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Abstract We describe a reduction from temporal property verification to a program analy-
sis problem. First we present a proof system that, unlike the standard formulation, is more
amenable to reasoning about infinite-state systems: disjunction is treated by partitioning,
rather than enumerating, the state space and temporal operators are characterized with spe-
cial sets of states called frontiers. We then describe a transformation that, with the use of
procedures and nondeterminism, enables off-the-shelf program analysis tools to naturally
perform the reasoning necessary for proving temporal properties (e.g. backtracking, eventu-
ality checking, tree counterexamples for branching-time properties, abstraction refinement,
etc.). Using examples drawn from the PostgreSQL database server, Apache web server, and
Windows OS kernel, we demonstrate the practical viability of our work.

Keywords Automatic software verification · Program analysis · Temporal logic · Model
checking · Termination · Formal verification

1 Introduction

In this paper, we describe a method of proving temporal properties of (possibly infinite-
state) transition systems. Our method is designed to incorporate modern analysis techniques
(abstraction refinement, interpolation, termination argument refinement, and so forth). Con-
sequently, we obtain a tool that is more effective than previous efforts at reasoning about the
validity of temporal properties of infinite-state systems.
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We begin with a novel proof system for temporal verification (Sect. 3). Disjunction is
based on partitioning the state space rather than enumerating the state space. Temporal
operators use sets of states called frontiers to characterize those states in which subformulae
hold. Thus, since individual states are not mentioned, we can often find finite derivations in
our proof system, despite infinite state spaces. Algorithms and tools can often find finitely
representable over-approximations for the sets of states in a derivation.

Second, we observe that, with subtle use of procedures and nondeterminism, temporal
reasoning can be encoded as a program analysis problem (Sect. 4). Specifically, we de-
compose verification into a safety problem in tandem with a search for sufficient termina-
tion arguments to solve a liveness problem. All of the tasks necessary for reasoning about
temporal properties (e.g. abstraction search, backtracking, eventuality checking, tree coun-
terexamples for branching-time, etc.) are then naturally performed by off-the-shelf program
analysis tools. Using known safety analysis tools (e.g. [2, 5, 6, 9, 32]) together with tech-
niques for discovering termination arguments (e.g. [3, 7, 18]), we can implement temporal
logic provers whose power is effectively only limited by the power of the underlying tools.
An output solution to the tandem problems gives us (a symbolic representation of) the states,
frontiers, and termination arguments that comprise a derivation in our proof system.

Based on the above method, we have developed a prototype tool for proving temporal
properties of C programs and applied it to problems from the PostgreSQL database server,
the Apache web server, and the Windows OS kernel. Our technique leads to speedups by
orders of magnitude for the universal fragment of CTL (∀CTL). Similar performance im-
provements result when proving LTL with our technique in combination with a recently
described iterative symbolic determinization procedure [16].

This paper is an elaboration of the work we presented last year [17]. Full formal detail
(including scripts for the Coq proof assistant) can be found in Koskinen’s dissertation [25].

Limitations We have shown that our technique applies to infinite-state transition systems.
In practice, however, our approach has only been applied to sequential non-recursive pro-
grams. Furthermore, we currently only support the universal fragments of temporal logics
(i.e. ∀CTL rather than CTL) as it is sufficient for verifying LTL properties when used with
our iterated symbolic determinization [16]. Existential reasoning is left for future work.

2 Example

Consider the following program P where we are interested in proving the property � =
AG[x⇒ AF ¬x].

1 x := false; /* init */
2 while(*) {
3 x := true;
4 n := *;
5 while(n>0) {
6 n := n - 1;
7 }
8 x := false;
9 }

10 while(1) {}



68 Form Methods Syst Des (2012) 41:66–82

This is a standard acquire/release style property, letting us prove properties such as “when-
ever a lock is acquired, it is eventually released.” Note that * represents nondeterministic
choice.

In this paper we describe a reduction from temporal property verification to a program
analysis task. Specifically, we perform a transformation from an input program P and prop-
erty � to a new program P ′ that is parameterized by a finite set of ranking functions M.
This leads us to two tandem tasks:

1. A search for a sufficient finite set M of ranking functions, such that
2. P ′(M) can be proved to be safe.

If we can, indeed, find a finite set of ranking functions M such that P ′ can be proved to be
safe then the property � holds of P (i.e. P � �). In this way, we can leverage sophisticated
abstraction techniques for termination and safety from modern program analysis tools in
order to achieve temporal verification.

Our technique is state-based in nature, which we observe to be typically more efficient
than trace-based techniques. As such, the properties are expressed in the universal frag-
ment of Computation Tree Logic (∀CTL). This, however, does not preclude trace-based
logics. We can combine the work here with our previously described iterated symbolic de-
terminization [16] in order to prove trace-based properties, such as those expressed in Linear
Temporal Logic (LTL).

For the above example, our technique will produce the output program P ′ given in Fig. 1,
explained later. Notice that this program P ′ has a safety assertion (in main) and is parame-
terized by termination arguments M (in encRLε

AF¬x). In this case, if we let

M ≡
⎧
⎨

⎩

⎛

⎝λ

⎡

⎣
x
n
pc

⎤

⎦ . n

⎞

⎠

⎫
⎬

⎭

then a standard program analysis tool can prove P ′ to be safe, and so the property must hold
of P .

