
Form Methods Syst Des (2012) 40:232–262
DOI 10.1007/s10703-011-0137-x

Symbolic bounded synthesis

Rüdiger Ehlers

Published online: 21 December 2011
© Springer Science+Business Media, LLC 2011

Abstract Synthesizing finite-state systems from full linear-time temporal logic (LTL) is an
ambitious way to tackle the challenge of constructing correct-by-construction systems. One
particularly promising approach in this context is bounded synthesis, originally proposed
by Schewe and Finkbeiner, which in turn builds upon Safraless synthesis, as described by
Kupferman and Vardi. Previous implementations of these approaches performed the com-
putation either in an explicit way or used symbolic data structures other than binary decision
diagrams (BDDs). In this paper, we reconsider BDDs as state space representation and use it
as data structure for bounded synthesis. The key to this construction is the application of two
novel optimisation techniques that decrease the number of state bits in such a representation
significantly. The first technique uses signalling bits to connect sub-games representing the
safety- and non-safety parts of the specification. The second technique is based on a closer
analysis of the step of building a safety game from a universal automaton and uses a suffi-
cient condition to remove some so-called counters from the state space of the game.

We evaluate our approach on several benchmark suites and show that the new approach
leads to a computation time improvement of several orders of magnitude.

Keywords Synthesis from LTL · Bounded synthesis · Safraless synthesis · Safety games ·
Binary decision diagrams

This is an extended version of the paper “Symbolic Bounded Synthesis”, presented at the 22nd
International Conference on Computer Aided Verification (CAV 2011).

This work was supported by the German Research Foundation (DFG) within the program “Performance
Guarantees for Computer Systems” and the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

R. Ehlers (�)
Reactive Systems Group, Fachrichtung Informatik, Universität des Saarlandes, Campus, Gebäude E1.3,
5. OG, 66123 Saarbrücken, Germany
e-mail: ehlers@react.cs.uni-saarland.de

mailto:ehlers@react.cs.uni-saarland.de

Form Methods Syst Des (2012) 40:232–262 233

1 Introduction

Ensuring the correctness of a system is a difficult task. Bugs in manually constructed hard-
or software are often missed during testing. To remedy this problem, two lines of research
have emerged. The first one deals with the verification of systems that have already been
built and spans topics such as process calculi and model checking. The second line concerns
the automatic derivation of systems that are correct by construction, also called synthesis. In
both cases, the specification of the system needs to be given, but we can save the work of
constructing the actual system in the case of synthesis.

Unfortunately, the complexity of synthesis has been proven to be rather high. For exam-
ple, when given a specification in form of a property in linear-time temporal logic (LTL),
the synthesis task has a complexity that is doubly-exponential in the size of the specifica-
tion [31]. Recently, it has been argued that this is however not a big problem [32] as real-
isable specifications typically have implementations that are small, which can be exploited.
This observation is used in the context of bounded synthesis [14, 32], which builds upon the
Safraless synthesis principle [25]. Here, the LTL specification is converted to a universal co-
Büchi word or tree automaton, which is then, together with a bound b ∈ N, used for building
a safety game such that winning strategies in the game correspond to implementations that
satisfy the specification. The bound in this setting describes the maximally allowed number
of visits to rejecting states in the co-Büchi automaton along some run of the automaton that
corresponds to the input/output observed along the prefix play in the game so far. If there
exists an implementation satisfying a given specification, then there exists some bound such
that the resulting game is winning.

In practice, the bound value required is usually rather small [14–16, 32], often much
smaller than the number of states in the smallest implementation. This leads to improved
running times of implementations following this approach. Consequently, all modern tools
for full LTL synthesis publicly available nowadays build upon Safraless synthesis. The first
of these, named Lily [21], performs the realisability check in an explicit way. Recently, a
symbolic algorithm based on antichains has been presented [14], showing a better perfor-
mance on larger specifications. Surprisingly, the usage of binary decision diagrams (BDDs),
a technique that has skyrocketed the size of the systems that can be handled by model check-
ing tools [12, 27] seems to be unconsidered in this context so far. A possible explanation for
this is that the safety games constructed in the bounded synthesis context contain a lot of
counters with dependencies between them in the transition relation. It has been observed
that this can tremendously blow-up the size of BDDs [7, 33, 40]. Thus, for success using
this technique, it is a central requirement that efficient techniques for reducing the num-
ber of counters are being used. In this paper we investigate this problem and present such
techniques. By taking them together, we can improve upon the performance of previous
approaches to full LTL synthesis by several orders of magnitude.

In particular, we show how the safety and non-safety parts of a specification can be
handled separately in the synthesis game. As for safety properties, no counters are necessary,
this reduces the computation time significantly and allows for utilising a major strength of
BDDs: efficient dealing with automata that run in parallel. Since it has been argued that
typical specifications found in practice are mostly of the form

∧
a∈A a → ∧

g∈G g for some
sets of assumptions A and guarantees G [4–6, 18, 35], both containing LTL formulas, we
design our technique to be adapted to this case. As a second contribution, we present a
technique that allows for a further reduction of the number of counters in the non-safety part
of the synthesis games.

Obviously, the optimisations described in this paper cannot circumvent the 2EXPTIME-
completeness of the LTL synthesis problem, but are rather targeted towards improving the

234 Form Methods Syst Des (2012) 40:232–262

applicability of LTL synthesis from specifications that are deemed to be typical for the prac-
tice. As representatives for such specifications, we use the benchmarks from [14, 21] to
evaluate our approach. We also consider a new load balancing benchmark that mimics the
specification design phases of a scalable system.

This paper consists of four parts. In the first part, we recapitulate the basics of the
bounded synthesis approach. Then, we discuss the main contributions of this work. The third
part provides information on additional minor techniques needed for an efficient BDD-based
implementation of the contributions presented. The fourth part then consists of experimental
results and a conclusion.

To be more precise, in the next section, we briefly state the preliminaries. Then, we
discuss the solution process of obligation games, which forms the basis of the bounded
synthesis approach, which is in turn described in Sect. 4.

With respect to the second part, we first explain the new specification splitting and sig-
nalling technique for bounded synthesis in Sect. 5, and then discuss in Sect. 6 how some
counters that are introduced in the bounded synthesis process can be stripped away for in-
creased efficiency of the overall approach.

In the third part, we start by discussing how the game that is solved in the bounded syn-
thesis process can efficiently be encoded into binary decision diagrams in Sect. 7. In Sect. 8,
we then show how the techniques presented in this paper can also be used for detecting
unrealisable specifications, and for those that are realisable, we discuss the fully symbolic
extraction of prototype implementations satisfying the specification in Sect. 9.

Section 10 contains the experimental results of running a tool that implements the tech-
niques introduced in this paper on the benchmarks from [21] and [14] as well as on a novel
load-balancing system case study. We conclude with a summary.

2 Preliminaries

2.1 Basics

We denote by N the natural numbers, including 0, and B = {false, true} are the Boolean
values. Given some alphabet Σ , we denote by Σω and Σ∗ the sets of infinite and fi-
nite words over Σ , respectively. Subsets of Σω are also called ω-languages. For a word
w = w0w1 . . . , we denote the set of elements occurring infinitely often in w by inf(w) and
for some i ∈ N, denote by wi = wiwi+1wi+2 . . . the suffix of w from the ith element. By
(A → B) we denote the set of all functions with domain A and co-domain B . For elements
(a, b) of some set A × B , we denote its projections by (a, b)|A = a and (a, b)|B = b.

2.2 Word automata

An automaton is a tuple A = (Q,Σ, δ,Qinit, F) where Q is a finite set of states, Σ is a
finite alphabet, δ : Q × Σ → 2Q is a transition function, Qinit ⊆ Q is the set of initial states
and F : Q → N is a so-called colouring function. For the scope of this paper, we need four
types of automata: universal co-Büchi word automata (UCW), deterministic parity automata,
deterministic safety automata and deterministic co-safety automata. Deterministic safety and
co-safety automata and universal co-Büchi automata are parity automata with domain {0,1}
for the colouring function. The set of states with colour 1 in a safety automaton is absorbing,
and for a co-safety automaton the set of states with colour 0 is absorbing, i.e., all transitions
from any state in such a set leads back into the set. For deterministic automata, we require

Form Methods Syst Des (2012) 40:232–262 235

that for all (q, x) ∈ Q × Σ , we have |δ(q, x)| = 1, and that the set of initial states contains
only one state. We call a subset of states in A a strongly connected component (SCC) if
every state in the subset is reachable by some sequence of transitions from any other state in
the subset. An SCC S ⊆ Q is furthermore called a maximal strongly connected component
if there is no SCC S ′ that is a strict superset of S. By definition, we assume that every state
is reachable from itself, so we can partition the state space of an automaton into its set of
maximal SCCs D(A).

Given an infinite word w = w0w1 · · · ∈ Σω , we say that some infinite sequence π =
π0π1 · · · ∈ Qω is a run of A over w if π0 ∈ Qinit and for all i ∈ N, πi+1 ∈ δ(πi,wi). We
say that π is an accepting run for w if max(inf(F (π0)F (π1) · · ·)) is even. A word w is
accepted by A if all runs for w are accepting. The set of all words accepted by A is called
its language, denoted by L(A).

2.3 Finite-state machines (FSMs)

Formally, we distinguish two types of FSMs: Mealy and Moore machines. A Mealy ma-
chine is a tuple M = (S, I,O, δ, sinit), while a Moore machine is described by a tuple
M = (S, I,O, δ, sinit,L). In both cases, S is a set of states, I is a set of inputs sym-
bols, O is a set of output symbols and sinit ∈ S is an initial state. For Mealy machines,
δ : Q × I → Q × O is the transition function, while for Moore machines, this function is
defined as δ : Q × I → Q and L : Q → O is the labelling function.

We say that some word w = w0w1w2 · · · ∈ (I × O)ω is in the language of a Mealy
machine M, written as L(M), if there exists some run π = π0π1 · · · ∈ Sω of the machine
with π0 = sinit and for all i ∈ N, (πi+1,wi |O) = δ(πi,wi |I). Likewise, w is in the language
of a Moore machine if there exists some run π = π0π1 · · · ∈ Sω of the machine with π0 = sinit

and for all i ∈ N, δ(πi,wi |I) = πi+1 and wi |O = L(πi). Such a word is also called a trace
of M.

We say that an FSM M over the input set I and the output set O realizes a word au-
tomaton over the alphabet I × O if the language of M is contained in the language of the
automaton.

2.4 Linear-time temporal logic (LTL)

Before a system that is correct with respect to its specification can be synthesized, the speci-
fication has to be formally stated. For such a task, linear-time temporal logic [30] (LTL) is a
commonly used logic. Syntactically, LTL formulas are defined inductively as follows (over
some set of atomic propositions AP):

– For all atomic propositions x ∈ AP, x is an LTL formula.
– Let φ1 and φ2 be LTL formulas. Then ¬φ1, (φ1 ∨ φ2), (φ1 ∧ φ2), Xφ1, Fφ1, Gφ1, and

(φ1Uφ2) are also valid LTL formula.

The validity of an LTL formula φ over AP is defined inductively with respect to an infinite
trace w = w0w1 · · · ∈ (2AP)ω . Let φ1 and φ2 be LTL formulas. We set:

– w |= p if and only if (iff) p ∈ w0 for p ∈ AP
– w |= ¬ψ iff not w |= ψ

– w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2

– w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2

– w |= Xφ1 iff w1 |= φ1

– w |= Gφ1 iff for all i ∈ N, wi |= φ1

236 Form Methods Syst Des (2012) 40:232–262

– w |= Fφ1 iff there exists some i ∈ N such that wi |= φ1

– w |= (φ1 ∪ φ2) iff there exists some i ∈ N such that for all 0 ≤ j < i, wj |= φ1 and
wi |= φ2

We use the usual precedence rules for LTL formulas (unary temporal operators bind
stronger than binary temporal operators) in order to be able to omit unnecessary braces and
also allow the abbreviations typically used for Boolean logic, e.g., that a → b is equivalent
to ¬a ∨ b for all formulas a, b.

