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Abstract We tackle the problem of providing rigorous formal foundations to current soft-
ware engineering technologies for web services, and especially to WSDL and WS-BPEL,
two of the most used XML-based standard languages for web services. We focus on a sim-
plified fragment of WS-BPEL sufficiently expressive to model asynchronous interactions
among web services in a network context. We present this language as a process calculus-
like formalism, that we call WS-CALCULUS, for which we define an operational semantics
and a type system. The semantics provides a precise operational model of programs, while
the type system forces a clean programming discipline for integrating collaborating services.
We prove that the operational semantics of WS-CALCULUS and the type system are ‘sound’
and apply our approach to some illustrative examples. We expect that our formal develop-
ment can be used to make the relationship between WS-BPEL programs and the associated
WSDL documents precise and to support verification of their conformance.

Keywords Web services · WSDL · WS-BPEL · Process calculi · Type systems

1 Introduction

Service-Oriented Computing (SOC) has been recently put forward as a promising com-
puting paradigm for developing massively distributed, interoperable, evolvable systems
and applications that exploit the pervasiveness of the Internet and its related technolo-
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gies. The SOC paradigm advocates the use of ‘services’, to be understood as autonomous,
platform-independent computational entities that can be described, published, discovered,
and dynamically assembled, as the basic blocks for building applications. Web services
(WSs) are presently the most successful instantiation of the SOC paradigm, as it is demon-
strated by the fact that companies like IBM, Microsoft, Oracle and Sun invested a lot of
effort and resources to promote their use.

A web service is basically a set of operations that can be invoked through the Web via
XML messages complying with given standard formats. To support the WS approach, many
new languages, most of which based on XML, have been designed, like business coordina-
tion languages (such as WS-BPEL [61], WSFL [56], WSCI [5], and XLANG [66]), contract
languages (such as WSDL [25] and SWS [7]), and query languages (such as XPath [26] and
XQuery [9]). In spite of the many research efforts that have been done in the last few years,
current software engineering technologies for WSs still lack rigorous formal foundations and
are usually tightly coupled to RPC-based mechanisms, which previous technologies such as
CORBA [62] were based on. Although these mechanisms provide a satisfactory solution to
hide complexity from developers, they can be problematic for achieving the full potential
of WS business processes. The challenges come from the necessity of dealing at once with
issues like asynchronous interactions, concurrency, workflow coordination, business trans-
actions, resource usage, failures, security, etc. in a setting where demands and guarantees
can be very different for the different components.

We consider two of the most used XML-based languages for WSs: Web Services De-
scription Language (WSDL) and Web Services Business Process Execution Language (WS-
BPEL). The former is a W3C standard that permits to express the functionalities offered and
required by web services by defining, akin object interfaces in Object-Oriented Program-
ming, the signatures of operations and the structure of data for invoking them and returned
by them. The latter is an OASIS standard that permits to describe the activities of the busi-
ness logic and the interactions to be executed for completing a service as a reaction to a
service invocation. A service, in fact, often results from the orchestration of other available
services, i.e. from their aggregation and invocation according to a given set of rules to meet
a business requirement.

Hence, WSDL declarations can be exploited to verify the possibility of connecting dif-
ferent services, while WS-BPEL descriptions can be used to define new services by appro-
priately orchestrating other existing ones. But only two of the four different types of op-
erations provided by WSDL are really supported by WS-BPEL: (asynchronous) one-way
and (synchronous) request-response. Moreover, it is often implicitly assumed that a service
request can be processed in a reasonable amount of time, which in practice means that the
invoker is justified to wait for a response related to a synchronous request-response oper-
ation. However, in a business process setting, where transactions are usually long-running,
such an assumption is not realistic and the interactions should be better modeled as a pair
of asynchronous message exchanges. For example, consider a travel agency service that ac-
cepts a request and returns a confirmation after some checks, e.g. the customer credit card
must have sufficient available funds. This is an interaction where the check may take a sig-
nificant amount of time. For this reason, an asynchronous messaging approach is considered
good practice for web services, much more in the case of service orchestrations. This is not
to say that synchronous service behavior is wrong, but experience and practice (see the ini-
tiative of the SOA Patterns community [29]) have demonstrated that asynchronous service
behavior is desirable, especially when communication costs are high or network latency is
unpredictable, and provides the developer with a simpler scalability model.

