMSCs over Act. Then, t-lin(£) is the
timed word language over Act consisting of all timed linearizations of TMSCs in L, i.e.,
t-lin(£) = J{t-lin(T) | T € L}.

Bounded channel setting ~ As in the case of untimed MSCs, restricting the channel capacity
in TMSCs gives rise to an interesting, more “tractable” subclass of TMSCs. We extend the
definition of existential and universal bounds from MSCs to TMSCs.

Definition 3.2 A TMSC (M, t) is called untimed-existentially- B-bounded (3"- B-bounded)

if the MSC M is 3- B-bounded. Similarly (M, t) is untimed-universally- B-bounded (V*-B-
bounded) if M is V-B-bounded.

@ Springer

268 Form Methods Syst Des (2013) 42:262-300

Fig.3 TMSC T’ p q
17“1
2, u2
v1,3
va,4

Note that an existential untimed bound may not be achievable by a timed linearization.
For instance, consider the TMSC 7" in Fig. 3. T’ is 3“-1-bounded as there exists a lin-
earization of the untimed MSC which is 1-bounded, namely, u;v,u,v,. However, this does
not correspond to a timed linearization. In fact, the only timed linearization of 7', namely
(uy, 1) (uz,2)(vy, 3)(v2, 4), is 2-bounded.

Message sequence charts with timing constraints TMSCs (and indeed timed lineariza-
tions) essentially capture only the operational/global behavior of distributed systems. In
some sense, this is due to the fact that TMSCs and their timed linearizations are not very
different. In other words, by attaching time-stamping to events of an MSC, we lose much of
its partial order information. The only partial-order information retained is through events
on different processes with the same time-stamps. The remaining are totally ordered due to
the global time-stamping.

A richer partial order behavior can be retained by attaching timing constraints to pairs of
events of the MSC. This approach has two other major advantages:

— Firstly, from a specification point of view, it allows the specifier to decide and enforce
constraints between occurrences of events as he chooses.

— Secondly, a single MSC with timing constraints can describe a whole family of TMSCs
(with the same underlying MSC) thus being a much more succinct description of the
timed behaviors of a system.

For instance, consider Example 3.1 again where two users interact with a railway booking
server. It might be that after granting a User request, the Server waits only for a bounded
amount of time for him/her to respond before canceling the request. The family of TMSCs
satisfying such a constraint is easier to capture using a scenario with timing constraints as
shown in 9, of Fig. 2. The label [0, 3] from a3 to a4 specifies that User] must respond to
the grant within 3 time units. The label [0, 1] on the message from a3 to u, specifies the
bounds on the delay of message delivery and so on.

In the above example we can, a priori, define timing constraints between any two distinct
but arbitrary events. But is this really what we want? In fact, this might defeat our purpose for
introducing timing constraints in MSCs in the first place. For instance, in the TCMSC),
in Fig. 2, should a specifier be allowed to have a choice of imposing constraints between the
first event of Userl and the first event of User2? Or, from an implementation point of view,
can a machine that implements such a constraint really be called a distributed machine?

In other words, the vital question is how flexible we want this timing to be, i.e., between
which pairs of events we allow constraints. To define this formally, we fix an MSC M =
(E, <, 1) over Act and define the following relations that will relate the pairs of events on
which we wish to impose timing constraints. First, we denote the set of all irreflexive pairs
of Eby P(E) ={(e,e') € E X E | e#¢€'}. Then,

— The message relation, which is defined as
Msg" ={(e,e’) e P(E) | e < pq € for some (p, q) € Ch}
— The previous occurrence of an action a € Act is defined as:
Prevl’l” ={(e,e) eP(E) | A(e)=a,¢ <eand Ve" € E, (" <e AMe") =a) = ¢’ <¢'}

@ Springer

Form Methods Syst Des (2013) 42:262-300 269

Fig. 4 A TCMSC 9, p q r

— The next occurrence of an action a € Act is defined as:
Nextfl” ={(e,e)eP(E) | A()=a,e<e' andVe" € E,(e <e" AM(")=a) = ¢ <¢"}

Thus, the above relations form a flexible timing formalism, as they allow timing between
the next and previous occurrence of any action from an event in the MSC along with the
messages. Let 7 denote the set of all intervals over the real line with rational end-points.

Definition 3.3 Let S C 7 be a set of intervals. An MSC with timing constraints or a
time-constrained MSC (denoted TCMSC) over (Act, S) is a pair 9 = (M, t) where M =
(E, <, 1) is an MSC over Act and 7 is a partial map from the set of irreflexive pairs of events
P(E) to the set of intervals S such that dom(t) € Msg" U, ,(Next¥ U Prev).

With the above definition, TCMSCs can be considered as abstractions of TMSCs and
timed words. Here and for the rest of the paper, we let S € 7 be some fixed set of intervals.
Also, when § =7, i.e., it M is a TCMSC over (Act, T), we ignore the latter component and
say that 2t is a TCMSC over Act. As usual, when the set of actions is clear from context,
we may ignore Act as well. This notion of MSCs with interval constraints on arbitrary pairs
of events is in fact similar to the approach adopted by Alur et al. [4]. Thus we can use their
MSC analysis tool to check consistency of the timing constraints in a single TCMSC.

We remark here that the expressiveness of the relations Prev,, Msg and Next, are in
fact incomparable and we cannot always subsume/replace one by the other. We illustrate
this by the following example. Consider the TCMSC 90, from Fig. 4. We have abstracted
away the message contents M for simplicity. 91, has timing constraints defined between
the following pairs of events: The pair (w3, v3) is a message constraint. The pair (wy, u;) is
related by Prev,,,. However, note that this constraint can also be seen as between (u;, w;)
which are related by the Next,-,. In such cases, our definition requires us to have the same
interval as a constraint. Finally, the third pair of events (u3, v4) are related by the Next,-,
relation. We observe that this pair of events is not related by Msg or Prev, relation for any
a € Act. Similarly, the pair of events (u3, vs) can be timed only by a message constraint.
And again timing is allowed between the pair (vs, u4) only because of the Prev,, relation.
Thus Prev,, Msg, and Next, are expressively incomparable.

Definition 3.4 Let 9t = (M,) be a TCMSC over Act with M = (E, <,1). ATMSC T =
(M, 1) is said to realize O if for all (eq, e;) € dom(t) we have |t(ex) — t(ey)]| € T(ey, €3).
The set of all TMSCs that realize 9 is denoted L. (9).

For instance, the TMSC T of Fig. 2 realizes the TCMSC 2N, from Fig. 2. Now, if all
possible allowed pairs have explicit timing constraints defined, then we call such a TCMSC

@ Springer

270 Form Methods Syst Des (2013) 42:262-300

p?q(wrong) plg(pswd) q'p(wrong)
Prevyg(pswa) € [3,7] Msg € [0, 4]
q?p(pswd)
: : tz ©
@ p?q(correct) q'p(correct) @
User Component A, Server Component Aq

Fig.5 AnECMPA A,

maximally defined. That is, a TCMSC 9t = (M, t) over (Act, S) is said to be maximally
defined if dom(t) = Msg” U | (Next? U Prev).

acAct

4 Event clock message passing automata

In this section we introduce our machine model which implements TMSCs as well as
TCMSCs. We begin by fixing a formal set TC of symbols as follows:

TC = {Msg} U {Prev, | a € Act} U {Next, | a € Act} (1)

When interpreted over a TCMSC 9t = (M, 7) over Act, each symbol « € TC is interpreted
as the relation o™ defined in the previous section. We set TCY = (J,.rc @™ and we let
[TC --» 7] denote the set of partial maps from the set of symbols TC to the set Z.

Definition 4.1 An event clock message passing automaton (ECMPA) is a tuple A =
({Ap}pEPmm Act, A, F), where

— A is a finite set of auxiliary messages;

— Act is the alphabet;

— for each p € Proc, the component \A,, is a structure (S,, =, t,) Where
— S, is a finite set of p-local states,
— 1, €5, is the p-local initial state,
— —, is afinite subset of (S, x Act,, x [TC --»Z] x A x S));

- FC l_[perC S is a set of global final states.

With the above definition, ECMPA are extensions of both event clock automata (over
timed words) [3] and message passing automata (over MSCs) [9].

Example 4.1 A simple example of an ECMPA is shown in Fig. 5. It describes the interac-
tion between a user and a server, with the server trying to authenticate the user. The user
component is denoted A, and the server A,. The set of actions Act consists of: plg(pswd)
(user sends password to server), g?p(pswd) (server receives password), g!p(correct) and
q!p(wrong) (server sends appropriate message to user) and p?q(correct), p?q(wrong) (user

@ Springer

Form Methods Syst Des (2013) 42:262-300 271

p q p q

pswd pswd

1) vy 1,u1 v1,3

/
3.7 ‘

wrong, [0, 3] wrong

u2 v2 T, u2 v2,H
swd swd

u3 b v3 8,u3 L 3,9

w4 correct V4 10, us correct 4,10

Fig. 6 TCMSC 913 and TMSC T3

receives message from server). Thus, in the above automaton, the user starts by sending its
password. If the password received by server is correct, it acknowledges this and goes to fi-
nal state. Else, it sends message wrong which must reach in 4 time units and waits in state #;.
If the user receives correct it goes to its final state. If not, it must receive wrong in a bounded
amount of time since it last sent its password. And in this case, the user tries to resend pass-
word. Otherwise, the current interaction is considered void and the run is rejected.

In Fig. 5 the auxiliary data set A is a singleton and not depicted for the sake of simplicity.
In general, ECMPAs allow every message to be tagged with auxiliary data from a finite
set A. The ability to convey this finite amount of extra information is quite useful, even in
the (untimed) case of message passing automata [9], and it increases the expressive power
significantly. For further discussion on message passing automata with and without auxiliary
data we refer to the survey at [21].

Semantics over TCMSCs We define the run of an ECMPA A over a TCMSC 9t = (M, t)
over Act, where M = (E, <,)). Considerr : E — U,7 eproc Sp labeling each event of process
p with a local state from §,. Define r~ : E — Upepmc S, as follows: For event e € E,,
if there is another event ¢’ € E,, such that ¢’ <, e, then 7~ (e) =r(¢’) and r~(e) =1,
otherwise. Then r is a run of A on M if, for all e, ¢’ € E, with e <,,, ¢’ for some channel
(p, q) € Ch, there are g, g’ € [TC --» Z] and an auxiliary message d € A such that,

o (r (e),re),g.d,r(e))e—, and (r (), (). g d,r(e))e—, 2)

e Vo edom(g),Fe € E s.t., (¢,¢) ea™ and 7(e,?) C g(@) 3)

o4

e Vo edom(g), 3¢’ € Est., (¢/,¢")ea and1(¢',¢") C g’ () 4)
Note that given e, ¢’ as above and o™, € and ¢’ are uniquely defined since o™ is a partial
function. We define s, =r(e,), where e, is the maximal event on process p. If there are no
events on process p, we set s, = t,,. Then run r is successful if (s,) peproc € F. A TCMSC
over Act is accepted by an ECMPA A if it admits a successful run. We denote by Lrc(A),
the set of all TCMSCs over Act that are accepted by .A. As an example, we may observe that
the TCMSC 215 from Fig. 6 is accepted by .A;, the ECMPA shown in Fig. 5.

Semantics over TMSCs The semantics of ECMPAs over TMSCs is obtained similarly. The
definition of a run of A overa TMSC T = (M, t) is the same as over a TCMSC 9t = (M, 1),
except that conditions (3) and (4) are respectively replaced by (5) and (6) below:

@ Springer

272 Form Methods Syst Des (2013) 42:262-300

o forallo edom(g), 3¢ € E s.t., (e,2) €™ and [t(@) — 1 (e)| € g(a), ®)

o forall @ € dom(g’), 3¢’ € E s.t., (¢/,¢’) e a™ and ’t(?/) - t(e’)’ eg'(a). (6)

Then, with the notion of acceptance as above, we can denote the set of all TMSCs ac-
cepted by a given ECMPA A as L,;,.(A). Again, as an example, the TMSC T3 from Fig. 6
is accepted by the ECMPA A, shown in Fig. 5. We may notice here that T3 realizes 901;.
This is not a coincidence. In fact, we can make the following general observation.

Lemma 4.1 Suppose a TMSC T over Act realizes a TCMSC 9t over Act. Then for an
ECMPA A, M € L1c(A) implies T € L. (A).

Proof The lemma follows directly from the definitions. Let T = (M, t) be the TMSC over
Act with M = (E, <, 1) and M = (M, 7). Also let A= ({A,},eprc, Act, A, F) from Def-
inition 4.1. Then, any run r of A on 901 satisfies conditions (2)—(4). Now, since T realizes
N, for all (e;, e;) € dom(t), we have |t(e;) — t(ez)| € T(ey, e2). This along with (3), im-
plies that for all @ € dom(g) there exists € € E such that (e,¢) € a™ and |t(e) — t(€)] €
7(e,¢) C g(a). Thus, (5) holds. Similarly, from (4) we obtain (6) and conclude that r is a
run of Aon 7. As every run of .A on M is also a run of .4 on T and the acceptance criterion
is the same in both cases we conclude that if 9t € Lrc(A) then T € Ly (A). O

5 Timed monadic second-order logic

We introduce the logical framework for timed partial orders, which will serve as our spec-
ification formalism. As usual, we start with a supply of individual variables x, y, ..., and
set variables X, Y, ... which range over events (and sets of events) of the timed MSC. We
generalize the usual MSO logic by using (other than unary predicates P,(x) for a € Act)
timing predicates of the form §,(x) € I for a variable x, « € TC, and I € Z. Here TC is the
same set of symbols defined by (1) and are interpreted as relations over the events. Again,
as for MSO over MSCs, the logic depends on a set PR of (binary) relation symbols, which
settles the access to the partial order relation. Thus,

Definition 5.1 The set TMSO(Act, fR) of all timed monadic second-order logic formulae
over Act with relational symbols from ‘R, is generated inductively using the grammar:

pu=P(x)[xeX|[x=y|R(x,y)|8x)el|-p|oVe|xp|IXp
where, x, y are individual variables, X is a set variable, a € Act, R€eR,a € TCand I € Z.