Given an LTL formula ψ over AP, we can convert ψ to an equivalent universal co-Büchi
word automaton A over the alphabet 2AP such that precisely the words over 2AP that satisfy
φ are also in the language of A [25, 39]. The size of the UCW is at most exponential in the
length of ψ .

The LTL synthesis problem is to determine, for a given LTL formula ψ over some set of
atomic propositions AP = API � APO , whether there exists a Mealy or Moore machine with
input symbol set 2API and output symbol set 2APO whose language is a subset of the language
of ψ , and to compute such a machine whenever existing. Whenever such a machine exists,
we call the specification realisable, otherwise it is unrealisable. Without loss of generality,
we will only be concerned with Mealy machine synthesis here.

We call an LTL formula over some set of atomic proposition AP a safety property [34]
if for every word w = w0w1 · · · ∈ (2AP)ω that is not in its language, there exists some i ∈ N
such that every other infinite word starting with w0w1 · · ·wi is also not in its language.

2.5 Obligation games

In this paper, we reduce the synthesis problem to determining the winner (and obtaining a
winning strategy) in so-called obligation games [37], which contain reachability and safety
games as special cases. They are sometimes also called weak Muller games in the literature.

Intuitively, when solving the synthesis problem by reducing it to determining the winner
in an obligation game, the two players (player 0 and 1) in the game represent the input and
output of a finite-state machine. Player 0 provides the input to the system, while player 1
produces the output. The game needs to be designed in a way such that whenever player 1
has a winning strategy in the game, the strategy represents a finite-state machine that satisfies
the original specification.

Formally, a game is a tuple G = (V ,Σ0,Σ1,E, vinit, F), where V is a finite set of posi-
tions (also called the vertices of the game), Σ0 and Σ1 are the finite sets of actions for the
two players, E : V ×Σ0 ×Σ1 → V is an edge function, vinit ∈ V denotes the initial position
and F is a winning condition in form of a Boolean formula in which subsets of V are used as
atomic propositions.1 For a winning condition F , we denote by S(F) the set of all subsets
of V that occur in the formula F . We also call the sub-tuple (V ,Σ0,Σ1,E, vinit) of G the
transition structure of G .

A decision sequence ρ = ρ0
0ρ

1
0ρ

0
1ρ

1
1ρ

0
2ρ

1
2 · · · is an infinite sequence such that for every

i ∈ N, ρ0
i ∈ Σ0 and ρ1

i ∈ Σ1. We say that ρ induces a play π = π0π1 · · · if π0 = vinit and for
every i ∈ N, πi+1 = E(πi, (ρ

0
i , ρ

1
i)).

We categorize plays in G by whether they are winning for player 0 or 1. Given an infinite
play π = π0

0 π1
0 . . . , we define π as being winning for player 1 if {s ∈ S(F) | s ∩ Occ(π) =

∅} |= F , where Occ(π) denotes the set of positions occurring along π , i.e., Occ(π) = {v ∈

1While this representation of the winning condition is rather uncommon in the literature, it will allow us later
to discuss the composition of games in a simplified way.

Form Methods Syst Des (2012) 40:232–262 237

V | ∃i ∈ N : πi = v}.2 Whenever a play is not winning for player 1, we define the play to be
winning for player 0. The Occ function is defined likewise for finite plays. We also say that
some decision sequence is winning for some player if the induced play is winning.

It is well-known that in obligation games, there exists a winning strategy for precisely one
of the players, i.e., for some player j ∈ {0,1}, there exists a function f : (Σ0 � Σ1)

∗ → Σj

such that all decision sequences that are in correspondence to f are winning for player j .
A decision sequence ρ = ρ0

0ρ
1
0ρ

0
1ρ

1
1ρ

0
2ρ

1
2 · · · is said to be in correspondence to f if and only

if for all i ∈ N, ρ
j

i = f (ρ0
0ρ

1
0 · · ·ρ1−j

i−1+j).
Given a game G over the action sets Σ0 and Σ1, we say that some Moore machine

M = (S,Σ0,Σ1, δ, sinit,L) induces a strategy f for player 0 in G with f (ε) = L(sinit)

and f (ρ0
0ρ

1
0 · · ·ρ1

k) = L(δ(δ(· · · δ(sinit, ρ
1
0), ρ

1
1), . . . , ρ

1
k)) for every prefix decision sequence

ρ0
0ρ

1
0 · · ·ρ1

k . Likewise, a Mealy machine M = (S,Σ0,Σ1, δ, s0) induces a strategy f for
player 1 by choosing f (ρ0

0ρ
1
0 · · ·ρ0

k) = δ(δ(· · · δ(sinit, ρ
0
0)|S, ρ0

1)|S, . . . , ρ0
k)|O for every pre-

fix decision sequence ρ0
0ρ

1
0 · · ·ρ0

k . For obligation games, it is assured that whenever there
exists a winning strategy for player 0/1, there also exists a Moore/Mealy automaton induc-
ing a winning strategy, respectively.

In this paper, we mostly take the view of player 1. Thus, we simply call a decision
sequence or play winning if it is winning for player 1. We say that a position is winning
for a player p ∈ {0,1} if changing vinit to the position makes player p having a winning
strategy in the game. We say that a game is winning for a player if the player has a winning
strategy.

Henceforth, we use the names of the game tuple components to extract these from a
game. For example, for some game G̃ = (Ṽ , Σ̃0, Σ̃1, Ẽ, ṽinit, F̃), we define vinit(G̃) = ṽinit .
For automata tuples, we apply the same notational concept.

2.6 Example for obligation games

To clarify the connection between the synthesis problem and obligation games, we give an
example here. Figure 1 shows an obligation game G = (V ,Σ0,Σ1,E, vinit, F) for which
every decision sequence that induces a winning play represents a word that satisfies the
LTL specification ψ = Fa ∧ G(¬a ∨ Xb). The winning condition F = ¬{v2} ∧ {v1} of G is
satisfied by the plays that never visit v2 but eventually visit v1. The game in the example also
has the property that precisely the decision sequences that induce a winning play for player
1 in G are the ones that satisfy ψ . In general, LTL specifications do not always permit to
build obligation games with this property. We will however see in Sect. 4 that they are still
a suitable computation model for synthesis when applying the bounded synthesis approach.

2.7 Important special cases of winning conditions in obligation games

Let G = (V ,Σ0,Σ1,E, vinit, F) be a game. In this paper, we consider two prominent special
cases of these winning conditions:

– If F = ¬V ′ for some V ′ ⊆ V , we call G a safety game.

2In other words, whether a play is winning for player 1 can be determined by evaluating which of the sets of
S(F) contain a position that is visited along the play, and then substituting all sets in F for which some po-
sition is visited along the play by true and the other ones by false. If the resulting Boolean formula evaluates
to true, the play is winning for player 1. While this definition of the acceptance condition is uncommon for
obligation games in the literature, we use it here as it is very helpful to describe the game compositions in the
following chapters in a simple and intuitive way.

238 Form Methods Syst Des (2012) 40:232–262

Fig. 1 Graphical representation of an obligation game G = (V ,Σ0,Σ1,E, vinit, F) with Σ0 = 2{a} ,
Σ1 = 2{b} , vinit = v0 and F = ¬{v2} ∧ {v1}. The edge labels represent the constraints on the transitions,
e.g., the label ab on the edge from v1 to v0 describes that E(v1,∅, {b}) = v0 and the self-loop of v2 de-
scribes that E(v2,A,B) = v2 for every A ⊆ {a} and B ⊆ {b}

– If F = V ′ for some V ′ ⊆ V , we call G a reachability game.

Thus, the reachability winning condition is the dual case of the safety winning condition.
Note that if a winning condition F consists of a conjunction of safety winning objectives or
a disjunction of reachability objectives, we can use the following simplification rules:

∧

V ′∈{V ′
1,...,V ′

n}
¬V ′ ≡ ¬(V ′

1 ∪ · · · ∪ V ′
n) (1)

∨

V ′∈{V ′
1,...,V ′

n}
V ′ ≡ (V ′

1 ∪ · · · ∪ V ′
n) (2)

2.8 Safety automata and safety/co-safety games

Given a deterministic safety automaton A over the alphabet Σ = ΣI × ΣO , we can easily
build a safety game ToGame1(A,ΣI ,ΣO) that is winning for player 1 if and only if there
exists a Mealy machine reading ΣI and writing to ΣO that realizes A. Likewise, we can
build a co-safety game ToGame0(A,ΣO,ΣI) that is winning for player 0 if and only if
there exists a Moore machine reading ΣI and writing to ΣO that realizes A.

Definition 1 Given a deterministic safety automaton A = (Q,Σ, δ, {qinit},F) with Σ =
Σa ×Σb , we define the game ToGamep(A,Σa,Σb) = (V ,Σa,Σb,E,vinit, F) for p ∈ {0,1}
as follows:

– V = Q

– For all v ∈ V , x ∈ Σa , y ∈ Σb: E(v, x, y) = δ(v, (x, y))

– vinit = qinit

– F = ¬{v ∈ V | F(v) = 1} if p = 1 and F = {v ∈ V | F(v) = 1} otherwise.

2.9 Parallel composition of games

Given two games G = (V ,Σ0,Σ1,E, vinit, F) and G′ = (V ′,Σ0,Σ1,E
′, v′

init, F ′), for some
� ∈ {∧,∨}, we define the parallel composition G ‖� G′ of the two games as the (synchro-
nized product) game Gp = (V p,Σ0,Σ1,E

p, v
p
init, F p) with:

– V p = V × V ′
– v

p
init = (vinit, v

′
init)

– For all v ∈ V , v′ ∈ V ′, x ∈ Σ0 and y ∈ Σ1, Ep((v, v′), x, y) = (E(v, x, y), E′(v′, x, y)).
– F p = F1 � F2, where:

1. F1 is obtained by taking the Boolean formula F and replacing every occurrence of
some atomic proposition s ∈ S(F) in the formula by s × Q′, and

Form Methods Syst Des (2012) 40:232–262 239

2. F2 is obtained by taking F ′ and replacing every occurrence of some atomic proposition
s ∈ S(F ′) by Q × s.

The conjunctive parallel composition G ‖∧ G′ has the property that precisely the decision
sequences ρ ∈ (Σ0Σ1)

ω that are winning for player 1 in G and G′ are also winning for
player 1 in Gp . Likewise, the disjunctive parallel composition G ‖∨ G′ has the property that
precisely the decision sequences ρ ∈ (Σ0Σ1)

ω that are winning for player 1 in G or G′ are
also winning for player 1 in Gp .

Note that when taking the conjunctive parallel composition of two safety games, the
resulting game is still a safety game, using the simplification given in Equation 1.

2.10 Binary decision diagrams

For representing sets of vertices and the transition relation in safety games symbolically, we
use reduced ordered binary decision diagrams (BDDs) [8, 9], which represent characteristic
functions f : 2V → B for some finite set of variables V . We start by treating them on an
abstract level and state the operations on them that we use. For a comprehensive overview,
see [9]. Given two BDDs f and f ′, we define their conjunction and disjunction as (f ∧
f ′)(x) = f (x) ∧ f ′(x) and (f ∨ f ′)(x) = f (x) ∨ f ′(x) for all x ⊆ V . The negation of a
BDD is defined similarly. Given some set of variables V ′ ⊆ V and a BDD f , we define
∃V ′.f as a function that maps all x ⊆ V to true for which there exists some x ′ ⊆ V ′ such
that f (x ′ ∪(x \V ′)) = true. Dually, we define ∀V ′.f ≡ ¬(∃V ′.¬f). Given two ordered lists
of variables L = l1, . . . , ln and L′ = l′1, . . . , l

′
n of the same length, we furthermore denote by

f [L/L′] the BDD for which some x ⊆ V is mapped to true if and only if f (x \{l′1, . . . , l′n}∪{li | ∃1 ≤ i ≤ n : l′i ∈ x}) = true. By abuse of notation, we say that f = false or f = true if
f (x) = false or f (x) = true for all x ⊆ V , respectively.

