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Abstract We propose a novel, sound, and complete Simplex-based algorithm for solving
linear inequalities over integers. Our algorithm, which can be viewed as a semantic gener-
alization of the branch-and-bound technique, systematically discovers and excludes entire
subspaces of the solution space containing no integer points. Our main insight is that by
focusing on the defining constraints of a vertex, we can compute a proof of unsatisfiability
for the intersection of the defining constraints and use this proof to systematically exclude
subspaces of the feasible region with no integer points. We show experimentally that our
technique significantly outperforms the top four competitors in the QF-LIA category of the
SMT-COMP ’08 when solving conjunctions of linear inequalities over integers.

Keywords Linear inequalities over integers · Algorithms · Constraint solving

1 Introduction

A quantifier-free system of linear inequalities over integers is defined by Ax ≤ b where A

is an m × n matrix with only integer entries, and b is a vector in Zn. This system has a
solution if and only if there exists a vector x∗ ∈ Zn that satisfies Ax∗ ≤ b. Determining the
satisfiability of such a system of inequalities is a recurring theme in program analysis and
verification. For example, array dependence analysis, buffer overrun analysis, and integer
overflow checking all rely on solving linear inequalities over integers [1, 2]. Similarly, linear
integer inequalities arise in RTL datapath and symbolic timing verification [3, 4]. For this
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reason, many modern SMT solvers incorporate a dedicated linear arithmetic module for
solving this important subclass of constraints [5–9].

While practical algorithms, such as Simplex, exist for solving linear inequalities over the
reals [10], solving linear inequalities over integers is known to be an NP-complete problem,
and existing algorithms do not scale well in practice. There are three main approaches for
solving linear inequalities over integers. One approach first solves the LP-relaxation of the
problem to obtain a rational solution and adds additional constraints until either an integer
solution is found or the LP-relaxation becomes infeasible. The second approach is based on
the Omega Test, an extension of the Fourier-Motzkin variable elimination for integers [2].
Yet a third class of algorithms utilize finite-automata theory [11, 24].

The algorithm presented in this paper falls into the first class of techniques described
above. Existing algorithms in this class include branch-and-bound, Gomory’s cutting planes
method, or a combination of both, known as branch-and-cut [12]. Branch-and-bound
searches for an integer solution by solving the two subproblems Ax ≤ b ∪ {xi ≤ �fi�} and
Ax ≤ b∪{xi ≥ 	fi
} when the LP-relaxation yields a solution with fractional component fi .
The original problem has a solution if at least one of the subproblems has an integer solu-
tion. Even though upper and lower bounds can be computed for each variable to guarantee
termination, this technique is often intractably slow on its own. Gomory’s cutting planes
method computes valid inequalities that exclude the current fractional solution without ex-
cluding feasible integer points from the solution space. Unfortunately, this technique has
also proven to be impractical on its own and is often only used in conjunction with branch-
and-bound [13].

All of these techniques suffer from a common weakness: While they exclude the current
fractional assignment from the solution space, they make no systematic effort to exclude
the cause of this fractional assignment. In particular, if the solution of the LP-relaxation lies
at the intersection of n planes defined by the initial set of inequalities, and k ≤ n of these
planes have an intersection that contains no integer points, then it is desirable to exclude
at least this entire n − k dimensional subspace. The key insight underlying our approach is
to systematically discover and exclude exactly this n − k dimensional subspace rather than
individual points that lie on this space. To be concrete, consider the following system with
no integer solutions:

−3x + 3y + z ≤ −1

3x − 3y + z ≤ 2

z = 0

(1)

The projection of this system onto the xy plane is shown in Fig. 1a. Suppose the LP-
relaxation of the problem yields the fractional assignment (x, y, z) = ( 1

3 ,0,0). The planes

z = 0

−3x + 3y + z = −1
(2)

are the defining constraints of this vertex because the point ( 1
3 ,0,0) lies at the intersection