The existential fragment of TMSO(Act, fR), denoted ETMSO(Act, R), consists of all
formulas 3X,...3X,¢ such that ¢ does not contain any set quantifier. Though we have
defined the logic above for arbitrary sets of relational symbols R, we are in fact inter-
ested only in two restricted sets, namely R< = {<} and R. = {<,,| p € Proc} U {<pq|
p # q}. Then a formula ¢ from any of these logics, i.e., TMSO(Act, R<), TMSO(Act, R.),
ETMSO(Act, R<) or ETMSO(Act, R.) can be interpreted over TMSCs as well as over
TCMSC:s as follows. We write TMSO to denote TMSO(Act, R< U R.), i.e., the union of
all formulae from these logics, when there is no scope for confusion.

Now, we will give the semantics for this logic over both TMSCs and TCMSCs. Given an
MSC M, let i be an interpretation mapping first order variables to elements in £ and second

@ Springer

Form Methods Syst Des (2013) 42:262-300 273

order variables to subsets of E. Then, for ¢ € TMSO and a TMSC T = (M, t), we define the
satisfaction relation 7', it = ¢, by induction on the structure of ¢. For all operators, except
the timing predicate, this is given as usual. For instance, the unary predicate P,(x) expresses
that 1« (x) is labeled with a € Act, i.e., A(u(x)) = a. The only novelty is the timing predicate,
for which we define the satisfaction relation as follows. Intuitively, by §,(x) € I we mean
that there is an event e € E such that p(x) and e are related by o™ and the time difference
between the events w(x) and e is in /. Formally for each o € TC we define,

T, ukEd,(x)el ifdecE, st, (ux),e)ca™and|t(e) —t(n)| el (7)

Then, as usual, for sentences ¢ (i.e., formulae without free variables) we write 7 = ¢
instead of T, i |= ¢ and denote by L;;,.(¢) the set of all TMSCs T over Act such T = ¢.
Turning to TCMSCs, we can give a formula ¢ € TMSO(Act) a natural semantics over 2T =
(M, t) exactly as done for TMSCs above. The only noteworthy difference is in the timing
predicate 8, (x) € I, where for any « € TC, we define:

M, uEd,(x)el ifdeeE s.t., (u(x), e) € o™ Ndom(r) and r(u(x), e) cl ®
The set of TCMSCs over Act that satisfy a TMSO sentence ¢ is denoted by Lrc(@).

Example 5.1 Consider again the interaction scenario in Example 4.1, where a server is au-
thenticating a user. Suppose we wish to specify that every Message wrong sent by the server
is conveyed within 4 time units. This can be written as the following sentence in our logic:

Vx(Pq!p(wrang) (X) g (SMsg(x) € [07 4]) (9)

Similarly, we may require that whenever Message wrong is received by the user, the time
elapsed since it last sent its password is within 3 and 7 time units. This can be expressed as:

Vx(Pp?q(erng) (X) g (SPrevp!q(wwm (X) € [3a 7]) (10)

We observe immediately that both these sentences (9) and (10) are satisfied by TCMSC 915
and TMSC T; from Fig. 6.

The following proposition relates the expressiveness of TMSO and ETMSO under the
different signatures that we have introduced above, namely SR and R..

Proposition 5.1

1. For all ¢ € TMSO(Act,R<) there exists ¥ € TMSO(Act,R.) such that L. (¢) =
Etime(W)'

2. Let ¢ be a (EYTMSO(Act,R.) formula and B € N such that L;,.(¢) is a set of
3"“-B-bounded TMSCs over Act. Then, there exists y € (E)YTMSO(Act, R<) such that
'Ctime (‘P) = £time(¢l)'

3. There exists a formula yg € TMSO(Act, R<) (respectively, in MSO(Act, R<)) such that
Liime(yB) is the set of all 3"-B-bounded TMSCs (respectively, all - B-bounded MSCs)
over Act.

The first part of the proposition is a generic result which works as in the untimed case. It
follows since the partial order relation can be recovered from the immediate successor and

@ Springer

274 Form Methods Syst Des (2013) 42:262-300

message relations in TMSO. Note however that this is not true if we restrict to ETMSO.
Indeed, even in the untimed case, it is an open question whether the transitive closure rela-
tion, i.e., x <y can be expressed as an EMSO(Act, $R.) formula over the set of all MSCs
over Act. The second part of the proposition says that the converse is true when restricted to
B-bounded setting. The third part says that in both the timed and untimed settings, the set
of all existentially(-untimed)- B-bounded MSCs over Act can be expressed as a formula in
the (timed) MSO over (Act, R<). In the untimed setting, the second part is proved in [17,
Proposition 6.2] where the proof uses the (very difficult) construction of a message passing
automaton accepting all 3-B-bounded MSCs. The third part then follows as an easy conse-
quence of this construction. However, it turns out that both these results can be proved on
the same lines as [17], but without referring to the expensive automaton construction. This
consequently reduces the complexity of these constructions. For this reason, and for the sake
of completeness (in the timed setting) we provide proofs of both these statements below.

Proof of Proposition 5.1(2) The first two steps are exactly the same as in [17, Proposi-
tion 6.2]. First, notice that <,, can be easily expressed with a first-order formula over
(Act,R<), hence the difficulty is to express <,, for channels (p,q) € Ch. We consider
set variables Xo, ... Xp_ that are not used in ¢. These will represent variables that count
the number of plg (resp. ¢?p) actions modulo B. This is ensured by a formula ¢ which
expresses that each X, contains precisely the set of events e such that for some channel
(p, q) € Ch, either e is the n-th send from p to ¢ modulo B, or e is the n-th receive on g
from p modulo B.
Second, for each channel (p, g) € Ch, we define the abbreviation x </p ;v by

x e X, AMx) € plg
AYEX, ALY)EqGIpAX <Y
n<B \ AVZ(z€ X, AXM2)€qIpAX<7)=>Yy =<2

This expresses that for this channel, x is a send event and y is the least receive event above
x which has the same number modulo B. Note that, for any send event e from p to g, there
exists a (unique) event f such that e </, f. Moreover, f < g where g is the matching
receive, i.e., is such that e <,, g. This follows from the FIFO assumption which implies
that e and g have the same number modulo B. Thus </, can be seen as a total function
from the set of send events to the set of receive events. Then, we define formula ¢; which is
Nep.pecn Y%, Xy (x <)y y Ax" < y) = x = x' saying that each </, is injective function
(and thus a bijection from sends to receives).
Now, denoting « =3Xj ... X5_1 @9 A @1, we make the following crucial claims:

Claim For a TMSC T = (M, t) over Act with M = (E, <,)),

(1) if T = «a, then the relations <, and <;q coincide on T, and
(2) if T is 3"-B-bounded, then T = «.

Proof (1) Let e € E. If e is not a send event from p to g then e £,,, f and e £, f for all
f € E. So we assume in the following that e is a send event from p to ¢. Let f, g € E be the
unique events with e <;, , J and e <,, g. We have already seen that f < g. Assume towards
a contradiction that f < g. By induction, we may assume that for all send event ¢’ < e from
ptog,ife’ <, f'ande <, g'then f'=g'. Event f is areceive on g from p hence there
is a unique event ¢’ € E such that ¢’ <, f. Using the FIFO assumption and f < g we get

¢’ < e. By induction we obtain ¢’ <, f, a contradiction with ¢;.

@ Springer

Form Methods Syst Des (2013) 42:262-300 275

(2) We will use an alternate characterization of 3“-bounded TMSCs obtained by lifting
from the untimed setting in [22]. First, we define a relation rev which associates receive
events to some send events. Formally, f rev ¢’ if there is a channel (p, ¢) € Ch and an event
ec Esuchthate <), f and A(¢') € plg and |{e”" € E | A(¢") e plg Ae < e’ <€'}| = B.

Now, [22] states that an MSC M is 3- B-bounded iff the relation <p = < U rev is acyclic.
Recalling that a TMSC is 3“-B-bounded iff its underlying MSC is 3- B-bounded, we con-
clude that the above characterization holds for TMSCs as well.

Next, observe that in any TMSC T over Act, by counting for each channel the send (resp.
receive) events modulo B, we get unique sets X; € E fori < B such that 7', (X;);<5 = ¢o.
Assume that T, (X;);~p [~ ¢1. Then, there exists a channel (p, g) € Ch and send events
e < ¢ from p to g such thate </, f and ¢’ </, f. Let f be such that e <pg F. Since

/

P’
ulo B. Since e < ¢/, it follows that there exists ¢ < ¢’ such that f rev e. Therefore, we have
a<pceyclee<e < f < freve (observing thate </ f implies e < f), as depicted in
the adjoining figure. O

e </]7 . S weget f < f . By definition of <’/ _, the events e, €', f have the same number mod-

Now, we are in a position to complete the proof of Part (2) of this proposition. Starting
from a formula ¢ € (E)TMSO(Act, R..), let ¢ be the formula obtained by replacing every
occurrence of <,, by x <;)q y. Now, consider the formula v = 3(X;)ip @0 A @1 A ¢'.
Clearly it is a (E)TMSO(Act, R<) formula. We claim that L. (¢) = Lyime(¥). f T = ¢,
then T is 3“- B-bounded over Act therefore T = « by Claim (2) above. But since T = «, by
Claim (1), <’pq and <, coincide on 7', which implies that T, (X;);<p = ¢’. Thus combining
the two, we obtain 7' = 1. Conversely, assume that 7 |= 1. Since T |= o, we know that <’p q
and <, coincide on M. Hence T, (X;);.p k= ¢’ implies T = ¢. O

Proof of Proposition 5.1(3) Now, we prove the final part of the proposition in the timed case
(the untimed setting follows in exactly the same way). We use freely the formulas from the
proof above. First, we let y rev’ z stand for

\/ Ixx <zAX <;7qy/\)\(z)ep!q/\ \/x,zeX,,
(p.q)eCh n<B

If T = « then Claim (1) implies that <’p J and <, coincide and it follows easily that y rev z
implies y rev’ z and that y rev' 7’ implies y rev z for some z < 7’. Therefore, there is a <p
cycle iff there is a <, cycle where <3 = < U rev’. We define below a new formula ¢, to
check, in the context of «, the existence of a </, cycle.

In fact, it suffices to test for short cycles. Indeed, let xo <5 x; <5 -+ < 1 <3 x0 be a
cycle with k > 0 and x; # x; for 0 <i < j < k. If two events x; and x; are on the same
process for some 0 <i + 1 < j < k then either x; < x; and we have a shorter cycle by

@ Springer

276 Form Methods Syst Des (2013) 42:262-300

removing Xi4i,...,Xxj—1; or x; < x; and x;, ..., x; is a shorter cycle. Hence, it suffices to
test for the existence of a <, cycle of length bounded by 2|Proc| + 1, which can easily be
expressed with a first-order formula ¢, over (Act, R<).

Finally, let yp =3Xy ... X5_1 9o A @1 A =@, which is in TMSO(Act, R<). We can easily
check that yp defines the set of all 3“- B-bounded TMSCs.]

In the above sections, we have introduced our models to describe as well as implement
timed and distributed scenarios. In the next sections, we state and prove our main results.

6 Equivalence between ECMPA and TMSO logic over TMSCs

We now state our main results showing an effective equivalence between ECMPAs and
TMSOs over TMSCs, which we will prove in this section.

Theorem 6.1 Let L be a set of TMSCs over Act. Then, the following are equivalent:

1. There is an ECMPA A such that L;n.(A) = L.
2. There is ¢ € ETMSO(Act, R..) such that L. (¢) = L.

Theorem 6.2 Let B € N and let L be a set of 3“-B-bounded TMSCs over Act. Then, the
following are equivalent:

1. There is an ECMPA A such that L. (A) = L.
2. There is ¢ € TMSO(Act, R<) such that Ly (@) = L.

This equivalences are effective in the sense that we can explicitly construct the (E)TMSO
formula from the ECMPA and vice versa.

The construction of an (E)TMSO formula from an ECMPA follows the similar construc-
tions applied, for example, to finite and asynchronous automata. In addition, we have to
cope with the timing predicate. Assume that g : TC --+ T is such a guard occurring on a
local transition of the given ECMPA. To ensure that the timing constraints that come along
with g are satisfied we use the formula /\ ,jom(q) S (X) € g().

The difficult part is the construction of an ECMPA from an (E)TMSO formula. The
basic idea is to reduce this to an analogous untimed case, which has also been applied
in the settings of words and traces [14, 15]. Usually, the untimed formalisms need to be
parameterized by a finite alphabet, so that we can speak of structures whose labelings are
extended with this alphabet. Hence, in our framework, we need to find a finite abstraction
of the infinite set of possible time stamps. For this, we move from TMSCs to TCMSCs over
a finite alphabet, using Lemma 6.2 which strengthens Lemma 4.1 and Lemma 6.3 which
is the corresponding result for TMSO. This allow us to establish a translation of (E)TMSO
formulas into ECMPAs.

6.1 From TMSCs to TCMSCs

TCMSCs are abstractions of TMSCs. Thus, if a TCMSC exhibits a property, the correspond-
ing TMSC should also do so. This is illustrated in Lemma 4.1 where the property is having
a run on an automaton. In this section, we are interested in the converse question. In other
words, if a TMSC exhibits a property, when can we say that a TCMSC that it realizes also
exhibits the same property? For this, given a TMSC, we derive a canonical representative

@ Springer

Form Methods Syst Des (2013) 42:262-300 277

TCMSC using intervals from a specific set which depends on the property. Then it turns out
that, this representative exhibits the property iff a TMSC realizing it exhibits the property.

We formalize these ideas now. We begin by introducing the notion of a proper interval
set from [14], which will play an important role in what follows.

Definition 6.1 A set of intervals S C 7 is said to be proper if it forms a finite partition
of R-¢. An interval set S is said to refine another interval set S’ if every interval I’ € S’ is
the union of some collection of intervals of S.

Example 6.1 Consider the set of intervals S; = {[0, 4], [3, 7]}. Then, we may observe that
the interval set S, = {[0, 3), [3, 4], (4, 7]} refines S; and if we add the interval (7, c0) to S,
we obtain a proper interval set S; that refines S .