In the sequel, we will also be concerned with operations on BDDs over different variable
sets. We assume the standard semantics for such cases, e.g., for a BDD f over V and a BDD
f ′ over V ′, we define (f ∧ f ′)(x) = f (x ∩ V) ∧ f ′(x ∩ V ′) for all x ⊆ V ∪ V ′.

We also define least and greatest fixed points of monotone functions over BDDs. Given
to BDDs f and g over the set of variables V , we write f ≥ g if for all a ⊆ V , we have that
f (a) = true implies f (b) = true. Let g : (2V → B) → (2V → B) be a monotone function
that maps a BDD over some set of variables V onto another BDD over the same set of
variables. We call g monotone if for all BDDs f and f ′, if f ≥ f ′, then g(f) ≥ g(f ′).
We define μ0.g = false, μi+1.g = g(μi.g) for all i ∈ N and for j being the least element
of N such that μj+1.g = μj .g, the least fixed point is defined as μ.g = μj .g. The greatest
fixed point ν.g of a monotone function g is computed likewise, i.e., we define ν0.g = true,
νi+1.g = g(νi .g) for all i ∈ N and for j being the least element of N such that νj+1.g = νj .g,
we define ν.g = νj .g. In both cases, we call μi.g and νi .g prefixed points of g. Checking
whether a computed prefixed point is already the fixed point is simple in practice by using
the fact that equivalence checks on BDDs can be performed in constant time in modern
BDD libraries [12].

For most parts of this paper, it is only of importance what BDDs are good for and not how
they actually represent Boolean functions. In Sect. 9, however, we will need this information.

Intuitively, a BDD is an acyclic graph with a root node and two sink nodes, labelled
true and false. Every node in the graph, except for the sink nodes, is labelled by a variable
and has two successor nodes, connected by so-called then and else edges. Given a set of
variables V and Boolean function f : 2V → B, we say that some set v ⊆ V (which we also
call a variable valuation in this context) induces f (v) = true if and only if there exists a
path in the BDD from the root node to true where in every node, we take the then-successor

240 Form Methods Syst Des (2012) 40:232–262

whenever the variable the node is labelled with is contained in v, and take the else-successor
otherwise. We consider only ordered BDDs here, for which there exists a total order on the
variables, and along every path of a BDD, every variable can only occur at most once and in
the given order.

3 Solving obligation games

In this section, we discuss the solution process for obligation games, i.e., how the winner of a
game can be obtained.3 Obligation games are determined, i.e., there exists a winning strategy
for exactly one of the players. In general, the winning player needs to take the history of the
play into account when making the next decision in order to win a play. However, as we
will see below, this does not make solving obligation games hard, as it in fact suffices for
the winning player to keep track of which vertices have already been visited along a prefix
play. Even more, as vertices that occur only in combination in the vertex sets of the winning
condition need not be distinguished, the amount of information that needs to be stored is
even smaller. Formally, let G = (V ,Σ0,Σ1,E, vinit, F) be an obligation game. Given a set
of vertices V ′ ⊆ V , we denote by C(V ′, F) the set of atomic propositions of F that denote
position sets that intersect with V ′, i.e., C(V ′, F) = {V ′′ ∈ S(F) | V ′′ ∩ V ′ = ∅}. We use
Z(G) to represent the set of subsets of S(F) that need to be distinguished when tracking
which vertices have been visited so far in a prefix game, i.e.,

Z(G) = {S ⊆ S(F) | ∃V ′ ⊆ V : S = {V ′′ ∈ S(F) | V ′′ ∩ V ′ = ∅}}
For a finite game G , the set Z(G) is finite. Together with set inclusion, Z(G) forms a lattice,
where ∅ is the minimal and S(F) is the maximal element. The following definition and the
subsequent lemma formalize this intuition that Z(G) is useful as lattice of information about
the past to remember in obligation games.

Definition 2 Let ρ = ρ0
0ρ

1
0 . . . be a decision sequence in an obligation game G = (V ,Σ0,

Σ1,E, vinit, F) and π = π0π1 · · · be the corresponding play. We define η = η0η1 · · · to be
the corresponding path through Z(G), i.e., for all i ∈ N, we have ηi = C(Occ(π0 · · ·πi), F).
If for some j ∈ N, we have ηj = ηj+1 = . . . , we define the limit value η∞ as η∞ = ηj .

Lemma 1 Let ρ = ρ0
0ρ

1
0 · · · be a decision sequence in an obligation game G = (V ,Σ0,

Σ1,E, vinit, F), π = π0π1 · · · be the corresponding play and η = η0η1 · · · be the corre-
sponding path through Z(G). For all i ∈ N, we have ηi ⊆ ηi+1. Furthermore, η has a limit
value η∞ and ρ is winning if and only if η∞ |= F .

As an example, consider the obligation game G in Fig. 1. Here, the winning condition
is F = ¬{v2} ∧ {v1}. Obviously, for this game, we have Z(G) = {{∅}, {{v1}}, {{v2}}, {{v1},
{v2}}}. For a play π = v0v1v0v1v2 . . . , the corresponding path η = η0η1η2η3η4 · · · has η0 =
∅, η1 = η2 = η3 = {{v1}}, and ηi = {{v1}, {v2}} for all i ≥ 4, i.e., it is continuously updated
which elements of S(F) are state sets that have are already been visited along the play.

3The solution process described here is related to solving so-called games with a weak winning condition
(see [13] for a definition and details) and a reformulation of a procedure for solving games with a weak
transition structure (with uniform treatment of all game positions in a strongly connected component, see [19]
for a definition and details).

Form Methods Syst Des (2012) 40:232–262 241

The main idea of keeping track of the path in Z(G) along a play is that while staying in
some element of Z(G), the winning player has a memoryless strategy (which only depends
on the current vertex in a play of the game and not on the history) in G ; only when a new
vertex is visited and thus the play moves to a different element in Z(G), the strategy might
have to change. Since we know that Z(G) is finite, this allows us to solve the game in
a bottom-up fashion, where we start from the maximal elements in Z(G) and iteratively
compute the states that are winning for successively shrinking sets of states visited so far,
up to the set of state sets of S(F) that contain the initial vertex.

We use some standard notation for this task, starting with the enforceable predecessor op-
erator. Given a game G = (V ,Σ0,Σ1,E, vinit, F), we define the EnfPre : 2V → 2V operator
as follows:

EnfPre(V ′) = {v ∈ V | ∀x ∈ Σ0∃y ∈ Σ1 : E(v, x, y) ∈ V ′}
When solving an obligation game and working upwards in the Z(G) lattice, we might

have already identified some vertices as losing (as visiting them causes a transition in the
Z(G) lattice) and some as winning. Let us assume that we have two (distinct) sets of posi-
tions W0,W1 ⊆ V given and player 1 wins whenever some position in W1 is reached before
any position in W0 is reached, and furthermore player 1 wins if no position in W0 ∪ W1 is
ever visited. The set of winning positions for this player and winning condition can easily
be obtained by computing a greatest fixed point:

Win1(W0,W1) = νX.X ∩ (EnfPre(X \ W0) ∪ W1)

Likewise, we can compute the set of states from which player 1 can enforce that no position
in W0 is visited before (possibly) some position in W1 is reached, assuming that player 1
loses whenever no position in W0 ∪ W1 is ever visited:

Win0(W0,W1) = μX.X ∪ W1 ∪ EnfPre(X \ W0)

Using these prerequisites, we can finally devise a game solving algorithm for obligation
games. For all S ∈ Z(G), we define T (S) = Winb(W0,W1), where:

– b = 1 if and only if S |= F
– W0 = ⋃

S′∈Z(G),S =S′ {v′ /∈ T (S ′) | S ′ = S ∪ C({v′}, F)}
– W1 = ⋃

S′∈Z(G),S =S′ {v′ ∈ T (S ′) | S ′ = S ∪ C({v′}, F)}

Theorem 1 (see, e.g., [38]) Let G = (V ,Σ0,Σ1,E, vinit, F) be an obligation game. For
every prefix play π = π0π1 · · ·πn in G , we have πn ∈ T (C(Occ(π), F)) if and only if player 0
has a winning suffix strategy after the prefix play π .

Corollary 1 Let G = (V ,Σ0,Σ1,E, vinit, F) be an obligation game. Player 1 has a winning
strategy in G if and only if vinit ∈ T (C({vinit}, F)).

As the values of {T (S)}S∈Z(G) can be computed using a topological order on Z(G), the
overall computation can be done in time linear in |Σ0| · |Σ1| · |V | · |Z(G)| (cf. [2, 11, 19]).

3.1 Binary decision diagrams for solving games

Binary decision diagrams are a suitable data structure for the symbolic solution of obligation
games (see, e.g., [1]). In order to apply them, we need to encode the set of positions in the

242 Form Methods Syst Des (2012) 40:232–262

game and the sets of actions for the two players into Boolean variables. Then, the edge
function can be represented in form of a binary decision diagram (BDD).

Formally, we need four sets of variables Vpre, V0, V1 and Vpost in order to do so. The
sets Vpre and Vpost are used to represent predecessor and successor positions for the edges
in games, while V0 and V1 are used for the action sets of player 0 and 1, respectively.
A combined variable valuation for all of these sets is consequently capable of represent-
ing a single edge, and as a BDD maps variable valuations to true and false, a BDD over
Vpre � Vpost � V0 � V1 can represent the whole edge relation (by mapping variable valuations
that represent existing edges to true and the others to false).

We assume that Vpre and Vpost are totally ordered and use these sets and the lists induced
by the sets and the ordering interchangeably. Encoding the set of positions V of a game
G = (V ,Σ0,Σ1,E, vinit, F) into Vpre and Vpost is done using the encoding operators (·) :
2V → (2Vpre → B) and (·)′ : 2V → (2Vpost → B). For the techniques presented in this paper,
any such operators can be used, provided that they fulfil some side-constraints:

1. For all v, v′ ∈ V : if v = v′, then ({v}) ∧ ({v′}) = false.
2. For all V ′,V ′′ ⊆ V : (V ′) ∨ (V ′′) = (V ′ ∪ V ′′).
3. (V) = true and (∅) = false.
4. For all v ∈ V , ({v})′ = ({v})[Vpost/Vpre].
Similarly, we encode Σ0 and Σ1 into V0 and V1, and overload the operator (·) for this
purpose as this does not introduce ambiguities. The first three of the properties above are
also assumed to hold in this case. We defer a description of the encodings actually used in
this work to the later sections. The edge function can now be encoded into a BDD BE by
taking:

BE =
∨

v∈V,x∈Σ0,y∈Σ1

(
({v}) ∧ ({x}) ∧ ({y}) ∧ ({E(v, x, y)})′)

Obviously, BE is a BDD over the set of variables V = Vpre � Vpost � V0 � V1. This encoding
has the advantage that it is transparent with respect to taking the parallel composition of two
games G 1 = (V 1,Σ0,Σ1,E

1, vinit, F 1) and G 2 = (V 2,Σ0,Σ1, E2, vinit, F 2). If we define
({(v, v′)}) = ({v}) ∧ ({v′}) for all positions (v, v′) in G 1 ‖� G 2 for some � ∈ {∧,∨}, then
we compute the BDD for the edge function of G 1 ‖� G 2 by taking BE1 ∧ BE2 .

Given a BDD BE encoding an edge function E and a BDD BV ′ encoding a set of positions
(over the variables Vpre), we can compute the EnfPre operator as follows:

EnfPre(BV ′) = ∀V0.∃V1.∃Vpost.(BV ′ [Vpost/Vpre] ∧ BE)

This equation is a reformulation of the EnfPre function defined earlier in this section, with
the modification that it uses BDDs. The replacement of every Vpre variable by the corre-
sponding variable in Vpost is necessary to make BV ′ represent the successor positions when
taking the conjunction with BE (and thus applying the edge function). The existential ab-
straction of the variables in Vpost lets the BDD forget information about successor positions.
The subsequent universal and existential abstractions of V0 and V1 finally quantify over the
possible moves of the players and at the same time only let information about the predeces-
sor vertices in the game remain in the result of taking EnfPre(BV ′). The rest of the compu-
tation process for solving obligation games can be performed as described at the beginning
of this section.