In this paper we aim at making the relationship between WS-BPEL programs and the
associated WSDL documents precise, with special attention to asynchronous interactions.
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As a first contribution, we introduce a semantic model for defining WS-BPEL processes
interacting asynchronously. Indeed, although WS-BPEL is popular and provides the means
for efficient business solutions, its complexity is largely responsible for its limited applica-
bility. Actually, WS-BPEL provides many redundant (and, sometimes, intricate) program-
ming constructs and suggests a quite liberal programming style. For example, it is pos-
sible for a programmer to write parallel activities that have strict implicit dependencies
so that they are sequentially (rather than concurrently) executed. Moreover, the language
comes without a precise semantics and its specification document [61], written in ‘nat-
ural’ language, contains a fair number of acknowledged loose points that may give rise
to different interpretations. Some examples are illustrated in [55], where it is demonstrated
that different WS-BPEL implementations may have different semantics. Hence, we intro-
duce WS-CALCULUS (web services calculus), a process calculus-like formalism that for-
malizes the semantics of a simplified fragment of WS-BPEL, with special concern for
modelling the asynchronous interactions among WS-BPEL processes in a network context.
WS-CALCULUS is expressive enough to model many specific aspects of execution of WS-
BPEL processes, such as multiple start activities, receive conflicts, delivering of messages,
while avoiding the intricacies of dealing with each, possibly redundant, WS-BPEL con-
struct. WS-CALCULUS syntax also allows us to get much more compact and clearer process
specifications than the verbose XML-based syntax of WS-BPEL, as it is also witnessed by
the example shown in Sect. 5.1.

As a second contribution, we define a type system for WS-CALCULUS terms that, among
other properties, forces a clean programming discipline for collaborating processes that
communicate asynchronously. Our types only rely on the type information that can be ex-
tracted from the WSDL and WS-BPEL documents that specify processes’ behaviour and
interface. In particular, WS-BPEL enables inter-service message exchanges by exploiting
the notion of partner link, whose types are defined at the WSDL level. Partner link types are
used to directly model peer-to-peer partner collaborations where the actual partner service
may be dynamically determined. Thus, a partner link provides a process with the ability to
invoke a service and, possibly, allows such a service to respond.

We deem as error configurations those configurations where variables are going to get
assigned a value of wrong type or the interaction pattern prescribed by a partner link is not
respected, either because the operation is not provided or because its type is not compat-
ible with the type of the message invocation. We prove that well-typed terms are ‘safe’,
i.e. error-free, and that the operational semantics and the type system are ‘sound’, in the
sense that terms reached along any reduction sequence starting from well-typed terms are
still well-typed. Together, these two properties imply that, other than to prevent assigning
values of wrong type to variables, the type system for WS-CALCULUS implements a sort of
‘partner link control’ that checks the ability of a process to invoke the partner specified by
a partner link and the ability of that partner to asynchronously respond. The type system
also accommodates the underlying address-passing communication mechanism, which is
necessary since process interaction can require the transmission to the partner of the process
reference bound to a partner link.

In spite of its simplicity with respect to more powerful type systems for other process
calculus-like formalisms (see e.g. [3, 19, 20, 23, 40–42, 45, 46, 49, 70]), and possibly exactly
because of its simplicity, we believe that our type system could be used in practice to sup-
port verification of conformance between WS-BPEL programs and the associated WSDL
documents. Indeed, it enforces the basic constraints imposed by WSDL against WS-BPEL
programs, as e.g. that the message types of operation invocations match the operation types
declared in the WSDL document (as prescribed in [61, Appendix A. Standard Faults]). In
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addition, differently from the traditional use of WSDL type declarations, our type system
also controls that processes interact according to the prescriptions given by partner links.
We expect that our theoretical framework can be the base of an effective software tool that
can permit identifying errors during the WS-BPEL programs design phase.