Now, observe that if S is a proper interval set which refines another interval set S’, then
forall I € Sand I' € S’, we have, either I C I’ or I NI’ = @. Also, we have,

Proposition 6.1 For any finite interval set, there exists a proper interval set that refines it.

Proof Let S C 7 be a finite interval set. Then, we define a canonical proper interval set
of S denoted prop(S) as follows. If R is empty, we define prop(S) = {[0, co)}. Oth-
erwise, we let R = (t,...,1,) be the sequence of bounds that appear in S, arranged
in increasing order #; < --- < t, and which are different from 0, co. Then, we define
prop(S) ={[0, 0], (0, ty), [t1, 1], (t1, 12), - .., [tn, 1], (t,, 00)}. With this definition it follows
that prop(S) is a proper interval set and that prop(S) refines S.]

Now we can show that for a proper interval set S and a TMSC T, there is a unique
maximally defined TCMSC using intervals only from S such that T realizes it. Formally,

Lemma 6.1 Let S be a proper interval set and T = (M, t) be a TMSC over Act. Then, there
exists a unique TCMSC M = (M, t) over (Act, S) such that t : TCM = S, T realizes M
and M is maximally defined. This unique TCMSC is denoted I

Proof We first observe that, for each (e, e’) € TC, the real number |t (¢') — t(e)]| is in
a unique interval of S. Thus, consider the maximally defined TCMSC defined as: M3 =
(M, ©) where, for any (e, ¢') € TCY, 1 (e, ¢') is defined to be the unique interval of S con-
taining |7(¢’) — t(e)|. Then, T realizes zm? by definition and the uniqueness follows since
S is a proper interval set. O

It turns out that this unique TCMSC is the “canonical representative” for a TMSC that
we were searching for. As an example, consider the TMSC 7} from Fig. 7, which represents
a part of the scenario of TMSC T3 from Fig. 6 (and abstracting away the message contents).
Now, let S; be the proper interval set defined in Example 6.1. Then, the unique maximally
defined TCMSC over (Act, S3) which is realized by Ty is the TCMSC zm?j shown in Fig. 7.

Now, given an ECMPA A, let Int(A) denote the finite set of intervals that occur in A as
guards. Now look at any proper interval set S that refines Int(A). By Proposition 6.1, there
exists at least one, namely prop(Int(A)). Then,

Lemma 6.2 Givena TMSC T, an ECMPA A and a proper interval set S that refines Int(A),
we have T € L. (A) lﬁ‘i)ﬁ‘; € Lrc(A).

@ Springer

278

Form Methods Syst Des (2013) 42:262-300

p q 0,3)
1,u1 v1,3 u1l ’ U1
/DR P\
/ ~ - \
I e 7 |
4,77, s 110,3)
| oBA-T TN pa |
\ - ~ I
e ~N
7, u V2, 5 u v2
[0,3)

Fig.7 TMSC T; and its representative TCMSC 93?‘7?43

Proof Let T = (M, t) be the TMSC over Act with M = (E, <, A) and let the ECMPA
be A= ({Ap}peproc, Act, A, F) with A, = (S,,t,, —>,). Now, since T realizes IMZ, by
Lemma 4.1, we obtain one direction of the result, fm‘; € Lyc(A) implies T € Ly, (A).

For the reverse direction, assume T € L;;,.(A). Then by definition there is a successful
run » of A on T. Since r is a run, for all e, e’ € E s.t., e <, € for (p,q) € Ch, we find
g,8 €[TC --»1T] and d € A such that conditions (2), (5) and (6) hold. We show then that
r is also a run of A on 93, for which it is enough to show that conditions (3) and (4) hold.
We start from (5), which says that for each « € dom(g), there is ¢ € E such that (e, 2) € «™.
Since M3 is maximally defined, 7 (e, ?) exists and as T realizes 93 we obtain |t (&) —
t(e)| € T(e,¢). But again from (5), |t(¢) —t(e)| € g(a). Thus, we find (e, ¢) N g(a) # @.
Now, t(e,¢) € S, g(a) € Int(A) and we know that S is a proper interval set that refines
Int(A), which implies (e, €) C g(a) concluding that (3) holds. Similarly (4) can be shown
starting from (6). Thus any run of A on 7 is also a run on 5. Since acceptance criterion
for a run is the same, T € L. (A) implies M € Lrc(A). |

We can do the same for TMSO as well. That is, given a TMSO formula ¢, we let Int(¢)
denote the finite set of intervals / for which ¢ has a sub-formula of the form §,(x) € I.
Again we can consider a proper interval set S which refines Int(¢).

Lemma 6.3 Given a TMSC T, a TMSO formula ¢, and a proper interval set S that refines
Int(p), we have T |= ¢ iff M3 = ¢.

Proof Let T = (M, t) be a TMSC with M = (E, <, 1). Then, by Lemma 6.1, we have the

TCMSC 95 = (M,) such that, for all « € TC, and all (e, ¢') € o™, |t(e') — t(e)] € T(a).
We prove the lemma by structural induction on ¢. Let u be any interpretation. The only

interesting case is the timing predicate. The others are routine deductions. We have,

T,nd,(x) el

< 3JecE, (nx),e)ea Altle) —t(nx)| el

& 3JeeE, (nx),e) e ndom(r) Alt(e) —t(nx))| e I NT(1(x),e)
& 3ecE, (ux),e)ea™ndom(t) At(u(x),e) S
— €

MS, b= Sax) € 1

using successively the definition of the semantics (7) for TMSCs, 9013 is maximally defined
and T realizes M3, S is proper and refines Int(¢), and the semantics (8) for TCMSCs. [

@ Springer

Form Methods Syst Des (2013) 42:262-300 279

6.2 Extending the alphabet

In this subsection, we provide the final pieces of our jigsaw. In particular, we fix a finite set I7
and lift MSCs over Act to MSCs over I" = Act x I1. A IT-extended MSC over Act or an MSC
over I' is a finite I'-labeled poset M = (E, <, 1) such that conditions 1—4 of Definition 2.1
are satisfied, ignoring the extra labeling. Note that the definition of boundedness can be
immediately adapted to this setting.

We lift the MPA and MSO definitions to include the additional alphabet. Since such a
lift is purely syntactical, we preserve the validity of the equivalence theorems 6.3 and 6.4
in these settings. We define an MPA A = ({A,} yeproc, A, F) over I' as in Definition 4.1
with the only change being the transition relation —, C (S, x Act, x [T x A x §,) of
component A,. Runs of A over an MSC over I is defined as in Sect. 4, ignoring guards
g, &' and conditions 7 and 8. L£y5c(A) denotes the set of all MSCs over I that are accepted
by A.

Similarly, dropping the timing predicate, we define the logics MSO(Act x I1,R<) and
MSO(Act x I1,9R.) over MSCs over I as in Sect. 5. For a sentence ¢, Lys¢c(¢) denotes the
set of MSCs over I' that satisfy it. With the above definitions, it is easy to see that we can
lift the results from [7, 17]. We restate the relevant theorems in our terminology.

Theorem 6.3 (From [7]) Let £ be a language of MSCs over I'. Then L = Lysc(¢) for some
@ € EMSO(T, R.) iff L = Lysc(A) for some MPA A over I.

Theorem 6.4 (From [17]) Let B € N.. Let £ be a language of 3- B-bounded MSCs over I'.
Then, L = Lysc (@) for some sentence ¢ € MSO(I", R) iff L = Lysc(A) for some MPA A
over I'.

TCMSCs as extended MSCs Let S C 7 be a finite set of intervals. Then, we can consider
the alphabet I" = Act x [TC --» S] where [TC --» S] is a finite set of partial maps from TC
to S. Recall that TC is the finite set of symbols defined in Sect. 4. A TCMSC over (Act, S)
can be directly seen as an MSC over I". We make this precise by defining an untiming
function ¢ which maps TCMSCs over (Act, S) to MSCs over I.

Let M = (M, t) be any TCMSC over (Act, S), with M = (E, <,A), T STCY -5 8.
Then U(ON) = (E, <, ') is an MSC over I" with the same set of events E and partial
order <. Also, A : E — I' isdefined forall e € E, by A'(e) = (\(e), g.) where g, : TC --» S
is such that, for all @ € TC, g.(a) = (e, ¢') if there exists ¢’ € E, s.t., (e, ¢') € ™ Ndom(z)
(and g, () is undefined otherwise). Recall that given ¢ € E, « € TC, there exists at most one
event ¢’ € E s.t., (e, ¢') e aM.

Lemma 6.4 Let S be a finite set of intervals and I' = Act x [TC --+ S]. We can build an
MPA B over I" such that for all TCMSC 9t over (Act, S) we have U (M) € Lysc(B) iff M
is maximally defined.

Proof (sketch) First, we check that for each event labeled (b, g) we have Msg € dom(g) iff
b is a send action. Then, we have to check that Prev, € dom(g) iff some action a occurs
in the past of the current event. The set of actions occurring in the past can be computed
(deterministically) by an MPA using the set A of auxiliary messages. Finally, we have to
check that Next, € dom(g) iff some action a occurs in the future of the current event. The
set of actions occurring in the future can be guessed non-deterministically by an MPA. Such
guesses can be checked using the set A of auxiliary messages and the set Fin of global
accepting states. a

@ Springer

280 Form Methods Syst Des (2013) 42:262-300

TMSO as MSO over the extended alphabet We will now see that each TMSO formula can
be rewritten as an MSO formula over the extended alphabet of guards I" introduced above.
Let S be a finite set of intervals and I" = Act x [TC --+ S]. Then from a TMSO formula ¢,
we obtain ¢S € MSO(I") by replacing each sub-formula of the form P,(x) by the formula
\/{(b,g)eﬂb:a} P, ¢)(x) and each sub-formula of the form §,(x) € I (i.e., timing predicate)
by the formula \/ ¢, .\c rio@)c1) Pib.e) (X). This translation preserves the existential fragment,
for instance, if ¢ € ETMSO(Act, R.), then ¢° € EMSO(I", fR.). As before, we can easily
obtain the semantics of a formula from this logic in terms of MSCs over I". Then, we can
relate the TCMSC-language of a TMSO formula and the extended MSC language of its
MSO translation as follows:

Lemma 6.5 Let ¢ be a TMSO sentence and S be a finite set of intervals. Then for a TCMSC
M over (Act, S), M = ¢ if and only if U(N) = ¢S.

Proof Let M = (M,) be a TCMSC over (Act, S) with M = (E, <, A) and let U(MN) =
(E, <, 1)) as defined above. We show the lemma for any interpretation u by induction on
structure of ¢. As before, the only interesting cases are atomic and timing predicates. The
others are routine deductions.

— Suppose ¢ is of the form P,(x) for some a € Act. Then, we obtain easily,

Mok Px) it UM pkE \/ Poy®)

{(b,g)el"|b=a}

— Suppose ¢ be of the form §,(x) € I for some o € TC, I € Z. Then, we show that,

MukEs)el iff UM ukE \/ Pop)

{(b,9)el g}

(=) Assume M, u = §,(x) € I where u(x) = e € E. By definition, this means that
there exists e/ € E such that (e, e’) € o™ and t(e, ¢’) C I. By the definition of /(9M),
we then have A'(e) = (A(e), g.) with g, : TC --» S such that g.(@) = t(e,e¢’) C I.
This implies that U(OMN), i = Ppe),g,)(x) with g.(a) € I. Hence we have, U(ON), u =
Vie.gerigwen P)-

(«) Conversely assume U(9M), u = Py, g (x) for some (b, g) € I" such that g(a) € 1
and let u(x) = e € E. Then by definition A'(e) = (b, g), A(e) =b and g : TC --+ S with
g(a) C 1. Since g(a) is defined, there exists e’ € E s.t., (e, €’) € dom(t) NaM and g(a) =
t(e, ') C I. Thus, we conclude that 0, u =8, (x) € 1. O

ECMPA as MPA over the extended alphabet Let us fix a finite set of intervals S and an
alphabet of guards I = Act x [TC --» S]. Then, observe that any MPA A over I is itself
an ECMPA which uses intervals from S as guards, i.e., Int(4) € S.

Lemma 6.6 Let S be a finite set of intervals and A be an MPA over I' = Act x [TC --» S].
Then for any TCMSC I over (Act, S), U(M) € Lysc(A) implies M € L1c(A).

Proof Let A be the MPA over I" and let 9t = (M, 7) over (Act, S) with M = (E, <,). Let
UON) = (E, <, 1) € Lysc(A), i.e., there exists a run r of the MPA A on the MSC U/ (90t)

@ Springer

Form Methods Syst Des (2013) 42:262-300 281

which is accepting. Now 7 : E — (J ,cp,,. Sp satisfies for all e, e’ € E such that e <, ¢’
with (p, q) € Ch, there exists d € A such that,

(r(e),A(e),d,r(e)) €e—, and (r (¢),2'(¢).d.r(e')) € >,

We claim that r is a run of ECMPA A on the TCMSC 9t. Since A'(e) = (A(e), g.) and
A(e") = (\(€'), go), condition (2) follows at once with g = g, and g’ = g./. Again, by def-
inition of 1/, g, € [TC --» S] has the property that for all « € dom(g,), there exists € € E
such that (e,¢) € o™ Ndom(z) and g, (o) = (e, €). Thus condition (3) is satisfied. Simi-
larly, g satisfies condition (4). Thus, r is a run of .4 on 9. It is accepting since the accep-
tance condition is the same and depends on reaching the final state. Thus we conclude that
M e ﬂ]‘c(A) O

Lemma 6.7 Let S be a proper finite set of intervals and A be an MPA over I' = Act x
[TC --» S]. Then, for any TMSC T € L. (A), there exists a TCMSC 9N over (Act, S) such
that U(M) € Lysc(A) and T realizes IN.

Proof We begin with an accepting run » of A on TMSC T = (M, t). Thus, forall e, ¢’ € E
with e <, ¢’ for some (p, q) € Ch, there are g, g- € [TC --» 7] and d € A such that
conditions (2), (5), (6) hold. But since Int(A) € S, we obtain g,, g, € [TC --+ S].