Form Methods Syst Des (2012) 40:232–262 243

4 Bounded synthesis

The bounded synthesis approach [14, 32] is a conceptually simple technique to check the
realizability of a given specification, given in form of a universal co-Büchi word automaton
(UCW) for the scope of this paper (which are expressive enough to encode any LTL for-
mula), and to compute a Mealy or Moore machine realizing it in case of a positive answer.
We briefly recapitulate the basics of that approach here.

The main observation used in the bounded synthesis approach is that whenever a speci-
fication is realizable, there also exists one with a certain maximal number of states, which
is exponential in the size of the specification UCW. Furthermore, if some Mealy or Moore
FSM realizes a specification, there also exists a bound b ∈ N on the number of visits to
rejecting states in the UCW along every of its runs for some word in the language of the
FSM. By taking both facts together, one can derive a worst-case value of b that needs to be
considered when searching for an implementation. For the scope of this section, for a UCW
A, we let |F (A)| represent the number of rejecting states in the UCW, i.e, the ones with
colour 1.

Theorem 2 [28] Given a universal co-Büchi automaton with n states, we can construct an
equivalent deterministic parity automaton P with 2nnn! states and 2n colours.

Theorem 3 [32] Let M be a Mealy or Moore machine with n states and A be a universal
co-Büchi word automaton. The language of M is a subset of the language of A if and only
if the maximum number of visits to rejecting states in A for some run and some word in the
language of M is less than or equal to |F (A)| · n.

Corollary 2 [32] Given a universal co-Büchi word automaton A over the alphabet ΣI ×ΣO

with n states, there exists a Mealy or Moore machine over ΣI /ΣO realizing A if and only
if there exists one for which the maximum number of visits to rejecting states in A for some
run and some word in the language of M is less than or equal to |F (A)| · 2nnn!.

This observation gives rise to the following idea: from a UCW, we build a safety automa-
ton that checks if all runs of the UCW for some given input word do not exceed some bound
value b ∈ N. Provided that the bound value is chosen high enough, the unrealisability of the
resulting safety automaton implies the unrealisability of the original specification.

Definition 3 Let A = (Q,Σ, δ,Qinit,F) be a UCW. We define the deterministic safety
automaton Bound(A, b) = (Q′,Σ, δ′, {q ′

init},F ′) for some b ∈ N by:

– Q′ = (Q → {−∞,0, . . . , b}) ∪ {⊥}
– For all f ∈ (Q → {−∞,0, . . . , b}), x ∈ Σ , we have δ′(f, x) ∈ (Q → {−∞,0, . . . , b})

and

δ′(f, x)(q) = max{f (q ′) | q ′ ∈ Q,q ∈ δ(q ′, x)} +
{

1 if q ∈ F

0 otherwise

if for all q ∈ Q, we have

b ≥ max{f (q ′) | q ′ ∈ Q,q ∈ δ(q ′, x)} +
{

1 if q ∈ F

0 otherwise
,

244 Form Methods Syst Des (2012) 40:232–262

and δ′(f, x) = ⊥ otherwise. In both equations, we assume that max(∅) = −∞ and that
−∞ + 1 = −∞.

– For all x ∈ Σ , δ′(⊥, x) = {⊥}
– q ′

init = {Qinit �→ 0,Q \ Qinit �→ −∞}
– F ′ = {Q′ \ {⊥} �→ 0, {⊥} �→ 1}

Theorem 4 [14, 32] Let A = (Q,Σ, δ,Qinit,F) be a UCW with n states and ΣI and ΣO

be sets such that Σ = ΣI × ΣO . There exists a Mealy machine over ΣI and ΣO realizing
A if and only if the game ToGame1(Bound(A, b),ΣI ,ΣO) is winning for player 1 with
b = |F (A)| · 2nnn!. Furthermore, there exists a Moore machine over ΣI and ΣO realizing
A if and only if the game ToGame0(Bound(A, b),ΣO,ΣI) is winning for player 0 and b =
|F (A)| · 2nnn!. Winning strategies for the respectively players represent FSMs realizing A.

In order to speed up bounded synthesis in practice, we can apply a simple strategy: we
start with a bound of b = 1 and successively increase b while checking whether the result-
ing game ToGame0(Bound(A, b),ΣO,ΣI) is winning for player 0 in the Moore setting or
whether the game ToGame1(Bound(A, b),ΣI ,ΣO) is winning for player 1 in the Mealy
setting. Typically, in practice, realizable specifications only require a small bound value in
order to be identified as such [14–16, 32]. In order to also detect unrealisable specifications
quickly, a procedure described in [14, 21] can be applied: using a universal co-Büchi au-
tomaton A representing the complement language of A (i.e., both automata have the same
alphabet Σ and we have L(A) = Σω \ L(A)), we execute two copies of the bounded syn-
thesis process. In the first process, we successively increase a bound value b until the game
ToGame0(Bound(A, b),ΣO,ΣI) is winning for player 1. In the second copy, we succes-
sively increase a bound value of b′ until ToGame1(Bound(A, b′),ΣI ,ΣO) is winning for
player 1. Once one of the two processes terminates, we know whether A is realizable over
ΣI /ΣO (in the Mealy setting) or not. The corresponding procedure for the Moore setting is
analogous to the Mealy case.

4.1 Compositional bounded synthesis

When performing synthesis, it is sometimes desirable to search for implementations that
satisfy several specifications. For the scope of this paper, we only consider a special case of
this situation: we search for a Mealy machine for which each word in its language is either
accepted by:

– a UCW A, and
– a deterministic safety automaton As ,

or by

– a deterministic co-safety automaton Ac .

Details on the compositional bounded synthesis approach for more general cases can be
found in [15].

Lemma 2 Given a universal co-Büchi automaton A with n states, a deterministic safety
automaton As with ns states, and a deterministic co-safety automaton Ac with nc states, we
can construct a deterministic parity automaton P with ns · nc · 2nnn! states and 2n colours
whose language is (L(A) ∩ L(As)) ∪ L(Ac), and a deterministic parity automaton P ′ of
equal size whose language is (L(A) ∪ L(As)) ∩ L(Ac).

Form Methods Syst Des (2012) 40:232–262 245

Proof We first convert A to a deterministic parity automaton (Theorem 2) and then use a
standard product construction. If the language of P should be (L(A) ∩ L(As)) ∪ L(Ac),
as the states with colour 1 in a safety automaton and the states with colour 0 in a co-
safety automaton need to be absorbing, it suffices to assign a state (q, q ′, q ′′) in P with
q ∈ Q(As), q ′ ∈ Q(Ac) and q ′′ ∈ Q(A) the colour 0 if F (Ac)(q

′) = 0, colour 1 if
F (As)(q) = F (Ac)(q

′) = 1, and colour F (A)(q ′′) otherwise.
The other case in which P ′ should have the language (L(A) ∪ L(As)) ∩ L(Ac) is analo-

gous. �

Corollary 3 Let A = (Q,Σ, δ,Qinit,F) be a UCW with n states, As be a safety automaton
with ns states, Ac be a co-safety automaton with nc states and ΣI and ΣO be sets such that
Σ = ΣI × ΣO . There exists a Moore machine over ΣI and ΣO whose induced words are
all in (L(A)∩ L(As))∪ L(Ac) if and only if the game (ToGame0(Bound(A, b),ΣO,ΣI) ‖∨
ToGame0(As ,ΣO,ΣI)) ‖∧ ToGame0(Ac,ΣO,ΣI) is winning for player 0 and b = |F (A)| ·
ns · nc · 2nnn!. Furthermore, there exists a Mealy machine whose induced words are all
in (L(A) ∩ L(As)) ∪ L(Ac) if and only if the game (ToGame1(Bound(A, b),ΣI ,ΣO) ‖∧
ToGame1(As ,ΣI ,ΣO)) ‖∨ ToGame0(Ac,ΣI ,ΣO) is winning for player 1 and b = |F (A)| ·
ns · nc · 2nnn!.

Proof Adapt Corollary 2 to the compositional case using Lemma 2. �

5 Safety and non-safety: splitting the specification

We now turn towards explaining the main novelties of this work. In the previous sections, we
have seen how bounded synthesis works in general: we construct a UCW from a specifica-
tion and build a family of safety automata for a successively increasing bound value. These
safety automata are converted to realisability safety games and solved. Once the game is
found to be winning for the system player (player 1 if our aim is to synthesize an imple-
mentation in form of a Mealy automaton or player 0 for a Moore automaton), the process
terminates. To simplify the presentation, for the rest of this paper, we assume that we search
for a Mealy-type implementation. The techniques presented here are however of course also
applicable for the Moore-type.

We have also seen how to encode the process of safety game solving (as a special case of
obligation game solving) in a way that allows using binary decision diagrams (BDDs) as data
structure for this task. When doing so, we however face one main problem: when building
the safety automata from the UCW and a given bound value, we introduce a lot of counters
into the structure of the word automaton. Recall that in Definition 3, the state space is defined
as (Q → {−∞,0, . . . , b}) ∪ {⊥}, where Q is the set of states of the UCW. Thus, for every
state in the original UCW, we introduce a counter ranging from 0 to b with −∞ as an
additional value. Also, the definition of the transition function for the safety automata makes
use of these counter values. It has been noticed that encoding such number comparisons into
BDDs, which is necessary for the solution of the bounded synthesis problem using BDDs
in the context of this paper, often leads to huge BDDs in practice [7, 33, 40]. To solve this
problem, we introduce two techniques in this paper, of which the first one is described in
this section.

In particular, we explain how to decompose an LTL specification being subject to syn-
thesis in a way such that non-safety and safety properties can be treated in parallel. Recall
from the introduction of this paper that we assume that the specification is written in the

246 Form Methods Syst Des (2012) 40:232–262

form ψ = ∧
a∈A a → ∧

g∈G g for some set of assumptions A and some set of guarantees G,
each consisting of safety and non-safety LTL properties. In the classical bounded synthesis
approach, ψ is transformed to a UCW which in turn is converted to its induced safety game
for some given bound. Here, we propose a slightly different approach. Instead of building
one single game from the specification, we split the latter into parts, build individual games
for each of the parts and then take their parallel composition to obtain a composite game
(see Sect. 2). This has several advantages:

1. It has been observed [14] that the time to compute a UCW from an LTL formula is
a significant part of the overall realisability checking time. By splitting the specification
beforehand, building a monolithic UCW is avoided, resulting in a lower total computation
time.

2. Taking the parallel composition of multiple game structures can be done in a relatively
efficient way when using BDDs for solving the composite game.

3. The state spaces of games corresponding to safety properties do not need the counters
that are employed in the bounded synthesis approach. Thus, by decomposing the speci-
fication into safety and non-safety parts, we can save counters, which in turn reduces the
computation time further.

In order to obtain a valid decomposition scheme, the resulting game must be winning for
player 1 (the system player) in the same cases as before, i.e., if and only if either a safety
or non-safety assumption is violated or all guarantees are fulfilled. Additionally, winning
strategies for the composite game must also be valid solutions to the synthesis problem.

The technique presented in the following does not preserve the smallest bound b such that
the specification is fulfillable (as the bound depends on the syntactic structure of the UCW).
However, the method proposed is still sound and complete, i.e., if and only if there exists a
bound b such that the safety game induced by the UCW for the overall specification and b is
winning for player 1, there exists some bound for the non-safety part of the specification and
the technique presented in this section such that the resulting game is winning for player 1.
Essentially, Corollary 3 establishes this fact.

In [35], the authors propose a method to solve a generalized parity game for a specifi-
cation of the form

∧
a∈A a → ∧

g∈G g as stated above successively. They first build games
for the safety assumptions and guarantees (i.e., the assumptions and guarantees that happen
to be safety properties), strip the non-winning parts (for the system player) from them and
compose them with games for the remaining parts of the specification. For the completeness
of this methodology, the non-safety assumptions however must not have any effect on the
fulfillability of the safety guarantees.4 In general, we cannot assume this; we thus propose a
different method here that is based on introducing a signalling bit into the game that links
the safety guarantees and the non-safety part of the specification.