Summary of the rest of the paper Section 2 provides a brief overview of WS-BPEL and
WSDL. Syntax and operational semantics of WS-CALCULUS are defined in Sect. 3, while
the type system and the type soundness results are presented in Sect. 4. Section 5 illus-
trates applications of our framework to modelling and analysis of a few business processes.
Section 6 reviews related work, while Sect. 7 touches upon directions for future work.

The work we are going to present is an extended and revisited version of our former de-
velopment introduced in [52]. The preliminary version used many notations and conventions
that made the analysis more related to the peculiarities of the calculus than to the problems
that might arise when designing business processes. The newer version is neater and more
faithfully reflects the relationships between WSDL interfaces and WS-BPEL programs.

2 An overview of WS-BPEL and WSDL

In this paper, we refer to the current standard version of WS-BPEL, i.e. version 2.0 [61],
and the version of WSDL it supports, i.e. version 1.1 [25]. We briefly describe them in this
section.

WS-BPEL is essentially a linguistic layer on top of WSDL for describing the interac-
tions between parties involved in an orchestration. The logic of the interactions is described
in terms of structured patterns of communication activities composed through control flow
constructs that enable the representation of complex structures. An orchestration consists of
a process element containing one activity, a series of partner links, some variable declara-
tions with specific correlation sets and the definition of some fault handlers. Activities are
distinguished between basic and structured activities.

The basic activities enabling messages exchange are of three types: invoke, receive and
reply. invoke is used to call web service operations, while receive is used to provide an
operation and, hence, to get messages from the invoking partner; receive and reply can be
assigned to the same operation for implementing a synchronous request-response commu-
nication pattern. The information is passed between different activities in an implicit way
through the sharing of globally visible variables and is managed through the use of the basic
activity assign. Other basic activities are: empty, to do nothing; wait, to delay execution for
some amount of time; throw, to signal internal faults; rethrow, to propagate faults; exit, to
immediately end a process instance; compensate and compensateScope, to invoke compen-
sation handlers; validate, to validate variables; and extensionActivity, to support extensibility
by allowing the definition of new activity types.

The structured activities for defining the control flow are: sequence, to execute activities
sequentially; if, to execute activities conditionally; while and repeatUntil, to repetitively ex-
ecute activities; flow, to execute activities in parallel; pick, to execute activities selectively;
forEach, to (sequentially or in parallel) execute multiple activities; and scope, to associate
handlers for exceptional events to a primary activity. The control flow can be constrained
also by means of flow links. A flow link is a conditional transition that establishes dependen-
cies among parallel activities by connecting a ‘source’ activity to a ‘target’ activity.

When a fault occurs within a scope, normal processing is terminated and the control is
transferred to the corresponding faultHandler. Other handler definitions can be provided
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within a scope: a compensationHandler, to provide the activities to compensate the suc-
cessfully executed primary activity; a terminationHandler, to control the forced termination
of the primary activity; and some eventHandlers, to elaborate message or timeout events
occurring during execution of the primary activity.

