
Form Methods Syst Des (2012) 41:321–347
DOI 10.1007/s10703-012-0143-7

Efficient data race detection for async-finish parallelism

Raghavan Raman · Jisheng Zhao · Vivek Sarkar ·
Martin Vechev · Eran Yahav

Published online: 13 March 2012
© Springer Science+Business Media, LLC 2012

Abstract A major productivity hurdle for parallel programming is the presence of data
races. Data races can lead to all kinds of harmful program behaviors, including determinism
violations and corrupted memory. However, runtime overheads of current dynamic data race
detectors are still prohibitively large (often incurring slowdowns of 10× or more) for use in
mainstream software development.

In this paper, we present an efficient dynamic race detection algorithm that handles both
the async-finish task-parallel programming model used in languages such as X10 and Ha-
banero Java (HJ) and the spawn-sync constructs used in Cilk.

We have implemented our algorithm in a tool called TASKCHECKER and evaluated it
on a suite of 12 benchmarks. To reduce overhead of the dynamic analysis, we have also
implemented various static optimizations in the tool. Our experimental results indicate that
our approach performs well in practice, incurring an average slowdown of 3.05× compared
to a serial execution in the optimized case.

Keywords Parallel programming · Program analysis · Data races · Determinism

E. Yahav is a Deloro Fellow.

R. Raman (�) · J. Zhao · V. Sarkar
Rice University, 6100 Main St, Houston, TX 77005, USA
e-mail: raghav@rice.edu

J. Zhao
e-mail: jisheng.zhao@rice.edu

V. Sarkar
e-mail: vsarkar@rice.edu

M. Vechev
ETH Zürich, UNG H 14, Universitätstrasse 19, Zürich 8092, Switzerland
e-mail: martin.vechev@inf.ethz.ch

E. Yahav
Technion–Israel Institute of Technology, Taub Building 734, Haifa 32000, Israel
e-mail: yahave@cs.technion.ac.il

mailto:raghav@rice.edu
mailto:jisheng.zhao@rice.edu
mailto:vsarkar@rice.edu
mailto:martin.vechev@inf.ethz.ch
mailto:yahave@cs.technion.ac.il

322 Form Methods Syst Des (2012) 41:321–347

1 Introduction

Designing and implementing correct and efficient parallel programs is a notoriously difficult
task, yet, with the proliferation of multi-core processors, parallel programming will play a
central role in mainstream software development. One of the main difficulties in parallel pro-
gramming is that programmers are often required to reason explicitly about the interleavings
of operations in their programs. The vast number of interleavings makes this task difficult
even for small programs and intractable for sizable applications. Unstructured and low-level
frameworks such as Java threads allow the programmer to express rich and complicated
patterns of parallelism but also to make mistakes.

Structured parallelism Structured parallelism makes it easier to determine the context in
which an operation is executed and to identify other operations that can execute in parallel
with it. This simplifies manual and automatic reasoning about the program, enabling the
programmer to produce a program that is more robust and often more efficient.

Realizing these benefits, significant efforts have been made toward structuring parallel
computations, starting with constructs such as cobegin-coend [10] and monitors. Recently,
additional support for fork-join task parallelism has been added in the form of libraries [17,
20] to existing programming environments and languages such as Java and .NET.

Parallel languages such as Cilk [4], X10 [8], and Habanero Java (HJ) [3] provide simple,
yet powerful, high-level concurrency constructs that restrict traditional fork-join parallelism
yet are sufficiently expressive for a wide range of problems. The key restriction in these
languages is in the flexibility of choosing which tasks a given task can join. The async-finish
computations that we consider are desirable because the computation graphs generated in
the language are deadlock-free [19] (unlike unrestricted fork-join computations).

Data race and determinism detection We present an efficient dynamic analysis algorithm,
ESP-bags, that checks for the presence of data races (and proves data race freedom) in async-
finish style parallel computations. In this work, we focus on the constructs async, finish, and
isolated. The async construct is used to create a new task that can execute in parallel, the
finish construct is used to specify a join point for a group of tasks, and the isolated construct
is used for mutual exclusion. These constructs form the core of the larger X10 and HJ1

parallel languages. Using async, finish, and isolated, one can express a wide range of useful
and interesting parallel computations (both regular and irregular) such as factorizations and
graph computations.

Our analysis is a generalization of Feng and Leiserson’s SP-bags algorithm [11], which
was designed for checking determinism of spawn-sync Cilk programs. The original algo-
rithm cannot be applied directly to the async-finish style of programming because this model
allows for a superset of the executions allowed by the traditional spawn-sync Cilk programs.
Both the SP-bags algorithm and our extension to it are precise and sound for a given input2:
if a violation is reported, then the race really exists (i.e., there are no false positives). Con-
versely, if a data race exists for that input, a violation will be reported (i.e., there are no false
negatives).

Data race freedom affects the correctness of parallel algorithms and in some cases, it can
imply determinism [6, 18]. For instance, in the absence of data races, all parallel programs

1The construct for mutual exclusion is called atomic in X10 and isolated in HJ.
2The ESP-bags algorithm is precise and sound when the program contains async and finish constructs only.
When the program contains isolated constructs, it is precise but not sound (i.e., there may be false negatives).

Form Methods Syst Des (2012) 41:321–347 323

Program P ::= main{finish{es}}
Extended Statement es ::= finish{es} | async{es} | isolated{s}

if (b) es else es | es; es | while (b) es | · · ·
Fig. 1 The syntax of AFIPL

with async and finish, but without isolated constructs, are guaranteed to be deterministic.
Therefore, if we can prove data-race freedom of programs that do not contain isolated con-
structs, then we can conclude that the program is deterministic.

Main contributions To the best of our knowledge, this is the first detailed study of the
problem of data race detection for async-finish task-parallel programs as embodied in the
X10 and HJ languages. The main contributions of this paper are

– A dynamic analysis algorithm for efficient data race detection of structured async-finish
parallel programs. Our algorithm generalizes the classic SP-bags algorithm designed for
the spawn-sync Cilk model (we also show how any spawn-sync program can be checked
with our algorithm).

– An implementation of our dynamic analysis in a tool named TASKCHECKER.
– Compiler optimizations to reduce the overhead incurred by the dynamic analysis algo-

rithm. These optimizations reduce the average overhead by 37% with respect to the un-
optimized version for the benchmarks used in our evaluation.

– An evaluation of TASKCHECKER on a suite of 12 benchmarks. We show that for these
benchmarks, TASKCHECKER is able to perform data race detection with an average (ge-
ometric mean) slowdown of 4.86× in the absence of compiler optimizations, and 3.05×
with compiler optimizations, compared to a sequential execution.

The rest of the paper is organized as follows. Section 2 introduces the structured parallel
setting that our algorithm targets. Section 3 describes the ESP-bags algorithm for detecting
data races in async-finish parallel programs. Section 4 proves the correctness of the ESP-
bags algorithm. Section 5 describes the extensions needed in the ESP-bags algorithm to
support isolated constructs. Section 6 outlines the compiler optimizations that are performed
to reduce the overhead incurred by our algorithm. Section 7 describes the evaluation of
our algorithm on a suite of 12 benchmarks. Section 8 discusses related work, and Sect. 9
concludes the paper.

2 Background

We present our approach to data-race detection using an abstract language AFIPL, Async
Finish Isolated Parallel Language. We first present our language AFIPL and informally
describe its semantics. To motivate the generalization of the traditional SP-bags algorithm,
we give an example where our language allows for broader sets of behaviors than those
expressible with the spawn-sync constructs in the Cilk programming language.

2.1 Syntax

Figure 1 shows the relevant statements of our language. The language extends any impera-
tive sequential language with three statements: async, finish and isolated. The language al-
lows for nesting of finish and async statements, but does not allow any of the new statements

324 Form Methods Syst Des (2012) 41:321–347

Fig. 2 An example AFIPL program and its computation graph. This code is the body of the main method in
the program

to appear inside isolated statements: async and finish statements cannot appear inside iso-
lated sections. However, isolated statements may contain any of the traditional statements:
loops, conditionals, and so on. To reflect that, we use the name es to denote an extended
statement and s to denote a traditional statement (· · · above is used to denote the remain-
ing basic statements such as primitive assignments, heap assignments, etc). We refer to the
subset of AFIPL without isolated sections as AFPL, the Async Finish Parallel Language.
Our data race detection algorithm is largely independent of the sequential constructs in the
language. For example, the sequential portion of the language can be based on the sequential
portions of C, C++, Fortran, or Java.

2.2 Informal language semantics

Next, we briefly discuss the relevant semantics of the concurrency constructs. For a formal
semantics of the async and finish constructs, see FX10 [19]. Initially, the program begins
execution with the main task. When an async {s} statement is executed by task A, a new
child task, B, is created. The new task B can now proceed with executing statement s in
parallel with its parent task A. For example, consider the AFIPL code of Fig. 2. The main
task starts executing this code. The async statement in line 7 creates a new child task, which
will now execute the block of code in lines 7–14 in parallel with the main task. When a
finish {s} statement is executed by task A, it means that task A must block and wait at the
end of this statement until all descendant tasks created by A in s (including their recursively
created children tasks), have terminated. That is, finish can be used to create a join point

Form Methods Syst Des (2012) 41:321–347 325

for all descendant tasks dynamically created inside its scope. In the example in Fig. 2, the
finish in line 15 would wait for the tasks created by asyncs in lines 16 and 17 to complete.
The statement isolated {s} means that the statement s is executed atomically with respect
to other isolated statements.3 Note that in AFIPL, there is an implicit finish surrounding
the body of the main method, which ensures that the program does not complete before all
spawned tasks complete.