The rest of this paper is organized as follows. In Sect. 3 we review temporal logic defini-
tions and describe a novel proof system for ∀CTL that serves as the intuition and correctness
argument for our technique. In Sect. 4 we describe our core verification technique. We dis-
cuss some related work in Sect. 5 and report experimental results in Sect. 6.

3 Frontiers for ∀CTL verification

We now describe a novel proof system for ∀CTL that is geared toward infinite state spaces.
As we will see, disjunction is treated by partitioning (rather than enumerating) the state
space, and temporal operators are based on the existence of sets of states called frontiers.
Thus, since individual states are not mentioned, algorithms and tools can often find (finitely
representable) over-approximations of sets of states. The proof system presented in this
section serves as the intuition and correctness argument for our verification technique.

States, transition systems We assume nothing about the set of states S, except that state
equality is decidable: for every s, s ′ ∈ S, either s = s ′ or s �= s ′ and that this can be de-
termined in finite time. A transition system M = (S,R, I) is a set of states S, a transition
relation R ⊆ S × S, and a set of initial states I ⊆ S. A trace of a transition system is an
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void main {
bool x; nat n;
x := false; n := *;
assert(encε

AG[¬x∨AF¬x]_pc0(x,n));
}

bool encε
AG[¬x∨AF¬x]_pc0(bool x, nat n) {

while(*) {
x := true;

if (¬ encLε¬x∨AF¬x_pc3(x,n))
{ return false; }
if (*) return true;

n := *;
while(n>0) {

if (*) return true;
n-;

}
x := false;

}
while(1) { if (*) return true; }

}

bool encLε¬x∨AF¬x_pc3(bool x, nat n) {
if (x �= true) return true;

return encRLε
AF¬x_pc3(x,n);

}

bool encRLε
AF¬x_pc3(bool x, nat n) {

dup2 := dup5 := dup9 := false;
goto lab_pc3;
while(*) {

if(x==false) return true;
if(dup2 && �f ∈ M.f (x2,n2) > f (x,n))
{ return false; }
if(¬dup2∧*){dup2:=1;x2:=x;n2:=
n;}
if(*) return true;

x := true;
lab_pc3:

if (x==false) return true;
n := *;
while(n>0) {
lab_pc5:

if(x==false) return true;
if(dup5 && �f ∈ M.f (x5,n5) > f (x,n))
{ return false; }
if(¬dup5∧*){dup5:=1;x5:=x;n5:=
n;}
if(*) return true;

n-;
}
x := false;
if (x==false) return true;

}
while(1) {

if(x==false) return true;
if(dup9 && �f ∈ M.f (x9,n9) > f (x,n))
{ return false; }
if(¬dup9∧*){dup9:=1;x9:=x;n9:=
n;}
if(*) return true;

}
}

Fig. 1 The encoding E for property AG[x⇒ AF ¬x] and the program from Sect. 2. This simplified version
of the encoding is derived from the full encoding given in Fig. 3 via partial evaluation. Some procedures are
inlined, some are specialized w.r.t. the program counter, and unreachable/inconsequential code is eliminated

infinite sequence of states (s0, s1, . . .) such that s0 ∈ I and ∀i ≥ 0. (si , si+1) ∈ R. For con-
venience, we do not allow finite traces. The transition relation must be such that every state
has at least one successor state: ∀s ∈ S. ∃s ′. R(s, s ′). This is without loss of generality, as
final states can be encoded as states that loop back to themselves. We use [[α]]S to denote
the set of states for which atomic proposition α holds.

Ranking functions For a state space S, a ranking function f is a total map from S to a well
ordered set with ordering relation ≺. A relation R ⊆ S × S is well-founded if and only if
there exists a ranking function f such that ∀(s, s ′) ∈ R. f (s ′) ≺ f (s). We denote a finite set
of ranking functions (or measures) as M. Note that the existence of a finite set of ranking
functions for a relation R is equivalent to containment of R within a finite union of well-
founded relations [30]. That is to say that a set of ranking functions {f1, . . . , fn} can denote
the disjunctively well-founded relation:

{(s, s ′) | f1(s
′) ≺ f1(s) ∨ · · · ∨ fn(s

′) ≺ fn(s)}.
Temporal logic The technique describe in this paper is state-based in nature and, as such,
is readily suitable to ∀CTL properties. To prove LTL properties we use our recently de-
scribed iterative symbolic determinization technique [16] with the ∀CTL proving technique
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described here. The syntax of ∀CTL is:

� ::= α | � ∧ � | � ∨ � | AF� | A[�W�]
and the semantics are as follows:

s ∈ [[α]]S

R, s � α

R, s � �1R, s � �2

R, s � �1 ∧ �2

R, s � �1 ∨ R, s � �2

R, s � �1 ∨ �2

∀(s0, s1, . . .). s0 = s ⇒ ∃i ≥ 0. R, si � �

R,s � AF�

∀(s0, s1, . . .).s = s0 ⇒ (∀i ≥ 0. R, si � �1)∨
(∃j ≥ 0. R, sj � �2 ∧ ∀i ∈ [0, j). R, si � �1)

R, s � A[�1 W�2]
∀CTL’s temporal operators are state-based in structure. The operator AF� specifies that,
across all computation sequences from the current state, a state in which � holds must be
reached. The A[�1 W�2] operator specifies that �1 holds in every state where �2 does not
yet hold.