I of these planes. Since I contains no integer points, we would like to exclude exactly I

from the solution space. Our technique discovers such intersections with no integer points
by computing proofs of unsatisfiability for the defining constraints. A proof of unsatisfia-
bility is a single equality that (i) has no integer solutions and (ii) is implied by the defining
constraints. In our example, a proof of unsatisfiability for I is −3x + 3y + 3z = −1 since it
has no integer solutions and is implied by (2). Such proofs can be obtained from the Hermite
normal form of the matrix representing the defining constraints.
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Fig. 1 (a) The projection of (1) onto the xy plane. (b) The green lines indicate the closest lines parallel to
the proof of unsatisfiability; the red point marks the solution of the LP-relaxation. (c) Branch-and-bound first
adds the planes x = 0 and x = 1, then the planes y = 0 and y = 1, and continues to add planes parallel to the
coordinate axes

Once we discover a proof of unsatisfiability, our algorithm proceeds as a semantic gener-
alization of branch-and-bound. In particular, instead of branching on a fractional component
of the solution, our technique branches around the proof of unsatisfiability, if one exists. In
our example, once we discover the equation −3x + 3y + 3z = −1 as a proof of unsatisfia-
bility, we construct two new subproblems:

−3x + 3y + z ≤ −1

3x − 3y + z ≤ 2

z = 0

−x + y + z ≤ −1

−3x + 3y + z ≤ −1

3x − 3y + z ≤ 2

z = 0

−x + y + z ≥ 0

where −x + y + z = −1 and −x + y + z = 0 are the closest planes parallel to and on either
side of −3x +3y +3z = −1 containing integer points. As Fig. 1b illustrates, neither of these
systems have a real-valued solution, and we immediately determine the initial system to be
unsatisfiable. In contrast, as shown Fig. 1c, branch-and-bound only adds planes parallel to
the coordinate axes, repeatedly yielding points that lie on either 3x − 3y = 1 or 3x − 3y =
2, neither of which contains integer points. On the other hand, Gomory’s cutting planes
technique first derives the valid inequality y ≥ 1 before eventually adding a cut that makes
the LP-relaxation infeasible. Unfortunately, this technique becomes much less effective in
identifying the cause of unsatisfiability in higher-dimensions.

In this paper, we make the following key contributions:

– We propose a novel, sound, and complete algorithm for solving linear inequalities over in-
tegers that systematically excludes subspaces of the feasible region containing no integer
points.

– We argue that by focusing on the defining constraints of a vertex, we can quickly home in
on the right “cuts” derived from proofs of unsatisfiability of the defining constraints.

– We present a semantic generalization of the branch-and-bound algorithm that utilizes the
proofs of unsatisfiability of the defining constraints.

– We show experimentally that the proposed technique significantly outperforms existing
state-of-the art solvers, usually by orders of magnitude. Specifically, we compare Mis-
tral, an implementation of our algorithm, with the top four competitors (by score) in the
QF-LIA category of SMT-COMP ’08 for solving conjunctions of linear inequalities over
integers.



Form Methods Syst Des (2011) 39:246–260 249

– Our algorithm is easy to implement and does not require extensive tuning to make it
perform well in practice. We believe it can be profitably incorporated into existing SMT
solvers that reason about linear arithmetic over integers.

2 Technical background

2.1 Polyhedra, faces, and facets

In this section, we review a few standard definitions from polyhedral theory. The interested
reader can refer to [13] for an in-depth discussion.

Definition 1 (Convex polyhedron) The set of (real-valued) solutions satisfying Ax ≤ b de-
scribes a convex polyhedron P . The dimension dim(P ) of P is one less than the maximal
number of affinely independent points in P .

Definition 2 (Valid inequality) An inequality πx ≤ π0 defined by some row vector π and a
constant π0 is a valid inequality for a polyhedron P if it is satisfied by all points in P .

Definition 3 (Faces and facets) F is a face of polyhedron P if F = {x ∈ P : πx = π0} for
some valid inequality πx ≤ π0. A facet is a face of dimension dim(P ) − 1.

In Fig. 2, polyhedron P has dimension 2 because there exist exactly 3 affinely indepen-
dent points in P . The equation ax + by ≤ c is a valid inequality since all points in P satisfy
this inequality. The point F is a face with dimension 0 since it is the intersection of P with
the valid inequality represented by the dashed line. The line segment G is a facet of P since
it is a face of dimension 1.