2.3 Cilk vs. AFIPL

Our data race detection algorithm, ESP-bags, presented in later sections, is an adaptation of
the SP-bags algorithm [11] developed for the Cilk programming language. Unfortunately,
the SP-bags algorithm cannot be applied directly to our language and needs to be extended
because the async-finish constructs of AFIPL language supports a more relaxed concurrency
model than the spawn-sync Cilk computations [13]. The static lexical scope of async-finish
subsumes all of spawn-sync excluding conditional syncs.4 On the other hand, the dynamic
computation graph of async-finish subsumes all of spawn-sync including conditional syncs.

The key semantic relaxation lies in the way a task is allowed to join with other tasks.
In Cilk, at any given (join) point of the task execution, the task should join with all of its
descendant tasks (including all recursive descendant tasks) created in between the start of
the task and the join point. The join is accomplished by executing the statement sync. The
semantics of spawn construct is exactly the same as the async construct.

The spawn-sync constructs can be translated to async-finish constructs as follows: each
spawn construct can be directly replaced by an async construct. A Cilk function with uncon-
ditional sync statements can be directly translated to a sequence of finish blocks, where the
start of the finish block is the start of the function or the previous sync, and the end of the
finish block is the label of the sync statement. For instance, we can translate the following
Cilk program,

spawn f 1(); sync; spawn f 2(); sync; s1;
into the following AFIPL program:

finish{async f 1(); }; finish {async f 2(); }; s1;
However, it is not possible to directly translate the conditional sync to a finish because of

the syntactic structure of finish. To handle all programs that can be written with spawn and
sync, we extend the AFIPL language with two keywords (or library calls), beginFinish and
endFinish. The semantics of beginFinish is that it begins a finish block and the semantics
of endFinish is that it completes a finish block. These dynamic beginFinish and endFinish
scopes can be nested arbitrarily unlike the lexical finish construct. These constructs allow
us to define the scope of the finish block dynamically. Note that while the programmer may
use beginFinish and endFinish in an arbitrary order, the runtime system checks that they are
properly nested: any beginFinish eventually completes with a matching endFinish (in the
same task), and no endFinish is issued without a corresponding beginFinish already having
started (in the same task). As a high-level analogy, the relationship between beginFinish /
endFinish and AFIPL’s lexical finish construct is akin to that of MonitorEnter / MonitorExit

3As advocated in [16], we use the isolated keyword instead of atomic to make explicit the fact that the
construct supports weak isolation rather than strong atomicity.
4We refer to a sync that is executed under some condition in a function body as a conditional sync.

326 Form Methods Syst Des (2012) 41:321–347

1 f o r (i n t i =0 ; i < s i z e ; i ++) {
2 spawn f () ;
3 i f (i == 3) {
4 sync ;
5 }
6 } / / f o r
7 sync ;

1 b e g i n F i n i s h () ;
2 f o r (i n t i =0 ; i < s i z e ; i ++) {
3 async f () ;
4 i f (i == 3) {
5 e n d F i n i s h () ;
6 b e g i n F i n i s h () ;
7 }
8 } / / f o r
9 e n d F i n i s h () ;

(a) (b)

Fig. 3 (a) a Cilk program with conditional syncs and (b) its translation to AFIPL program

bytecode instructions and Java’s lexical synchronized statement (though bytecode verifica-
tion rather than dynamic checking is used to check the proper nesting of MonitorEnter /
MonitorExit instructions).

Using beginFinish and endFinish, we can represent all of the sync constructs of Cilk
(including conditional syncs) as follows:

1. Generate a beginFinish on entry to every function.
2. Replace each occurrence of sync by endFinish; beginFinish.
3. Generate an endFinish on function exit to reflect Cilk’s implicit sync on function exit.

Figure 3 shows an example Cilk program with conditional syncs and its translation to
AFIPL program. Note the conditional sync on line 4 in the Cilk program. It is translated
into endFinish(); beginFinish(); in the AFIPL program. This shows that the async-finish
constructs subsume all of spawn-sync constructs. Our race detection algorithm works by
intercepting the start and end of finish and async constructs. Hence, it can be applied directly
to spawn and sync constructs of Cilk as well.

In contrast to Cilk, with the use of nested finish operations in AFIPL, it is possible for
a task to join with some rather than all of its descendant tasks. These descendant tasks are
specified at the language level with the finish construct: upon encountering the end of a
finish block, the task waits until all of the descendant tasks created inside the finish scope
have completed.

The computation graph in Fig. 2 illustrates the differences between Cilk and AFIPL.
Each vertical sequence of circles denotes a task. Here we have four sequences for four tasks.
Each circle in the graph represents a program label, and an edge represents the execution of
a statement at that label. Note that at label 22, the main task waits only for T3 and T4 but
not for T2, which is not possible using the spawn-sync semantics in Cilk.

Another restriction in Cilk is that every task must execute a sync statement upon its
return. That is, a task cannot terminate unless all of its descendants have terminated. In
contrast, in AFIPL, a task can outlive its parents: i.e., a task can complete even while its
children are still alive. For instance, in the example of Fig. 2, in Cilk, T3 would need to
wait until T4 has terminated. That is, the edge from node 19 to 22 would change to an edge
from 19 to 21. This need not be the case in AFIPL: task T3 can terminate before task T4 has
finished.

More generally, the class of computations generated by the spawn-sync constructs is said
to be fully-strict [5], while the computations generated by our language are called terminally-
strict [1]. The set of terminally-strict computations subsumes the set of fully-strict compu-
tations. All of these relaxations mean that it is not possible to convert a AFIPL program
directly into the spawn-sync semantics of Cilk, which in turn implies that we cannot use its
SP-bags algorithm directly and that we need to generalize that algorithm to our setting. We
show how that is accomplished in the next section.

Form Methods Syst Des (2012) 41:321–347 327

3 ESP-bags algorithm

In this section, we first summarize the SP-bags algorithm used for spawn-sync computa-
tions. Then, we present our extension of SP-bags, called ESP-bags, for detecting data races
in AFPL programs. For a given input, ESP-bags and SP-bags detect data races in a given
program if and only if a data race exists (Theorem 5 in Sect. 4). That is, if the ESP-bags
algorithm does not detect a data race for a given input, then it is guaranteed that there is no
data race in any schedule of the program for that given input. On the other hand, if a race
is found, the algorithm stops after the first one is detected. This means that there is some
schedule of the program, with the given input, for which the reported race is the first one en-
countered. There may be other schedules with the given input that may encounter a different
set of races in a different order.

The SP-bags algorithm was designed for Cilk’s spawn-sync computations. As mentioned
earlier, we can always translate spawn-sync computations into async-finish computations.
Therefore, we present the operations of the original SP-bags algorithm in terms of async and
finish, rather than spawn and sync constructs, so that the extensions are easily understood.

3.1 SP-bags

Although the program being tested for data races is a parallel program, the SP-bags algo-
rithm is a serial algorithm that performs a sequential depth-first execution of the program on
a single processor.

We assume that each dynamic task (async) instance is given a unique task ID. The basic
idea behind the SP-bags algorithm is to attach two “bags”, S and P, to each dynamic task
instance (S stands for Serial and P for Parallel). Each bag contains a set of task IDs. When
a statement E that belongs to a task A is being executed, the S-bag of task A will hold all
of the descendant tasks of A that always precede E in any execution of the program. The
S-bag of A will also include A itself since any statement G in A that executes before E in
the sequential depth-first execution will always precede E in any execution of the program.
The P-bag of A holds all descendant tasks of A that may execute in parallel with E.

At any point during the depth-first execution of the program, a task ID will always belong
to at most one bag. Therefore, all bags can be efficiently represented using a single disjoint-
set data structure.

The intuition behind the algorithm can be stated as follows: when a program is executed
in a depth-first manner, a write W1 to a shared memory location L by a task τ1 races with
an earlier read/write to L by any task τ2 that is in a P-bag when W1 occurs, and it does not
race with a read/write by any task that is in an S-bag when W1 occurs. A read races with an
earlier write in the same way.

The following table shows the update rules for the SP-bags algorithm:

Async A : SA ← {A}, PA ← ∅
Task A returns to Task B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
EndFinish F in a Task B : SB ← SB ∪ PB , PB ← ∅

When a task A is created, its S bag is initialized to contain its own task ID because no
pair of accesses to a memory location in task A should conflict. The P bag of A is initialized
to an empty set because when A begins it has no descendants. When a task A returns to a
task B during the depth-first execution, the contents of the S and P bags of A are moved to
the P bag of B. This is because the code following task A in B can execute in parallel with

328 Form Methods Syst Des (2012) 41:321–347

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wr i t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 L . w r i t e r = t ;

Fig. 4 Instrumentation on shared memory access. Applies both to SP-bags and ESP-bags

A and hence, while executing this part of the code in B, A and its descendants should be
in a P bag. When a join point is encountered in a task A, the P bag of A is moved to its S
bag. This is because the code after the join point in A can never execute in parallel with the
descendants of A before the join, and thus, while executing this part of the code in A, all
descendants of A before the join should be in an S bag.