We use AF and AW as our base operators (as opposed to the more standard U and R),
as each corresponds to a distinct form of proof: AF to termination and AW to safety. The
AG operator can be expressed with AW, and we omit the next state operator AX as it is not
usually useful in the context of programs. We assume that formulae are written in negation
normal form, in which negation only occurs next to atomic propositions (we also assume
that the domain of atomic propositions is closed under negation). A formula that is not in
negation normal form can be normalized.

We will need to enumerate ∀CTL subformulae, taking care to uniquely identify each
one. To this end, our definition of subformulae maintains a context path κ ≡ ε | Lκ | Rκ that
indicates the path from the root ε (the outermost property �), to the particular subproperty
� of interest, at each step taking either the left or right subformula (Lκ or Rκ). For an ∀CTL
property �, the set of subformulae is a set of (κ,�) pairs as follows:

sub(�) ≡ sub(ε,�)

sub(κ,α) ≡ {(κ,α)}
sub(κ,� ∨ �′) ≡ {(κ,� ∨ �′)} ∪ sub(Lκ,�) ∪ sub(Rκ,�′)

sub(κ,� ∧ �′) ≡ {(κ,� ∧ �′)} ∪ sub(Lκ,�) ∪ sub(Rκ,�′)

sub(κ,AF�) ≡ {(κ,AF�)} ∪ sub(Lκ,�)

sub(κ,A[�W�′]) ≡ {(κ,A[�W�′])} ∪ sub(Lκ,�) ∪ sub(Rκ,�′)

Our proof system for ∀CTL relates formulae with sets-of-states rather than individual states,
and is defined as follows:

Definition 1 (Proof system for ∀CTL)

I ⊆ [[α]]S

〈R,I 〉 � α

〈R,I 〉 � �1〈R,I 〉 � �2

〈R,I 〉 � �1 ∧ �2

I = I1 ∪ I2〈R,I1〉 � �1〈R,I2〉 � �2

〈R,I 〉 � �1 ∨ �2

walkF
I is well-founded 〈R, F 〉 � �

〈R,I 〉 � AF�

〈R, (walkF
I )|1〉 � �1〈R, F 〉 � �2

〈R,I 〉 � A[�1 W�2]
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where walk is as follows:

R(s, s ′)s /∈ F s ∈ I

walkF
I (s, s ′)

R(s ′, s ′′)s ′ /∈ F walkF
I (s, s ′)

walkF
I (s ′, s ′′)

The notation 〈R,I 〉 � � denotes that a property � is valid for a set of states I . The
entailment relation is then defined inductively. An atomic proposition α involves a simple
check to see if I is contained within the set of states in which α holds. The conjunction rule
requires that both �1 and �2 hold of all states in I . Disjunction is treated by partitioning the
state space rather than enumerating the state space: the states are split into two sets, one in
which �1 holds and one in which �2 holds. As we will see, this treatment is more amenable
to reasoning about infinite-state systems.

The remaining rules involve the existence of a set of states called a frontier F . Intuitively,
the frontier F of a set of initial states I , is a set of states through which every trace origi-
nating at a state in I must pass. In AF�, frontier F characterizes the places where � holds,
requiring that all paths from I eventually reach a state in F . We formalize this idea by defin-
ing the inductive relation walkF

I given in Definition 1. walkF
I is the subset of R that includes

every possible transition along every trace from I up to F . In our treatment of AF we require
that walkF

I be well-founded. In this way, we recast the ∀CTL semantics of AF in terms of
the well-foundedness of a relation, rather than the existence of an i-th state in every trace.
This formulation allows us to efficiently prove AF properties because we can discover well-
founded relations that are over-approximations of walkF

I . The final rule in Definition 1 is
for the A W operator, which also uses a frontier and the relation walkF

I representing the arcs
along the way to the frontier F . To prove A[�1 W�2], all states along the path to the frontier
must satisfy �1 and states at the frontier—should one ever get there—all must satisfy �2.

In the following lemma we show that if a property holds in our relational semantics, then
it also holds in the standard semantics of ∀CTL and vice-versa.

Lemma 1 For every �,I,R, 〈R,I 〉 � � ⇐⇒ ∀s ∈ I.R, s � �.

Example The aim of this paper is an automatic method for proving temporal logic proper-
ties of programs. Here we will give an example manual derivation for the program in Sect. 2.
This highlights the fact that our proof system from Definition 1 allows for finite derivations
when state-spaces may be infinite, but expert readers may choose to skip onward to Sect. 4.
For simplicity, we can describe the program as the transition system M = (S,R, I):

S = B × N × {�0, �1} where s ∈ S is denoted

⎡

⎣
x
n
pc

⎤

⎦ ,

R =
⎧
⎨

⎩

⎛

⎝

⎡

⎣
F
0
�0

⎤

⎦ ,

⎡

⎣
T
n
�1

⎤

⎦

⎞

⎠ n> 0

⎫
⎬

⎭
∪

⎧
⎨

⎩
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⎝
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⎣
T
n
�1

⎤

⎦ ,
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⎣
T

n-1
�1
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⎣
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⎠

⎫
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⎭
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I =
⎧
⎨

⎩

⎡

⎣
F
0
�0

⎤

⎦

⎫
⎬

⎭
.
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where T = true and F = false. We can construct the following derivation in our proof system,
in order to show that 〈R,I 〉 � AG[x⇒ AF ¬x]:

X ∪ Y = (walkF1
I

)|1
X ⊆ [[¬x]]S
〈R,X〉 � ¬x

walkF2
Y

is w.f.
F2 ⊆ [[¬x]]S
〈R, F2〉 � ¬x

〈R,Y 〉 � AF ¬x
〈R, (walkF1

I
)|1〉 � (AF ¬x ∨ ¬x)

F1 ⊆ [[false]]S
〈R, F1〉 � false

〈R,I 〉 � A[(AF ¬x ∨ ¬x) W false]

where F1 ≡ ∅
F2 ≡ B × N × {�0}

X ≡ B × N × {�0}
Y ≡ B × N × {�1}.