2.2 Linear Diophantine equations

Definition 4 (Linear Diophantine equation) A linear equation of the form
∑

aixi = c is
Diophantine if all coefficients ai are integers and c is an integer.

We state the following well-known result [13]:

Lemma 1 A linear Diophantine equation
∑

aixi = c has a solution if and only if c is an
integral multiple of the greatest common divisor gcd(a1, . . . , an).

Example 1 The equation 3x +6y = 1 has no integer solutions since 1 is not evenly divisible
by 3 = gcd(3,6). However, 3x + 6y = 9 has integer solutions.

Fig. 2 A convex polyhedron of
dimension 2
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Corollary 1 Let E be a plane defined by
∑

aixi = c with no integer solutions and let g =
gcd(a1, . . . , an). Then, the two closest planes parallel to and on either side of E containing
integer points are �E� and 	E
, given by

∑ ai

g
xi = �c/g� and

∑ ai

g
xi = 	c/g
 respectively.

This corollary follows immediately from Lemma 1 and implies that there are no integer
points between E and �E� as well as between E and 	E
.

2.3 Proofs of unsatisfiability and the Hermite normal form

Given a system Ax = b of linear Diophantine equations, we can determine in polynomial
time whether this system has any integer solutions using the Hermite normal form of A.1

Below we briefly review key properties of the Hermite normal form; the interested reader is
referred to [13] for a more in-depth discussion.

Definition 5 (Hermite normal form) An m × m integer matrix H is said to be in Hermite
normal form (HNF) if (i) H is lower triangular, (ii) hii > 0 for 0 ≤ i < m, and (iii) hij ≤ 0
and |hij | < hii for i > j .2

Definition 6 (Unimodular matrix) An n × n matrix U is unimodular if it has only integer
entries and |det(U)| is 1.

We review the following well-known lemmas:

Lemma 2 For any m × n matrix A with rank(A) = m, there exists an n × n unimodular
matrix U such that

AU = [
H | 0

]

and the matrix H is the unique Hermite normal form of A.

While we do not describe the algorithm for computing the Hermite normal form of A,
we remark that there exists an efficient polynomial time for computing the Hermite normal
form of any matrix A (see [17]). Finally, we also recall the following two well-known results
[13]:

Lemma 3 If H is the Hermite normal form of A, then H−1A contains only integer entries.

Lemma 4 (Proof of unsatisfiability) The system Ax = b has an integer solution if and only
if H−1b ∈ Zm. If Ax = b has no integer solutions, there exists a row vector ri of the ma-
trix H−1A such that the corresponding entry ni

di
of H−1b is not an integer. We call the

linear Diophantine equation dirix = ni with no integer solutions a proof of unsatisfiability
of Ax = b.

If the equation dirix = ni is a proof of unsatisfiability of Ax = b, then it is implied by
the original system and does not have integer solutions.

1While it is possible to determine the satisfiability of a system of linear Diophantine equalities in polynomial
time, determining the satisfiability of a system of linear integer inequalities is NP-complete.
2There is no agreement in the literature on the exact definition of the Hermite Normal Form. The one given
here follows the definition in [13].
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Example 2 Consider the defining constraints from the example in Sect. 1:

z = 0

−3x + 3y + z = −1

Here, we have:

A =
[

0 0 1
−3 3 1

]

b =
[

0
−1

]

H =
[

1 0
−2 3

]

H−1A =
[

0 0 1
−1 1 1

]

H−1b =
[

0
− 1

3

]

This system does not have an integer solution because H−1b contains a fractional compo-
nent, and the equation −3x + 3y + 3z = −1 is a proof of unsatisfiability for this system.

3 The cuts-from-proofs algorithm

In this section, we present our algorithm for determining the satisfiability of the system Ax ≤
b over integers. In the presentation of the algorithm, we assume that there is a procedure
lp_solve that determines the satisfiability of Ax ≤ b over the reals, and if satisfiable
returns a vertex v at an extreme point of the polyhedron induced by Ax ≤ b. This assumption
is fulfilled by standard exterior-point algorithms for linear programming, such as Simplex
[10].