In addition to the above steps, during the depth-first execution of a program, the SP-bags
algorithm maintains two additional fields for each memory location: a reader task ID and
a writer task ID, and takes an action on every read and write of a shared variable. Figure 4
shows the required instrumentation for read and write operations. For each operation on a
shared memory location L, we only need to check those fields of L that could conflict with
the current operation.

3.2 ESP-bags

Next, we present our extensions to the SP-bags algorithm. Recall that the key difference
between AFPL and spawn-sync lies in the flexibility of selecting which of its descendant
tasks a parent task can join. The following table shows the update rules for the ESP-bags
algorithm. The extensions to SP-bags are highlighted in bold.

Async A—fork a new task A : SA ← {A}, PA ← ∅
Task A returns to Parent B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
StartFinish F : PF ← ∅
EndFinish F in a Task B : SB ← SB ∪ PF , PF ← ∅

The key extension lies in attaching a P bag not only to tasks but also to identifiers of
finish blocks. At the start of a finish block F, its P bag is initialized to an empty set because
it has no descendants yet. When a finish block F ends in a task B, the contents of the P bag
of F are moved to the S bag of B. This is because at the end of the finish block F, all the tasks
within the scope of F are guaranteed to complete. The code following the end of F in B can
never execute in parallel with any task in F and hence, while executing this part of the code
in B, all the descendants of F must be in an S bag. Further, during the depth-first execution,
when a task A returns to its parent B, B may be either a task or a finish block. The actual
operations on the S and P bags in that case are identical to SP-bags.

The need for this extension comes from the fact that at the end of a finish block, only the
tasks created inside the finish block are guaranteed to complete and therefore will precede
the tasks that follow the finish block. Therefore, only the tasks created inside the finish block
need to be added to the S-bag of the parent task when the finish completes, and those tasks
created before the finish block began need to stay in the P-bag of the parent task.

Form Methods Syst Des (2012) 41:321–347 329

This extension generalizes the SP-bags presented earlier. This means that the ESP-bags
algorithm can be applied directly to spawn-sync programs as well by first translating them
to async-finish as shown earlier and then by applying the algorithm. Of course, if we know
that the finish blocks have a particular structure, and we know that translated spawn-sync
programs do, then we can safely optimize away the P bag for the finish ID’s and directly
update the bag of the parent task (as done in the original SP-bags algorithm).

3.3 Space overhead

The space overhead of this algorithm is O(1) for each memory location, since we only store
the reader and writer task IDs for each memory location. In addition, we need space to store
all the task IDs in the form of a disjoint-set data structure. Note that we need to store the
IDs of completed tasks as well, since there might be a need to look up such a task to check
if it is in an S or a P bag as part of some memory access. However, this space is generally
insignificant compared to the space needed for each memory location.

3.4 Time overhead

In this algorithm, there are up to two look-ups for every memory access in the program.
Also there are two union operations for each task instance in the program and one union
operation for each finish instance. All these operations, look-ups and unions, happen on the
disjoint-set data structure that contains all the tasks in the program. Tarjan showed that in the
worst case, time taken for any operation on a disjoint-set structure is bounded by the inverse
Ackermann function of the size of the data structure [24, 25]. Hence, each of these operations
(look-up and union) will take time proportional to the inverse Ackermann function of the
total number of tasks in the program. Note that the Ackermann function grows so fast that
we can take the value of the inverse of Ackermann function to be 4 (the upper bound for all
practical purposes). Since the number of memory accesses dominates the number of tasks
in most programs, the total time complexity of the algorithm is proportional to four times
the number of memory accesses in the program.

3.5 Discussion

In summary, the ESP-bags algorithm works by updating the reader and writer fields of a
shared memory location whenever that memory location is read or written by a task. On
each such read/write operation, the algorithm also checks to see if the previously recorded
task in these fields (if any) can conflict with the current task, using the S and the P bags of
the current task. We now show an example of how the algorithm works for the AFPL code
in Fig. 2. Suppose that the main task, T1, starts executing that code. We refer to the finish
in line 4 as F1 and the first instance of the finish in line 15 as F2. Also, we refer to the
first instance of the tasks generated by the asyncs in lines 7, 16, and 17 as T2, T3, and T4,
respectively.

Table 1 shows how the S and P bags of the tasks (T1, T2, T3, and T4) and the P bags of the
finishes (F1 and F2) are modified by the algorithm as the code in Fig. 2 is executed. Each
row shows the status of these S and P bags after the execution of a particular statement in
the code. The PC refers to the statement number (from Fig. 2) that is executed. This table
only shows the status corresponding to the first iteration of the for loop in line 5. The table
also tracks the contents of the writer field of the memory location B[0]. The P bags of the
tasks T1, T2, and T4 are omitted here since they remain empty through the first iteration of
the for loop.

330 Form Methods Syst Des (2012) 41:321–347

Table 1 ESP-bags example

PC T1
S

F1
P

T2
S

F2
P

T3 T4
S

B[0]
WriterP S

1 {T1} – – – – – – –

4 {T1} ∅ – – – – – –

7 {T1} ∅ {T2} – – – – –

8 {T1} ∅ {T2} – – – – T2

14 {T1} {T2} ∅ – – – – T2

15 {T1} {T2} ∅ ∅ – – – T2

16 {T1} {T2} ∅ ∅ ∅ {T3} – T2

17 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T2

∗18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T4

19 {T1} {T2} ∅ ∅ { T4} {T3} ∅ T4

21 {T1} {T2} ∅ {T4,T3} ∅ ∅ ∅ T4

22 {T1,T4,T3} {T2} ∅ ∅ ∅ ∅ ∅ T4

In the first three steps in the table, the S and P bags of T1, F1, and T2 are initialized
appropriately. When the statement in line 8 is executed, the writer field of B[0] is set to the
current task, T2. Then, on completion of T2 in line 14, the contents of its S and P bags are
moved to the P bag of F1. When the write to B[0] in line 18 (in Task T4) is executed, the
algorithm finds the task in its writer field, T2, in a P bag (the P bag of F1), and is reported
as a data race. Further, when T4 completes in line 19, the contents of its S and P bags are
moved to the P bag of its parent T3. Similarly, when T3 completes in line 21, the contents of
its S and P bags are moved to the P bag of its parent F2. When the finish F2 completes in
line 22, the contents of its P bag are moved to the S bag of its parent T1.

4 Correctness of the ESP-bags algorithm

In this section, we prove the correctness of the ESP-bags algorithm for AFPL. Section 5
shows the extension of ESP-bags for AFIPL. First, we start by defining the Computation
Graph for an AFPL program. We then introduce the Dynamic Program Structure Tree
(DPST) and how to construct the DPST for a given program with finish and async con-
structs. The DPST abstraction is used to establish the correctness proof and is not actually
constructed by our algorithm. We then discuss the invariants that hold on the DPST when
two tasks may-happen-in-parallel (Definition 3) and otherwise. Using the invariants on the
DPST, we establish a relation between may-happen-in-parallel and the contents of the P-
bag. Finally, we prove that the ESP-bags algorithm detects a data race in a program for a
given input if and only if a data race exists; that is, the algorithm is precise and sound for
the given input.

Definition 1 A Computation Graph (CG), Φ(N,E), for a schedule Ψ of an AFPL program
P is a directed acyclic graph (dag) where

Form Methods Syst Des (2012) 41:321–347 331

1. N is the set of nodes such that each node n ∈ N corresponds to a statement instance5

in Ψ .
2. E is the set of edges that connects the statement instances such that each edge e ∈ E be-

longs to one of the following types: continue, async, and join [4, 14]. There is a continue
edge from every instance of a statement in a task to the instance of its next statement in
the same task according to the program order. There is an async edge from every async
statement instance to the instance of the first statement of the new task that it creates.
There is a join edge from the instance of the last statement of every task to the statement
instance that marks the end of its immediately enclosing finish.

Figure 2 shows an AFPL program with finish and async constructs and the computation
graph corresponding to its execution in which the for loop in line 5 is executed only once.

Definition 2 A continue-edge-only path in a computation graph is a path in which all the
edges are of type continue.

Definition 3 Two statement instances s1 and s2 in a schedule Ψ of a program may-happen-
in-parallel,6 written as MHP(s1, s2) = true, if and only if there is no path from s1 to s2 and
from s2 to s1 in the computation graph of Ψ .

When two statement instances s1 and s2 in a schedule Ψ of a program P for an input ξ

may-happen-in-parallel, MHP(s1, s2) = true, it means that there is a possible schedule of P

with input ξ in which s1 and s2 execute in parallel.
The Dynamic Program Structure Tree (DPST) is a runtime representation of the Program

Structure Tree (PST) introduced in [2]. There are some important differences between a
DPST and a PST. While the PST is a static data structure for a procedure in a program, the
DPST is a dynamic data structure that spans the entire program. Since the DPST is a runtime
data structure, it creates one node for every statement instance created during the program
execution. A DPST node is one of three types: finish, async, and statement. The other three
types of nodes in a PST, root, loop, and isolated, are not present in a DPST. The root is not
present in a DPST because the implicit finish node in the main method is always the root of
a DPST. Since the DPST is a runtime representation, the loops are unrolled and hence there
is no need for a loop node. Because we restrict ourselves to AFPL in this section, we do not
include isolated nodes.