What remains are five proof obligations, proved below. Notice that this derivation has
finitely many inference rules. This stands in contrast to the standard formulation of ∀CTL,
which would have required us to enumerate states and traces or find a finite abstraction
a priori. Moreover, since elements of sets of states I, F1, F2,X,Y and elements of re-
lations walkF1

I ,walkF2
Y are not mentioned, algorithms and tools can discover finite over-

approximations of them (e.g. [[x= false]]S or walkF2
Y ⊆ [[n′ < n∧ n> 0]]R).

The obligations and proofs are as follows: (1) X ∪ Y = (walkI
F1

)|1. Since F1 = ∅, the
RHS is the set of all (reachable) states. The LHS is the set of all states. In this example the
two are equivalent. (2) X ⊆ [[¬x]]S. Initially when pc = �0 then x= false. Moreover, x only
becomes true when control changes to �1, and then x becomes false again whenever control

changes back to �0. (3) walkF2
Y is well-founded. Substituting, we must show that walk[[pc=�0]]S

[[pc=�1]]S

is well-founded. If we unroll the definition of walk we see that walk[[pc=�0]]S
[[pc=�1]]S is the set of all

state transitions from �1, returning to �1. This relation is well-founded because there is a
ranking function:

f ≡ λ

⎡

⎣
x
n
pc

⎤

⎦ . n

where the well-order is simply the natural numbers. (4) F2 ⊆ [[¬x]]S. Same as 2 above.
(5) F1 ⊆ [[false]]S. Trivial.

4 ∀CTL verification as safety and liveness

We characterize ∀CTL verification as a safety problem in tandem with a search for sufficient
termination arguments to solve a liveness problem. An output solution to the tandem prob-
lems gives us (typically, a symbolic representation of) the states, frontiers, and termination
arguments that comprise a derivation in the proof system in Definition 1. A formal descrip-
tion and proof of correctness for our approach is given in Koskinen’s dissertation [25]. Here
we present only the specialization as a program analysis problem.

Encoding Our encoding, given in Fig. 2, allows modern program analysis tools (abstrac-
tion refinement, interpolation, termination argument refinement, and so forth) to perform
what is necessary to validate a temporal logic property � for a program P . Our encoding
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E (P, M,�) ≡
⋃

(κ,ψ)∈sub(�)

{
encκ

ψ : s → B
}

where

bool encκ
ψ∧ψ ′(state s) {

if (*) return encLκ
ψ
(s);

else return encRκ
ψ ′ (s);

}

bool encκ
ψ∨ψ ′(state s) {

if (encLκ
ψ
(s)) return true;

else return encRκ
ψ ′ (s);

}

bool encκ
α(state s) { return α(s); }

bool encκ
A[ψ Wψ ′](state s) {

P [c/
⎡

⎣

if (*) return true;
if (encRκ

ψ ′ (s)) return true;

if (¬ encLκ
ψ (s)) return false;

⎤

⎦ ; c]

}
bool encκ

AFψ
(state s) {

bool dup = false; state ‘s;

P [c/
⎡

⎢
⎣

if (*) return true;
if (encLκ

ψ (s)) return true;
if (dup && ¬(∃f ∈ M. f (s) ≺ f (‘s))) return false;
if (¬ dup && *) { dup := true; ‘s := s; }

⎤

⎥
⎦ ; c]

}

Fig. 2 Encoding ∀CTL verification of program P and property � as a program analysis task over a finite
set of procedures. We use the notation P [c/d] to mean that each command c in program P is replaced with
a new code fragment d

generates a finite number of procedures in a C-like language, one for each subformula. For
the example in Sect. 2, the encoding consists of the following set of procedures:

{ encε
AG[¬x∨AF¬x], encLε

[¬x∨AF¬x], encLLε
¬x , encRLε

AF¬x, encLRLε
¬x }

The per-subformula encoding is given in Fig. 2. Notice that this encoding is parameterized
by a finite set of rank functions M, which is used in the encκ

AFψ case. These procedures
encode the search for the proof that � holds of P : if a sufficient M is found such that
assert(encε

�(s)) can be proved safe for all s ∈ I , then � holds of P (i.e. P � �). This is
given by the following theorem:

Theorem 1 (E soundness [25]) For a program P and ∀CTL property �,

∃ finite M. E (P, M,�) cannot return false ⇒ P � �.

We abuse notation slightly here, using E (P, M,�) to mean “∀s ∈ I.encε
�(s)”.

Each procedure encκ
ψ ∈ E is designed to determine whether a subformula κ,ψ holds

of a state s. By passing the state on the stack, we consider multiple branching scenarios.
When a particular ψ is a ∧ or A W subformula, then encκ

ψ ensures that all possibilities are
considered by establishing feasible paths to all of them. When a particular ψ is a ∨ or AF
subformula, E enables executions to consider all of the possible cases that might cause ψ

to hold of s. As soon as one is found, true is returned. Otherwise, false will be returned if
none are found. If encε

� can be proved to never return false, then it must be the case that the
overall property � holds of the initial state s.
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Atomic proposition In the atomic proposition case, encκ
α involves a simple check to see

whether the atomic proposition α holds of the current state.