Definition 7 (Defining constraint) An inequality πx ≤ π0 is a defining constraint of vertex
v of the polyhedron induced by Ax ≤ b if v satisfies the equality πv = π0 where π is a row
of A and π0 is the corresponding entry in b.

With slight abuse of terminology, we call πx = π0 a defining constraint whenever πx ≤
π0 is a defining constraint.

3.1 Algorithm

Let A be the initial m×n matrix and let amax be the entry with the maximum absolute value
in A. Then, choose any α such that α ≥ n · |amax|.
1. Invoke lp_solve. If the result is unsatisfiable, return unsatisfiable. Otherwise, if vertex

v returned by lp_solve is integral, return v.
2. Identify the defining constraints A′x′ ≤ b′ of v.
3. Determine if the system A′x′ = b′ has any integer solutions, and, if not, obtain a proof of

unsatisfiability as described in Sect. 2.3.3

4. There are two cases:

3Recall that Lemma 2 defines the Hermite normal form of an m × n matrix A′ when A′ has full rank. If A′
does not have full rank, observe that we can still compute a proof of unsatisfiability of A′x′ = b′ by dropping
redundant rows of the system.
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Case 1: (Conventional branch-and-bound) If a proof of unsatisfiability does not exist
(i.e., A′x′ = b′ has integer solutions) or if the proof of unsatisfiability contains a coefficient
greater than α · gcd(a1, . . . , an), pick a fractional component fi of v and solve the two
subproblems:

Ax ≤ b

vi ≤ �fi�
Ax ≤ b

−vi ≤ −	fi

Case 2: (Branch around proof of unsatisfiability) Otherwise, consider the proof of un-

satisfiability �aixi = c of A′x′ = b′ and let g be gcd(a1, . . . , an). The system Ax ≤ b has a
solution if either of the two subproblems has a solution:

[
A

a1
g

. . . an

g

]

x ≤
[

b
� c

g
�
] [

A

− a1
g

. . . − an

g

]

x ≤
[

b
−	 c

g


]

3.2 Discussion of the algorithm

In the above algorithm, if lp_solve yields a fractional assignment, then either

(i) the intersection of the defining constraints does not have an integer solution or
(ii) the defining constraints do have an integer solution but lp_solve did not pick an

integer assignment

In the latter case (i.e., (ii)), we simply perform conventional branch-and-bound around
any fractional component of the assignment to find an integer point on this intersection.
Observe that while the current intersection A′x′ = b′ is guaranteed to contain an integer
point, this integer point may or may not lie inside the polyhedron defined by Ax ≤ b. Thus,
the existence of an integer solution to the system A′x′ = b′ in case (1) of the algorithm does
not guarantee the existence of an integer solution to the original system Ax ≤ b.

On the other hand (i.e., (i)), if the defining constraints do not admit an integer solution,
the algorithm obtains a proof of unsatisfiability with maximum coefficient less than α, if
one exists, and constructs two subproblems that exclude this intersection without missing
any integer points in the solution space. The constant α ensures that case 2 in step 4 of the
algorithm is invoked a finite number of times and guarantees that there is a minimum bound
on the volume excluded from the polyhedron at each step of the algorithm. (See Sect. 3.3
for the relevance of α for termination.)

Branching around the two planes in case 2 of the algorithm guarantees that the intersec-
tion A′x′ = b′ of the defining constraints is no longer in the polyhedra defined by the two
new subproblems. However, there may still exist a strict subset of these defining constraints
(i.e., a higher-dimensional subspace) whose intersection contains no integer points but is not
excluded from the solution space of the new subproblems. The following example illustrates
such a situation.