Collaborations with each of the service partners are expressed through WSDL interfaces.
The roles within collaborations are specified at port type level in constructs called partner
links. Port types, in turn, are simply collections of web service operations. The following
example from [61, Sect. 6] illustrates the basic syntax for declaring partner link types:

<partnerLinkType name="BuyerSellerLink">
<role name="Buyer" portType="BuyerPortType" />
<role name="Seller" portType="SellerPortType" />

</partnerLinkType>

In this example, a partner link of type BuyerSellerLink permits specifying a collabo-
ration between a seller service (which provides the operations specified within the port type
SellerPortType) and a buyer service (which provides the operations within the port
type BuyerPortType). Such a partner link can be instantiated as follows:

<partnerLink name="buyer"
partnerLinkType="BuyerSellerLink"
myRole="Seller" partnerRole="Buyer" />

Thus, the business process plays the Seller role, while its partner plays the Buyer role.
Although partner links allow the actual partner service to be dynamically determined,

this information is not enough to properly deliver messages to a business process. Indeed,
since multiple instances of the same process can be simultaneously active because service
operations can be independently invoked by several clients, messages need to be delivered
not only to the correct service partner, but also to the correct instance of the process that
the partner provides. To achieve this, WS-BPEL relies on the business data exchanged
rather than on specific mechanisms, such as WS-Addressing [36] or other low-level methods
based on SOAP headers. In other words, WS-BPEL incorporates a message correlation
mechanism that exploits correlation sets, namely subsets of message variables, declaring
the parts of a message that can be used to identify a process instance. This way, a message
can be delivered to the correct instance on the basis of the values associated to the message
variables, independently of any other delivering mechanism. For example, a correlation set
containing a single variable storing the purchase order identifier could permit to identify the
buyer and seller instances in the buyer-seller collaboration sketched above.

3 Defining business processes with WS-CALCULUS

This section introduces syntax and semantics of WS-CALCULUS (web services calculus).
While the set of WS-BPEL constructs is not intended to be a minimal one, WS-CALCULUS

is instead the result of the tension between handiness and expressiveness which is typical
when designing a formalism. Thus, to keep the semantics of the language rigorous but still
manageable, the design of WS-CALCULUS focusses on the ‘procedural’ part of WS-BPEL,
which is sufficiently expressive to describe business processes in a primitive form, with spe-
cial concern for modelling their asynchronous interactions in a network context. Therefore,
we intentionally left out other aspects, including timed activities, flow graphs, and event,
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fault, compensation and termination handlers, which are not particularly relevant for our
investigation about the relationship between WS-BPEL and WSDL.

We are indeed mainly interested in analysing the externally observable behaviour of busi-
ness processes. Therefore, we disregard compensation as its only observable effect is to
enable further interactions, which are supposed to undo the effect of previously executed ac-
tivities, among the WS-BPEL process to be compensated and its partner services. Anyway,
such interactions are not dealt with differently from the other ones, e.g. they are defined
in the WSDL documents in the usual way. Similarly, we do not consider faults although
they may slightly affect the business processes interfaces, i.e. the WSDL definitions. Of
course, internal faults raised by the activity throw and propagated by rethrow (see Sect. 2)
do not have externally observable effects. Instead, in case of synchronous interactions, the
invoked process can send a fault back to the invoking process. Then, the WSDL definition
of a request-response operation has to specify that a fault can be returned. Anyway, at the
level of abstraction at which WS-CALCULUS operates, fault messages can be thought of as
usual outgoing messages (as shown in the last example of Sect. 3.2). This not only permits to
get a simpler formalization of the language, but is also reasonable from a practical point of
view. In fact, the use of WSDL faults is not so common as service programmers rather tend
to handle possible faults locally and return normal outgoing messages containing an expla-
nation of the failure (see, e.g., the WSs listed in the well-known repository XMethods [69]).
Instead, timed activities, as the activity wait, do not produce effects directly observable out-
side processes and do not affect WSDL interfaces. Some other WS-BPEL activities, such
as e.g. repeatUntil and forEach, are disregarded as they can be reasonably encoded in the
fragment we consider. Similarly, flow links are expressible in terms of variables and condi-
tional tests (as in [53]).