Conjunction For a subformula ψ ∧ ψ ′, the encoding establishes two feasible paths: one to
encLκ

ψ and one to encRκ
ψ ′ , passing s in each case. If, for example, ψ does not hold of s, then

there will be a way for encLκ
ψ to return false. Consequently, there will be a way for encκ

ψ∧ψ ′
to return false and we can conclude that the property does not hold. Alternatively, if neither
subformula procedure call could possibly return false, then encκ

ψ∧ψ ′ cannot return false and
we can conclude that the property holds.

Our encoding takes advantage of the fact that program analysis tools for safety are effec-
tive at discovering a counterexample execution that leads to an assertion violation. To this
end, E maintains the following invariant:

INV1 : ∀s,ψ, κ.R, s � ψ implies encκ
ψ(s) can return false

Disjunction Consider encκ
ψ∨ψ ′ and imagine that ψ ≡ p, and ψ ′ ≡ AFq . In this case we

want to know that one of the subformulae (i.e. p or AFq) holds. A procedure call encLκ
p (s)

is made to explore whether p holds as well as a separate procedure call encRκ
AFq(s) with

the same current state s to explore AFq . During a symbolic execution of this program, all
executions will be considered in a search for a way to cause the program to fail. If it is
possible for both procedure calls to return false ( i.e. they satisfy INV1), then there will
be an execution in which encκ

p∨AFq(s) can return false (also satisfying INV1). A standard
program analysis tool (e.g. SLAM [2] or BLAST [5]) will find this case. By maintaining this
invariant in each procedure, a proof that the outermost procedure encε

� cannot return false
implies that the property � holds of the program P .

Because we want to consider every state that is reachable from a finite prefix of an infinite
path, it must be possible for the procedure calls to return from every state. If it were possible
for the checking of a subformula like AFq to diverge (thus never returning false) then the
above code fragment would never return false, and thus the top-level procedure encε

� would
never return false. To this end, E maintains a second invariant:

INV2 : ∀s,ψ, κ.encκ
ψ(s) can return true

It is this requirement that necessitates the additional nondeterministic “if (*) return
true” commands found within encκ

A[ψ Wψ ′] and encκ
AFψ . One can think of “if (*) re-

turn true” as a form of backtracking. In our encoding, a nondeterministic return of true
is not declaring that the property holds (we must always return true to do that). Instead,
a nondeterministic return of true in the encoding means that a program analysis can freely
backtrack and switch to other possible scenarios during its search for a proof.

Sequencing For A[ψ Wψ ′], the encoding E ensures that, along every path from s, as long
as ψ ′ does not hold yet (it may never hold), ψ still holds. We use the notation P [c/d] to
mean, informally, that each command c in program P is replaced with a new code frag-
ment d . In this way, the encoding continually steps through the transition relation by ex-
ecuting each subsequent command c, performing this check at each command. Command
replacement requires that we take care to treat the program counter correctly. In Fig. 3 this
is accomplished with a simple goto case split, and Fig. 1 accomplishes this by specializing
procedures with respect to the program counter (as described below).

If A[ψ Wψ ′] does not hold, then there will be a finite sequence of states s, s1, . . . , sn such
that ψ holds at each state si (i < n) and neither ψ nor ψ ′ holds at sn. If this is the case, there
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void main {
x := false; n := *;
assert(encε

AG[¬x∨AF¬x](�1,x,n));

}
bool encε

AG[¬x∨AF¬x](int pc, x, n) {
if (pc == �1) goto lab_1;
if (pc == �2) goto lab_2;
...

lab_1:

if (*) return true;
if (¬ encLε¬x∨AF¬x(�1,x,n))
{ return false; }

while(*) {

if (*) return true;
if (¬ encLε¬x∨AF¬x(�2,x,n))
{ return false; }

x := 1;

if (*) return true;
if (¬ encLε¬x∨AF¬x(�3,x,n))
{ return false; }

n := *;

if (*) return true;
if (¬ encLε¬x∨AF¬x(�4,x,n))
{ return false; }

while(n>0) {

if (*) return true;
if (¬ encLε¬x∨AF¬x(�5,x,n))
{ return false; }

n-;
}

if (*) return true;
if (¬ encLε¬x∨AF¬x(�7,x,n))
{ return false; }

x := 0;

if (*) return true;
if (¬ encLε¬x∨AF¬x(�8,x,n))
{ return false; }

}
while(1) {

if (*) return true;
if (¬ encLε¬x∨AF¬x(�9,x,n))
{ return false; }

}
}

bool encLε¬x∨AF¬x(int pc, x, n) {

if (encLLε¬x (pc,x,n)) return true;

else return encRLε
AF¬x(pc,x,n);

}

bool encLLε¬x (int pc, x, n) {
return (¬ x ? true : false);

}

bool encLRLε¬x (int pc, x, n) {
return (¬ x ? true : false);

}

bool encRLε
AF¬x(int pc, x, n) {

if (pc == �1) goto lab_1;
if (pc == �2) goto lab_2;
if (pc == �3) goto lab_3;
...
dup := false;

if (*) return true;
if (encLRLε¬x (�1,x,n)) return true;
if(dup1 && �f ∈ M.f (x1,n1) > f (x,n))
{ return false; }
if (¬ dup1 && *)
{dup1:=1;x1:=x;n1:= n;}

while(*) {

(similar instrumentation)

x := 1;
lab_3:

(similar instrumentation)

n := *;

(similar instrumentation)

while(n>0) {
lab_5:

if (*) return true;
if (encLRLε¬x (�5,x,n)) return true;
if(dup5 && �f ∈ M.f (x5,n5) > f (x,n))
{ return false; }
if (¬ dup5 && *)
{dup5:=1;x5:=x;n5:= n;}

n-;
}

(similar instrumentation)

x := 0;

(similar instrumentation)

}
while(1) {

if (*) return true;
if (encLRLε¬x (�9,x,n)) return true;
if(dup9 && �f ∈ M.f (x9,n9) > f (x,n))
{ return false; }
if (¬ dup9 && *)
{dup9:=1;x9:=x;n9:= n;}

}
}

Fig. 3 The encoding E for the program in Sect. 2 and property AG[x⇒ AF ¬x]. This output can be special-
ized w.r.t. the program counter, and pruned (via intraprocedural analysis) to obtain the more efficient encoding
in Fig. 1
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will be such a feasible execution of E , where at sn both encRκ
ψ ′ and encLκ

ψ can return false.

Consequently, encκ
A[ψ Wψ ′] can return false. Alternatively, if this is not the case, then a proof

that encκ
A[ψ Wψ ′] cannot return false implies that A[ψ Wψ ′] indeed holds of s. Notice that,

since AGψ = A[ψ W false] is a special case of A W , the encoding of AG is also a special
case of the encoding of A W (as see in Figs. 1 and 3):

bool encκ
AGψ(state s) {

P

[

c/

[if (*) return true;
if (¬ encLκ

ψ (s)) return
false;

]

; c

]

}

Eventuality We use a similar encoding for AF, also shown in Fig. 2. Our encoding must
allow a program analysis to demonstrate that all paths must eventually reach a state where
the subformula holds. We use two auxiliary variables called dup and ‘s. While exploring
the reachable states in R the encoding may, at every point, nondeterministically decide to
capture the current state (setting dup to true and saving s as ‘s). When each subsequent state
s is considered, a check is performed that there is some rank function f ∈ M that witnesses
the well-foundedness of the nonreflexitive transitive closure of this particular subset (walkF

I )
of the transition relation.1

When applying the encoding to the example in Sect. 2, we obtain the output P ′ given
in Fig. 3. The procedure main initializes the variables and asserts that encε

AG[¬x∨AF¬x]
cannot return false. As described above encε

AG[¬x∨AF¬x] uses command replacement, es-
tablishing feasible paths to the subproperty procedure at every reachable state. The proce-
dures encLε

[¬x∨AF¬x], enc
LLε
¬x , and encLRLε

¬x are straight-forward, following Fig. 2. Finally, the
procedure encRLε

AF¬x will return false when called from a state from which the subproperty
does not eventually hold. This procedure again uses command replacement, instrumenting
a check that, if encLRLε

¬x does not yet hold, then there must be a witness f ∈ M to the
well-foundedness of this region of the transition relation.

Our procedural encoding lets us apply several static optimizations that facilitate the ap-
plication of current program analysis tools. These optimizations are described in [25], and
allow us to reduce the full, expanded encoding (e.g. Fig. 3) into a simpler version, more
amenable to analysis tools (e.g. Fig. 1). For example, because the program state is passed
on the stack, a procedure call encκ

ψ for a subformula ψ will not modify variables in the
outer scope, and thus can be treated as skip statements when analyzing the iterations of R.
Invariants within a given subprocedure can be vital to the pruning, simplification, and partial
evaluation required to prepare the output of E for program analysis.

4.1 Looking for M

In addition to the safety component, we must also solve the liveness component. Specifically,
we must find a finite set of ranking functions M such that a program analysis can prove for
every s ∈ I that encε

�(s) does not return false. Our top-level procedure adapts a known
method [18] in order to iteratively find a sufficient M:

1This is an adaptation of a known technique [18]. However, rather than using assert to check that one of the
ranking functions in M holds, our encoding instead returns false, allowing other possibilities to be considered
(if any exist) in outer disjunctive or AF formulae.
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Algorithm 2 For a program P and ∀CTL property �,

let prove(P,�) =
M := ∅
while (E (P, M,�) can return false) do

let χ be a counterexample in
if ∃ lasso path fragment χ ′ from χ then

if ∃ witness f showing χ ′ w.f. then
M := M ∪ {f }

else return χ

else return χ

done
return Success

In our implementation new ranking functions are automatically synthesized by examin-
ing counterexamples. A counterexample in ∀CTL is tree-like as follows:

χ ::= CEXαof s | CEX∧of χ | CEX∨of χ × χ

| CEXAFof π × π × χ | CEXW of π × χ × χ

where π is a trace through the transformed program E . Note that often tools will not report
a concrete trace but rather a path, i.e. a sequence of program counter values corresponding
to a class of traces (in rare instances paths may be reported that are spurious). The coun-
terexample structure for an atomic proposition is simply a state in which α does not hold.
Counterexamples for conjunction and disjunction are as expected. A counterexample to an
AF property is a “lasso”—a stem path to a particular program location, then a cycle which
returns to the same program location, and a sub-counterexample along that cycle in which
the sub-property does not hold. Finally, an A W counterexample is a path to a place where
there is a sub-counterexample to the first property as well as a sub-counterexample to the
second property.