We start by splitting the specification ψ = ∧
a∈A a → ∧

g∈G g over the input atomic
proposition API and the output atomic propositions APO into four sets of LTL formulas: the
safety assumptions As , the safety guarantees Gs , the non-safety assumptions An, and the
non-safety guarantees Gn. Then, we build a reachability game G 1 for the safety assumptions
that is won by player 1 if some assumption in As is violated. For the next step, we add one
bit to the output atomic proposition set of the system to be synthesized; let its name be safeg .
We build a safety game G 2 from the safety guarantees Gs that is won by player 1 if safeg

4The same problem also occurs in the context of generalized reactivity (1) synthesis [22, 29], an approach
that trades the full expressivity of LTL against the possibility to use a simpler and more efficient algorithm
solving the synthesis problem.

Form Methods Syst Des (2012) 40:232–262 247

Fig. 2 Graphical representation of the specification splitting approach proposed in Sect. 5 on an example
specification consisting of non-safety and safety assumptions and guarantees

always represents whether one of the safety guarantees has already been violated. For the
non-safety part, we take the modified specification ψ ′ = (

∧
a∈An

a) → (
∧

g∈Gn
g ∧G(safeg))

and convert it to a UCW A. Given a bound b ∈ N and having prepared G 1, G 2 and A, we
can now build the composite game G by defining G 3

b = ToGame1(Bound(A, b),2API ,2APO)

and:

G = G 1 ‖∨ (G 2 ‖∧ G 3
b)

Figure 2 visualizes the construction of the composite game. We obtain the following result:

Theorem 5 For every LTL specification ψ = ∧
a∈A a → ∧

g∈G g, there exists some bound
b ∈ N such that the composite game G built from ψ and b as defined above is won by the
system player 1 if and only if there exist some bound b′ ∈ N such that the (classical) safety
synthesis game built from the UCW corresponding to ψ and b′ built using the constructions
from Definition 1 and Definition 3 is winning for player 1.

Proof Assume that ψ is realisable over API /APO . Then, there exists a Mealy automa-
ton/strategy for player 1 realizing it with k states for some k ∈ N. Thus, the construction
of the game makes Corollary 3 applicable.

On the other hand, it there exists no winning strategy, then by the construction of the
game, player 0 can prevent player 1 from playing a winning strategy in G for every value
of b. �

Since G is the outcome of taking the parallel composition between the games as defined
above, its winning condition is of the form F (G) = V ′ ∨ (¬V ′′ ∧ ¬V ′′′) with V ′ = V1 ×

248 Form Methods Syst Des (2012) 40:232–262

V (G 2) × V (G 3
b) for F (G 1) = V1, V ′′ = V (G 1) × V2 × V (G 3

b) for F (G 2) = ¬V2, and V ′′′ =
V (G 1) × V (G 2) × V3 for F (G 3

b) = ¬V3.
Solving the composite game G is simple using the procedure presented in Sect. 3. We

first simplify the winning condition of the game to F (G) = V ′ ∨ (¬(V ′′ ∪ V ′′′)), and then
compute T ({V ′,V ′′ ∪ V ′′′}), T ({V ′}), T ({V ′′ ∪ V ′′′}) and T (∅). If the last of these sets
contains vinit(G), then the game is winning for player 1 and thus the original specification is
realisable.

In the context of bounded synthesis, there is however a way to simplify the computation.
Let BF

1 = (V ′), BF
2 = (V ′′) and BF

3 = (V ′′′), and EnfPre be the enforceable predecessor
operator that uses the edge function of the composite game. We can obtain the set of winning
positions of player 1 in G by computing the following BDD:

W = νX.X ∧ (BF
3 ∨ (EnfPre(X ∧ (¬BF

2) ∧ (¬BF
1)))

This equation represents operations on BDDs whose application results in a BDD that
encodes Win1(V

′′ ∪V ′′′,V ′). We have vinit(G) ∈ Win1(V
′′ ∪V ′′′,V ′) if player 1 has a strategy

to either eventually reach one of the vertices in V ′, or to stay away from V ′′ ∪ V ′′′ forever.
Clearly, Win1(V

′′ ∪V ′′′,V ′) is an under-approximation of the set of vertices in G from which
player 1 can win. However, Win1(V

′′ ∪ V ′′′,V ′) does not classify the vertices as winning
from which player 1 cannot avoid visiting V ′′ ∪ V ′′′, but can ensure that eventually V ′ is
visited afterwards (in this case player 1 can also win the game). Since G is a finite game,
there exists an upper bound u on the number of moves that player 1 may require to do so. At
the same time, the only way to visit V ′′ is that player 1 does not choose the right valuation
for the safeg output bit (which can always be avoided), and the only way to visit V ′′′ is to
have some counter in G 3

b exceeding the bound.
Thus, whenever we have vinit(G) /∈ Win1(V

′′ ∪V ′′′,V ′), but vinit is winning for player 1 in
G , by increasing the bound value b used to construct the game G 3

b by u, we ensure that in the
game G that we then obtain, player 1 can reach V ′ before any vertex in V ′′ ∪ V ′′′ is reached
from the positions in the game with the smaller bound that Win1(V

′′ ∪V ′′′,V ′) misclassified
as losing for player 1, and thus we have vinit ∈ Win1(V

′′ ∪ V ′′′,V ′) for the increased bound
value. So it suffices to increase the bound value to use the equation above to compute a set of
winning states in G that eventually contains vinit(G) when successively increasing the bound
value. Since we do so anyway in the bounded synthesis process, we use this simplification
for our implementation to be described in Sect. 10 as it facilitates the extraction of winning
strategies from the game.

6 Observations on the bounded synthesis approach

In this section, we describe the second optimisation technique proposed in this paper for
performing bounded synthesis efficiently using binary decision diagrams (BDDs).

Consider a UCW as depicted in Fig. 3. For a bound of b = 2, the corresponding safety
automaton Bound(A, b) has 54 + 1 states (including the ones that are not reachable from
the initial state). While the LTL formula corresponding to the UCW can be decomposed,
we describe here a technique that even works without this decomposition, and can be used
orthogonally.

In the bounded synthesis approach, any other procedure Bound′ to convert a UCW and
a bound value b to a safety automaton can be used that makes sure that for every uni-
versal co-Büchi word automaton A and bound value b ∈ N, we have L(Bound(A, b)) ⊆

Form Methods Syst Des (2012) 40:232–262 249

Fig. 3 Example UCW for the LTL formula FGa ∧ G((¬a ∧ Xa) → XXGF¬b) over the set of atomic propo-
sitions {a, b}. Rejecting states are doubly-circled. The part of the automaton consisting of q0 and q1 checks
that eventually a stops occurring in the input word. Whenever a letter is read that does not contain a, but the
subsequent letter contains a, the automaton branches universally from q1 into q0 and q2 at the same time.
A suffix run starting from state q2 then checks if we have GF¬b for the following suffix word

L(Bound′(A, b)) ⊆ L(A). In such a case, the soundness and completeness arguments given
in the previous sections still hold. We make use of this fact by deriving such a modified pro-
cedure from the following observation: when decomposing the UCW into maximal strongly
connected components (SCCs), any run through the UCW can visit every maximal strongly
connected component at most once (by the definition of SCCs) and thus, it is possible to in-
terpret the bound value in a modified way: instead of bounding the number of allowed visits
to rejecting states along a run, we bound this number for every maximal SCC separately,
i.e., we reset the counter whenever a maximal SCC is left. As every maximal SCC can be
visited at most once, we do not need to keep track of the counters for SCCs already left in a
run. At the same time, whenever a maximal SCC does not have rejecting states, the counter
values for the current SCC can only be 0 or −∞ with this modification. We formally define:

Definition 4 Let A = (Q,Σ, δ,Qinit,F) be a UCW. We define D to be the equivalence
relation over Q such that for every q, q ′ ∈ Q, (q, q ′) ∈ D if and only if q and q ′ are in the
same maximal SCC. We furthermore define K ⊆ Q to be the set of states that are not in the
same maximal SCC as a rejecting state.

The deterministic safety automaton Bound′(A, b) = (Q′,Σ, δ′, {q ′
init},F ′) for some b ∈

N is defined by:

– Q′ = (((Q \ K) → {−∞,0, . . . , b}) × (K → {−∞,0})) ∪ {⊥}
– For all f ∈ (((Q\K) → {−∞,0, . . . , b})× (K → {−∞,0})), x ∈ Σ , we have δ′(f, x) ∈

(((Q \ K) → {−∞,0, . . . , b}) × (K → {−∞,0})) and

δ′(f, x)(q) = max
({f (q ′) | q ′ ∈ Q,(q, q ′) ∈ D,q ∈ δ(q ′, x)}

∪ {0 | ∃q ′ ∈ Q,(q, q ′) /∈ D,q ∈ δ(q ′, x)})+
{

1 if q ∈ F

0 otherwise

if for all q ∈ Q, we have

b ≥ max
({f (q ′) | q ′ ∈ Q,(q, q ′) ∈ D,q ∈ δ(q ′, x)}

∪ {0 | ∃q ′ ∈ Q,(q, q ′) /∈ D,q ∈ δ(q ′, x)}) +
{

1 if q ∈ F

0 otherwise

and δ′(f, x) = ⊥ otherwise. In both equations, we assume that max(∅) = −∞ and that
−∞ + 1 = −∞.

– For all x ∈ Σ , δ′(⊥, x) = {⊥}
– q ′

init = {Qinit �→ 0,Q \ Qinit �→ −∞}
– F ′ = {Q′ \ {⊥} �→ 0, {⊥} �→ 1}

250 Form Methods Syst Des (2012) 40:232–262

7 Encoding bounded synthesis in BDDs

After the discussion of the main ideas presented in this paper, we turn towards fill-
ing the remaining blanks in the BDD-based approach to synthesis. In particular, it
needs to be discussed how to efficiently symbolically encode the counters in the game
ToGame1(Bound(A, b),2API ,2APO) and how to deal with G 1 and G 2.

The efficiency of solving games using BDDs heavily depends on a smart encoding of the
state space into the BDD bits. As already stated, for a symbolic solution of a safety game,
four groups of BDD variables are needed: two groups for the predecessor and successor
game positions in its edge function (Vpre and Vpost), one for the input to the system (V0) and
one for the output (V1). As we defined the input as I = 2API and the output as O = 2APO

for the scope of this paper, a straight-forward Boolean encoding of I and O for usage in the
BDDs exists: we allocate one BDD bit for each element of API and APO . It remains to find
a suitable encoding for the state space of the game.

Since our overall game G is the product of some smaller state spaces, we parallelise the
problem and search for state space encodings of G 1, G 2 and G 3

b = ToGame1(Bound(A, b),
2API ,2APO) separately.

7.1 The non-safety part

Recall that in the context of bounded synthesis, the safety game induced by a UCW for
a given bound b has a certain property: the state space consists of all functions mapping
the states of the UCW onto {−∞,0,1, . . . , b} (or {−∞,0} for some states when using
the optimisation technique from the previous section) for b being the chosen bound. For
each state, we can encode the value the function maps to individually. For the scope of
this paper, we define the following encoding for this counter set {−∞,0,1, . . . , b}: we use
�log2(b + 1)� + 1 bits. One bit is used for representing whether the value equals −∞, the
remaining bits represent the standard binary encoding of the numeral (if given). Taking an
extra bit for the −∞ value has the advantage of obtaining smaller BDDs in most cases as
this value appears very often in the definition of the transition function. Encoding the range
{−∞,0} on the other hand is trivial as we only need one bit for doing so.