3.1 Syntax

The syntax of WS-CALCULUS, given in Tables 1 and 2, is parameterised with respect to the
following syntactic sets, which we assume to be disjoint: variables (ranged over by x, y),
basic values1 (boolean, integer and string, ranged over by b, n and s, respectively) and
addresses (ranged over by λ). The language is also parametric with respect to a set of op-
eration names (ranged over by o) and a set of expressions (ranged over by e).2 The exact
syntax of expressions is deliberately omitted; we just assume that they contain, at least, vari-
ables, basic values and addresses. Join-variables, that is variables prefixed by “!”, are used
to store those data that are important to identify process instances for message correlation.
Indeed, “!” may be used in the argument of receive activities to indicate which variables
are exploited for correlation purposes, thus requiring, for each of them, the received value
to coincide with the corresponding value stored in the state (in WS-BPEL jargon, this is
called the correlation consistency constraint [61, Sect. 9]).

Notationally, we will use u to range over communicable values (i.e. basic values and ad-
dresses), and w to range over message variables (i.e. variables and join-variables). Variables
used to refer to remote nodes in communication activities will be called partner links. More
specifically, in WS-CALCULUS, a partner link is a variable used to store and transmit the

1For the sake of simplicity, we only consider a minimal set of basic values that are sufficient for describing
our examples. Of course, other kinds of basic values could be added and dealt with in a similar way.
2WS-CALCULUS is parametric w.r.t. the set of expressions as well as WS-BPEL is parametric w.r.t. the
expression language supporting data manipulation. The default expression language for WS-BPEL processes
is XPath 1.0 [26].
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Table 1 WS-CALCULUS syntax:
operation parameters and
expressions

w ::= / message variables /

x / variable /

| !x / join-variable /

u ::= / values /

b / boolean /

| n / integer /

| s / string /

| λ / address /

e ::= x | u | . . . / expressions /

Table 2 WS-CALCULUS syntax
N ::= / networks /

λ :: { c } / single node /

| N ‖ N / node collection /

c ::= / components /

m > a / process definition /

| m � a / process instance /

| 〈o : ū〉 / request /

| c, c / component collection /

a ::= / activities /

asg(x̄ : ē) / assign /

| inv(x : o : ȳ) / invoke /

| if e thena elsea / conditional /

| while e doa / iteration /

| a ;a / sequence /

| a | a / flow /

| ∑
i∈I rec(xi : oi : w̄i ) ;ai / pick /

address of a partner, i.e. a service that plays the partnerRole in the considered collabora-
tion. Notation ·̄ denotes tuples of objects, e.g. x̄ is a tuple of variables x1, . . . , xn. To avoid
ambiguities, we assume that names of variables in the same tuple are pairwise distinct. All
notations shall extend to tuples component-wise.

Networks are finite collections of nodes. A node can be thought of as an ‘engine’ for
executing business processes and is written λ :: { c }. It is identified by its address λ that
specifies where the behavioural components c are located. Such components generally offer
a service, thus, following the “everything is a service” slogan, they will be sometimes called
services. We will often use the address of the node to identify the components located there,
i.e. given node λ :: { c } we write ‘service λ’ to denote c.

Components c may be (business) process definitions, process instances or requests.
Process definitions and instances, written m > a and m � a respectively, behave accord-
ing to an activity description a and a state m. A state is a (possibly empty) collection of
bindings of variables to values of the form u/x. We shall use notation m◦ [u/x] for the state
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update recording the value u assigned to the variable x. Notably, state [u/x,u′/y] can also
be written as [u/x] ◦ [u′/y], or [ ] ◦ [u/x,u′/y] or, if x 	= y, [u′/y,u/x]. The state m in a
process definition m > a is a device that permits modelling an ‘initial state’ thus allowing
to concisely express process definitions (without e.g. the need to specify a sequence of ini-
tialising assignments). It can also be used to statically initialize partner links at deployment
time (as specified by the WS-BPEL attribute “initializePartnerRole” in [61, Sect. 6.2]).
A request, written 〈o : ū〉, represents an invocation of a local operation that has still to be
processed and contains the operation name o and the specific data ū for its execution.