Definition 4 A Dynamic Program Structure Tree (DPST), Γ (N,E,Par,C), for a schedule
Ψ of an AFPL program P for a given input ξ is an ordered rooted tree where

1. N is a set of nodes, one for every statement instance in Ψ . Every internal node belongs to
one of the two types, finish and async, and every leaf node is of the type statement. The
root node is always of the type finish, and it corresponds to the implicit finish surrounding
the body of main() in the program.

2. Par defines the parent relation between nodes in Γ as follows:

– Par(n) = α, for every finish node α and every node n that satisfies the following con-
dition: α is the immediately enclosing finish of n, and there is a continue-edge-only
path from the start of the finish α to n in the computation graph corresponding to Ψ .

5We refer to an execution of a statement as either a dynamic statement instance or a statement instance.
6The definition of the static version of MHP can be found in [2].

332 Form Methods Syst Des (2012) 41:321–347

Fig. 5 Dynamic Program
Structure Tree for the program
and computation graph in Fig. 2

– Par(n) = β , for every async node β and every node n that satisfies the following con-
dition: n belongs to the task corresponding to β , and the immediately enclosing finish
of n is not in β .

3. E is a set of tree edges that are obtained as follows: E = {(n1, n2) : Par(n2) = n1}
4. C defines the children relation among nodes in Γ as follows: C(α) = {n : Par(n) = α}

Note that the set C(α) is ordered, which reflects the order of the children for every
parent in Γ .

Definition 5 The Lowest Common Ancestor of two nodes s1 and s2, LCA(s1, s2), in a tree
Γ is the node ϕ that is an ancestor7 of both s1 and s2 with the greatest depth8 in Γ .

Definition 6 In an ordered tree Γ , a node s1 is said to be to the left of a node s2 if and only
if s1 appears before s2 in the inorder traversal of Γ . The relation to the left of is defined on
two nodes s1 and s2 if and only if LCA(s1, s2) �= s1 and LCA(s1, s2) �= s2.

The set of edges from every internal node to its children in a DPST are arranged to reflect
the program order, i.e., if a statement instance s1 executes before a statement instance s2 in
a schedule Ψ , the node s1 will appear to the left of the node s2 in the DPST corresponding
to Ψ .

Figure 5 shows the DPST for the AFPL program in Fig. 2. Note that the finish node 0 is
the implicit finish in the body of main() (assuming that the code shown in Fig. 2 is the body
of the main).

Theorem 1 Every data-race-free AFPL program with finish and async constructs has a
unique DPST that corresponds to all possible executions for a given input.

Proof Let us consider an AFPL program P with finish and async constructs that contains
no data races. The immediately enclosing finish for every statement in P is the same across
all possible executions of P for a given input ξ . Also every statement in P belongs to
the same task across all possible executions of P for input ξ . Hence in every DPST of P

that corresponds to different executions of P for an input ξ , the parent-child relationship

7A node is considered both an ancestor and a descendant of itself.
8The depth of a node in a tree is the length of the path from the root to the node.

Form Methods Syst Des (2012) 41:321–347 333

is unique between nodes corresponding to all the instances of finish, async, and statements
in P . In other words, if node α is the parent of node β in a DPST of P , then α is the parent
of β in every DPST of P for an input ξ .

The only other source of non-determinism could be in the order of edges from an internal
node to its children. By definition of the DPST, all the edges from every internal node to its
children are arranged according to the program order. Hence, there is a unique DPST for
every AFPL program with finish and async constructs for a given input. �

Theorem 2 The sequential depth-first execution of an AFPL program explores the DPST of
the program corresponding to this execution in depth-first order from left to right.

Proof By definition of DPST, the edges from every internal node to its children are ordered
according to the program order of the corresponding statements. The sequential depth-first
execution of an AFPL program will execute the statements in the program order, which
corresponds to the left to right depth-first order of the nodes in its DPST. �

Theorem 3 Let Γ be the DPST corresponding to the sequential depth-first execution Ψ of
an AFPL program P with input ξ . Let s1 and s2 be two nodes in Γ . Let s1 be to the left of
s2 in Γ . Let LCA(s1, s2) = ϕ, ϕ �= s1, ϕ �= s2. Let A1 denote the DPST ancestor of s1 that is
the child of ϕ. The following conditions hold:

1. MHP(s1, s2) = true if and only if A1 is an async node.
2. MHP(s1, s2) = false if and only if A1 is a finish node.

Proof Let Φ denote the computation graph corresponding to Γ .

1. if : Let A1 be an async node. Let F1 denote the immediately enclosing finish of A1. In Φ ,
any path starting at s1 (that goes out of A1) has to go to the end of A1 and then directly to
the end of F1. But s2 is outside the async A1 and inside the finish F1. Hence there can be
no path from s1 to s2 in Φ . Since s1 is to the left of s2 in Γ , it follows from Theorem 2
that s1 executes before s2 in Ψ . Hence there can be no path from s2 to s1 in Γ . Thus,
MHP(s1, s2) = true.

only if : Let MHP(s1, s2) = true. By definition, there can be no path from s1 to s2 and
from s2 to s1 in Φ . If A1 is a finish node, then there is a path in Φ starting at s1 that
goes to the end of A1 and then to s2. Hence A1 can not be a finish node. A1 can not be a
statement node because all statement nodes are leaf nodes. Thus A1 is an async node.

2. if : Let A1 be a finish node. There is a path in Φ that starts at s1, goes to the end of A1,
and then to s2. Hence MHP(s1, s2) = false.

only if : Let MHP(s1, s2) = false. By definition, there is path from s1 to s2 or from s2

to s1 in Φ . Since s1 is to the left of s2 in Γ , it follows from Theorem 2 that s1 executes
before s2 in Ψ . Hence there can be no path from s2 to s1 in Γ . If A1 is an async node,
then there can be no path from s1 to s2 as well. A1 must be a finish node. �

Theorem 4 Let Γ be the DPST corresponding to the sequential depth-first execution of
an AFPL program P with an input ξ . Let statement instance s1 be to the left of statement
instance s2 in Γ . During the sequential depth-first execution of P with input ξ in the ESP-
bags algorithm, when s2 is being executed, the ID of the task τ that executes s1 will be in a
P-bag if and only if s1 may-happen-in-parallel with s2.

334 Form Methods Syst Des (2012) 41:321–347

Proof Let Γ be the DPST of P for input ξ . Let LCA(s1, s2) = ϕ. Consider the case when
ϕ �= s1 and ϕ �= s2. If ϕ = s1, then s1 has to be an internal node, i.e., a finish or an async node.
This case is not necessary because we are only interested in the MHP relation between two
statement instances. The same holds when ϕ = s2.

if : Let us assume s1 may-happen-in-parallel with s2. During the sequential depth-first
execution of P , s1 will be executed before s2 because of the assumption that s1 is to the
left of s2. Let A1 denote the DPST ancestor of s1 that is the child of ϕ. We know from
Theorem 3 that A1 must be an async node. According to the rules of the ESP-bags algorithm
from Sect. 3.2, when the sequential depth-first execution returns from an async to its parent,
the contents of the S and P bags of the async are emptied into the P bag of the parent. These
contents stay in the P bag of the parent until the execution reaches the end of the parent. In
our case, when the sequential depth-first execution of ESP-bags returns from A1, the ID of
the task τ that owns s1 will be put in the P-bag of ϕ, which is the parent of A1 in Γ . The ID
of τ will stay in the P-bag of ϕ until the execution completes the execution of the subtree
under ϕ. By definition of ϕ and A1 we know that s2 is in a subtree whose root is a peer of
A1 and is to the right of A1. Hence when s2 is executed, the ID of τ will be in a P-bag.

only if : Let us assume that the ID of the task τ that owns s1 is in a P-bag when s2

is executed under the sequential depth-first execution of the ESP-bags algorithm. Let A1

denote the DPST ancestor of s1 that is the child of ϕ.

Case 1: A1 is a finish node. In this case τ will be in a S bag when s2 is executed, according
to the rules from Sect. 3.2.

Case 2: A1 is the node corresponding to s1. Again in this case τ will be in a S bag when s2

is executed, according to the rules from Sect. 3.2.

Hence A1 can neither be a finish node nor the node corresponding to s1. A1 must be an async
node. Following from Theorem 3, s1 may-happen-in-parallel with s2. �

Theorem 5 (Precision and Soundness) The ESP-bags algorithm detects a data race in an
AFPL program for a given input if and only if a data race exists.

Proof Let us consider an AFPL program P that is executed with an input ξ . Let Γ denote
the DPST corresponding to the sequential depth-first execution of P with input ξ .

if : Let us assume that there is a data race in some schedule of P with input ξ . There
are two statements, s1 and s2, that may-happen-in-parallel, both accessing the same memory
location L, and one of those is a write. Without loss of generality, let us assume that s1

executes before s2 during the ESP-bags’s sequential depth-first execution of P . Thus s1 will
be to the left of s2 in Γ . From Theorem 4 it follows that when s2 is executed, the task τ that
owns s1 will be in a P-bag.