We recall that by condition (5), for all @ € dom(g,) there exists ¢ € E such that (e, ¢) €
a™ and |t (e) —t(€)| € g.(a). Similarly from condition (6), for all @ € dom(g,’) there exists
¢ € E suchthat (¢/, &) € a™ and |t(e’) —t(€')| € g (ar). Using these partial maps, we define
another partial function 7 € [TCM --5 S] as

. ge(a) if 3 € dom(g,) s.t. (e, &) € a™
(e, e) =]
undefined otherwise

Observe that 7 is well-defined. If we find o, @’ € dom(g,) such that (e, &) € ™ Na’™ then
[t(e) —t(e)] € g.(a') N g. () by (5), (6). Now S is a proper interval set implies that g, (o) =
g.(¢). Now using the above map we define a TCMSC over (Act,S) as M= (M,). T
realizes 2N by definition, since for all (e, €) € dom(t), |t(e) — t(e)| € g.(@) = T (e, e) for
some o € dom(g,). We are done if we show that U/(ON) € Ly5c(A). But this follows since
r is itself a run of A over U(9N). It is enough to observe that A'(e) = (A (e), g.) where g,
is the partial map given above from the run on the TMSC. Then, for all ¢, ¢’ € E such that
e <,q € for some (p,q) € Ch, there exists d € A such that (r~(e), A (e),d,r(e)) € =,
(r=(e),A(e"),d,r(e')) € —,. Thus r is an accepting run of .4 on U (IN). O

6.3 Proof of Theorems 6.1 and 6.2

Proof of Theorem 6.1 (1 = 2) Given an ECMPA A, we construct an ETMSO formula
¢ € ETMSO(Act, PR..) such that Ly, (A) = Lyime(¢). This direction of the proof is standard
and does not need the lemmas we proved in the two previous subsections.

Let A= ({A,} peproc, Act, A, F) be the ECMPA at hand with A, = (S, t,,, —). For any
local state s € S = peProc Sp, we introduce a second order variable X,. The formula we are
targeting guesses a run of A in terms of an assignment of events to the variables (Xj);cs-
Accordingly, (X;)ses needs to be a partition of all the events of an MSC. This can easily be
done by a first order formula Partition((X;)scs) with free variables (X;);cs. We now define

@ Springer

282 Form Methods Syst Des (2013) 42:262-300

some further macros. For a synchronization message d € A, we define Trans,(x, (X;)ses)
by

\/ <Pa(x)/\xeXS//\[3y(y <-,,,,x/\yeXs)]/\ /\ SO,(x)Gg(ot))
peProc acdom(g)
(s.g.a.d,s") e—)

\% \/ (P(,(x) AxeXg A [ﬂEIy(y <pp x)] A /\ Su(x) € g(oz))

peProc
(tp.g.a.d,s)e—,

aedom(g)

This formula describes that, under the assignment (X;),cs, the execution of x actually cor-
responds to a local transition of .4 that communicates d € A. Moreover, for a global state
5= (Sp)perc € HSEProC Sp’ we define Finals((X)ses) by

\/ (AE" (m[?x(x)Ax eXsp> AN Pa(x)>

Proc’ CProc peProc\Proc’ peProc’
VpEPror/:sP:Lp a€Actp

Hereby, given a process p € Proc, max,(x) = \/uEAwp Py(x) A (—3y (x <pp ¥)). More-
over, observe that Proc’ comprises those processes that are assumed not to move. Hence,
Finals((X;)ses) formulates that the run described by (X;),cs ends up in global state 5.

We are now prepared to give the formula ¢ with L. (@) = L. (A). Namely,

¢ = EI(Xs)seS Partition((xs)seé‘) A \/ Final?((x.v)seé‘)

ser

AVxVy /\ (x <pg ¥y — \/(Transd (x, (XS)SGS) A Transy (y, (XS)SGS))>

(p.q)eCh deA

This concludes the proof in one direction.

(2 = 1) For the other direction we will require all the machinery that we set up in the
two previous subsections.

Let ¢ be the given ETMSO(Act, PR.) formula and let S be a proper interval set which
refines Int(¢). Fix an alphabet I" = Act x [TC --» S]. Thus, we have ¢ € EMSO(I", R..)
using the translation from Sect. 6.2. Then, by Theorem 6.3 we obtain an MPA A over I" such
that Lysc(A) = Lysc(¢S). Let B be the MPA over I" from Lemma 6.4 accepting (images
of) maximally defined TCMSCs. We view A" = AN B as an ECMPA with Int(AN B) C S,
hence S refines Int(ANB). Now we claim that this A’ is, in fact, the ECMPA that we require.
That is, we will show that L. (¢) = Lyime(A"), thus completing the proof the theorem.

The proof follows the scheme depicted in Fig. 8. We start by showing that L;;,.(¢) C
Lime(ANB). Let T |= ¢. Since S is a proper interval set that refines Int(¢), we can apply
Lemma 6.3 to get M7 = ¢. Since, S is proper, it is finite and hence we use Lemma 6.5
to obtain U(MF) &= ¢°. But Liysc(¢°) = Lysc(A) and 95 is maximally defined, so we
have uam?) € Lysc(ANB). As S is finite and EITI‘T'; is a TCMSC over (Act, S), we can then
use Lemma 6.6 to conclude that zm? € L1c(AN B). Then, we can use Lemma 6.2 to obtain
T € Lime(AN B).

Conversely, we show that L. (¢) 2 Lime(ANB). Let T € L. (AN B). Then as S is a
proper interval set, and AN B is an MPA over Act x [TC --» §], by Lemma 6.7, there exists

@ Springer

Form Methods Syst Des (2013) 42:262-300 283

to show

T 'ZJC,D- ™ T e L"mﬁme (-A/)
Lemma 6.3 Lemma 6.2
Y
932‘75: Ee 931‘79, € Lro (_A’) Lemmas 6.7, 6.4, 6.1
Lemma 6.5 Lemma 6.6
Y Theorem 6.3 and Lemma 6.4
UMZ) %) "UMF) € Lusc(A)

Theorem 6.3

Fig. 8 Proof schematic for 2 = 1 direction of Theorem 6.1 (arrows depict implication)

a TCMSC 971 over (Act, S) such that U (M) € Lysc(A N B) and T realizes M. Using Lem-
mas 6.1 and 6.4 we deduce that 0 = M. But Lysc (¢°) = Lysc(A) implies U(NT) = 5.
Now, by Lemma 6.5 we have 95 |= ¢. Finally, by Lemma 6.3 we conclude that T = ¢. O

Along the lines of the proof above, we can also get a characterization of the full TMSO.
However, we have to restrict to untimed-existentially-bounded TMSCs.

Proof of Theorem 6.2 Let B € N_y and L be a set of 3“-B-bounded TMSCs over Act.

(1 = 2) Let A be an ECMPA with L;,.(A) = £. By Theorem 6.1, we obtain an
ETMSO(Act, R.) formula ¢ such that L. (A) = Lim.(¢) and by Proposition 5.1(2), we
obtain an ETMSO(Act, R<) formula v such that L. () = Lyim.(¢) which completes the
proof in this direction.

(2=1) Let ¢ be a TMSO(Act, R<) formula with L;.(¢) = £ and let S be a proper
interval set which refines Int(¢). Fix an alphabet I" = Act x [TC --» S]. Thus, we have
¢ € MSO(T", R~) using the translation from Sect. 6.2. Now from Proposition 5.1(3), we
obtain a formula yz € MSO(I", JR<) such that £y5c(yg) is the set of all 3- B-bounded MSCs
over I". Then, indeed Lysc(¢° A yg) is an 3-B-bounded set of MSCs over I' and so, we
apply Theorem 6.4 to obtain an MPA A over I" such that Lysc(¢® A yg) = Lysc(A).
Consider again the MPA B over I from Lemma 6.4. We view AN B as an ECMPA and S
refines Int(A N B). We show that L. (¢) = Liime (AN B).

The proof follows the same basic structure as depicted in Fig. 8. However, to capture full
MSO (and not just its existential fragment), we use Theorem 6.4 in the place of Theorem 6.3,
and to do this, we replace ¢° by ¢ A yp.

First observe that if T realizes 901, then T is 3*- B-bounded iff /(901) is 3- B-bounded.
Indeed a (untimed) linearization of a TMSC only depends on its set of events and the partial
order, which are the same for 7', 9t and U/ (901).

Thus, let us consider T € Ly (¢). Then, T is 3*- B-bounded and 7 }= ¢. By Lemma 6.3,
we obtain that MM = . Again since S is proper, it is finite and hence by Lemma 6.5 we get
UONT) = ¢°. Since T realizes M, UENT) is 3-B-bounded, and so we get U (IM3) k= 5.
Thus we conclude that U(MF) € Lysc(9S A y) = Lusc(A). Since 9T is maximally de-
fined, we obtain U(MN3) € Lisc(A N B). Using Lemma 6.6 we get M3 € Lyc(AN B).
Finally, Lemma 6.2 implies T € L. (AN B).

Conversely, let T € L;,.(A N B). Then as S is a proper interval set, and AN B is an
MPA over Act x [TC --» S], by Lemma 6.7, there exists a TCMSC 9 over (Act, S) such

@ Springer

284 Form Methods Syst Des (2013) 42:262-300

that U(OMN) € Lysc(AN B) and T realizes 9. Using Lemmas 6.1 and 6.4 we deduce that
M = INF. But Lisc (@ A yp) = Lusc(A) implies UNT) = ¢ and by Lemma 6.5 we get
MT = ¢. Finally, Lemma 6.3 implies T = ¢. |

7 Checking emptiness of ECMPAs

In this section, we investigate emptiness checking for ECMPAs, leading to a partial solution
to the satisfiability problem for TMSO formulas, which is undecidable in its full generality.
Since the MSCs are used in early protocol design, this problem is of vital interest as it allows
detection of possible design failures at this stage.

Theorem 7.1 The following problem:

INPUT: An ECMPA A= ({A,}peproc, Act, A, F), and an integer B > 0.
QUESTION: Does there exist T € Lin.(A) such that T has a B-bounded timed lineariza-
tion?

is decidable in space P(|Al, (B + 1)) for some polynomial P.

Note that the size of .4 also depends on Act via the transition relations — ,, of the compo-
nents A,. But the space complexity above is only exponential in |Act| and not in the much
bigger size |.A|.

Then, using Theorem 6.2 we can conclude that,

Corollary 7.1 The following problem is decidable:

INPUT: A TMSO formula ¢ and an integer B > 0.
QUESTION: Does there exist T € L. (@) such that T has a B-bounded timed lineariza-
tion?

The rest of the section formulates the proof of the above theorem. Let A be an ECMPA
and let B > 0. We construct a (finite) timed automaton B (denoted TA) that accepts a timed
word w over Act iff w is a B-bounded timed linearization of some TMSC accepted by .A.
Since emptiness is decidable for finite timed automata [2], we are done.

The remainder of this section is dedicated to the construction of such a 13, which is done
in three steps as sketched below:

— First, we address the main hurdle in simulating an ECMPA by a TA, namely, a run of a
TA is totally ordered, while ECMPAs have partially ordered runs. Hence, to keep track of
clock constraints used in the ECMPA, the TA needs to recover the partial order informa-
tion from its runs, i.e., words. This is done using gadgets that we will define as our first
step.

— Next, using these gadgets, we describe an infinite TA which simulates the ECMPA.

— Though we allow infinitely many clocks and states in this intermediate construction, on
any run we will see that only finitely many states and clocks are used. We modify this
automaton to obtain finitely many states and clocks thus completing our construction.

@ Springer

Form Methods Syst Des (2013) 42:262-300 285

7.1 Recovering the partial order

We begin by introducing some notations that will be used to classify the set of actions. For
any channel (p, g) € Ch, and each 6 € {!, 7}, p6q denotes the set of actions {pfq(m) € Act |
m € M}. Recall that, we write a € plg (respectively, a € p?q) if a = plq(m) (respectively,
plq(m)) for some m € M.

Now, recall that the partial order of an MSC can be recovered from any of its lineariza-
tions under the FIFO assumption. Indeed, if w = a;...a, € Act* is a linearization of MSC
M = (E, <™) over Act, then M is isomorphic to the unique MSC M® = (E*, <M i¥)
over Act, where E¥ = {1, ..., n} (i.e., the set of positions of the word w), A" (i) = a;, and
<M" is defined as the reflexive transitive closure of | J M»

pacProc <pq Where, forall p € Proc,
<Qf; is the set of pairs (i, j) € E¥ x E¥ such thati < j and A* (i), A" (j) € Act,, and for
all (p,q) € Ch, <,quw is the set of pairs (i, j) € E¥ x E" such that A¥ (i) = plg(m) and
A"(j)=¢q?p(m) for some m € M and |{k <i | A" (k) € plg}| =|{k < j | A" (k) € q?p}|.

Therefore, we can consider the partial order relation of M to be a relation over the po-
sitions of a given linearization of M. Thus, given a linearization w of an MSC M, we can
identify M with M™ and write i <M j for 1 <i, j < |w|, tomean i <M" j, i.e., the isomor-
phic images of positions i, j are related by <. Similarly, we may write i <} j, i <}t j,
i j) e Prev(’l"’ and (i, j) € Next(’l"’ for a € Act to mean that the corresponding events are
related in M, respectively by, the local-process relation <2’;, the message relation <%, the
previous and the next occurrence of a relations. In the same way, we can also write A(i)
instead of A% (i). Note that i <¥ j implies i < j but the converse need not be true (where <
is the usual ordering between i and j as elements of N). However, if A(i) = A(j), theni < j
implies i <™ j.

Now, we describe gadgets, which are deterministic finite-state automata that run on words
which are linearizations of an MSC and accept if the first and last position of the word are

related under the partial order. For this, we restrict to B-bounded linearizations.

Definition 7.1 Let M = (E, <, A) be an MSC over Act and B € N.(. Then a B-well-
stamping for M isamap p: E — {0, ..., B — 1} s.t., for any e € E with A(e) = pOq(m) for
some p, g € Proc,m € M, 0 €{!,?}, wehave p(e) = [{e N, e s Epogeny| mod B.

Then, by the above considerations, given a linearization w of M, p is also a map from
the positions of w to {0, ..., B — 1}. Now, the following property is immediate from the
definitions of the message relation in an MSC (Sect. 2) and B-boundedness.