Activities may be basic activities, i.e. assignment asg(· : ·) and service invocation inv(· :
· : ·), or structured activities, i.e. conditional choice if · then · else ·, iteration while · do ·,
sequential composition · ; ·, parallel composition · | · and external choice among receive
activities

∑
i∈I rec(· : · : ·) ; ·. Invoke and receive activities specify three arguments: a partner

link identifying the partner service, the invoked/provided operation and a tuple of variables
for storing the sent/received message values (notice that only receive activities can exploit
join-variables). Whenever the external choice is between two activities a1 and a2, we shall
simply write a1 + a2, and we shall write empty for

∑
i∈I rec(· : · : ·) ; · when I = ∅. Usually

we shall omit trailing occurrences of empty, writing a instead of a ; empty. In addition,
we use parentheses to resolve ambiguity and we let sequential composition have higher
priority than flow and pick, i.e. a1 ;a2 | a3 ;a4 stands for (a1 ;a2) | (a3 ;a4), and rec(x1 : o1 :
w̄1) ;a1 + rec(x2 : o2 : w̄2) ;a2 stands for (rec(x1 : o1 : w̄1) ;a1) + (rec(x2 : o2 : w̄2) ;a2).

We identify terms up to nodes and components reordering. This means, e.g., that λ1 ::
{ c1 } ‖ λ2 :: { c2 } and λ2 :: { c2 } ‖ λ1 :: { c1 }, as well as λ :: { c1, c2 } and λ :: { c2, c1 }, iden-
tify the same term. Moreover, for the sake of presentation (see, e.g., rule (N-INV) in Table 7),
terminated instances of the form m � empty can be removed from/added to a component c,
e.g. λ1 :: {m � a, m � empty } and λ1 :: {m � a } identify the same term.

WS-CALCULUS constructs directly model the homonymous WS-BPEL activities, as
shown in Table 3 (where some details, e.g. namespaces and correlation sets, have been
omitted to make the reading of the code easier). WS-CALCULUS process instances, requests,
network nodes and node collections have no counterpart in WS-BPEL: they have been
introduced in WS-CALCULUS for modelling runtime aspects, not directly covered by the
WS-BPEL specification but necessary for formally defining its semantics. Due to the quite
direct correspondence of basic and structured activities, we can confidently state that WS-
CALCULUS’s formal semantics provides the corresponding fragment of WS-BPEL with a
rigorous semantics that disambiguates the intricate and complex features of the language.

3.2 Examples

To better explain WS-CALCULUS primitives and peculiarities, we now present some simple
examples.

Using partner links to provide and invoke operations Consider a typical scenario involving
a buyer service instance (in other words, an instance of a process definition providing a
service located at buyer) and a seller service instance.

buyer :: { [ seller/xS,buyer/yB, id/yid, d/y] � inv(xS : oreq : yB, yid, y) ;
rec(xS : ores : yid, yres) }

‖ seller :: { [λ/xB] � rec(xB : oreq : zB, zid, z) ;asg(xB : zB) ;
aelaborating ; inv(xB : ores : zid, zres) }
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Table 3 Correspondence between WS-CALCULUS constructs and WS-BPEL activities

WS-CALCULUS WS-BPEL

asg(x1, . . . , xn : e1, . . . , en) <assign>

<copy> <from> e1 </from> <to> x_1 </to> </copy>

. . .

<copy> <from> en </from> <to> x_n </to> </copy>

</assign>

inv(x : o : ȳ) <invoke partnerLink="x" operation="o"

inputVariable="y" />

rec(x : o : w̄) <receive partnerLink="x" operation="o"

variable="w" />

if e thena1 elsea2 <if> <condition> e </condition> a1

<else> a2 </else> </if>

while e doa <while> <condition> e </condition> a </while>

a1 ;a2 <sequence> a1 a2 </sequence>

a1 | a2 <flow> a1 a2 </flow>

empty = ∑
i∈∅ rec(xi : oi : w̄i ) ;ai<empty />

∑
i∈I rec(xi : oi : w̄i ) ;ai <pick>

with | I |= n > 1 <sequence>

<onMessage partnerLink="x_1" ... /> a1

</sequence>

. . .