Case 1: s2 contains a read of L. In this case, s1 will contain a write to L. When s2 is executed
during the sequential depth-first execution, the ESP-bags algorithm checks if the previous
writer of L is in a P-bag (according to the rules in Fig. 4). In this case, since τ is in a P-bag,
the algorithm signals a data race.

Case 2: s2 contains a write of L. Now s1 may contain either a read or a write to L. When
s2 is executed during the sequential depth-first execution, the ESP-bags algorithm checks
if the previous reader or writer of L is in a P-bag (according to the rules in Fig. 4). In this
case, since τ is in a P-bag, the algorithm signals a data race.

only if : Let us assume that the ESP-bags algorithm detects a data race in P with input ξ .
According to the rules of the algorithm in Fig. 4, a data race will be signaled only in two
cases:

Form Methods Syst Des (2012) 41:321–347 335

1 I s o l a t e d Read of l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . i s o l a t e d R e a d e r i s i n a S−bag t h e n L . i s o l a t e d R e a d e r = t ;

1 I s o l a t e d Wr i t e o f l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . i s o l a t e d W r i t e r i s i n a S−bag t h e n L . i s o l a t e d W r i t e r = t ;

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . i s o l a t e d W r i t e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wr i t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 or L . i s o l a t e d W r i t e r i s i n a P−bag or L . i s o l a t e d R e a d e r i s i n a P−bag
4 t h e n Data Race ;
5 L . w r i t e r = t ;

Fig. 6 ESP-bags algorithm for AFIPL

Case 1: On the read of a memory location L in a statement s2, the previous writer of L

(corresponding to a write in a statement s1), say τ , is in a P-bag. It follows from Theorem 4
that s1 may-happen-in-parallel with s2. Hence, there is a data race in some execution of P

with input ξ .
Case 2: On the write of a memory location L, the previous reader or writer of L (corre-

sponding to a read or a write in a statement s1), say τ , is in a P-bag. It follows from Theo-
rem 4 that s1 may-happen-in-parallel with s2. Hence, there is a data race in some execution
of P with input ξ . �

In summary, if there are races in the program for the given input, ESP-bags will find them
and will never report races that do not exist.

5 Handling isolated blocks

In this section, we describe an extension to the ESP-bags algorithm for handling isolated
sections. Isolated sections are useful since they allow the programmer to write data-race-
free parallel programs in which multiple tasks interact and update shared memory locations.

When an AFIPL program contains isolated sections, the data race detector must check for
conflicts between isolated and non-isolated accesses to the same memory location that may
execute in parallel. If an access a1 to a memory location L in an isolated section conflicts
with another access a2 to L in a non-isolated section, then it is a data race.

Note that, accesses within isolated sections do not conflict with other accesses within iso-
lated sections because of the mutual exclusion semantics guaranteed by isolated constructs.
Hence, these isolated accesses themselves cannot cause data races.

The extension for handling isolated sections includes checking that isolated and non-
isolated accesses that may execute in parallel do not interfere. For this, we extend ESP-bags
as follows: two additional fields are added to every memory location, isolatedReader, and
isolatedWriter. These fields are used to record the task that performs an isolated read or
write on the location. The additional fields need only be added to memory locations that are
accessed within isolated sections.

336 Form Methods Syst Des (2012) 41:321–347

Fig. 7 An example AFIPL
program that depicts a scenario in
which the ESP-bags algorithm is
not sound

1 f i n i s h {
2 async {
3 i s o l a t e d { t = 0 ; }
4 } / / a sync
5 i s o l a t e d { t = 1 ; }
6 } / / f i n i s h
7 i f (t == 0) {
8 async { x = 2 0 ; }
9 x = 1 0 ; / / a da ta race

10 } / / i f

We need to handle reads and writes in isolated blocks differently than non-isolated oper-
ations. Figure 6 shows the required steps during each of the operations: read, write, isolated-
read, and isolated-write.

Correctness With the extension to support isolated sections, the ESP-bags algorithm loses
soundness (i.e., there may be false negatives): there are example programs with isolated
constructs that contain races for a given input for which AFIPL fails to find the race. Note
that the ESP-bags algorithm is precise (i.e., there are no false positives) even in the presence
of isolated sections.

The problem is that with isolated sections, there may be cases when the sequential depth-
first execution does not execute certain paths of the code that may be executed in some par-
allel schedule for the same input. This happens when the isolated sections in the program do
not commute. In this case, for the same input, the isolated sections may produce a different
result in some parallel schedule compared to the result produced in a depth-first execution,
and there may be some code conditioned on this result that has a data race. The ESP-bags
algorithm does not report this data race because the code with the data race is never executed
during the sequential depth-first execution of the algorithm.

Figure 7 shows an example AFIPL program that depicts a scenario in which the ESP-
bags algorithm is not sound in the presence of isolated sections. In this example, during
the depth-first execution of our algorithm, the isolated block in line 3 executes before the
isolated block in line 5. Hence, in such an execution, the if statement in line 7 evaluates to
false, due to which the code in lines 8 and 9 does not execute, and our algorithm reports no
data races. However, there is a parallel schedule of this program for the same input in which
the execution happens such that the isolated block in line 5 executes first, followed by the
isolated block in line 3. In this schedule, the if in line 7 will evaluate to true, the code in
lines 8 and 9 will execute, and there will be a data race. This happens because the isolated
blocks in lines 3 and 5 do not commute, and hence they produce different results based on
the order in which they are executed.

However, if the isolated sections in the input program commute, the sequential depth-first
execution is sufficient. In such cases, the ESP-bags algorithm does not miss data races for
the given input. In practice, isolated sections are used only with very small scopes, and it is
easy to show that they commute (for instance, they use only commutative operations such
as addition, to increment a counter).

In summary, when the isolated sections commute, the ESP-bags algorithm is precise and
sound for the given input. When the isolated sections do not commute, it is precise but not
sound.

6 Optimizations

The ESP-bags algorithm is implemented as a Java library. Recall that the ESP-bags algo-
rithm requires that action is taken on every read and write to a shared memory location. It

Form Methods Syst Des (2012) 41:321–347 337

is during these actions that the algorithm checks if the current task can race with the task
recorded in the reader or writer fields of the memory location. Now, to test a given program
for determinism using the ESP-bags algorithm, we need a compiler transformation pass that
instruments read and write operations on a heap location or an array in the program with
appropriate calls to the library. It would be naive to instrument every access to every shared
memory location because some of these instrumentations may be redundant; i.e., removing
them will not affect the process of checking for data races in the program. Because some
read and write operations are guaranteed to never cause any additional data races in the
program, such operations need not be instrumented.

As mentioned earlier, because the ESP-bags algorithm also keeps track of the finish,
async, and isolated blocks in the program, it requires instrumentations for the start and end
of every such block in the program. These instrumentations are all necessary to maintain the
structure of parallelism at runtime in the ESP-bags algorithm.

In this section, we describe the static analyses that can be used to reduce the instru-
mentation and hence improve the runtime performance of the instrumented program. We
also include an example that depicts how each of these static analyses are used to eliminate
instrumentation points. Figure 8 shows a program in AFPL with all its read and write oper-
ations instrumented (DJCRead and DJCWrite refers to the call to the library). Suppose that
the main task is always guaranteed to start executing this portion of the program. This will
be used as the baseline to depict these optimizations. Note that the instrumentations that are
needed for the finish and async blocks are not shown in this example.

6.1 Main task check elimination in sequential code regions

The first static optimization aims to eliminate redundant instrumentation points that are
added in the sequential code regions. A parallel program will always start and end with
sequential code regions and will contain alternating parallel and sequential code regions in
the middle. It is trivial to show that no read or write operation in the sequential code regions
of the program can result in a data race. Hence, there is no need to instrument the read and
write operations in such sequential code regions of the program. In an AFPL program, the
sequential code regions are the regions of the program that are outside the outermost finish
blocks9 and are executed by the main task. Thus, in an AFPL program, there is no need to
instrument the read and write operations in such sequential code regions of the main task.

Figure 9 shows the result of eliminating the instrumentation points in the sequential code
regions of the program in Fig. 8. The program in Fig. 8 contains a write to a heap location
p.x in line 4 that is part of the sequential code region executed by the main task. Hence the
corresponding call to the library in line 3 can be eliminated.

6.2 Read-only check elimination in parallel code regions

The input program may have shared memory locations that are written by the sequential
regions of the program and only read within parallel regions of the program. Such read
operations need not be instrumented because parallel tasks reading from the same memory
location will never lead to a conflict. In order to perform this optimization, the compiler
implements an inter-procedural side-effect analysis to detect potential write operations to

9This is assuming there are no asyncs outside any finish in the program. If there are any such asyncs, then the
only sequential code regions in the program are the regions outside the outermost finish and before the first
such async.