Proposition 7.1 Let w =aq; ...a, € Act* be a B-bounded linearization of an MSC M over
Act and p be a B-well-stamping for M. Then, for 1 <i < j <n and (p, q) € Ch, we have
i <1",”q J iff the following conditions hold:

(@) a; € plg,a;€q?p,
®) p@)=p3),
(c) forallk,i <k < j,ar € q?p implies p(k) # p(i).

Proof First, for any i € {1,...,n}, if a; = pOq(m) for some 6 € {!, ?}, m € M, we fix the
notation i = (Li N U,ycpq Epogen’y) = {i’ <i | (i) € pg}. Now, the proof follows once
we recall the relevant definitions in this setting.

(1) For1<i<j<n,i <1,‘)”q Jiff A(i) = plg(m), r(j) = q?p(m) for some m € M and
Vil =14/l

@ Springer

286 Form Methods Syst Des (2013) 42:262-300

(2) Forall 1 <i <n, p(i)=|{i| mod B.
(3) wis B-bounded iff forall 1 <¢ <n,(p,q) € Ch, |{i" |i' <€, (@) eplg}l —{j |] <
¢, 1(j)) €q?p}| < B.

Now, for the first direction, let i <2’f] Jj. Then, by (1), (a) holds and |{i| = [{}j| =« -
B +b. Then, b = p(i) = p(j) and so (b) holds. Now, suppose (c) did not hold. Then there
exists k, i <k < j such that a; € ¢?p and p(k) = p(i) = p(j). Then, by (2), |Uk| =’ -
B +b.Butthen Yk C j and j € |j, j ¢ Jk implies that || j| > |yk| = o - B+ b >
o -B+b=(a—a)-B>0.Thus |Jj| —|Uk| > B and so |{i| — |Jk| > B. But now,
i <kand A(k) € g?p implies that ||Jk| > |{i" <i | A(i") € ¢?p}| + 1 and so we can conclude
that |Ji| — |{i’ <i | A(@") € q?p}| > B. Thismeans |{i’ <i |A(') € plg}| —|{i’ <i|r({) €
q?p}| > B and so by (3) (in particular, by letting £ = i) it contradicts the B-boundedness
of w. Thus (c) also holds.

Conversely, let conditions (a), (b) and (c) be true. Then, (a) and (b) together imply that
|{i] mod B =|{j| mod B. Thatis ||}i| =«a-B+band || j| =« - B+b forsome o, a’ €N.
We now show that o = «’. First, observe that between i and j, there can be at most B — 1
actions labeled ¢?p(m’) for some m' € M. Otherwise, we can find an event k, i <k < j
such that a; € ¢?p and |y k| = (&’ — 1) B+ b. And for this k, p (k) = p(j) which contradicts
condition (c). Also, we have i < j and a; € ¢?p. Thus, (&' —1)-B+b < |{j' <ila; €
q?p}l <o’ - B+ b. Now, if @ > ', then |{i’ <i | L) € plg} —{j <i, A () € q?p}| >
« - B —a' - B > B which contradicts B-boundedness of w by (3). Else if &’ > «, then
{j' <i,A(j) eq?p} — i’ <i|A(G") € plg}| > (@ — 1 — @) - B> 0 which is a contradic-
tion since in a linearization we cannot have the number of receives exceeding the number
of sends. Thus & = o’. Now since number of p!g events below i is equal to the number of
q?p events below j, we conclude by FIFO property that j is the matching receive for i, i.e.,
a; = p'q(m) and a; = g?p(m) for some m € M. Thus, by (1), i <2’{] J. |

Constructing the gadgets The first gadget we build is a deterministic finite-state automaton
C= over Act x {0, ..., B — 1}, that detects if the first and last positions of a word, provided
the word corresponds to some factor of a B-bounded MSC linearization, are related with
respect to the associated partial ordering. In what follows, we let Send denote the set of
symbols {p!q | (p, q) € Ch}.

We define C= = (Q=, 8=, s, F=) where a state of Q= is a triple of the form (P, O, f)
where f € {0,1}, P €2 and O : Send --» {0, ..., B — 1} s.t., if plg € dom(O) for some
(p,q) € Ch, then p € P. Intuitively, the triple (P, O, f) represents the information we need
to recover the partial order. The set P contains the processes in the future partial view, O
indicates the stamp/numbering of each “open send”, and f will be 1 iff the first and the last
position are in fact related as desired. Note that, letting n = |Proc|, we have

|0%|=2- Z((Z) (B + 1)“"‘”) = O((B +1))P) (an

k=0

The initial state of C= is soS = (¥,¥,0) € Q= and the set of final states F=={(P, O, f) €
Q= | f = 1}. The transition function §=: Q= x (Act x {0, ..., B — 1}) — Q< is defined as
8=((P, 0, f),(a,B)) =(P', 0, f") where

PU{p} ifaeAct, and either (P =) or (3g € P such that,
P = a € plqand O(q!p)=p)
P otherwise

@ Springer

Form Methods Syst Des (2013) 42:262-300 287

Olplq— B] ifa e plq ¢ dom(O) for some (p, g) € Ch and
0 = either pe Por P =0
o otherwise
= 1 ifaeAct,forpe P’
10 otherwise
As usual, a run of C= on (aj, B1)...(as, B:) € (Act x {0,..., B — 1})* is a sequence
s Ly b 5=, where s7 € Q= foreach i € {0, ..., n} and (s7°, ai41, Bit1,57)) €
8= for all i € {0,...,n — 1} and is accepting if s~ € F=. Then, £(C=) denotes the set of
words over Act x {0, ..., B— 1} having accepting runs. Note that with this definition, C= has
a run (which may be accepting or non-accepting) on every word of (Act x {0, ..., B — 1})*.

For linearizations, C= has the desired property:

Lemma 7.1 Let w = a, ...a, € Act* be a B-bounded linearization of an MSC M over
Act and p be a B-well-stamping for M. Then, for 1 <i < j <n, (a;, p(i))...(a;, p(j)) €
L(C=) iffi <M j.

Proof Letus fix 1 <i <n and let a; € Act, for some p € Proc. For each j such that i <
Jj <n, we denote wf’j = (a;, p(@))...(aj, p(j)). Thenforeach j,i < j <n,thereisarunr;;

< (aj,p(i (aj.p(j)) <
of €= on wf;, namely, s5 =22 (P, 0;, f)... 5 (P}, 05, f;) where 55 = (8, 8, 0)

and for each k € {i, ..., j}, (Pk, Ok, fr) € Q= is given by the definition of C=. Indeed each
r;; is a prefix of r; for j < j' < n. For simplicity of notation, let P,_; =¥, O;,_; =0,
fi-1=0,1.e., sOS = (P;_1, O;_1, fi—1). Now by definition of C=, P,_; =¥, a; € Act), implies
that P; = {p}. Once a process gets into P it is never removed, and so, p € P; for all i <
J <n. Also for each j, i < j <n, r; is an accepting run iff f; =1 i.e., iff a; € Act, for
some g € Proc and g € P;.

We now distinguish two cases. First, suppose a; € Act,. Then we already have p € P;
and so r;; is accepting. Also in this case, g;, a; belong to the same process p and so i S%; Jj
which implies i < j. Thus,

Vjeli,....,n},a; €Act, => (risaccepting) A (i <M j). (12)

On the other hand, for all j € {i +1,...,n} such that a; € Act, for some g # p, we will
show that r;; is an accepting run iff i < j which completes the proof of the lemma. We
proceed by induction on j —i.

The base case is when j —i =1, i.e. wfj = (aj, p())(aj, p(j)). Then, P;_y = P, =
{p}. Now, since a; € Act,, r;; is accepting iff ¢ € P;. By definition of C=, this happens iff
ajeq?pand O;_(plq) = p(j). But since j — 1 =i we have plg € dom(0O;) and along
with O;_; = {, this implies that a; € plq and O;(p!q) = p(i). Thus we can conclude that
q € Pjiffa; € plg,a; € q?p and p(i) = p(j) which by Proposition 7.1 happens iff i <2’{1 Jj
(by noting that there is no event between i and j). But again i + 1 = j and i, j are not on
the same process, thus, i <§‘,”q jiffi <M j, which completes the proof of the base case.

Now, suppose j —i > 1. Then, r;; is accepting implies ¢ € P;. But since g ¢ P; = {p},
there exists j’ for i < j/ < j such that ¢ ¢ P;_i,q € Py. By the definition of C=, since
Pj_y # {, there is p’ € Proc such that aj» € ¢?p’ and Oj_((p''q) = p(j’). But since
O;_1 =0, there is k, i <k < j' such that p’lq € dom(Oy) and p’lqg ¢ dom(Oy_;). Then at
k,a; € p''q and Oy (p'lq) = p(k) and either p’ € P,_; or k =i and P,_; = @. In both cases,

@ Springer

288 Form Methods Syst Des (2013) 42:262-300

p' € Py since a; € Act,y. Thus, in fact f =1 and so ry is an accepting run of C= on w/;.
Now, if p’ = p, i.e., ar € Act,, by (12), we conclude that i <M k. Otherwise, a; € Actpy,
p' # p and since, k < j' < j, we can apply the induction hypothesis to conclude thati <" k.
Now, the values in O, once defined, are never modified and so Ox(p’lg) = O;_i(p'lq)
which implies p (k) = p(j’). Also forany j”, k < j” < j',ifaj» € q?p" and p(j") = p(j"),
then at j”, we have O;»(p'lq) = p(k) = p(j”) and so ¢ € P;». This is a contradiction since
we assumed that g € Pj_;. Thus, by Proposition 7.1, k <24,q j'-Alsoaj,a; € Act, implies
that j’ 5(% j. Thus we have i <™ k <24,q j' 52{1 j and so by definition of <, we conclude
that i <™ j.

Conversely, let i <™ j, be such that i is a p-event and j is a g-event for p # q. Then
let j’ be the earliest event on process ¢ which is related to i. This implies that a; is a
receive action from some process, say p’ € Proc. In other words, there exists k, j, such that
i<k<j <jandi<Mk<) j < jandforall j” with j" <Jt j', i " j", where
ay = p'lq(m) and aj = gq?p’(m) for some p’ € Proc, m € M. Then, if p’ = p, then by (12),
and otherwise by induction hypothesis, r;; is an accepting run of C= on w;. Thus f; =1
and so p’ € P,. But since, a; € p’lq, we find that either P, = P,_; or k = i. Thus either
p' € Pr_jor Py =0. Also, p'lq ¢ dom(Oy_,), for otherwise, we can find k', i <k’ <k
with ay = p’!q, whose corresponding receive contradicts the minimality of j' under FIFO
condition. So by definition of O, we have O, (p'!q) = p (k) and by Proposition 7.1, p(k) =
p(j"). Thus, by definition of C=, we have Py = P;_; U{q}. Thus, g € P C P; and along
with a; € Act,, we get that f; =1 and so r;; is an accepting run. O

An ECMPA uses Prev, and Next, in the guards, which along a run constrain the previous
and next occurrence of an action a respectively. Hence, we need to recover not only the
general partial order relation but also these previous and next occurrence relations from the
linearization. For this, we build two more gadgets using the gadget described above.

We begin by defining a deterministic finite-state automaton C* = (Q<, §%, s§, F'¥), which
we refer to as the C¥ gadget and use to recover the previous occurrence relation. Its state
space is given by Q< = Q= x Q= X Act. Thus, using (11) we obtain

|07 = O((B + 1" x |Act]). 13

Now, the idea is that the first component, mimicking the automaton C=, is started when
reading the first occurrence of an action a, which is henceforth stored in the third component.
The second component is run if and when a is executed for the second time. Any further
event that is related in the partial order to the first occurrence of a but not to the second
occurrence matches the Prev, relation so that F~ = F= x (Q=\ F~) x Act. We let s§ =
(s5» 55, b) for some arbitrary action b € Act. Finally, for any (s, s2,a) € Q°, b € Act, and
nel{0,...,B—1}, weset

(6=(s1, (b, n)), 52, b) if sy =55
5= b if < — =
84((81, 52,a), (b, n)) = (6=(s1, (b,n)), 52,) laniilb;é;(: §2 =5

(8=(s1, (b, n)), 8=(s3, (b,n)),a) otherwise

Similarly, the C* gadget is defined as C* = (Q~, 8, s, F™) with 0" = 0= x 24¢ % {0, 1}.
Again by (11) we obtain,

07| = O((B + 1)/Pel” 5 24etl) (14)

@ Springer

Form Methods Syst Des (2013) 42:262-300 289

The idea here is that the second component of a state keeps track of the actions we have
seen so far in the future of the first action, and the third component indicates a final state.
Accordingly, s; = (505, ?,0), F* = F= x 24 x {1} and for any (s, A, f) € Q”, a € Act,
nef{0,...,B—1}, weset

(6=(s, (a,n)),AU{a}, 1) if8=(s,(a,n)) € F=
8 ((s, A,). (a,n)) = anda ¢ A
(8=(s, (a,n)), A,0) otherwise

Then, the following lemma describes the nice property of the above gadgets.

Lemma 7.2 Let w = a; ...a, € Act* be a B-bounded linearization of an MSC M over
Act and p be a B-well-stamping for M. Then, for all 1 <i < j < n, letting wfj =
(@i, p@))...(aj,p(j) € (Act x {0, ..., B—1})*, we have (1) wfj e LICYIiff(j,i) e Prevgf
and (2) wf; € L(C°) iff (i, j) € Nextgj)

Again, recalling that there is an isomorphism that maps positions of w to events of M, in
the above statement (j, i) € PrevZ_’ means that the events in M corresponding to the positions

i, j are related by Prevfg and so on.

o

o (@.p0)
lj’

i—1

Proof (1) By definition of C, there is a run r of C* on w
@j.p()
——

namely, s; = s

hEER s where forall k,i — 1<k < j,s{= (5, 5", by). Further note that, s~ | =
s and 5;= =5;=, =s5 and forall k, i <k < j, by = a;. Now s]'.S € F= implies there is k,
i <k < j such that 5,5, # s which means that a; = b;. But by = a; and so a; = a;. Also,

. (ag,p(k)) (aj.p())) . X)
for this k, s;~ — v = s is an accepting run of C= on wy,;. Conversely, if 3k,

i <k < j such that ¢, = g; and there is an accepting run of C= on w,fj then in r we find that
s;f € F=. Thus, we can conclude that s}f € F= iff there is k, i < k < j such that a; = g
and there is an accepting run of C= on wy ;- But by Lemma 7.1 there is an accepting run of
C= on w,fj iff k <M j. Thus s}f € F=iff thereis k, i < k < j such that ¢y =a; and k <M j.
Also by Lemma 7.1 we have sjS € F=iff i <M j. Finally r is an accepting run of C> on
w, iff s7 € F*, e, s; € F= and s;- ¢ F=. And by the above arguments, this happens iff
i <M jandforall k,i <k < j, either a; # a; or k £ j. But this is exactly the definition
of (j,i) € Prevt’x’. Thus wfj € L(CYIff (i, j) € Prev(’Z’.