We also propose and use one additional trick. The games defined in the previous section
are built in a way such that they permit one type of non-determinism: we can allow the
system player to choose a successor state from a set of possible ones. If the system player
can do this in a greedy way, i.e., the non-determinism can be resolved after each input/output
cycle while ensuring that the decision sequence for the play is still winning in the unmodified
game, the game semantics remain unchanged. For bounded synthesis, we can thus relax the
transition relation (encoded by the BDD BE) slightly: we allow the system player to increase
her counters in addition to the counter increases imposed by visits to rejecting states. We also
allow her to set some counters from −∞ to some arbitrary other value. This non-minimality
[3] of the transition relation typically decreases the size of its symbolic encoding.5

7.2 The safety part

For the encoding of the game components that correspond to safety assumptions and safety
guarantees, we state two different, straight-forward methods, which we explain in the fol-
lowing. The first method only works for locally checkable properties and is usually more

5A similar idea was also pursued by Henzinger et al. [20] for simplifying the process of automaton determin-
isation.

Form Methods Syst Des (2012) 40:232–262 251

efficient than the second one in this case, whereas the latter method is capable of handling
arbitrary safety properties.

7.2.1 Smart encoding of locally checkable properties

If an LTL property is of the form ψ = G(φ) with a formula φ in which the only temporal
operator occurring is X, then ψ is a locally checkable property [26]. Let k be the deepest
nesting of the X operator in φ. For checking the satisfaction of such a property when ob-
serving a trace, in every round, it suffices to store whether the property has already been
violated, the last k inputs/outputs (also called history) and the current round number (with
the domain {0,1, . . . , k − 1,≥ k}). Then, in every round with a number ≥ k, we update
whether the specification is already falsified with the input and output in the last k rounds
and the current round. For encoding the round number in a symbolic way, we use a binary
representation.

Encoding such a property in this way has some advantages: First of all, the encoding
proposed is canonical. Furthermore, multiple properties can share the information stored in
the game state space this way, so we can recycle the stored information for all such locally
checkable safety properties. Note that it is possible to reduce the number of bits necessary
for storage by leaving out the history bits not needed for checking the given properties.

7.2.2 The general method

Safety properties have equivalent syntactically safe UCW, i.e., in the UCW, all rejecting
states are absorbing. In this case, the UCW can be determinised by the power set construc-
tion. Thus, we can assign to each state in the universal automaton a state bit which is set to
1 whenever there is a run from the initial state to the respective state encoded by the bit for
the input/output given by the players during the game so far.

This method is applicable to all safety properties but requires the computation of a uni-
versal co-Büchi automaton having the property stated above. While it has been observed
that checking if a property is safety is not harder than building an equivalent universal co-
Büchi automaton [24], it is not guaranteed that typical procedures for constructing UCW
from LTL properties yield automata that have this property. We use a simplified approach in
our actual implementation. If the procedure employed for converting an LTL formula into a
UCW yields a UCW for which all rejecting states are absorbing or transient, we declare the
property as being safety and otherwise treat it as a non-safety property. While we may miss
safety properties this way, the soundness of the overall approach is preserved.

8 Checking unrealisability

So far, we have only dealt with the case that we want to prove the realisability of a specifi-
cation. If a specification is unrealisable, then for no bound b ∈ N, the safety game induced
by the bound and the specification is won for the system player. Thus, an implementation
of the approach presented in this paper, which would typically increase the bound succes-
sively until the induced safety game is winning for the system player, would have to increase
the bound all the way up to the worst case bound established in Corollary 3. In [14, 21], it
is described how the bounded synthesis approach can be used for detecting unrealisability
quickly anyway: we simply run the synthesis procedure both on the original specification
as well as on the negated specification with swapped input and output in parallel. Then,

252 Form Methods Syst Des (2012) 40:232–262

while in the original realizability question, we search for a Mealy automaton satisfying the
specification, we search for a Moore automaton for the environment that witnesses the unre-
alisability of the specification. One of these runs is guaranteed to terminate. Whenever this
happens, we can abort the other run. This results in an decision procedure for the overall
problem.

When applying the optimisations from this paper, this idea is not directly usable, as
when negating the specification, the result is not again of the form

∧
a∈A a → ∧

g∈G g for
some sets of assumptions A and guarantees G. Instead, checking if the environment player
wins can be done by swapping input and output, negating only the modified specification,
and making the final states of G 1 losing for player 1 instead of winning. Then, player 1
(which is now the environment player) wins only if the safety assumptions are fulfilled, the
safeg bit always represents if a safety guarantee has already been violated, and the negated
modified specification is fulfilled (with respect to the given bound). Note that this makes
the resulting game a safety game (again), as in this case, we build the composite game by
taking G′ = G 1 ‖∧ G 2 ‖∧ G 3

b . We can thus easily solve G′ symbolically using the procedure
from Sect. 3.

9 Extracting an implementation in case of realizability

Before we discuss the experimental results in the next section, it remains to be described
how implementations that realize a given specification can be extracted in case the game G
is found to be winning for the system player during realizability checking.

From a theoretical point of view, extracting a winning strategy from a safety game is
not difficult. Recall that at the end of Sect. 5, we have seen that the composite game built
in the synthesis approach of this paper can be seen as a safety game. For these, we can
extract a winning strategy by using the position set of the game as state set of the Mealy
automaton and choosing one successor for every position/input combination that does not
lead to leaving this set of positions. From a technical point of view, doing so in a fully
symbolic manner, i.e., without enumerating all reachable positions explicitly, is however
difficult.

In the former part of this paper, the concrete definition of BDDs was not of relevance, i.e.,
it sufficed to view them as a data structure for Boolean functions. For the task of extracting
an implementation, we need to deviate from this. Assume that V ′ is the set of winning
positions in the safety game G and BE is a BDD representing the edge function of G . Then,
a BDD representation of the set of transitions that the Mealy automaton may perform can
be obtained by computing B ′

E = (V ′) ∧ BE ∧ (V ′)′ (recall that (·) encodes a set of vertices
into Vpre and that (·)′ encodes a set of vertices into Vpost). If in the order of the BDD, the
variables in Vpre and V0 occur first, then the BDD can be thought of as a decision tree with
collapsed branches. Such a tree can easily be converted to a switching circuit, using one gate
per node in the tree, and one flip-flop per state bit.

However, in practice, the variables can be ordered arbitrarily, as a large share of the
power of modern BDD libraries is rooted in the fact that they can perform dynamic variable
reordering to keep the sizes of the BDDs small. As a remedy, the algorithm proposed by
Kukula and Shiple [23] can be used instead. It is directly applicable to the BDD B ′

E , and
it generates a circuit whose size is linear in the number of nodes in the BDD. Intuitively,
the algorithm works as follows: for every node in the BDD, some switching logic unit is
synthesized. These units are connected by the same edges as the BDD nodes. Whenever a
new input bit valuation is fed into the Mealy machine, the switching logic starts to propagate

Form Methods Syst Des (2012) 40:232–262 253

which node in the BDD is reachable from the root node for some output. After the true node
has been reached, along such a path, a token is back-propagated in the BDD to the root node,
while every switching logic part corresponding to an output variable feeds the chosen value
to the output bits and every switching logic part corresponding to a Vpost bit feeds the output
to a set of flip-flops that preserve the state for the next computation cycle.

In the actual implementation of the approach in this paper, whenever there are multiple
output or post-state bit valuations possible in the back-propagation phase, the bit is set to
false.

10 Experimental results

We implemented the symbolic bounded synthesis approach presented in this paper in C++
with the BDD library CUDD v.2.4.2 [36], using dynamic variable reordering. The resulting
tool UNBEAST (v.0.6) assumes that the individual guarantees and assumptions are given
separately. The first step in the computation is to split non-safety properties from safety
ones. For this, the tool calls the LTL-to-Büchi converter LTL2BA v.1.1 [17] on the negations
of the properties to obtain equivalent universal co-Büchi word automata. As described in
Sect. 7.2.2, we then check if the automata obtained are syntactically safe. Locally checkable
properties are converted to games using the procedure specialised in this case, all other
safety properties are treated by the general procedure given. The UCW corresponding to
the modified non-safety part of the specification (as described in Sect. 5) is again computed
by calling LTL2BA on it. The last step for realisability checking is to solve the composite
games built for a successively increasing number of counter bits per state in the UCW until
the game is winning for the system player. We always start with two bits.

We check for realisability and unrealisabilty of the given specification simultaneously,
as described in Sect. 8. In case of realisability, we extract an implementation that fulfils
the specification. We do this in a fully symbolic way, as described in the previous section.
The remaining game graph is, together with the specification, converted to a NUSMV [10]
model. This allows running NUSMV to verify the correctness of the implementations pro-
duced.

All computation times given in the following are obtained on a Sun XFire computer with
2.6 GHz AMD Opteron processors running an x64-version of Linux. All tools considered are
single-threaded. We restricted the memory usage to 2 GB and set a timeout of 3600 seconds.
The running times for our tool always include the computation times of LTL2BA.

10.1 Performance comparison on the examples from [14, 21]

We compare UNBEAST with the only other currently publicly available tools for full LTL
synthesis, namely Lily v.1.0.2 [21] and ACACIA 2010 [14, 15]. In the following, for
ACACIA as well as UNBEAST, we only give running times for the non-realisability check if
the property is not realisable and the realisability check and model synthesis if the property
is realisable.

The 23 mutex variations used as examples in [14, 21] are a natural starting point for
our investigation. For usage with our tool, we adapted these examples to the Mealy-type
computation model used in this work by prefixing all references to input variables with a
next-time operator. For these 23 examples, Lily needed 54.35 seconds of computation time
(of which 44.25 seconds were devoted to computing the automata from the given speci-
fications). Acacia in turn finished the task in 52.43 seconds (including 40.79 seconds for

254 Form Methods Syst Des (2012) 40:232–262

building the automata). The version of UNBEAST with the features described in this paper
had a total running time of about 41.24 seconds. As computing the automata from the spec-
ification parts is not a pure preprocessing step in UNBEAST, we do not split up the total
running time here.

Interestingly, UNBEAST spends 39.5 out of the 41.24 seconds of overall computation
time on showing the unrealisability of a single specification, namely specification no. 4
from [21]. Lily spent only 1.95 seconds here, whereas Acacia needs 2.11 seconds.

In addition to what has been described in this paper, UNBEAST v.0.6 uses one special
trick that is common in BDD-based model checking: by grouping the variables in Vpre

together with their respective copies in Vpost, the search space for suitable variable order-
ings can easily be pruned in a reasonable way. For the fourth specification from [21], how-
ever, this optimisation is very malicious: it increases the computation time of UNBEAST to
198.76 seconds, and the computation time for all specifications together to 204.6 seconds.
We currently have no explanation for this huge difference, but use this variable grouping
feature for the benchmarks given in the next sub-section anyway, as this optimisation is
typically non-malicious.

As a summary, the implementation of the approach presented in this paper is typically
much faster on the benchmarks from this suite, with the exception of specification number 4,
for which the BDD-based approach is not competitive.

10.2 A load balancing system

For evaluating the techniques presented in this paper in a more practical context, we present
an example concerning a load balancing unit that distributes requests to a fixed number of
servers. Such a unit typically occurs as a component of a bigger system which in turn utilises
it for scheduling internal requests. We demonstrate how a synthesis procedure can be used
in the early development process of the bigger system in order to systematically engineer
the requirements of the load balancer. Using a synthesis tool in this context makes it pos-
sible detect errors in the specification that result in unrealisability as early as possible. We
start by stating the fundamental properties of the load balancing system and finally tune it
towards serving requests to the first server in a prioritised way. After each added specifica-
tion/assumption, we run our example implementation in order to check if the specification
is still realisable.

The following list contains the parts of the specification. Table 1 gives the running times
of our tool and ACACIA for the respective sets of assumptions and guarantees and some
numbers of clients n ∈ {2, . . . ,9}. We did not use the compositional techniques introduced
in the 2010 version of ACACIA as they are targeted towards specifications that consist of a
conjunction of guarantees (and at the same time have no assumptions, or only assumptions
that are to be interpreted locally to some guarantees).

The system to be synthesized uses the input bits r0, . . . , rn−1 for receiving the informa-
tion whether some server is sufficiently under-utilised to accommodate another task and
the output bits g0, . . . , gn−1 for the task assignments. An additional input job reports on an
incoming job to be assigned. For usage with ACACIA, all occurrences of output variables
in the specification have been prefixed with a next-time operator to take into account the
different underlying computation model.