<sequence>

<onMessage partnerLink="x_n" ... /> an

</sequence>

</pick>

m > a <process> a </process>

The buyer instance specifies the partner link xS to interact with the seller instance both to
invoke the operation oreq provided by the seller (i.e. to send the request) and to receive the
response along the operation ores. Similarly, the seller instance specifies the partner link xB to
receive the request message and to invoke the operation ores offered by the buyer instance.
The buyer sends to (the address of) the seller a request containing the callback address
buyer to be used by the seller to send back the response message, the instance identifier
id and some other data d , and waits for the response message. When receive activities are
elaborated, they always implicitly act on the node where the instance is running. Therefore,
the values of the partner links xS and xB stored in the states, i.e. seller and λ respectively,
that are the addresses of the services playing the partner role in the interaction, are not used
when elaborating receive activities (as required in [61, Sect. 10.4]). As we will see in Sect. 4,
although not necessary for the operational semantics, partner links in the receive activities
will turn out to be essential for typing WS-CALCULUS terms. Activity aelaborating, which
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has been left unspecified, elaborates the request data stored in the variable z, generates a
response message and assigns it to the variable zres.

Thus, regardless of the value of xB , the whole network evolves firstly to:

buyer :: { [ seller/xS,buyer/yB, id/yid, d/y] � rec(xS : ores : yid, yres) }
‖ seller :: { [λ/xB] � rec(xB : oreq : zB, zid, z) ;asg(xB : zB) ;

aelaborating ; inv(xB : ores : zid, zres) ,

〈ores : (buyer, id, d)〉 }
and then to

buyer :: { [ seller/xS,buyer/yB, id/yid, d/y] � rec(xS : ores : yid, yres) }
‖ seller :: { [λ/xB,buyer/zB, id/zid, d/z] � asg(xB : zB) ;

aelaborating ; inv(xB : ores : zid, zres) }
Remarkably, in an asynchronous setting, to reply to an invocation, the partner link used

for the callback must be explicitly initialized with the received invoker address. To this aim,
the seller service performs an assign activity that replaces the value of xB with buyer.

Alternatively, the seller could directly update the partner link xB by means of the initial
receive activity thus saving the assign activity, as shown in the following term:

seller :: { [λ/xB] � rec(xB : oreq : xB, zid, z) ;aelaborating ; inv(xB : ores : zid, zres) }

Creating process instances from process definitions Process definitions must be deployed
in order to be invoked and, hence, instantiated. For example, the process definition deployed
in the following node can be thought of as a template for creating instances of the buyer
service described in the previous example:

buyer :: { 〈onew : id1, d1〉, 〈onew : id2, d2〉,
[ seller/xS,buyer/yB] > rec(x : onew : yid, y) ;

inv(xS : oreq : yB, yid, y) ;
rec(xS : ores : yid, yres) }

As in [61], the creation of a process instance is always implicit. The receive activity provid-
ing the operation onew can consume the two requests 〈onew : id1, d1〉 and 〈onew : id2, d2〉, and
cause two new instances of the process to be created as follows:

buyer :: { [ seller/xS,buyer/yB ] > rec(x : onew : yid, y) ;
inv(xS : oreq : yB, yid, y) ;
rec(xS : ores : yid, yres),

[ seller/xS,buyer/yB, id1/yid, d1/y] � inv(xS : oreq : yB, yid, y) ;
rec(xS : ores : yid, yres),

[ seller/xS,buyer/yB, id2/yid, d2/y] � inv(xS : oreq : yB, yid, y) ;
rec(xS : ores : yid, yres) }

Using join-variables to implement correlation Join-variables can only occur within mes-
sage variables of receive activities. The term “join”, borrowed from [61], indicates the vari-
ables used for message correlation. Indeed, join-variables permit maintaining values that are
relevant for delivering messages over multiple service instances.