(a;.p(i)) (aj,p())
namely, s; =s7_, l ST — s

where for all k, i — 1 <k < j, 57 = (s=, Ay, by) for by € {0, 1}, such that r| = 57 , 2%

(@j.p(j))
——

P
ij

(2) Similarly, there is a run 7" of C* on w

sf isarun of C= on wfj. Then 7' is accepting iff sjf € FEandb; =lie,iff r{ is
accepting and a; ¢ A;_;. By Lemma 7.1, r{ is accepting iff i < j. Alsoa; ¢ A;_, implies
aj ¢ Ay foralli <k < j which means that for all k, i <k < j, ax # a;. Thus, we conclude
that r’ is accepting iff i <M jandforallk,i <k < j,a; # ajie.,iff (i, j) € Next%. O

7.2 From ECMPA to timed automata

If we ignore the clock constraints and timing issues, then this simulation is the same as
giving an alternate semantics of an MPA directly over linearizations of MSCs. However,

@ Springer

290 Form Methods Syst Des (2013) 42:262-300

when we include the timing constraints of the ECMPA, then along the run of the TA we
need to know when to verify these constraints and against which clocks. We maintain this
information in the state space using the gadgets.

Intuitively, at each position of a run of the TA, we start a new copy of the Prev gadget and
reset a corresponding clock z. Thus, at a later position, if we encounter a Prev, constraint for
some a € Act, and if this copy of the Prev gadget is in a final state, then we know that these
positions are related by the Prev, relation, hence the constraint must be checked against
clock z.

Similarly, at each position of the run where we encounter a Next, constraint, we start a
new copy of the Next gadget and reset a clock z’. Then, when it reaches an accepting state
and the last transition is an a-action, we know that these positions are related by the Next,
relation. Hence, at this point we verify that clock z’ satisfies the constraint mentioned when
the gadget was started. However, for this we also need to maintain in the state space the
constraint itself so that we can recover it and verify it at the later position.

Finally, for message constraints, we reset a clock when we encounter the send action and
verify it when we reach the correct receive. This information is already contained in the state
space as we will see. In addition however, we need to maintain the message constraint itself
in the state space, so that when we reach the receive we know which constraint to check the
clock against.

We formalize these ideas below. Let us first recall the well known notion of timed au-
tomata [2]. Unlike event-clock automata, whose clocks are implicit, timed automata have a
set Z of explicit clocks that can be guarded by means of clock formulas. The set Form(Z)
of clock formulas over Z is given by the grammar

pu=true|xpac| =@ | o1 A@r| o1V

where x ranges over Z, > € {<, <, >, >, =}, and c ranges over N. A clock valuation over
Z is amapping v : Z — R-(. We say that v satisfies ¢ € Form(Z), written v = ¢, if ¢ eval-
uates to true using the values given by v. For R C Z, we let v[R — 0] denote the clock val-
uation defined by v[R + 0](x) =0 if x € R, and v[R > 0](x) = v(x), otherwise. A timed
automaton (over Act) is a tuple B = (Qg, Z5, 05, t5, Fz) where Qg is its set of states, Zp
is its set of clocks, 83 € Qi x Form(Zgz) x Act x 228 x Qp is the set of transitions, 1 € Qp
is the initial state, and Fg € Qp is the set of final states. We say that B is finite if both O
and Zp are finite. The language of B is a set of timed words £,,(B) C (Act x R>¢)*. For
o=(a,t))...(an, t;) € (Act x R>¢)*, we let o € L, (B) iff there is an accepting run r of
Bon o, ie., there is a sequence

r = (sto, vo) < (st vp) - (st v,)
(where, for all i € {0, ...,n}, st; € Op and v; : Zg — R with vp(x) =0 for all x € Zp)
such that sty = (5, st, € Fg, and, for each i € {1, ..., n}, there exist ¢; € Form(Zz) and

R; €275 satisfying (st;_1, @i, a;, Ri, st;) € 85, (vi_i +t; —t;_1) E ¢;, and v; = (v + 1 —
t;_1)[R; — 0] (where we assume ty = 0).

Theorem 7.2 (From [2]) Given a finite timed automaton BB, one can decide if L,,(BB) # 0.
For the rest of this section, we fix an ECMPA A = ({A,} ,eproc, Act, A, F), with A, =

(Sp,tp,—p), and an integer B > 0. We also fix an (infinite) set of indices Ind = Act x N
which will be used to index the “copies” of the gadgets that we will use. We will define an

@ Springer

Form Methods Syst Des (2013) 42:262-300 291

infinite timed automaton B = (Qg, Z5, 85, L5, F) such that £,,(B) = {o € (Act x R5¢)* |
there is T € Ly, (A) such that o is a B-bounded timed linearization of 7'}. A state st € Qp
is a 6-tuple (s, x,n, &<, &€, y) where:

= 5=(5p) peproc €1 pe procSp 18 @ tuple of local states from the ECMPA.

— x :Ch— (M x A)=F describes the contents of the channels.

— n:Act— {0, ..., B—1} gives the B-stamping number that should be assigned to the next
occurrence of an action.

— &7 :Ind --» QF associates with certain indices, states of C*. Thus, the indices in dom(£*)
of a state specify which copies of the gadgets are “active” in that state.

— &% :Ind --» Q" x Int(A) associates with some indices, states of C* along with constraints
that need to be maintained

- y:Chx{0,..., B—1}--»1Int(A) describes the guards attached to messages.

The initial state is tg = ((t) peproc> X0 M0, &> & » Yo) Where o and 19 map any argument
to the empty word and O respectively, and the partial maps &5, &; and y, are nowhere de-
fined. We will use clocks from the set Z5 = {z];, z;, ; | (@, i) € Ind} U {zi’,,q‘l— | (p,q) € Ch,
i €{0,...,B — 1}}. Also, we fix some notations regarding how we write constraints us-
ing these clocks. For a clock z € Z5 and an interval I € Z with endpoints /,r € N, we
write “x € I” to denote a constraint from Form(Zgz). More specifically, x € (I, r) denotes
x >IAx<r,whereas x €[l,r) referstox >/ A x < r, and so on.

The transition relation §z € Qp x Form(Z3) x Act x 2%8 x Q is defined by,

E,XJL <1, D,)’ ,¢.a, R, E,X/,n/’ /<1’ />’y/ €dg
((NIND) R, (5 §°,67.y)) s

if there are p, g € Proc,m € M, 08 € {!, ?} such that a = pfq(m) and there exists a p-local
transition of the ECMPA, (s, a, g, d, s/p) € —, for some g € [TC --» 7] and d € A, such
that the following conditions (i)—(ix) hold:

(i) s, =s, forall r € Proc\ {p}.
(i) If 6 =! then x'(p,q) = (m,d) - x(p,q), x'(r,s) = x(r,s) for all (r,s) € Ch\
{(p,9)}
(iii) If 6 = ? then x(q, p) = x'(q, p) - (m,d), x'(r,s) = x(r,s) for all (r,s) € Ch\

{(g,)}
(iv) For all b € Act,

(nb)+1) mod B ifbe pbq

/ b) =
) n(b) otherwise

(v) The states of the previous automata are updated and we have initialized a new copy of
C~ starting at the current position so that we can determine which later positions are
related with the current one by the previous relation.

8°(sg, (a, n(a))) if b=a and i = min(N \ dom(£§<(a)))
E7(b,i) = {8(&7(b, 1), (a,n(a))) if (b,i) € dom(£~)
undefined otherwise

(vi) The states of the next automata are updated along with the corresponding guards.
A new copy of C” is initialized for each b € Act, if there is a Next, constraint on the
local transition. The guard itself is stored in the second component, so that it can be

@ Springer

292 Form Methods Syst Des (2013) 42:262-300

verified when we reach the next occurrence of the action. Once verified, we release
the guard and the corresponding copy of C”.

(6°(s5, (a,n(a))), g(Next,)) if Next, € dom(g) and
i =min(N \ dom(&£”(b)))

E"(b,i) =1 (87(s7, (a,n(a))),) if&7(b,i) = (s", 1) and
—(a=>b AN (s", (a,n(a))) € F*)
undefined otherwise

(vii) The guards attached to message constraints are maintained as expected. A send event
introduces a constraint, which is retained until its matching receive releases it.

g(Msg) ifaerls,i =n(a), Msg € dom(g)
¥'((r,s),i) = { undefined ifa e s? and i = n(a)
y((r,s),i) otherwise

(viii) A clock is reset for every new copy of C, C* and message constraint introduced at
this transition.

R= {zj,i ’ i= min(N \ dom(é}q(a)))} u {ZJIZ’W ’ aeplg,i=n(a),Msge dom(g)}
u {z;iNextb € dom(g) andi = min(N \ dom(sb(b)))}

(ix) The guard must ensure that all constraints that get matched at the current event are
satisfied. Thus ¢ = @< A ¢ A ¢ where

@° = /\ 75 € g(Prevy) A /\ false
{(b,i)|Prevjedom(g) {b|Prevj, edom(g)
and £'9(b,i)eF7} and {i|€/<(b,i)e F¥)=0}

ensures that all previous constraints that are matched are satisfied. Thus if the local
transition contains a Prev,, constraint, then we have to check z;; € g(Prev,,) for the
(unique) i such that £“(b, i) € F~. If there is no such i then there is no b-action in
the past of the current event and the Prev, constraint of the local transition cannot be
satisfied. In this case, we set ¢ to false. For next constraints, we have

¢" = /\ z,; €1

{iedom(E” (@) | € (a,))=(s",1),
8% (s” (a.n(a)))eF™}

If the current action is the next occurrence of a from some positions where a next
guard was registered, for each there is a copy (a, i) of C* which reaches a final state.

Thus, we verify the corresponding clock with the constraint recovered from £. For
message constraints, we have

o= N aier(@p.i)

{((g,p),i)edom(y) |
aep?q, n(a)=i}

The set of final states is Fz = {(5, x,n,£%,&%,y) € O |5 € F, x = xo,dom(£”) =
dom(y) = @}. This ensures that each registered guard has been checked. Indeed, a next
or message constraint is released only when it is checked with the guard ¢.

@ Springer

Form Methods Syst Des (2013) 42:262-300 293

One critical observation here is that, once we have specified the local transition of A, this
global transition of 3 gets determined uniquely. Thus, this step is always deterministic. Note
that the above automaton 5 has no e-transitions either. Now, we prove that £, (3) contains
precisely the B-bounded timed linearizations of Ly, (A).

Theorem 7.3 L,,(B) = {0 € (Act x Rxo)* | there is T € Lyy.(A) such that o is a
B-bounded timed linearization of T}.

Proof LetT = (M, t) with M = (E, <, X) over Act. Then, a B-bounded timed linearization
o =(a,t)...(a,,t,) of T generates the corresponding B-bounded linearization of M,
namely a; ...a, over the same set of positions {1, ...,n}. Thus, as stated in the previous
section, we can interpret the events from E to be positions from {1, ..., n}.

Then, recall that T € L, (A) iff there is an accepting run r of A on T, where r : E —
U peProc S, is given by Definition 4.1. Also, let us recall that o € L,,(B) iff there is an
accepting run r’ of B on o, i.e., there is a sequence,

St N nstn
' = (sto, Vo) =5 (sty, v1) =3 o 2 (st,, v,) (15)

where for all i € {0, ..‘,I’l}, st; = (Ei,X,', 77,',%71, F,]/i) (S QB (Wlth s = (s;,)pEProc (S
]_[pepmc Sp), sty =g, st, € Fg and v; : Zg — Ry (with vy(x) = 0 for all x € Zz), and

for each i € {1,...,n}, there exist ¢; € Form(Zg) and R; € 2%5 such that,
(Sti—1, @i, a;, R;, st;) € 85 (16)
Wic1+t —tio) E o)
Vi = (Vi + 4 —)[R = 0] (18)

Now we construct an accepting run ' of 5 on o from an accepting run r of A on T and vice
versa.

(=) Let r be an accepting run of A on T. Then, we construct run r’ inductively from
i =0 to i = n. Further, we maintain two further state invariants at each step i € {0, ..., n}:

r(j) if3j<i,jeE, PkeE, j<k<i

Lp otherwise

for all p € Proc: s; = { (19)

for all b € Act with b = pOq(m): n;(b) = |{i’ <i | (i) € pfq}| mod B (20)

Then, indeed at i = 0, we have sty = 1z = (50, X0, 70, &5 & » Y0). This satisfies our state
invariants (19)—(20) since sg =1, for all p € Proc and no(a) =0 for all a € Act. Now for
some i € {1,...,n} assuming we have constructed the run »’ until (st;_, v;_1), let ; =
pOq(m) for some p, q € Proc, m € M, and 0 € {!, ?}. We then extend the run r’ to stage i
by exhibiting st;, v;, ¢;, and R; such that conditions (16)—(20) hold.

From the definition of r, we have a local transition on the ECMPA on event i. More pre-
cisely, (r (i), a;, gi, d;, r(i)) € =, for some guard g; and d; € A. Recall that r~ (i) =r (i)
fori’ <p, i,and r~ (i) =, if such an event i’ does not exist. Thus, by condition (19) at stage
i —1, we have s;*' =r~(i). And by choosing s, = r (i) we obtain (s;jl i, 8irdi, S)) € = p.
Again, by choosing for all p’ # p, si), = s;T', condition (19) holds at stage i. (This follows
since for p, the largest j <i such that j € E,, is i itself. And for p’ # p, the largest j' <i
such that j" € E,, is the largest such event j' <i —1.)