338 Form Methods Syst Des (2012) 41:321–347

Fig. 8 An example AFPL
program with all read and write
operations instrumented

1 i n t [] A, B ; Foo p ;
2
3 DJCWrite (p , x) ;
4 p . x = 0 ;
5 f i n i s h {
6 f o r (i n t i =0 ; i < s i z e ; i ++) {
7 f i n a l i n t i n d = i ;
8 async {
9 DJCRead (A, i n d) ;

10 DJCRead (B , i n d) ;
11 DJCWrite (p , x) ;
12 p . x = A[i n d] + B[i n d] ;
13 Foo q = new Foo () ;
14 f o r (i n t j =0 ; j < i n d ; j ++) {
15 DJCRead (p , x) ;
16 DJCWrite (q , x) ;
17 q . x = p . x + 1 ;
18 DJCRead (q , y) ;
19 DJCWrite (B , j) ;
20 B[i] = q . y + i n d ;
21 }
22 }
23 }
24 }

Fig. 9 After applying the main
task check elimination
optimization on the program in
Fig. 8

1 i n t [] A, B ; Foo p ;
2
3 p . x = 0 ;
4 f i n i s h {
5 f o r (i n t i =0 ; i < s i z e ; i ++) {
6 f i n a l i n t i n d = i ;
7 async {
8 DJCRead (A, i n d) ;
9 DJCRead (B , i n d) ;

10 DJCWrite (p , x) ;
11 p . x = A[i n d] + B[i n d] ;
12 Foo q = new Foo () ;
13 f o r (i n t j =0 ; j < i n d ; j ++) {
14 DJCRead (p , x) ;
15 DJCWrite (q , x) ;
16 q . x = p . x + 1 ;
17 DJCRead (q , y) ;
18 DJCWrite (B , j) ;
19 B[i] = q . y + i n d ;
20 }
21 }
22 }
23 }

shared memory locations within the parallel regions of the given program. If there is no
possible write to a shared memory location M in the parallel regions of the program, that
clearly shows that all accesses to M in the parallel regions must be read-only, and hence the
instrumentation points corresponding to these reads can be eliminated. The checks for the
writes in the sequential regions, if any, will be eliminated by the rule in Sect. 6.1.

The result for applying this optimization on the program in Fig. 9 is shown in Fig. 10.
There is no write to array A within the parallel regions of the program in Fig. 9, so the
instrumentation in line 8 corresponding to the read of A in line 11 can be removed.

6.3 Escape analysis

The input program may include many parallel tasks. A determinacy race occurs in the pro-
gram only when two or more tasks access a shared memory location and at least one of them

Form Methods Syst Des (2012) 41:321–347 339

Fig. 10 After applying the
read-only check optimization on
the program in Fig. 9

1 i n t [] A, B ; Foo p ;
2
3 p . x = 0 ;
4 f i n i s h {
5 f o r (i n t i =0 ; i < s i z e ; i ++) {
6 f i n a l i n t i n d = i ;
7 async {
8 DJCRead (B , i n d) ;
9 DJCWrite (p , x) ;

10 p . x = A[i n d] + B[i n d] ;
11 Foo q = new Foo () ;
12 f o r (i n t j =0 ; j < i n d ; j ++) {
13 DJCRead (p , x) ;
14 DJCWrite (q , x) ;
15 q . x = p . x + 1 ;
16 DJCRead (q , y) ;
17 DJCWrite (B , j) ;
18 B[j] = q . y + i n d ;
19 }
20 }
21 }
22 }

Fig. 11 After applying the
escape analysis and check
elimination optimization on the
program in Fig. 10

1 i n t [] A, B ; Foo p ;
2
3 p . x = 0 ;
4 f i n i s h {
5 f o r (i n t i =0 ; i < s i z e ; i ++) {
6 f i n a l i n t i n d = i ;
7 async {
8 DJCRead (B , i n d) ;
9 DJCWrite (p , x) ;

10 p . x = A[i n d] + B[i n d] ;
11 Foo q = new Foo () ;
12 f o r (i n t j =0 ; j < i n d ; j ++) {
13 DJCRead (p , x) ;
14 q . x = p . x + 1 ;
15 DJCWrite (B , j) ;
16 B[j] = q . y + i n d ;
17 }
18 }
19 }
20 }

is a write. Suppose an object is created inside a task, and it never escapes that task; because
no other task can access this object, it cannot lead to a determinacy race. In order to ensure
the task-local attribute, the compiler performs an inter-procedural analysis that determines
if an object is shared among tasks. This also requires an alias analysis to ensure that no alias
of the object escapes the task. Thus, if an object O is proven to not escape a task, then the
instrumentation points corresponding to all accesses to O can be eliminated.

The object q in the program in Fig. 10 is created in line 11 within a task and it never
escapes this task. No access to q can lead to a determinacy race, so the instrumentation
points in lines 14 and 16 corresponding to access to q are eliminated. The resulting program
is shown in Fig. 11.

6.4 Loop invariant check motion

Recall that the instrumentation corresponding to a memory access to M will first check
if the task that previously accessed M conflicts with the current task and also update the
information that the current task now accessed M . If there are multiple accesses of the
same type (read or write) to M by a task, then it is sufficient to instrument one such access

340 Form Methods Syst Des (2012) 41:321–347

Fig. 12 After applying the loop
invariant check elimination
optimization on the program in
Fig. 11

1 i n t [] A, B ; Foo p ;
2
3 p . x = 0 ;
4 f i n i s h {
5 f o r (i n t i =0 ; i < s i z e ; i ++) {
6 f i n a l i n t i n d = i ;
7 async {
8 DJCRead (B , i n d) ;
9 DJCWrite (p , x) ;

10 p . x = A[i n d] + B[i n d] ;
11 Foo q = new Foo () ;
12 i f (i n d > 0)
13 DJCRead (p , x) ;
14 f o r (i n t j =0 ; j < i n d ; j ++) {
15 q . x = p . x + 1 ;
16 DJCWrite (B , j) ;
17 B[j] = q . y + i n d ;
18 }
19 }
20 }
21 }

Fig. 13 After applying the
read/write check elimination
optimization on the program in
Fig. 12

1 i n t [] A, B ; Foo p ;
2
3 p . x = 0 ;
4 f i n i s h {
5 f o r (i n t i =0 ; i < s i z e ; i ++) {
6 f i n a l i n t i n d = i ;
7 async {
8 DJCRead (B , i n d) ;
9 DJCWrite (p , x) ;

10 p . x = A[i n d] + B[i n d] ;
11 Foo q = new Foo () ;
12 f o r (i n t j =0 ; j < i n d ; j ++) {
13 q . x = p . x + 1 ;
14 DJCWrite (B , j) ;
15 B[j] = q . y + i n d ;
16 }
17 }
18 }
19 }

because other instrumentations will only add to the overhead with redundant steps. Suppose
the input program accesses a shared memory location M unconditionally inside a loop; the
instrumentation corresponding to this access to M can be moved outside the loop in order
to prevent multiple calls to the instrumented function for M .

In summary, given a memory access M that is performed unconditionally on every itera-
tion of a sequential loop, the instrumentation for M can be hoisted out of the loop by using
classical loop-invariant code motion. This transformation includes the insertion of a zero-
trip test to ensure that the loop-invariant check is performed only when the loop executes for
one or more iterations.

In Fig. 11, the program contains a read of p.x in line 13 that is inside a sequential loop.
Since the same memory location is accessed in every iteration of the loop, the instrumen-
tation for this access is moved out of the loop as shown in Fig. 12. Note the test for the
non-zero trip count in line 12 guards this instrumentation outside the loop.

6.5 Read/write check elimination

In the previous optimization we showed that it is sufficient to instrument one access to a
memory location M if there are multiple accesses of the same type to M by a task. In

Form Methods Syst Des (2012) 41:321–347 341

this optimization, we claim that if there are two accesses M1 and M2 to the same memory
location in a task, then we can use the following rules to eliminate one of them. It works on
the basic idea that the instrumentation for a write subsumes that for a read in the algorithm
presented in this paper. Intuitively, if a read to a memory location M in a task τ causes a
determinacy race, then a write to M in τ will definitely cause a determinacy race.

1. If M1 dominates M2 and M2 is a read operation, then the instrumentation for M2 can be
eliminated (since M1 is either a read or write operation).

2. If M2 postdominates M1 and M1 is a read operation, then the check for M1 can be elimi-
nated (since M2 is either a read or write operation). In practice, this rule tends to apply to
fewer situations than the previous rule, because computation of postdominance includes
the possibility of exceptional control flow.

Consider the program in Fig. 12 that contains an instrumentation for the write to p.x in
line 9 and an instrumentation corresponding to the read of the same memory location in line
13. Since the instrumentation in line 9 dominates the one in line 13 and the latter is not a
write, line 13’s instrumentation can be eliminated.

7 Evaluation

We now present the experimental results of our race detection algorithm. We evaluated the
ESP-bags algorithm on eight Java Grande Forum (JGF) benchmarks, three Shootout bench-
marks, and one EC2 challenge benchmark, listed in Table 2. Though we performed our
experiments on different sizes of the JGF benchmarks, we only report the results of the
maximum size in each case. We were unable to obtain the results of size B for MolDyn
since both versions (original and instrumented) ran out of memory. All the benchmarks
were written in HJ using only the AFIPL constructs and are available from [15].

The ESP-bags algorithm was implemented as a Java library for detecting data races in
HJ programs containing async, finish, and isolated constructs. The benchmarks written in
HJ were instrumented for race detection during a bytecode-level transformation pass im-
plemented on HJ’s Parallel Intermediate Representation (PIR) [27]. The PIR extends Soot’s
Jimple IR [26] with parallel constructs such as async, finish, and isolated. The instrumenta-
tion pass adds the necessary calls to our race detection library at async and finish boundaries
and also on reads and writes to shared memory locations.