In our encoding we obtain these tree-shaped counterexamples effectively for free with
program analysis tools like SLAM and BLAST that report stack-based traces (through E ) for
assertion failures. Information about the stack depth available in the counterexamples allows
us to re-construct the tree counterexamples. That is, by walking backward over the stack
trace, we can determine the tree-shape of the counterexample. Consider, for example, the
case of AF. The counterexample found by a tool will visit commands through the encoding
of E , including points where dup is set to true. The commands from the input program can
be used to populate an instance of χ .

When a counterexample is reported that contains an instance of CEXAF (i.e. a “lasso
fragment”) it is possible that the property still holds, but that we have simply not found a
sufficient ranking function to witness the termination of the lasso. In this case our proce-
dure finds the lasso fragments and attempts to enlarge the set of ranking functions M. One
source of incompleteness of our implementation comes from our reliance on lassos: some
non-terminating programs have only well-founded lassos, meaning that in these cases our
refinement algorithm will fail to find useful refinements. The same problem occurs in [18].
In industrial examples these programs rarely occur.

If we begin with M = ∅, a safety tool will report a lasso-shaped counterexample when
applied to Fig. 1. The loop portion of the lasso arises from the inner while-loop. From this
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counterexample, we can synthesize the rank function

f =
⎛

⎝λ

⎡

⎣
x
n
pc

⎤

⎦ . n

⎞

⎠ .

Letting M = {f }, a safety tool will report no safety violations. Thus we can conclude that
the property holds.

5 Related work

∀CTL verification has previously been given in the form of finding winning strategies in
finite-state games or game-like structures such as alternating automata [4, 26, 34]. The en-
coding presented in this paper is, effectively, a generalization of prior work to games over
infinite state spaces. The relationship to games is discussed in Koskinen’s dissertation [25].

Other previous tools and techniques are known for proving temporal properties of finite-
state systems (e.g. [8, 14, 26]) or classes of infinite-state systems with specific structure (e.g.
pushdown systems [36, 37] or parameterized systems [20]). Our proposal works for arbitrary
transition systems, including programs.

A previous tool proves only trace-based (i.e. linear-time) properties of programs [15] us-
ing an adaptation of the traditional automata-theoretic approach [35]. In contrast, our reduc-
tion to program analysis promotes a state-based (e.g. branching-time) approach. Trace-based
properties can be proved with our tool using a recently described iterative symbolic deter-
minization technique [16]. As shown in [16] and Sect. 6, in most cases our new approach is
faster for LTL verification than [15] by several orders of magnitude.

When applying traditional bottom-up based methods for state-based logics (e.g. [12, 19,
21]) to infinite-state transition systems, one important challenge is to track reachability when
considering relevant subformulae from the property. In contrast to the standard method of
directly tracking the valuations of subformulae in the property with additional variables, we
instead use procedures to encode the checking of subformulae as a program analysis prob-
lem. As an interprocedural analysis computes procedure summaries it is in effect symboli-
cally tracking the valuations of these subformulae depending on the context of the encoded
system’s state. Thus, in contrast to bottom-up techniques, ours only considers reachable
states (via the underlying program analysis). A safety analysis for infinite-state systems will
of course over-approximate this set of states, but it will never need to find approximations
for unreachable states. By contrast, bottom-up algorithms require that concrete unreachable
states be considered. Furthermore, in our technique, only relevant state/subformula pairs are
considered. Our encoding will only consider a pair s,� where R, s � � is needed to either
prove the outermost property, or is part of a valid counterexample.

Chaki et al. [10] attempt to address the same problem of subformulae and reachability
for infinite-state transition systems by first computing a finite abstraction of the system a
priori that is never refined again. Then standard finite-state techniques are applied. In our
approach we reverse the order: rather than applying abstraction first, we let the underlying
program analysis tools perform abstraction after we have encoded the search for a proof
as a new program. This strategy facilitates abstraction refinement: after our encoding has
been generated, the underlying program analysis tool can iteratively perform abstraction
and refinement. The approach due to Schmidt and Steffen [33] is similar.
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The tool YASM [24] takes an alternative approach: it implements a refinement mecha-
nism that examines paths which represent abstractions of tree counterexamples (using multi-
valued logic). This abstraction loses information that limits the properties that YASM can
prove (e.g. the tool will usually fail to prove AFAGp). With our encoding the underlying
tools are performing abstraction-refinement over tree counterexamples. Moreover, YASM

is primarily designed to work for unnested existential properties [23] (e.g. EFp or EGp),
whereas our focus is on precise support for arbitrary (possibly nested) universal properties.

Our encoding shares some similarities with the finite-state model checking procedure
CEX from Fig. 6 in Clarke et al. [13]. The difference is that a symbolic model checking tool
is used as a sub-procedure within CEX, making CEX a recursively defined model checking
procedure. The finiteness of the state-space is crucial to CEX, as in the infinite-state case it
would be difficult to find a finite partitioning a priori from which to make a finite number
of model checking calls when treating temporal operators such as AG and AF. Our encod-
ing, in contrast, is not a recursively defined algorithm that calls a model checker at each
recursion level, but rather a transformation that produces a procedural program that encodes
the proof search-space. This program is constructed such that it can later be symbolically
analyzed using (infinite-state) program analysis techniques. When applied to the encoding,
the underlying analysis tool is then given the task of finding the necessary finite abstractions
and possibly procedure summaries.