@ Springer

294 Form Methods Syst Des (2013) 42:262-300

Now, as we commented in our construction, the local transition fully specifies the global
transition and thus we get a transition of 5,

((Eiflv Xi—1» niflvgiq_lv‘i:l?—]? Vi—l)a Yi,di, Ria (Eia Xis Nis Elfl’ S?; yl)) € 885

where ¢;, R;, xi, ni, &, &, yi are defined from their values at stage i — 1 and the local tran-
sition. Thus condition (16) holds at i, with st; = (s;, x;, n;, £, &7, ;). Again condition (20)
continues to hold at i if it holds at i — 1. (If b € pfgq, then n; (b) = (n;—(b) + 1) mod B =
i’ <i—1|AG") € pqg}+1mod B=|{i’ <i|A(i’) € pfq}| mod B. And for b € Act \
pBq, it follows since n; (b) = n;_1(b).) Now, we just define v; = (v;_1 +t;, — t;_1)[R; — 0],
so that condition (18) holds at i. Thus, we have extended run " of B on o to i, if we prove
condition (17).

Claim (vi_;+4 —ti_1) = ¢

Proof The proof of this claim is by induction on the structure of ¢;. But first we observe
that the mapping p : E — {0, ..., B — 1} which maps p(i) = n;(a;) is a B-well-stamping
for M. This follows from the fact that the state invariant, condition (20), holds until stage i.
We have the following cases to consider.

(1) Previous constraint of the form z; , € g; (Prev,) or false: If for some a € Act, Prev, €
dom(g;), then by the definition of a run » of A on T (i.e., condition (5) or (6)), there exists an
event j such that (i, j) € Prevg (thus, a; = a). By Lemma 7.2, (a;, n;(a;)) ... (a;, ni(a;)) €
L(C"). And so, in the run of B at stage i, £7(a, k) € F* where k = min(N \ dom(“;‘;’_l(a))).
Hence, for any a such that Prev, € dom(g;), the set {€ | £"“(a, £) € F*} # ¢ and so the false
constraint cannot occur as a guard in this simulation, i.e., as part of ¢;. Now, at stage j,
we have zj;, € R; (there cannot be another Prev, guard for some other k’ since there is a

unique preceding occurrence of each letter). Also ok ¢ R} forall j/e{j+1,...,i},since
(a,j) e dom(§7_,). Therefore in the valuation (vi—; + 1 — 1;-1)(z5) = vi—1(zg,) + 1 —
tio = V,',Q(Z;k) +t g —tis+ti—tiog == Vj(Z:,k) +t — lj and Vj(Z;_k) = 0. Thus

vi(zy)+t —tj =t; —t; and so we are done if we show that t; —¢; € g;(Prev,). But this
follows from condition (5) or (6), where we have |(Jj) —t@)] € gi(Prev,) where t(j) =t;
and (i) = t;. Thus we conclude that the valuation satisfies any previous clock constraint of
the form 751 € 8i(Prev,).

(2) Next constraint of the form zz[, « € I: This implies that there is k € dom(§]_,(a;))
such that, &7 (a;, k) = (s7, 1) and 6”(s", (a;, n;(a;))) € F”. Then, by the definition of
the next update function £, we can conclude that there exists j < i, k = min(N \
dom(§;_,(a;))) such that &7 (a;, k) = (6" (sg, (a;, n(a;)), 1)) such that I = g; (Next,,). Thus,
(aj,nj@;))...(a;,ni(a;)) € L(C*) and by Lemma 7.2, we can conclude that (j,7) € Next;i.
Hence from the definition of run r on TMSC T, we get [t(j) — t(i)| € gj(Nexty) = 1.
Also, z; ; € R; and it is not reset until . If not, let j' with j < j" < i be the first instance
where zzi,k € Rj. This (a;, k) ¢ dom(éjﬁ) and (a;, k) € dom(“g‘]?',il) implies that aj» = a; and
(aj,n(j))...(aj,n(j") € L(C”) which contradicts (j, i) € Next,,. Thus, forall j < j’ <i
we get z;_.k ¢Rjy, (Vi +1 — t,-,l)(z;_,k) =1t; —t; € I and so we are done.

(3) Message constraint of the form z;p’k € vi—1(q, p,k): Here, (q, p, k) € dom(y;_)
such that a; € p?q, n;_i1(a;) = k. Then we look at the largest j <i such that a; =¢!p and
nj—1(a;) =k.Such a j exists since if not it would contradict the fact that o is a linearization
of a valid TMSC T. Further, for all j* with j < j' <, it is not the case that a; € p?q
and nj_i(aj) = k. Then it follows that for all j', j < j' <i, y;:(q, p, k) = g;(Msg). Also
(j,i) € Msg™ and so by definition of # on TMSC, lt; —t;] € g;(Msg) = vi_i(q, p, k). And

@ Springer

Form Methods Syst Des (2013) 42:262-300 295

again, z;’,p,k €R;andforall j < j' <i, z;’,qu ¢ Ry, 80 (Vo + 1 — ti,l)(z;”p'k) =t —1; €
y;—1(q, p, k) and thus we are done. O

Now it is easy to see that the state 5, = (Su, X, W, &7, &, v») reached at the end of the
above run, is a final state. This follows from the fact that is a successful run of Aon T,
since then we have 5, € F and x,, = xo (since at the end of r the channel contents must be
empty), and the partial maps £~ and y are nowhere defined (since if that were not the case
then this means that a constraint was not checked with its guard).

(<) For the converse, from r’ as defined in (15) above, we want to construct a run

r:E— Uperc S, of A on T. We define, for each eventi € {1,...,n}, r(i) = s;)l_. Now,
ateach i € {0,...,n}, by (16), we have (st;_y, a;, ¢;, R;, st;) € 5. By definition of B, for
eachi €{0,...,n}, we have (s;’_‘l, a;, g d;, s;i) € —,, for some g; and d;. We now show

that this map is a run of A on T by verifying conditions (2), (5)—(6) in Definition 4.1. First,
r (@)= sf,l__l, as can be proved by induction on i: For i = 1, sty = (5 implies that sgl =1p
and r~(a;) =, since a; is the minimal event in that process. For i > 1, r=(i) = r(j) if
;1 = s[;j. Now, for events i, j, if
i <’[§4q j then (r=(i),a;, gi,di,v(iQ)) € = p, and (r—(j),a;, g;,d;, r(j)) € = implies that
d; = d; which means that condition (2) holds. This follows from the definition of x in éz
ensuring that sent and received messages are synchronized. To prove the other conditions,
for any event i, and « € TC, we need to show that, if « € dom(g;), then there exists j with

(i, j) € dom(aT) such that |t (i) — £(j)| € g;(cx). We have three cases depending on a.

there is j <, ,, i and r~ (i) = ¢ otherwise. Thus we have s

— o = Prev, for some a € Act: If Prev, € dom(g;), then firstly there exists some (unique) k
such that £7(a, k) € F“. If not, then the false constraint will occur in ¢; which contradicts
acceptance of o by B. Thus we have that for this (a, k), the constraint z}; , € g; (Prev,) oc-
curs in ¢; and (vi_1 4+ —t;1)(zZ,) = @; implies that (v_1 +1 — ;1) (z2,) € gi (Prev,).
Now by definition of previous state updates in the run of 53, we can use Lemma 7.2 to
conclude that there exists j < i for which (i, j) € Prevé” . Further, at j, we can see that
751 € Rj,and forall j' with j < j" < i, wehave z , ¢ Ry. Thus, (v, +1 —1;_1)(z} ;) =
t; —t;. Hence (i, j) € Prevg and |t (i) —t(j)| € g (Prev,).

— o = Next, for some a € Act: If Next, € dom(g;), then by definition of &%, for k =
min(N \ dom(§;_,(a))), we have &7 (a, k) = (6° (s, (a;i, n(a;)), gi(Next,))). Also we re-
set clock zj; ;. But as r' is an accepting run, &, (a, k) is undefined and so there exists j
such that a = a; and Ej?'(a, k) = (s, 1) with s € F”. Let j be the smallest such j such
that, for all j* with i < j' < j, we have (a,k) € dom(E}?,). Thus I = g;(Next,). Also
(ai,mi(@))...(aj,nj(a;)) € £(C*) and by Lemma 7.2, (i, j) € Next!. Now, we have
Wi+t —1-0(z5) = vi(zg) +1; — ; =1t; — 1;. Again as the run was successful,
Zg € L occursing; and (v;—y+1; —1;-1)(z; ;) € I = gi(Next,). Thus 7; —1; € g; (Next,)
and we are done.

— o = Msg: This is similar to the above case (and easier, as the next automaton is not
needed). O

This completes both directions of the proof.
7.3 A finite version of B
To get a finite version of 3, we will bound the set of indices Ind to a finite set Indg,, thus,

constructing a finite timed automaton B’ that is equivalent to B. The state space of B’ is
the same as B except that it uses indices from Indg, to define the £ and £~ components.

@ Springer

296 Form Methods Syst Des (2013) 42:262-300

We construct B’ in two steps. First, we describe how transitions of B are modified to han-
dle previous gadgets. Next, we describe how to modify the transitions of 5 to handle next
gadgets. Thus, B’, obtained after both these modifications will turn out to be a finite timed
automaton. To bound the set of indices, our basic idea is to reuse copies of the previous and
next gadgets when it is safe to do so. First, we handle the previous case by examining when
it is “safe” to release a copy of C<. The following proposition gives us the criterion required.

Proposition 7.2 Let (5, x,n,£°,£",y) be a reachable state of B. If there exist two indices
(a,i),(a, j) edom(£7), i # j, such that £%(a, i) =&%(a, j) = s € QF, then no final state
of s; € F~ is reachable from s*.

Proof The copies of C* indexed by (a, i) and (a, j) have been started at distinct positions
labeled a to keep track of two different pasts. Now suppose there exists s € F~ such that s7
is reachable from s7. Then at s7, this position is related by Prev,, with both starting positions,
i.e., when the clocks z7; and z7 ; were last reset. But this is not possible, because there is
at most one previous position labeled a for any position. Thus no final state is reachable
from s°.]

This implies that we can safely remove the corresponding indices (a, i) and (a, j) from
dom(&<). Thus, we say that a state st = (s, x,n,£%,&",y) € Op is <-safe if there are no
two indices (a, i), (a, j) € dom(£9), i # j, such that £<(a, i) = £“(a, j). Otherwise, we say
that st is <-unsafe and that (a, i), (a, j) are <-unsafe indices at the state st. A transition from
B is retained in B’ if it is between <-safe states. Further, every transition (st, ¢, a, R, st’)
in B from a <-safe state st to a <-unsafe state st' = (5', x', 0, §,&"”,y’) is replaced by
transition (st, ¢, a, R, s?) between <-safe states. Hereby, st = & x',n, 57:‘, &7, y") with
?:‘(b, i) =&"7(b,i)if (b,i) € dom(&'7) and there is no j # i such that (b, j) € dom(&') and
&E9(b,i) = €7(b, j). Otherwise, 5’7:1(1), i) is undefined. By Proposition 7.2, B’ still accepts
the same set of timed words as B. This is enough to ensure finiteness in the previous case as
shown below.

Lemma 7.3 For any reachable state (s, x,n,£°,E%,y) € Qp, we have dom(£7) C Act x

{0,...,107}.

Proof Suppose not, then, for some a € Act, |dom(§<, a)| > (|Q°| + 1). But this implies that
there must exist at least two indices (a, i), (a, j) € dom(£7), i # j, such that £%(a,i) =
&<(a, j). By the above definition, they would have been undefined and, hence, cannot be in
the domain of £<. Thus, we have a contradiction. |

The remaining source of infinity comes from next constraints. The situation is not as
easy as for previous constraints, since next constraints registered at several positions could
be matched at the same time. Thus, the number of registered Next,-constraints may be
unbounded. In particular, in some state of 3, suppose (b,i), (b, j) € dom(§”) for some
i # j such that &% (b,i) = (s*, I) and £ (b, j) = (s*, I'). Then, the constraints associated
with i and j will be matched simultaneously. When matched, the guard on the transition of
B will include both z; ; € I and zj ; € I'. Our idea is to keep only the stronger constraint
and release the other. To determine the stronger constraint we deal separately with upper
and lower constraints.

@ Springer

Form Methods Syst Des (2013) 42:262-300 297

Refining the constraints A clock constraint over Zj is called an upper-guard if it is of the
form x ~ ¢ where ~ € {<, <} for some x € Z3, ¢ € Q5. Similarly x ~ c is a lower-guard if
~ € {>, >}. Note that each “x € I defines uniquely a lower and an upper guard, depending
upon the endpoints of the interval /.

Definition 7.2 Let x ~ ¢ and x" ~' ¢’ be two upper-guards with ~, ~" € {<, <} or two lower
guards with ~, ~" € {>, >}. We say x ~ c is stronger than x’ ~' ¢’ if, when evaluated at the
same instant, x ~ ¢ holds implies that x" ~' ¢’ holds as well.

The stronger constraint can be determined with a diagonal guard: For upper guards, x ~ ¢
is stronger than x’ ~' ¢’ if either x’ —x < ¢’ —corx’' —x <’ —cand (~=< or ~ = <).
The relation stronger than is transitive among upper-guards. It is also total: either x ~ ¢
is stronger than x’ ~' ¢/, or the converse holds, or both in which case we say that the two
constraints are equivalent. The constraints are equivalent ift x’ —x =¢' — ¢ and ~=~'.
The above properties are true for lower guards as well, where we have x ~ ¢ stronger than

x'~'c ifeitherx’ —x>c¢ —corx’—x>c —cand (~=> or~ =>).

Restricting the domain of €~ Now we get back to our problem and change B so that the
size of dom(£”) in a state st = (5, x,n, &<, &", y) is bounded by |Act| - (2|Q”| + 1). Note
that a transition of 5 may initiate at most |Act| new copies of C* (one for each b € Act
such that Next, € dom(g)). Hence, we say that state st is >-safe if for all b € Act we have
|dom(&”(b))| < 2| Q"|. Only transitions between >-safe states of B are retained in 5'.