We report the performance results of our experiments on a 16-way (quad-socket, quad-
core per socket) Intel Xeon 2.4 GHz system with 30 GB memory, running Red Hat Linux
(RHEL 5). The JVM used is the Sun Hotspot JDK 1.6 with a maximum heap size of 3 GB.

Results of ESP-bags algorithm Table 3 shows the results of applying the ESP-bags algo-
rithm to our benchmarks. The table gives the original execution time for each benchmark
without any instrumentation. It also shows the slowdown of the benchmark when instru-
mented for the ESP-bags algorithm, with and without the optimizations described in Sect. 6.
The outcome of the ESP-bags algorithm is also included in the table and shows there are no
data races in any of the benchmarks. The same was observed for all input sizes. Hence all
the benchmarks are free of data races for the inputs considered. Note that though RayTracer
has some isolated conflicts, it is free of data races since there were no conflicts between
isolated and non-isolated accesses.

342 Form Methods Syst Des (2012) 41:321–347

Table 2 List of benchmarks evaluated

Source Benchmark Description

JGF (Sect. 2) Series Fourier coefficient analysis

LUFact LU Factorization

SOR Successive over-relaxation

Crypt IDEA encryption

Sparse Sparse Matrix multiplication

JGF (Sect. 3) MolDyn Molecular Dynamics simulation

MonteCarlo Monte Carlo simulation

RayTracer 3D Ray Tracer

Shootout Fannkuch Indexed-access to tiny integer-sequence

Fasta Generate and write random DNA sequences

Mandelbrot Generate Mandelbrot set portable bitmap file

EC2 Matmul Matrix Multiplication (two 1000 × 1000 double matrix)

Table 3 Slowdown of ESP-bags algorithm

Benchmark Number of
asyncs

Time (s) ESP-bags Slowdown Factor Result

w/o opts w/opts

Crypt—C 13000000 15.24 7.63 7.29 No Data Races

LUFact—C 1600000 15.19 12.45 10.08 No Data Races

MolDyn—A 510000 45.88 10.57 3.93 No Data Races

MonteCarlo—B 300000 19.55 1.99 1.57 No Data Races

RayTracer—B 500 38.85 11.89 9.48 No Data Races
(Isolated conflict)

Series—C 1000000 1395.81 1.01 1.00 No Data Races

SOR—C 200000 3.03 14.99 9.05 No Data Races

Sparse—C 64 13.59 12.79 2.73 No Data Races

Fannkuch 1000000 7.71 1.49 1.38 No Data Races

Fasta 4 1.39 3.88 3.73 No Data Races

Mandelbrot 16 11.89 1.02 1.02 No Data Races

Matmul 1000 19.59 6.43 1.16 No Data Races

Geo Mean 4.86 3.05

ESP-bags slowdown On average, the slowdown of the benchmarks with the ESP-bags al-
gorithm is 4.86× without optimization. When all the static optimizations are applied, the
average slowdown drops to 3.05×. The slowdown of all benchmarks except LUFact is less
than 10×. The slowdown for benchmarks like MolDyn, MonteCarlo, and Sparse is less than
5×. There is no slowdown in the case of Series because most of the code uses stack vari-
ables. In HJ none of the stack variables can be shared across tasks, so we do not instrument
any access to these variables. On the other hand, the slowdown for SOR and RayTracer
benchmarks is around 9×.

Form Methods Syst Des (2012) 41:321–347 343

Fig. 14 Breakdown of static optimizations

Performance of optimizations We now discuss the effects of the compiler optimizations
on the benchmarks. The static optimizations that were performed include check elimination
in sequential code regions in the main task, read-only check elimination in parallel code
regions, escape analysis, loop invariant check motion, and read/write check elimination. The
compile time overhead of instrumenting the input program for race detection with ESP-bags
is 2% on an average. On the other hand, the compile time overhead of the static optimizations
is 25% on an average across the benchmarks considered. This is because of the extra time
required to perform the static analyses needed to eliminate redundant instrumentations.

As evident from the table, some of the benchmarks, such as SOR, Sparse, MolDyn, and
Matmul, greatly benefit from the optimizations, with a maximum reduction in slowdown of
about 78% for Sparse. On the other hand, for other benchmarks the reduction is relatively
small. The optimizations do not reduce the slowdown much for Crypt and LUFact because
very few instrumentation points are eliminated. In the cases of MonteCarlo and RayTracer,
though a good number of instrumentation points are eliminated, a significant fraction of
them still remain, so there is not much performance improvement in these benchmarks due
to optimizations. On average, there is a 37% reduction in the slowdown of the benchmarks
due to these optimizations.

Breakdown of the optimizations We now describe the effects of each of the static optimiza-
tions separately on the performance of the benchmarks. Figure 14 shows the breakdown of
the effects of each of the static optimizations. The graph also shows the slowdown without
any optimization and with the whole set of optimizations enabled. The Main Task Check
Elimination optimization described in Sect. 6 is applied to all the versions discussed here,
including the unoptimized version, because it is a basic optimization that avoids excessive
instrumentations.

The read-only check elimination performs much better than the other optimizations for
most of the benchmarks, such as MolDyn, SOR, and SparseMatmult. This is because in
these benchmarks the parallel regions include reads to many arrays that are written only in
the sequential regions of the code. Hence, this optimization eliminates the instrumentation
for all these reads. It contributes the most to the overall performance improvement in the
fully optimized version. The read-write optimization works well in the case of SOR but

344 Form Methods Syst Des (2012) 41:321–347

does not have much effect on other benchmarks. The loop invariant check motion helps
improve the performance of MonteCarlo the most, and the escape analysis does not seem to
help any of these benchmarks significantly.

Note that the performance of these four static optimizations do not directly add up to
the performance of the fully optimized code. Because some of these optimizations create
more chances for other optimizations, their combined effect is much more than their sum.
For example, the loop invariant check motion creates more chances for the read-only and
read-write optimization. So, when these two optimizations are performed after loop invariant
check motion, their effect would be more than that is shown here. Finally, we only evaluated
the performance of these optimizations on the set of benchmarks shown here. For a different
set of benchmarks, their effects may vary. However, we believe that these static optimiza-
tions, when combined, can generally improve the performance of most of the benchmarks.

8 Related work

The Cilk paper [11] introduces SP-bags for spawn-sync computations. We generalize that
algorithm so that it also applies to async-finish computations while still being able to check
spawn-sync programs. An extension to SP-bags was proposed by Cheng et al. [9] to handle
locks in Cilk programs. Their approach includes a data race detection algorithm for pro-
grams that satisfy a particular locking discipline. However, the slowdown factors reported in
[9] were in the 33×–78× range for programs that follow their locking discipline, and up to
3700× for programs that don’t. In this work, we detect data races in programs with async,
finish, and isolated constructs. We outline and implement a range of static optimizations to
reduce the slowdown factor to 3.05× on average.

A recent result on detecting data races by Flanagan et al. [12] (FastTrack) reduces the
overhead of using vector clocks during data race detection. Their technique focuses on the
more general setting of fork-join programs. The major problem with using vector clocks for
race detection is that the space required for vector clocks is linear in the number of threads
in the program, and hence any vector clock operation also takes time linear in the number of
threads. In a program containing millions of tasks that can run in parallel, it is not feasible to
use vector clocks to detect data races (if we directly extend vector clocks to tasks). Though
FastTrack reduces this space (and thus the time for any vector clock operation) to a constant
by using epochs instead of vector clocks, it needs vector clocks whenever a memory location
has shared read accesses. Even a few such instances would make it infeasible for programs
with millions of parallel tasks. On the other hand, our approach requires only a constant
space overhead for every shared memory location and a time overhead proportional to the
inverse Ackermann function for every shared memory access.

The other approach to use FastTrack for task-parallel languages is to fix the threads the
program runs on to a small number (say eight) and use vector clocks of this fixed size. With
this change, FastTrack would just check for data races in a particular schedule of a program.
Our approach can guarantee the non-existence of data races for all possible schedules of a
given input. However, the price we have to pay for this guarantee is that we have to execute
the given program sequentially. Given that this needs to be done only during the development
stage, we feel our approach is of value.

Sadowski et al. [23] propose a technique for checking determinism by using interfer-
ence checks based on happens-before relations. This involves detecting conflicting races
in threads that can run in parallel. Though they can guarantee the non-existence of races
in all possible schedules of a given input, the fact that they use vector clocks makes these
infeasible in a program with millions of tasks that can run in parallel.

Form Methods Syst Des (2012) 41:321–347 345

The static optimizations that we use to eliminate the redundant instrumentations and
thus reduce the overhead is similar to the compile-time analyses proposed by Mellor-
Crummey [21]. His work uses a dependence graph that contains edges for all data depen-
dences to eliminate instrumentations for variable references that are not part of these data
dependences. His technique is applicable for loop carried data dependences across parallel
loops and also for data dependences across parallel blocks of code. In our approach, we con-
centrate on the instrumentations within a particular task and try to eliminate redundant in-
strumentations for memory locations that are guaranteed to have already been instrumented
in that task.