Example 3 Consider the defining constraints x + y ≤ 1 and 2x − 2y ≤ 1. Using Hermite
normal forms to compute a proof of unsatisfiability for the system

x + y = 1

2x − 2y = 1

yields 4x = 3. While 4x = 3 is a proof of unsatisfiability for the intersection of x + y = 1
and 2x − 2y = 1, the strict subset 2x − 2y = 1 has a proof of unsatisfiability on its own
(namely itself), and it is not implied by 4x = 3.
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As this example illustrates, the proof of unsatisfiability of a set of constraints does not
necessarily imply the proof of unsatisfiability of any subset of these constraints. At first
glance, this seems problematic because if the intersection of any subset of the defining con-
straints contains no integer solutions, we would prefer excluding this larger subspace rep-
resented by the smaller set of constraints. Fortunately, as stated by Lemma 7, the algorithm
will discover and exclude this higher-dimensional intersection in a finite number of steps.
We first prove the following helper lemmas:

Lemma 5 Let C = [
A

B

]
be an m × n matrix composed of A and B , and let HNF(C) =

[
HA 0
X Y

]
. Then, HNF(A) = HA.

Proof Our proof uses the HNF construction outlined in [13]. Let i be a row that the al-
gorithm is currently working on and let i ′ be another row such that i ′ < i. Then, by con-
struction, any entry ci′j where j > i ′ is 0. Since any column operation performed while
processing row i adds a multiple of column k ≥ i to another column, entry ci′k must be 0.
Thus, any column operation is idempotent on row i ′. �

Using blockwise inversion to invert HNF(C), it can be easily shown that:

HNF(C)−1 =
[

H−1
A 0

−Y −1XH−1
A Y −1

]

Thus, it is easy to see that HNF(C)−1C = HNF(C)−1b′ implies HNF(A)−1A = HNF(A)−1b
if b′ is obtained by adding entries to the bottom of b. This is the case because both
HNF(C)−1 and HNF(A)−1 are lower triangular matrices. Intuitively, this result states that if
Ax = b has a proof of unsatisfiability, we cannot “lose” this proof by adding extra rows at
the bottom of A.

Example 4 Consider the constraints from Example 2. Suppose we add the additional con-
straint x = 1 at the bottom of matrix A. Then, we obtain:

A =
⎡

⎣
0 0 1

−3 3 1
1 0 0

⎤

⎦ b =
⎡

⎣
0

−1
1

⎤

⎦ H =
⎡

⎣
1 0 0

−2 3 0
0 0 1

⎤

⎦

H−1A =
⎡

⎣
0 0 1

−1 1 1
1 0 0

⎤

⎦ H−1b =
⎡

⎣
0

− 1
3

1

⎤

⎦

Clearly, −3x + 3y + 3z = −1 is still obtained as a proof of unsatisfiability from the second
row of H−1A = H−1b.

Lemma 6 Consider any proof of unsatisfiability �aixi = c of any subset of the initial system
Ax ≤ b. Then, ∀i.|ai | ≤ α · gcd(a1, . . . , an).

Proof The coefficients ai are obtained from the matrix H−1A′ where A′ is a matrix whose
rows are a subset of those of A. Recall from basic linear algebra H−1 = 1

det(H)
adj(H) where
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adj(H) is the classical adjoint of H . Let the notation ‖A‖ denote maxij |aij |. It is shown in
[14] that:

‖adj(H)‖ ≤ det(H)

for any matrix H in Hermite normal form. Hence any coefficient c in H−1 satisfies |c| ≤ 1,
and the entries in H−1A′ are therefore bound by α = n · |amax|. Since the proof of unsat-
isfiability is some row of H−1A′ multiplied by some di > 1, di ≤ gcd(a1, . . . , an) as di

is a divisor of each ai . Thus, any coefficient in the proof of unsatisfiability is bound by
α · gcd(a1, . . . , an). �

Using the above lemmas, we can now show the following result:

Lemma 7 Let F be a k-dimensional face without integer points of the initial polyhedron P

with dim(P ) = d . Suppose lp_solve repeatedly returns vertices that lie on this face. The
algorithm will exclude F from P in a finite number of steps.