6 Experiments

In this section we report on experiments with a prototype tool that implements E from Fig. 2
as well as the refinement procedure from Algorithm 2. In our tool we have implemented E
as a source-to-source translation using the CIL compiler infrastructure. We use SLAM [2]
as our implementation of the safety prover, and RANKFINDER [29] as the rank function
synthesis tool.

We have drawn out a set of temporal verification challenge problems from industrial code
bases. Examples were taken from the I/O subsystem of the Windows OS kernel, the back-
end infrastructure of the PostgreSQL database server, and the Apache web server. In order
to make these examples self-contained we have, by hand, abstracted away the unnecessary
functions and struct definitions. We also include a few toy examples, as well as the example
from Fig. 8 in [15]. Sources of examples can be found elsewhere [25]. Heap commands
from the original sources have been abstracted away using the approach due to Magill et
al. [27]. This abstraction introduces new arithmetic variables that track the sizes of recursive
predicates found as a byproduct of a successful memory safety analysis using an abstract
domain based on separation logic [28]. Support for variables that range over the natural
numbers is crucial for this abstraction.

As previous mentioned in Sect. 5, there are several available tools for verifying state-
based properties of general purpose (infinite-state) programs. Neither the authors of this
paper, nor the developer of YASM [24] were able to apply YASM to the challenge problems
in a meaningful way, due to bugs in the tool. Note that we expect YASM would have failed
in many cases [23], as it is primarily designed to work for unnested existential properties
(e.g. EGp or EFp). We have also implemented the approach due to Chaki et al. [10]. The
difficulty with applying this approach to the challenge problems is that the programs must
first be abstracted to finite-state before branching-time proof methods are applied. Because
the challenge problems focus on liveness, we have used transition predicate abstraction [31]
as the abstraction method. However, because abstraction must happen first, predicates must
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Prev. tool [15] Our tool (Sec. 4)
Program LOC Property Time Res. Time Res.
Acq/rel 14 AG(a ⇒ AFb) 103.48 � 14.18 �
Fig. 8 of [15] 34 AG(p ⇒ AFq) 209.64 � 27.94 �
Toy linear arith. 1 13 p ⇒ AFq 126.86 � 34.51 �
Toy linear arith. 2 13 p ⇒ AFq >14400.00 ??? 6.74 �
PSQL smsrv 259 AG(p ⇒ AFAGq) >14400.00 ??? 9.56 �
PSQL smsrv+bug 259 AG(p ⇒ AFAGq) 87.31 χ 47.16 χ

PSQL pgarch 61 AFAGp 31.50 � 15.20 �
Apache progress 314 AG(p⇒(AF∨AF)) 685.34 � 684.24 �
Windows OS 1 180 AG(p ⇒ AFq) 901.81 � 539.00 �
Windows OS 4 327 AG(p ⇒ AFq) >14400.00 ??? 1,114.18 �
Windows OS 4 327 (AFa) ∨ (AFb) 1,223.96 � 100.68 �
Windows OS 5 648 AG(p ⇒ AFq) >14400.00 ??? >14400.00 ???

Windows OS 7 13 AGAFp >14400.00 ??? 55.77 �

Fig. 4 Comparison between our tool and Cook et al. [15] on ∀CTL verification benchmarks. All of the above
∀CTL properties have equivalent LTL properties so they are suitable for direct comparison with the LTL tool
[15]

be chosen ahead of time either by hand or using heuristics. In practice we found that our
heuristics for choosing an abstraction a priori could not be easily tuned to lead to useful
results.

Because the examples are infinite-state systems, popular CTL-proving tools such as Ca-
dence SMV [1] or NUSMV [11] are not directly applicable. When applied to finite instan-
tiations of the programs these tools run out of memory.

The tool described in Cook et al. [15] can be used to prove LTL properties if used in
combination with an LTL to Büchi automata conversion tool (e.g. [22]). We compare our
approach to this tool using ∀CTL challenge problems in Fig. 4. We have chosen properties
that are equivalent in ∀CTL and LTL and then directly compared Algorithm 2 to the tool in
Cook et al. [15]. Experiments were run using Windows Vista and an Intel 2.66 GHz pro-
cessor. We also previously reported experiments using our approach in combination with an
iterated symbolic determinization in order to prove Linear Temporal Logic properties [16].

In Fig. 4 the code example is given in the first column, and a note as to whether it contains
a bug. We also give a count of the lines of code and the shape of the temporal property where
p and q are atomic propositions specific to the program. For both the tools we report the
total time (in seconds) and the result “Res.” for each of the benchmarks. A � indicates that
a tool proved the property, and χ is used to denote cases where bugs were found (and a
counterexample returned). In the case that a tool exceeded the timeout threshold of 4 hours,
“>14400.00” is used to represent the time, and the result is listed as “???”. Our technique
was able to prove or disprove all but one example, usually in a fraction of a minute. The
competing tool fails on over a third of the benchmarks.

7 Conclusions

We have introduced a novel temporal reasoning technique for (potentially infinite-state) tran-
sition systems, with an implementation designed for those described as programs. Our ap-
proach shifts the task of temporal reasoning to a program analysis problem. When an analy-
sis is performed on the output of our encoding, it is effectively reasoning about the temporal
and branching behaviors of the original system. Consequently, we can use the wide variety
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of efficient program analysis tools to prove properties of programs. We have demonstrated
the practical viability of the approach using industrial code fragments drawn from the Post-
greSQL database server, the Apache web server, and the Windows OS kernel.
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