The Clara framework [7] also performs static analyses to reduce the overhead of runtime
verification tools. It is a general framework for statically analyzing runtime monitors, which
uses a finite-state-machine model of the property and generates runtime monitors in the form
of AspectJ aspects. This framework has been used to eliminate all the runtime monitors for
68% of the cases considered, thereby completely obviating the need for runtime monitor-
ing. In other cases, it reduces the overhead of the runtime monitors, similar to our static
optimizations. To use this framework for our static optimizations, we need to specify data
race detection as a finite-state-machine model. It would be interesting to see if Clara can
eliminate all the runtime monitors for race detection. We would like to explore this in future
models of our race detector.

Our static optimization that moves loop invariant checks out of the loop (outlined in
Sect. 6.4) is similar in effect to the stutter-equivalent loop transformation described in [22].
They present a general framework for optimizing the monitoring of loops relative to a prop-
erty. Their framework allows monitors inside a loop to be processed in a constant time rather
than time that is proportional to the number of iterations of the loop. This is achieved by cal-
culating the loop iteration after which the remaining iterations are said to be stutter relative
to the property under consideration and transforming the loop accordingly to reduce the
overhead of runtime monitoring. Again, this requires that the property to be monitored is
specified as a finite-state-machine. In future, we plan to evaluate this approach to see if it
reduces the overhead of our race detector even further.

9 Conclusion

In this paper we proposed a precise, sound, and efficient dynamic data-race detection al-
gorithm called ESP-bags (i.e., there are neither any false positives nor any false negatives).
ESP-bags supports both the async-finish parallel programming model as well as the spawn-
sync model used in Cilk.

We implemented ESP-bags in a tool called TASKCHECKER and augmented it with a set
of compiler optimizations that reduce the incurred average overhead by 37% with respect
to the unoptimized version. Evaluation of TASKCHECKER on a suite of 12 benchmarks
shows that the dynamic analysis introduces an average slowdown of 4.86× without compiler
optimizations, and 3.05× with compiler optimizations, making the tool suitable for practical
use.

In future, we plan to investigate the applicability of ESP-bags to the fork-join concur-
rency model. Also, we plan to explore data race detection by executing the input program in
parallel, which is not possible with ESP-bags algorithm.

Acknowledgements We would like to thank Jacob Burnim and Koushik Sen from UC Berkeley, Jaeheon
Yi and Cormac Flanagan from UC Santa Cruz, and John Mellor-Crummey from Rice University for their
feedback on an earlier version of this paper. We thank Charles Leiserson for pointing out the conditional sync

346 Form Methods Syst Des (2012) 41:321–347

example. We are grateful to Jill Delsigne for her assistance with copy-editing the final version of this paper.
We also thank the US-Israel Binational Foundation (BSF) for their support.

References

1. Agarwal S, Barik R, Bonachea D, Sarkar V, Shyamasundar RK, Yelick K (2007) Deadlock-free schedul-
ing of X10 computations with bounded resources. In: SPAA ’07: Proceedings of the 19th symposium on
parallel algorithms and architectures. ACM, New York, pp 229–240

2. Agarwal S, Barik R, Sarkar V, Shyamasundar RK (2007) May-happen-in-parallel analysis of ×10 pro-
grams. In: PPoPP ’07: Proceedings of the 12th symposium on principles and practice of parallel pro-
gramming. ACM, New York, pp 183–193

3. Barik R, Budimlic Z, Cave V, Chatterjee S, Guo Y, Peixotto D, Raman R, Shirako J, Tasirlar S, Yan
Y, Zhao Y, Sarkar V (2009) The habanero multicore software research project. In: OOPSLA ’09: Pro-
ceeding of the 24th ACM SIGPLAN conference companion on object oriented programming systems
languages and applications, New York, NY, USA. ACM, New York, pp 735–736

4. Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y (1995) Cilk: an efficient
multithreaded runtime system. In: Proceedings of the fifth ACM SIGPLAN symposium on principles
and practice of parallel programming, PPoPP, Oct 1995, pp 207–216

5. Blumofe RD, Leiserson CE (1999) Scheduling multithreaded computations by work stealing. J ACM
46(5):720–748

6. Bocchino R, Adve V, Adve S, Snir M (2009) Parallel programming must be deterministic by default. In:
First USENIX workship on hot topics in parallelism (HOTPAR 2009)

7. Bodden E, Lam P, Hendren L (2010) Clara: a framework for statically evaluating finite-state runtime
monitors. In: 1st international conference on runtime verification (RV), Nov 2010. LNCS, vol 6418.
Springer, Berlin, pp 74–88

8. Charles P, Grothoff C, Saraswat VA, Donawa C, Kielstra A, Ebcioglu K, von Praun C, Sarkar V (2005)
X10: an object-oriented approach to non-uniform cluster computing. In: Proceedings of the twentieth
annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and applica-
tions, OOPSLA, Oct, pp 519–538

9. Cheng G-I, Feng M, Leiserson CE, Randall KH, Stark AF (1998) Detecting data races in Cilk programs
that use locks. In: Proceedings of the tenth annual ACM symposium on parallel algorithms and architec-
tures (SPAA ’98), Puerto Vallarta, Mexico, June 28–July 2 1998, pp 298–309

10. Dijkstra EW Cooperating sequential processes. 65–138
11. Feng M, Leiserson CE (1997) Efficient detection of determinacy races in Cilk programs. In: SPAA ’97:

proceedings of the ninth annual ACM symposium on parallel algorithms and architectures. ACM, New
York, pp 1–11

12. Flanagan C, Freund SN (2009) Fasttrack: efficient and precise dynamic race detection. In: PLDI ’09: pro-
ceedings of the 2009 ACM SIGPLAN conference on programming language design and implementation.
ACM, New York, pp 121–133

13. Frigo M, Leiserson CE, Randall KH (1998) The implementation of the Cilk-5 multithreaded language.
In: PLDI’98, NY, USA, 1998. ACM, New York, pp 212–223

14. Guo Y, Barik R, Raman R, Sarkar V (2009) Work-first and help-first scheduling policies for async-finish
task parallelism. In: IPDPS ’09: proceedings of the international symposium on parallel&distributed
processing. IEEE Computer Society, Washington, pp 1–12

15. Habanero Java http://habanero.rice.edu/hj
16. Larus JR, Rajwar R (2006) Transactional memory. Morgan and Claypool, San Francisco
17. Lea D (2000) A java fork/join framework. In: JAVA ’00: proceedings of the ACM 2000 conference on

Java Grande. ACM, New York, pp 36–43
18. Lee EA (2006) The problem with threads. Computer 39(5):33–42
19. Lee JK, Palsberg J (2010) Featherweight ×10: a core calculus for async-finish parallelism. In: PPoPP

’10: proceedings of the 15th ACM SIGPLAN symposium on principles and practice of parallel comput-
ing. ACM, New York, pp 25–36

20. Leijen D, Schulte W, Burckhardt S (2009) The design of a task parallel library. In: OOPSLA ’09: pro-
ceeding of the 24th ACM SIGPLAN conference on object oriented programming systems languages and
applications. ACM, New York, pp 227–242

21. Mellor-Crummey J (1993) Compile-time support for efficient data race detection in shared-memory par-
allel programs. In: PADD ’93: proceedings of the 1993 ACM/ONR workshop on parallel and distributed
debugging, New York, NY, USA, 1993. ACM, New York, pp 129–139

http://habanero.rice.edu/hj

Form Methods Syst Des (2012) 41:321–347 347

22. Purandare R, Dwyer MB, Elbaum S (2010) Monitor optimization via stutter-equivalent loop transfor-
mation. In: Proceedings of the ACM international conference on object oriented programming systems
languages and applications, New York, NY, USA, 2010, OOPSLA ’10. ACM, New York, pp 270–285

23. Sadowski C, Freund SN, Flanagan C (2009) SingleTrack: A dynamic determinism checker for multi-
threaded programs. In: Programming languages and systems. Lecture notes in computer science, vol
5502. Springer, Berlin, pp 394–409

24. Tarjan RE (1975) Efficiency of a good but not linear set union algorithm. J ACM 22:215–225
25. Tarjan RE (1983) Data structures and network algorithms. Society for Industrial and Applied Mathemat-

ics, Philadelphia
26. Vallée-Rai R et al (1999) Soot—a Java optimization framework. In: Proceedings of CASCON 1999, pp

125–135
27. Zhao J, Sarkar V (2011) Intermediate language extensions for parallelism. In: VMIL’11, pp 333–334

	Efficient data race detection for async-finish parallelism
	Abstract
	Introduction
	Structured parallelism
	Data race and determinism detection
	Main contributions

	Background
	Syntax
	Informal language semantics
	Cilk vs. AFIPL

	ESP-bags algorithm
	SP-bags
	ESP-bags
	Space overhead
	Time overhead
	Discussion

	Correctness of the ESP-bags algorithm
	Handling isolated blocks
	Correctness

	Optimizations
	Main task check elimination in sequential code regions
	Read-only check elimination in parallel code regions
	Escape analysis
	Loop invariant check motion
	Read/write check elimination

	Evaluation
	Results of ESP-bags algorithm
	ESP-bags slowdown
	Performance of optimizations
	Breakdown of the optimizations

	Related work
	Conclusion
	Acknowledgements
	References