1. Guarantee: Non-ready servers are never bothered:
∧

0≤i<n G(gi → ri)

2. Guarantee: A task is only assigned to one server:
∧

0≤i<n G(gi → (
∧

j∈{1,...,n}\{i} ¬gj))

3. Guarantee: Every server is used infinitely often:
∧

0≤i<n GF(gi)

Form Methods Syst Des (2012) 40:232–262 255

Ta
bl

e
1

R
un

ni
ng

tim
es

of
A

C
A

C
IA

(“
A

”)
an

d
U

N
B

E
A

S
T

(“
U

”)
fo

rt
he

su
b-

pr
ob

le
m

s
de

fin
ed

in
Se

ct
.1

0.
2

fo
rn

∈{
2,

..
.,

9}.
Fo

re
ac

h
co

m
bi

na
tio

n
of

as
su

m
pt

io
ns

an
d

gu
ar

an
te

es
,

it
is

re
po

rt
ed

w
he

th
er

th
e

sp
ec

ifi
ca

tio
n

w
as

sa
tis

fia
bl

e
(+

/
−)

,h
ow

m
an

y
co

un
te

r
bi

ts
pe

r
st

at
e

in
th

e
U

C
W

w
er

e
in

vo
lv

ed
at

th
e

en
d

of
th

e
co

m
pu

ta
tio

n
(o

nl
y

fo
r

U
N

B
E

A
S

T
)

an
d

ho
w

lo
ng

th
e

co
m

pu
ta

tio
n

to
ok

(i
n

se
co

nd
s)

.F
or

re
al

is
ab

le
sp

ec
ifi

ca
tio

ns
an

d
U

N
B

E
A

S
T

,w
e

co
ns

id
er

th
e

ca
se

th
at

an
im

pl
em

en
ta

tio
n

is
to

be
ex

tr
ac

te
d

(“
+S

”)
an

d
th

e
ca

se
th

at
im

pl
em

en
ta

tio
n

ex
tr

ac
tio

n
is

tu
rn

ed
of

f
“−

S”
).

It
ca

n
ea

si
ly

be
se

en
th

at
im

pl
em

en
ta

tio
n

ex
tr

ac
tio

n
ap

pe
ar

s
to

be
ve

ry
co

st
ly

in
th

is
ap

pr
oa

ch
.W

e
le

ft
ou

tt
he

L
ily

to
ol

as
it

is
no

t
co

m
pe

tit
iv

e
on

th
e

lo
ad

ba
la

nc
in

g
ex

am
pl

e

To
ol

Se
tti

ng
/#

C
lie

nt
s

2
3

4
5

6
7

8
9

A
1

+
0.

3
+

0.
4

+
0.

5
+

0.
9

+
1.

5
+

2.
7

+
5.

0
+

12
.4

U
+S

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

+
2

0.
1

U
−S

+
2

0.
1

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

A
1

∧2
+

0.
3

+
0.

3
+

0.
4

+
0.

4
+

0.
6

+
0.

9
+

1.
6

+
3.

1

U
+S

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

U
−S

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

A
1

∧2
∧3

–
21

.9
–

56
5.

6
tim

eo
ut

tim
eo

ut
tim

eo
ut

m
em

ou
t

m
em

ou
t

tim
eo

ut

U
–

2
0.

1
–

2
0.

1
–

2
0.

1
–

2
0.

1
–

2
0.

3
–

2
0.

9
–

2
6.

7
–

2
74

.5

A
1

∧2
∧4

+
0.

6
+

1.
3

+
9.

2
+

27
4.

0
m

em
ou

t
m

em
ou

t
m

em
ou

t
tim

eo
ut

U
+S

+
2

0.
1

+
3

0.
3

+
3

1.
1

+
4

39
.0

+
4

18
7.

7
tim

eo
ut

tim
eo

ut
tim

eo
ut

U
−S

+
2

0.
1

+
3

0.
2

+
3

0.
3

+
4

2.
1

+
4

2.
9

+
4

10
.7

+
4

42
.9

+
5

38
7.

9

A
1

∧2
∧4

∧5
–

16
4.

9
tim

eo
ut

tim
eo

ut
tim

eo
ut

m
em

ou
t

m
em

ou
t

m
em

ou
t

tim
eo

ut

U
–

2
0.

1
–

2
0.

6
–

2
88

6.
1

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

A
6

→
1

∧2
∧4

∧5
–

17
6.

4
tim

eo
ut

tim
eo

ut
tim

eo
ut

m
em

ou
t

m
em

ou
t

m
em

ou
t

tim
eo

ut

U
–

2
0.

1
–

2
0.

7
–

2
78

2.
4

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

A
6

∧7
→

1
∧2

∧4
∧5

–
19

8.
6

m
em

ou
t

m
em

ou
t

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

U
–

2
0.

1
–

2
1.

6
–

2
78

0.
9

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

256 Form Methods Syst Des (2012) 40:232–262

Ta
bl

e
1

(C
on

ti
nu

ed
)

To
ol

Se
tti

ng
/#

C
lie

nt
s

2
3

4
5

6
7

8
9

A
6

∧7
→

1
∧2

∧5
∧8

+
7.

4
+

46
.0

m
em

ou
t

m
em

ou
t

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

U
+S

+
2

0.
1

+
3

0.
3

+
3

1.
2

+
4

56
.7

+
4

12
13

.3
tim

eo
ut

tim
eo

ut
tim

eo
ut

U
−S

+
2

0.
1

+
3

0.
3

+
3

0.
4

+
4

3.
8

+
4

4.
2

+
4

16
.7

+
4

77
.6

+
5

96
1.

8

A
6

∧7
→

1
∧2

∧5
∧8

∧9
–

45
.4

–
10

87
.1

tim
eo

ut
m

em
ou

t
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

U
–

2
0.

1
–

2
0.

1
–

2
0.

2
–

2
0.

9
–

2
15

.8
–

2
42

8.
8

tim
eo

ut
tim

eo
ut

A
6

∧7
∧1

0
→

1
∧2

∧5
∧8

∧9
+

23
.2

+
21

2.
1

m
em

ou
t

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

U
+S

+
2

0.
2

+
2

1.
9

+
3

26
.6

+
3

97
1.

3
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

U
−S

+
2

0.
2

+
2

0.
7

+
3

10
.9

+
3

17
.2

+
4

13
13

.2
tim

eo
ut

tim
eo

ut
tim

eo
ut

Form Methods Syst Des (2012) 40:232–262 257

Note that the guarantees 1, 2 and 3 cannot be fulfilled at the same time as some server might
not report when it is ready. Therefore, we replace the third part of the specification and
continue:

4. Guarantee: Liveness of the system:
∧

0≤i<n GF(ri) → GF(gi)

5. Guarantee: Only jobs that actually exist are assigned:
G((

∨
0≤i<n gi) → job).

Again, the guarantees 1, 2, 4 and 5 are unrealisable in conjunction as the job signal might
never be given. We add the assumption that this is not the case:

6. Assumption: There are always incoming jobs: GFjob

At this point, the system designer gets to know that this added requirement does not fix the
unrealisability problem, either. The reason is that the clock cycles in which job is set and the
cycles in which some server is ready might occur in an interleaved way. We therefore add:

7. Assumption: The job signal stays set until the job has been assigned: G(job∧(
∧

0≤i<n ¬gi)

→ X(job))

Note that the specification is still not realisable. The reason is that the ready signal of one
server i might always be given after a job assignment to another server j has been given (for
some i = j). If server i then always immediately withdraws its ready signal, the controller
can never schedule a job to server i, contradicting guarantee 4 if both servers i and j are
ready infinitely often. We therefore modify guarantee 4 to not consider these cases:

8. Guarantee: Every ready signal is either withdrawn or eventually handled:
∧

0≤i<n

¬(FG(ri ∧ ¬gi))

We continue by adding a priority to the first server. Note that this breaks realisability again,
as server 0 can block the others. As an example, we solve this problem by adding the as-
sumption that server 0 works sufficiently long after it obtains a new job before signalling
ready again.

9. Guarantee: Server 0 gets a job whenever a job is given and it is ready: G((
∨

1≤i<n

gi) → ¬r0)

10. Assertion: Server 0 does not report being ready when it gets a task until after an incom-
ing job has been reported on for the next time: G(g0 → ((¬job ∧ ¬r0) ∪ (job ∧ ¬r0))).

10.3 The effect of the two main techniques proposed in this paper

To show the effect of the specification splitting technique and the counter reduction tech-
nique proposed in this paper (Sects. 5 and 6, respectively), we also give benchmark results
for UNBEAST and the load balancing benchmark with these optimisations switched off.
Table 2 contains the results with specification splitting turned off, but non-safety counter re-
duction switched on. Table 3 contains the results of switching the non-safety counter reduc-
tion off, but keeping the specification splitting turned on. Finally, for Table 4, both features
are switched off. In all cases, the computation times for realisable specifications include the
implementation extraction time. It can be seen that the optimisation techniques proposed are
most effective in conjunction.

258 Form Methods Syst Des (2012) 40:232–262

Ta
bl

e
2

B
en

ch
m

ar
k

re
su

lts
fo

r
U

N
B

E
A

S
T

an
d

th
e

lo
ad

ba
la

nc
in

g
be

nc
hm

ar
k

w
ith

sp
ec

ifi
ca

tio
n

sp
lit

tin
g

tu
rn

ed
of

f
an

d
no

n-
sa

fe
ty

co
un

te
r

re
du

ct
io

n
sw

itc
he

d
on

Se
tti

ng
/#

C
lie

nt
s

2
3

4
5

6
7

8
9

1
+

2
0.

0
+

2
0.

1
+

2
0.

1
+

2
0.

1
+

2
0.

2
+

2
0.

5
+

2
2.

3
+

2
9.

6

1
∧2

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

+
2

0.
1

1
∧2

∧3
–

2
0.

0
–

2
0.

0
–

2
0.

1
–

2
3.

7
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

1
∧2

∧4
+

2
0.

1
+

3
0.

3
+

3
1.

1
+

4
12

.8
+

4
47

6.
2

tim
eo

ut
tim

eo
ut

tim
eo

ut

1
∧2

∧4
∧5

–
2

0.
1

–
2

0.
3

–
2

9.
6

–
2

13
71

.2
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
→

1
∧2

∧4
∧5

–
2

0.
1

–
2

0.
8

–
2

39
.1

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

→
1

∧2
∧4

∧5
–

2
0.

1
–

2
0.

7
–

2
29

.9
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
∧7

→
1

∧2
∧5

∧8
+

2
0.

3
+

3
17

.8
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

→
1

∧2
∧5

∧8
∧9

–
2

0.
1

–
2

0.
1

–
2

2.
8

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

∧1
0

→
1

∧2
∧5

∧8
∧9

+
2

0.
4

+
2

63
.2

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

Form Methods Syst Des (2012) 40:232–262 259

Ta
bl

e
3

B
en

ch
m

ar
k

re
su

lts
fo

r
U

N
B

E
A

S
T

an
d

th
e

lo
ad

ba
la

nc
in

g
be

nc
hm

ar
k

w
ith

sp
ec

ifi
ca

tio
n

sp
lit

tin
g

tu
rn

ed
on

an
d

no
n-

sa
fe

ty
co

un
te

r
re

du
ct

io
n

sw
itc

he
d

of
f

Se
tti

ng
/#

C
lie

nt
s

2
3

4
5

6
7

8
9

1
+

2
0.

0
+

2
0.

0
+

2
0.

0
+

2
0.

0
+

2
0.

0
+

2
0.

1
+

2
0.

1
+

2
0.

1

1
∧2

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

1
∧2

∧3
–

2
0.

1
–

2
0.

1
–

2
0.

1
–

2
0.

2
–

2
0.

2
–

2
0.

9
–

2
6.

8
–

2
71

.9

1
∧2

∧4
+

2
0.

1
+

3
3.

1
+

3
36

.2
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

1
∧2

∧4
∧5

–
2

0.
1

–
2

6.
2

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
→

1
∧2

∧4
∧5

–
2

0.
2

–
2

11
0.