Proof Every time lp_solve yields a vertex that lies on F , the algorithm excludes from
the search space the intersection of the current defining constraints; thus, the next time
lp_solve yields a vertex, one of these constraints will no longer be defining. At some
point, when lp_solve returns a vertex on F , its defining constraints will be exactly the
d − k of the original constraints defining F , along with new constraints that were added
to the bottom of the matrix. By Lemma 5, the additional constraints preserve the proof of
unsatisfiability of the original d − k constraints. Furthermore, by Lemma 6, this proof of un-
satisfiability will have coefficients with absolute value of at most α · gcd(a1, . . . , an). Thus,
the algorithm will obtain a proof of unsatisfiability for F and exclude all of F from the
solution space. �

As Lemma 7 elucidates, the Cuts-from-Proofs algorithm discovers any relevant face
without integer points on a demand-driven basis without explicitly considering all possi-
ble subsets of the initial set of inequalities. This allows the algorithm to add exactly the
relevant cuts while staying computationally tractable in practice.

3.3 Soundness and completeness

It is easy to see that the algorithm given above is correct because it never excludes integer
points in the solution space. For arguing termination, we can assume, as standard, that the
polyhedron P is finite; if it is not, one can compute maximum and minimum bounds on
each variable without affecting the satisfiability of the original problem (see, for example
[12, 13]). The key observation is that the volume we cut off the polyhedron cannot become
infinitesimally small over time as we add more cuts. To see this, observe that there is a finite
set of normal vectors N for the planes added by the Cuts-from-Proofs algorithm. Clearly,
this holds for planes added by case 1 of step 4 since all such planes are parallel to one
of the coordinate planes. This fact also holds for planes added in case 2 of step 4 since
the coefficients of the normal vectors must be less than or equal to α. Since the set N of
normal vectors is finite, the algorithm will either terminate or, at some point, it will have to
add planes parallel to already existing ones. The following lemma states that these parallel
planes are at least some minimal distance ε apart:
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Lemma 8 (Progress) Let E be a plane added by the Cuts-from-Proofs algorithm and let E′
be another plane parallel to E, also added by the algorithm. Then, E and E′ are at least
some minimum distance ε > 0 apart.

Proof Let E be defined by n · x = c1 and E′ be defined by n · x = c2. Since c1 and c2 are

integers and c1 �= c2, E and E′ are a minimum d = 1/

√
n2

1 + · · · + n2
k apart. Since there are

a finite number of non-parallel planes added by the algorithm, choose ε to be the minimum
such d . �

Let n ∈ N be any normal vector along which the algorithm must eventually cut. Because
P is finite, there is a finite distance δ we can move along n through P . Since the distance
we move along n is at least ε, the algorithm can cut perpendicular to n at most δ/ε times.
Hence, the algorithm must terminate.

4 Implementation

In Sect. 4.1, we first discuss improvements over the basic algorithm presented in Sect. 3;
then, in Sect. 4.2, we discuss the details of our implementation.

4.1 Improvements and empirical observations

An improvement over the basic algorithm described in Sect. 3 can be achieved by selec-
tively choosing the proofs of unsatisfiability that the algorithm branches on. In particular,
recall from Lemma 7 that if lp_solve repeatedly returns vertices on the same face with no
integer points, the algorithm will also repeatedly obtain the same proof of unsatisfiability.
Thus, in practice, it is beneficial to delay branching on a proof until the same proof is ob-
tained at least twice. This can be achieved by using case 1 in step 4 of the algorithm instead
of case 2 each time a new proof is discovered. Since few of these proofs appear repeatedly,
this easy modification often allows the algorithm to exclude only the highest-dimensional
intersection with no integer points without having to branch around additional intermediate
proofs. In our experience, this optimization can improve running time up to a factor of 3 on
some examples.

An important empirical observation about the algorithm is that the overwhelming major-
ity (> 99%) of the proofs of unsatisfiability do not result in true branching. In practice, one
of the planes parallel to the proof of unsatisfiability often turns out to be a valid inequal-
ity, while the other parallel plane lies outside the feasible region, making its LP-relaxation
immediately unsatisfiable. Thus, in practice, the algorithm only branches around fractional
components of an assignment.