For a state st, b € Act, s* € Q, we define Activy (b, s”) ={i | €~ (b,i) = (s", 1), € T}.
Also for i € Activg (b, s7), we denote by I; the interval such that £~ (b, i) = (s, I;). Now,
if the state st is not >-safe, then there exist b € Act and s € Q" such that we have
|Activg (b, s)| > 2. In this case, we say that st is >-unsafe for (b, s”). Now, for each
(b, s*) such that st is >-unsafe for (b, s*), we can find iy, i, € Activg (b, s”) such that the
lower guard defined by z; ;, € I;, is stronger than all lower guards defined by z; ; € I; for
J € Activg(b, s7) and the upper guard defined by zj ; € I;, is stronger than all upper guards
defined by z;j € I; for j € Activg (b, s). From the definition of the relation stronger than,
all constraints zj ;€ I; for j € Activy (b, s7) are subsumed by the conjunction of zj , € I,
and zj; € I;,. Therefore, we can release all next constraints associated with (b, j) with
J € Activy (b, s7) \ {ig, i,}.

To do this in the automaton, we define guards of the form w(if’sb, i L’j’fb) that evaluate to
true if ié”sD and i>*" determine stronger lower and upper guards among those defined by
Activg (b, s7). Since the relation stronger than can be expressed with diagonal constraints as
we have seen above, we have go(i,zb'sb, i,’j’sb) € Form(Z5).

Thus, for each transition (st, ¢, a, R, st’) in B from a -safe state st to a state st' =
&, x',n', &, &, y’) that is not >-safe, we replace it by a transition (st, ¢’, a, R, s?), where

b, i hs® ~ - o .
9 =0 A (Nactivg hsrr=2 9" i) and st = &, x', ', &', £, y') is such that

E”(b,i) if3s” € Q° s, i € Activy (b, s*) and (JActivy (b, s*)| < 2)
EF (b, i) = or (|Activy (b, s7)| > 2 Ai € (i7", i)
undefined otherwise

Then, observe that st’ is a >-safe state. From the discussion above, we obtain that B and B’
still accept the same set of timed words. Hence we may conclude that in B’, we can restrict
to the finite index set Indg, = Act x {0, ..., n} where n = max{|Q°|, 2| Q”|}. Consequently,
B’ uses finitely many states and clocks.

@ Springer

298 Form Methods Syst Des (2013) 42:262-300

Theorem 7.4 The timed automaton B’ is finite, and we have L,,(B") = L,,(B). Moreover,
B’ has (B + 1)CYAD many clocks.

Proof We first note that the finiteness of B’ follows immediately from the fact that Indg, =
Act x {0, ...,n} is finite (where n = max{|Q~|,2|0"|}). Using (13) and (14), we deduce
that the number of clocks of B’ is bounded by O(|Act| x 214! x (B + 1)2Proc?),

To prove that B and B’ accept the same timed language we will use an alternative defini-
tion of an accepting run of a timed automaton, which has moves with regard to time-elapse
instead of time stamps.

In the following, we say that (b, i) € dom(&;’) is <-live if there is no j # i such that
(b, j) € dom(&;") and £7(b, 1) =& (D, j). Moreover, we call (b, i) € dom(&}) to be >-live if
i € Activg (b, s7) and either (|Activg (b, s7)| < 2) or (|Activy (b, s7)| > 2 and i € {iy, i,}).

We define a relation ~~ between configurations of B and B’ and let (st, v;) ~> (sty, vy) if
the following conditions (i)—(iii) hold:

(1) Stl = (Ev X>1, Sf? S]D’ V) and StZ = (Es x>, %-24’ ";:zbﬂ y)

(ii) For all <-live (b,i) € dom(&;), there is k such that (b, k) € dom(&5), &'(b, k) =
§7(b, 1), and vi (23, ;) = v2(23,). Conversely, for all (b, k) € dom(&;), there is i such
that (b, 1) € dom(§;) is <-live, £5'(b, k) =& (b, i), and Vl(ZFh.i)) = 2(2Gp))-

(iii) For all »-live (b,i) € dom(&}), there is k such that (b, k) € dom(&3), &5 (b, k) =
&7 (b, 1), and vy (27, ;) = v2(2(, 1)) Conversely, for all (b, k) € dom(§y), there is i such
that (b, i) € dom(&y) is >-live, & (b, k) = &7 (b, i), and v1 (23, ;) = va(2(, 1)

We show that the relation ~~ is a bisimulation. That is, if (st;, v;) ~ (stz, v3), then

— for every move (sty, v;) L5 (st V1), there exists a move (st, 1) £5 (st, 1) such that
(st}, vp) ~» (sth, 1), and

— conversely, for every move (sty, v;) L5 (st), 1), there exists a move (st, vy) L5 (st}, vp)
such that (st}, v]) ~» (sty, V)

To prove the first direction, let st; = (5, x, n, &, &7, v) and st; = (5, x, 1, &5, &5,). Then,
(sty, v) =5 (sty,v)) with st} = (5, x', ', &, &7, y) if (sti, ¢, a, R, st}) € 8p for some
¢ and R with vi + 7 = ¢ and V| = (v; + 7)[R — 0]. We can now define ¢’ and R’
by replacing each occurrence of zj, ,, (and z3, ;) in ¢ by zj,, (respectively z,) for
some k given by condition (ii) (respectively, (iii)). Then, (st,, ¢’,a, R', st;) € 8z where
st, =@, x',n', &7, &5, v') with £ and &5 obtained from the definition of the respective
modified transition relation.

Now, by Proposition 7.2, each previous clock mentioned in ¢ has an image in ¢’ which,
by definition, has the same constraint. Again, if ¢ mentions a next clock, then either it it-
self is in ¢’ or there exists some other clocks in ¢’ whose upper guards and lower guards are
stronger than it. We can conclude that vi + 7 =@ iff v, +7 = ¢’ and v, = (v, +7)[R' = O]
Thus, we have (sta, v5) —> (sty, v5) and we are done once we see that (st|, v|) ~ (st;, 15).
Condition (i) is already true. Consider condition (ii). For (b, i) € dom(£7), there are two
cases to consider. First, it was defined here, i.e., b = a and i = min(N'\ dom(&;(a))). In this
case, (b, i) is not <-unsafe at st} iff (b, k) is not <-unsafe at st}, for k = min(N\ dom(&5'(a))).
Second, it was updated from the previous state (i.e., (b, i) € dom(£;")). Now, if it was up-
dated from the previous state st; and it is not <-unsafe at st|, then it was not <-unsafe at
st either (because, otherwise, there is (b, j) € dom(&;") such that £;(b, i) = &;*(b, j) which
implies that §°(&7(b, 1), (a, n(a))) = §°(&;(b, j), (a, n(a))) which implies that (b, i) is <-
unsafe at st}). Then, as st; ~ st,, there exists k such that £;'(b, k) = &(b, i). Now, (b, k)

@ Springer

Form Methods Syst Des (2013) 42:262-300 299

cannot be <-unsafe at st} since, otherwise, we obtain that (b, i) will be <-unsafe at st;. Thus,
(b, k) = 8°(&5 (b, k)(a, n(a))) = 877 (b, j)(a,n(a))) = &7(b,i). Conversely, if there
exists (b, k) € dom(&;°) and &°(b, k) = £[°(b, i), then there cannot exist (b, j) € dom(&*)
such that £/“(b, j) = &°(b, i). By similar arguments, we see that condition (iii) also holds.
In the converse direction, for previous or next index (b, i) of st; which does not have a
corresponding index in st,, we use a fresh previous or next clock and use the same arguments
as above.
Thus, ~~ is a bisimulation, and now from the fact that the final states of B and B’ coincide,
we conclude that the timed languages are the same. O

From Theorems 7.2, 7.3, and 7.4, we obtain the proof of the main result, i.e., the decid-
ability of emptiness for ECMPA over existentially B-bounded fimed MSCs. To conclude the
proof of Theorem 7.1, it remains to discuss the complexity of our algorithm.

Recall from [2] that the emptiness problem for timed automata is PSPACE-complete.
More precisely, the upper bound is obtained with an NLOGSPACE reachability analysis of
the region graph, the number of regions being polynomial in the number of states of the
automaton but exponential in the number of clocks.

By Theorem 7.4, the number of clocks of B’ is (B + 1)©U4¢D Each state of B’ is a
tuple of the form (s, x,n, £, £”, y) as defined in Sect. 7.2 but using the finite set of indices
Indg,. From (13) and (14) we deduce that |Q°|, |Q”| and |Indg,| are all in (B + 1)©U4<D,
Then, we can check that the number of states of 1 is bounded by 27 (ALBEDAD for some
polynomial P.

Finally, combining the bounds above on the number of clocks and the number of states of
B’ with the NLOGSPACE reachability analysis of the region graph, we can check emptiness
using space polynomial in |.4] and (B + 1) as announced in Theorem 7.1.

8 Conclusion

In this paper, we have introduced ECMPA as an automaton model to deal with timed and
distributed systems. These combine the generality of message passing automata (in the dis-
tributed untimed setting) with the tractability of event clock automata (in the sequential
timed setting). To describe the behaviors of such systems we have used two formalisms
of timed partial orders, i.e., TMSCs and TCMSCs. The first main result shows that timed
monadic second-order logic formulae and ECMPA are expressively equivalent over TMSCs.
Indeed, this equivalence holds without assumptions on the bounds of channels, only when
we restrict to the existential fragment of the logic. Further, the proof of this equivalence is
constructive, since we are able to formulate an explicit translation between the two. The
second main result proves that checking emptiness for ECMPA is decidable in the bounded
case. These two results together allow us to check satisfiability for the timed logic.

Acknowledgements We thank the anonymous referees for their constructive suggestions which helped in
improving the presentation of the paper.
References

1. Akshay S, Bollig B, Gastin P (2007) Automata and logics for timed message sequence charts. In:
FSTTCS. LNCS, vol 4855. Springer, Berlin, pp 290-302
2. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183-235

@ Springer

300 Form Methods Syst Des (2013) 42:262-300

3. Alur R, Fix L, Henzinger TA (1999) Event-clock automata: A determinizable class of timed automata.
Theor Comput Sci 211(1-2):253-273
4. Alur R, Holzmann G, Peled D (1996) An analyser for message sequence charts. In: TACAS. LNCS,
vol 1055. Springer, Berlin, pp 35-48
5. Ben-Abdallah H, Leue S (1997) Timing constraints in message sequence chart specifications. In:
FORTE. IFIP Conf Proc, vol 107, pp 91-106
6. Berthomieu B, Diaz M (1991) Modeling and verification of time dependent systems using time Petri
nets. IEEE Trans Softw Eng 17(3):259-273
7. Bollig B, Leucker M (2006) Message-passing automata are expressively equivalent to EMSO logic.
Theor Comput Sci 358(2-3):150-172
8. Bouyer P, Haddad S, Reynier P-A (2006) Timed unfoldings for networks of timed automata. In: ATVA.
LNCS, vol 4218. Springer, Berlin, pp 292-306
9. Brand D, Zafiropulo P (1983) On communicating finite-state machines. J ACM 30(2):323-342
10. Biichi J (1960) Weak second order logic and finite automata. Math Log Q 5:66-92
11. Chandrasekaran P, Mukund M (2006) Matching scenarios with timing constraints. In: FORMATS.
LNCS, vol 4202. Springer, Berlin, pp 91-106
12. Chatain Th, Jard C (2005) Time supervision of concurrent systems using symbolic unfoldings of time
Petri nets. In: FORMATS. LNCS, vol 3829. Springer, Berlin, pp 196-210
13. D’Souza D (2000) A logical study of distributed timed automata. PhD thesis, BITS Pilani
14. D’Souza D (2003) A logical characterisation of event clock automata. Int J Found Comput Sci
14(4):625-640
15. D’Souza D, Thiagarajan PS (1999) Product interval automata: a subclass of timed automata. In: FSTTCS.
LNCS, vol 1738. Springer, Berlin, pp 60-71
16. Elgot CC (1961) Decision problems of finite automata design and related arithmetics. Trans Am Math
Soc 98:21-52
17. Genest B, Kuske D, Muscholl A (2006) A Kleene theorem and model checking algorithms for existen-
tially bounded communicating automata. Inf Comput 204(6):920-956
18. Godefroid P (1996) Partial-order methods for the verification of concurrent systems—an approach to the
state-explosion problem. LNCS, vol 1032. Springer, Berlin
19. Henriksen JG, Mukund M, Narayan Kumar K, Sohoni M, Thiagarajan PS (2005) A theory of regular
MSC languages. Inf Comput 202(1):1-38
20. Krcal P, Yi W (2006) Communicating timed automata: the more synchronous, the more difficult to verify.
In: CAV. LNCS, vol 4144. Springer, Berlin, pp 243-257
21. Narayan Kumar K (2012) The theory of MSC languages. In: D’Souza D, Shankar P (eds) Modern Ap-
plications of Automata Theory. IISc Res Monographs, vol 2. World Scientific, Singapore, pp 289-324
22. Lohrey M, Muscholl A (2004) Bounded MSC communication. Inf Comput 189(2):160-181
23. Ramchandani C (1974) Analysis of asynchronous concurrent systems by timed Petri nets. PhD thesis,
Massachusetts Institute of Technology

@ Springer

	Event clock message passing automata: a logical characterization and an emptiness checking algorithm
	Abstract
	Introduction
	Results on event clock message passing automata
	Related work

	Preliminaries
	Message sequence charts (MSCs)

	Formalisms to describe timed and concurrent behaviors
	Bounded channel setting
	Message sequence charts with timing constraints

	Event clock message passing automata
	Semantics over TCMSCs
	Semantics over TMSCs

	Timed monadic second-order logic
	Equivalence between ECMPA and TMSO logic over TMSCs
	From TMSCs to TCMSCs
	Extending the alphabet
	TCMSCs as extended MSCs
	TMSO as MSO over the extended alphabet
	ECMPA as MPA over the extended alphabet

	Proof of Theorems 6.1 and 6.2

	Checking emptiness of ECMPAs
	Recovering the partial order
	Constructing the gadgets

	From ECMPA to timed automata
	A finite version of B
	Refining the constraints
	Restricting the domain of xi

	Conclusion
	Acknowledgements
	References