5
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

→
1

∧2
∧4

∧5
–

2
0.

4
–

2
55

6.
7

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
∧7

→
1

∧2
∧5

∧8
+

2
0.

1
+

3
0.

9
+

3
2.

1
+

4
34

5.
7

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
∧7

→
1

∧2
∧5

∧8
∧9

–
2

0.
1

–
2

0.
1

–
2

0.
2

–
2

1.
1

–
2

16
.1

–
2

43
2.

8
tim

eo
ut

tim
eo

ut

6
∧7

∧1
0

→
1

∧2
∧5

∧8
∧9

+
2

0.
4

+
2

1.
9

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

260 Form Methods Syst Des (2012) 40:232–262

Ta
bl

e
4

B
en

ch
m

ar
k

re
su

lts
fo

r
U

N
B

E
A

S
T

an
d

th
e

lo
ad

ba
la

nc
in

g
be

nc
hm

ar
k

w
ith

sp
ec

ifi
ca

tio
n

sp
lit

tin
g

tu
rn

ed
of

f
an

d
no

n-
sa

fe
ty

co
un

te
r

re
du

ct
io

n
sw

itc
he

d
of

f

Se
tti

ng
/#

C
lie

nt
s

2
3

4
5

6
7

8
9

1
+

2
0.

0
+

2
0.

0
+

2
0.

1
+

2
0.

1
+

2
0.

2
+

2
0.

5
+

2
2.

2
+

2
8.

5

1
∧2

+
2

0.
0

+
2

0.
0

+
2

0.
0

+
2

0.
1

+
2

0.
1

+
2

0.
1

+
2

0.
1

+
2

0.
1

1
∧2

∧3
–

2
0.

0
–

2
0.

0
–

2
0.

1
–

2
3.

2
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

1
∧2

∧4
+

2
0.

1
+

3
3.

3
+

3
37

.5
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

1
∧2

∧4
∧5

–
2

0.
1

–
2

0.
9

–
2

18
1.

1
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
→

1
∧2

∧4
∧5

–
2

0.
4

–
2

16
14

.4
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

→
1

∧2
∧4

∧5
–

2
1.

1
–

2
13

77
.3

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
∧7

→
1

∧2
∧5

∧8
+

2
0.

3
+

3
40

9.
5

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

6
∧7

→
1

∧2
∧5

∧8
∧9

–
2

0.
1

–
2

0.
1

–
2

2.
7

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut

6
∧7

∧1
0

→
1

∧2
∧5

∧8
∧9

+
2

2.
2

+
2

24
.4

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

tim
eo

ut
tim

eo
ut

Form Methods Syst Des (2012) 40:232–262 261

11 Conclusion & outlook

In this paper, we described the steps necessary to make the bounded synthesis approach
work well with symbolic data structures such as BDDs. The key requirement was to reduce
the number of counters in the safety games that occur in this approach as much as possible.
We performed this task by splitting the specification into safety and non-safety parts and pre-
sented a counter number reduction technique for the game component corresponding to the
non-safety specification conjuncts. We also discussed efficient encodings of the safety part
of the specification into games. The experimental results show a huge speed-up compared
to previous works.

We only briefly discussed the problem of extracting small implementations for the case
that the specification is realisable. Similarly to the observations made in the context of gen-
eralised reactivity(1) synthesis, where the expressivity of full LTL is traded against the pos-
sibility to use more efficient algorithms for performing the synthesis process, the models
produced are often non-optimal [4], i.e., unnecessarily large. Thus, further work will deal
with the more effective extraction of winning strategies. While the techniques presented here
are already suitable for requirements engineering and prototype extraction, the problem of
how to obtain small implementations which can directly be converted to suitable hardware
circuits is still open.

References

1. Alur R, Madhusudan P, Nam W (2005) Symbolic computational techniques for solving games. Int J
Softw Tools Technol Transf 7(2):118–128

2. Andersen HR (1994) Model checking and Boolean graphs. Theor Comput Sci 126(1):3–30
3. Bloem R, Cimatti A, Pill I, Roveri M (2007) Symbolic implementation of alternating automata. Int J

Found Comput Sci 18(4):727–743
4. Bloem R, Galler S, Jobstmann B, Piterman N, Pnueli A, Weiglhofer M (2007) Specify, compile, run:

hardware from PSL. Electron Notes Theor Comput Sci 190(4):3–16
5. Bloem R, Galler SJ, Jobstmann B, Piterman N, Pnueli A, Weiglhofer M (2007) Interactive presentation:

automatic hardware synthesis from specifications: a case study. In: Lauwereins R, Madsen J (eds) DATE.
ACM Press, New York, pp 1188–1193

6. Bloem R, Chatterjee K, Greimel K, Henzinger TA, Jobstmann B (2010) Robustness in the presence of
liveness. In: Touili T, Cook B, Jackson P (eds) Computer aided verification. Lecture notes in computer
science, vol 6174. Springer, Berlin, pp 410–424

7. Bozga M, Maler O, Pnueli A, Yovine S (1997) Some progress in the symbolic verification of timed
automata. In: Grumberg O (ed) Computer aided verification. Lecture notes in computer science, vol 1254.
Springer, Berlin, pp 179–190

8. Bryant RE (1986) Graph-based algorithms for Boolean function manipulation. IEEE Trans Comput
35(8):677–691

9. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic model checking: 1020 states
and beyond. Inf Comput 98(2):142–170

10. Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A
(2002) NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma E, Larsen KG (eds)
Computer aided verification. Lecture notes in computer science, vol 2404. Springer, Berlin, pp 359–364

11. Cleaveland R, Steffen B (1991) A linear-time model-checking algorithm for the alternation-free modal
μ-calculus. In: Larsen KG, Skou A (eds) Computer aided verification. Lecture notes in computer science,
vol 575. Springer, Berlin, pp 48–58

12. Drechsler R, Sieling D (2001) Binary decision diagrams in theory and practice. Int J Softw Tools Technol
Transf 3(2):112–136

13. Farwer B (2001) ω-automata. In: Grädel E, Thomas W, Wilke T (eds) Automata, logics, and infinite
games. Lecture notes in computer science, vol 2500. Springer, Berlin, pp 3–20

14. Filiot E, Jin N, Raskin JF (2009) An antichain algorithm for LTL realizability. In: Computer aided veri-
fication. Lecture notes in computer science, vol 5643. Springer, Berlin, pp 263–277

262 Form Methods Syst Des (2012) 40:232–262

15. Filiot E, Jin N, Raskin JF (2010) Compositional algorithms for LTL synthesis. In: Bouajjani A, Chin
WN (eds) ATVA. Lecture notes in computer science, vol 6252. Springer, Berlin, pp 112–127

16. Finkbeiner B, Schewe S (2007) SMT-based synthesis of distributed systems. In: Automated formal meth-
ods (AFM)

17. Gastin P, Oddoux D (2001) Fast LTL to Büchi automata translation. In: Computer aided verification.
Lecture notes in computer science, vol 2102. Springer, Berlin, pp 53–65

18. Godhal Y, Chatterjee K, Henzinger T (2011) Synthesis of AMBA AHB from formal specification: a case
study. Int J Softw Tools Technol Transf. doi:10.1007/s10009-011-0207-9

19. Helmert M, Mattmüller R, Schewe S (2006) Selective approaches for solving weak games. In: Graf S,
Zhang W (eds) ATVA. Lecture notes in computer science, vol 4218. Springer, Berlin, pp 200–214

20. Henzinger TA, Piterman N (2006) Solving games without determinization. In: Ésik Z (ed) CSL. Lecture
notes in computer science, vol 4207. Springer, Berlin, pp 395–410

21. Jobstmann B, Bloem R (2006) Optimizations for LTL synthesis. In: FMCAD. IEEE Computer Society
Press, Los Alamitos, pp 117–124

22. Klein U, Pnueli A (2010) Revisiting synthesis of GR(1) specifications. In: HVC. Lecture notes in com-
puter science, vol 6504. Springer, Berlin

23. Kukula JH, Shiple TR (2000) Building circuits from relations. In: Emerson EA, Sistla AP (eds) Computer
aided verification. Lecture notes in computer science, vol 1855. Springer, Berlin, pp 113–123

24. Kupferman O, Vardi MY (1999) Model checking of safety properties. In: Halbwachs N, Peled D (eds)
Computer aided verification. Lecture notes in computer science, vol 1633. Springer, Berlin, pp 172–183

25. Kupferman O, Vardi MY (2005) Safraless decision procedures. In: FOCS. IEEE Press, New York,
pp 531–542

26. Kupferman O, Lustig Y, Vardi M (2006) On locally checkable properties. In: Logic for programming,
artificial intelligence, and reasoning, pp 302–316. doi:10.1007/11916277_21

27. McMillan KL (1993) Symbolic model checking. Kluwer Academic, Dordrecht
28. Piterman N (2007) From nondeterministic Büchi and Streett automata to deterministic parity automata.

Log Methods Comput Sci 3(3)
29. Piterman N, Pnueli A, Sa’ar Y (2006) Synthesis of reactive(1) designs. In: Emerson EA, Namjoshi KS

(eds) VMCAI. Lecture notes in computer science, vol 3855. Springer, Berlin, pp 364–380
30. Pnueli A (1977) The temporal logic of programs. In: FOCS. IEEE Press, New York, pp 46–57
31. Pnueli A, Rosner R (1989) On the synthesis of an asynchronous reactive module. In: Ausiello G, Dezani-

Ciancaglini M, Rocca SRD (eds) ICALP. Lecture notes in computer science, vol 372. Springer, Berlin,
pp 652–671

32. Schewe S, Finkbeiner B (2007) Bounded synthesis. In: Namjoshi KS, Yoneda T, Higashino T, Okamura
Y (eds) ATVA. Lecture notes in computer science, vol 4762. Springer, Berlin, pp 474–488

33. Schneider K, Logothetis G (1999) Abstraction of systems with counters for symbolic model checking.
In: Mutz M, Lange N (eds) Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen. Shaker, Braunschweig, pp 31–40

34. Sistla AP (1985) On characterization of safety and liveness properties in temporal logic. In: PODC,
pp 39–48

35. Sohail S, Somenzi F (2009) Safety first: A two-stage algorithm for LTL games. In: FMCAD. IEEE
Computer Society Press, Los Alamitos, pp 77–84

36. Somenzi F (2009) CUDD: CU decision diagram package, release 2.4.2
37. Thomas W (2002) Infinite games and verification (extended abstract of a tutorial). In: Brinksma E,

Larsen KG (eds) Computer aided verification. Lecture notes in computer science, vol 2404. Springer,
Berlin, pp 58–64

38. Thomas W (2008) Solution of Church’s problem: a tutorial. In: Apt K, Rooij RV (eds) New perspectives
on games and interaction. Amsterdam University Press, Amsterdam

39. Vardi MY, Wolper P (1994) Reasoning about infinite computations. Inf Comput 115(1):1–37
40. Wegener I (2000) Branching programs and binary decision diagrams. SIAM, Philadelphia

http://dx.doi.org/10.1007/s10009-011-0207-9
http://dx.doi.org/10.1007/11916277_21

	Symbolic bounded synthesis
	Abstract
	Introduction
	Preliminaries
	Basics
	Word automata
	Finite-state machines (FSMs)
	Linear-time temporal logic (LTL)
	Obligation games
	Example for obligation games
	Important special cases of winning conditions in obligation games
	Safety automata and safety/co-safety games
	Parallel composition of games
	Binary decision diagrams

	Solving obligation games
	Binary decision diagrams for solving games

	Bounded synthesis
	Compositional bounded synthesis

	Safety and non-safety: splitting the specification
	Observations on the bounded synthesis approach
	Encoding bounded synthesis in BDDs
	The non-safety part
	The safety part
	Smart encoding of locally checkable properties
	The general method

	Checking unrealisability
	Extracting an implementation in case of realizability
	Experimental results
	Performance comparison on the examples from [14, 21]
	A load balancing system
	The effect of the two main techniques proposed in this paper

	Conclusion & outlook
	References