4.2 Implementation details

Our implementation of the Cuts-from-Proofs algorithm is written in C++ and consists of
approximately 5000 lines of code, including modules to perform various matrix operations
as well as support for infinite precision arithmetic. The Cuts-from-Proofs algorithm is a
key component of the Mistral constraint solver, which implements the decision procedure
for the combined theory of integer linear arithmetic and uninterpreted functions. Mistral is
used in the Compass program analysis system (under development) to solve large real-world
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constraints that arise from modeling contents of unbounded data structures, such as arrays
and linked lists.

Our Simplex implementation, used as the lp_solve procedure in the Cuts-from-Proofs
algorithm, uses Bland’s rule for pivot selection [12]. Mistral utilizes a custom-built infi-
nite precision arithmetic library based on the GNU MP Bignum Library (GMP) [15]. Our
library performs computation natively on 64-bit values until an overflow is detected, and
then switches to GNU bignums. If no overflow is detected, our implementation results in
less than 25% slow down over native word-level arithmetic. We also found the selective use
of hand-coded SIMD instructions to improve performance of Simplex by approximately a
factor of 2.

Our implementation for Hermite normal form conversion is based on the algorithm given
in [16]. This algorithm uses the modulo reduction technique of [17] to control the num-
ber of required bits in any intermediate computation. In practice, the Hermite normal form
conversion takes less than 5% of the overall running time and is not a bottleneck.

The implementation of the core Cuts-from-Proofs algorithm takes only about 250 lines
of C++ code and does not require any features beyond what is discussed in this paper. In our
implementation, α was chosen to be 10n · |amax|, and we have not observed the coefficients
in the computed proofs of unsatisfiability to exceed this limit. In practice, the coefficients
stay reasonably small.

5 Experimental results

To evaluate the effectiveness of the Cuts-from-Proofs algorithm, we compared Mistral with
the four leading competitors (by score) in the QF-LIA category of SMT-COMP ’08, namely
Yices 1.0.16, Z3.2, MathSAT 4.2, and CVC3 1.5 obtained from [18]. We did not compare
Mistral against (mixed) integer linear programming tools specialized for optimization prob-
lems. Existing tools such as GLPK [19], lp-solve [20], and CPLEX [21] all use floating point
numbers instead of infinite precision arithmetic and yield unsound results for determining
satisfiability even on small systems due to rounding errors. Furthermore, we did not use
the QF-LIA benchmarks from SMT-COMP because they contain arbitrary boolean combi-
nations of linear integer inequalities and equalities, making them unsuitable for comparing
different algorithms to solve integer linear programs. The full set of test inputs and running
times for each tool is available from http://www.stanford.edu/~isil/benchmarks.tar.gz. All
experiments were performed on an 8 core 2.66 GHz Xeon workstation with 24 GB of mem-
ory. (All the tools, including Mistral, are single-threaded applications.) Each tool was given
a maximum running time of 1200 seconds as well as 4 GB of memory. Any run exceeding
the time or memory limit was aborted and marked as failure. If a run was aborted, its running
time was assumed to be 1200 seconds for computing average running times.

In the experiments, presented in Fig. 3, we randomly generated more than 500 systems of
linear inequalities, containing between 10 and 45 variables and between 15 and 50 inequal-
ities per system with a fixed maximum coefficient size of 5. Figure 3a plots the number
of variables against the average running time over all sizes of constraints, ranging from 15
to 50. As is evident from this figure, the Cuts-from-Proofs algorithm results in a dramatic
improvement over all existing tools. For instance, for 25 variables, Yices, Mistral’s closest
competitor, takes on average 347 seconds while Mistral takes only 3.45 seconds. This trend
is even more pronounced in Fig. 3b, which plots number of variables against the percentage
of successful runs. For example, for 35 variables, Yices has a success rate of 36% while
Mistral successfully completes 100% of its runs, taking an average of only 28.11 seconds.

http://www.stanford.edu/~isil/benchmarks.tar.gz
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Fig. 3 Experimental results (fixed coefficient)

Figures 3c and 3d plot the number of inequalities per system against average running
time on a logarithmic scale for 20 and 25 variables, respectively. We chose not to present
detailed breakouts for larger numbers of variables since such systems trigger time-out rates
over 50% for all tools other than Mistral. These graphs demonstrate that the Cuts-from-
Proofs algorithm reliably performs significantly, and usually at least an order of magnitude,
better than any of the other tools, regardless of the number of inequalities per system.

To evaluate the sensitivity of different algorithms to maximum coefficient size, we also
compared the running time of different tools for coefficients ranging from 10 to 100 for
systems with 10 variables and 20 inequalities. As shown in Fig. 4, Mistral is less sensitive
to coefficient size than the other tools. For example, for maximum coefficient 50, Mistral’s
closest competitor, MathSAT, takes an average of 482 seconds with a success rate of 60%
while Mistral takes an average of 1.6 seconds with a 100% success rate.

Among the tools we compared, Yices and Z3 use a Simplex-based branch-and-cut ap-
proach, while CVC3 implements the Omega test. MathSAT mainly uses a Simplex-based
algorithm augmented with the Omega test as a fallback mechanism. In our experience, one
of the main differences between Simplex-based and Omega test based algorithms is that the
former run out of time, while the latter run out of memory. On average, Simplex-based tools
seem to perform better than tools using the Omega test.

We believe these experimental results demonstrate that the Cuts-from-Proofs algorithm
outperforms leading implementations of existing techniques by orders of magnitude and
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Fig. 4 Experimental results (fixed dimensions)

significantly increases the size and complexity of integer linear programs that can be solved.
Furthermore, our algorithm is easy to implement and does not require extensive tuning to
make it perform well. We believe that the Cuts-from-Proofs algorithm can be profitably
incorporated into existing SMT solvers that integrate the theory of linear integer arithmetic.

6 Related work

As discussed in Sect. 1, there are three major approaches for solving linear inequalities over
integers. LP-based approaches include branch-and-bound, Gomory’s cutting planes method,
and various combinations of the two [12, 13]. The cutting planes method derives valid in-
equalities from the final Simplex tableau. More abstractly, a Gomory cut can be viewed as
the proof of unsatisfiability of a single inequality obtained from a linear combination of the
original set of inequalities. This is in contrast with our Cuts-from-Proofs algorithm which
obtains a proof from the set of defining constraints, rather than from a single inequality in
the final Simplex tableau. Unfortunately, the number of cuts added by Gomory’s cutting
planes technique is usually very large, and few of these cuts ultimately prove helpful in ob-
taining an integer solution [12]. Branch-and-cut techniques that combine branch-and-bound
and variations on cutting planes techniques have proven more successful and are used by
many state-of-the-art SMT solvers [5, 6, 8]. However, the algorithm proposed in this paper
significantly outperforms leading implementations of the branch-and-cut technique.

Another technique for solving linear integer inequalities is the Omega test, an extension
of the Fourier-Motzkin variable elimination for integers [2]. A drawback of this approach
is that it can consume gigabytes of memory even on moderately sized inputs, causing it to
perform worse in practice than Simplex-based techniques.

A third approach for solving linear arithmetic over integers is based on finite automata
theory [11]. Unfortunately, while complete, automata-based approaches perform signifi-
cantly worse than all of the aforementioned techniques. The authors are not aware of any
tools based on this approach that are currently under active development.

Another proposal [22] for solving linear arithmetic over integers is to translate the for-
mula into an equisatisfiable boolean formula, whose satisfiability can then be checked using
a standard boolean SAT solver. This technique is mainly targeted for special classes of ILP
problems that arise frequently in verification where most of the constraints are difference
constraints and each of the remaining non-difference constraints contains few variables.
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Hermite normal forms are a well-studied topic in number theory, and efficient polynomial-
time algorithms exist for computing Hermite normal forms [14, 16]. Their application to
solving systems of linear Diophantine equations is discussed, for example, in [12, 13]. Jain
et al. study the application of Hermite normal forms to computing interpolants of systems
of linear Diophantine equalities and disequalities [23]. We adopt the term “proof of unsatis-
fiability” from the literature on Craig interpolation [25, 26].

7 Conclusion

We have presented a novel, sound, and complete algorithm called Cuts-from-Proofs for
solving linear inequalities over integers and demonstrated experimentally that this algorithm
significantly outperforms leading implementations of existing approaches.
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