When a message variable is a join-variable (i.e. it is prefixed by “!”), the related receive
activity must attempt to initiate it, if the join-variable has not been yet initiated. Instead, if the
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join-variable is already initiated, its value and the related received datum must be identical.
For example, consider a variant of the buyer-seller scenario where, after some computations,
we obtain the following network:

buyer :: { [ seller/xS,buyer/yB, id1/yid, d1/y] � rec(xS : ores : yid, yres),

[ seller/xS,buyer/yB, id2/yid, d2/y] � rec(xS : ores : yid, yres) }
‖ seller :: { [buyer/xB, id1/zid, d1/z, r/zres] � inv(xB : ores : zid, zres) }

The response message sent by the seller service instance can be intercepted by both instances
of the buyer service because no correlation information is specified. Thus, although the
message contains the identifier id1, it can be consumed by the instance characterized by the
identifier id2:

buyer :: { [ seller/xS,buyer/yB, id1/yid, d1/y] � rec(xS : ores : yid, yres),

[ seller/xS,buyer/yB, id1/yid, d2/y, r/yres] � empty }
‖ seller :: { [buyer/xB, id1/zid, d1/z, r/zres] � empty }

Instead, to identify service instances thus guaranteeing that exactly the service instance
identified by id1 receives the message, we can exploit the correlation mechanism as follows:

buyer :: { [ seller/xS,buyer/yB, id1/yid, d1/y] � rec(xS : ores :!yid, yres),

[ seller/xS,buyer/yB, id2/yid, d2/y] � rec(xS : ores :!yid, yres) }
‖ seller :: { [buyer/xB, id1/zid, d1/z, r/zres] � inv(xB : ores : zid, zres) }

Now, the message sent by the seller instance can be elaborated only by the receive activity
within the first instance of the buyer service, for which id1 coincides with the value recorded
by yid . Notably, the seller service does not need join-variables to reply to the buyer service.

Therefore, to ensure that the messages received by the buyer service specified in the
creating process instances example are correctly delivered, the process definition at buyer
has to be modified as follows:

[ seller/xS,buyer/yB] > rec(x : onew : yid, y) ;
inv(xS : oreq : yB, yid, y) ;
rec(xS : ores :!yid, yres)

Of course, a service can specify more than one join-variable for the same receive activ-
ity. For instance, the process definition above could use two join-variables !ybuyerName and
!ytime&date to univocally identify a buyer instance:

[ seller/xS,buyer/yB] > rec(x : onew : ybuyerName, ytime&date, y) ;
inv(xS : oreq : yB, ybuyerName, ytime&date, y) ;
rec(xS : ores :!ybuyerName, !ytime&date, yres)

Multiple service instantiation: shared join-variables When some of the start activities of a
process definition are receives put in a parallel composition, then the firstly executed receive
creates a new instance that then performs the remaining receives. To correlate the messages
directed to the same instance, as prescribed in [61, Sect. 10.4], the receive activities need to
share some join-variables.

To illustrate, let us consider a service implementing the well-known children game
Rock/Paper/Scissors. The service is defined to receive two turn-messages (through oper-
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ation oturn) from two players A and B , as described by the following definition:

λ :: { [λ/xC] > ( rec(xA : oturn : xA, yA, !z) | rec(xB : oturn : xB, yB, !z) ) ;
awinner ; ( inv(xA : owin : xC, z) | inv(xB : owin : xC, z) ) }

The arrival order of the turn-messages cannot be statically predicted, thus the possibility to
instantiate the service in multiple ways may be useful. To correlate messages for the same
instance, the join-variable !z is used. After the turn-messages from both players have been
received, the activity awinner determines the winner and assigns its address to the variable xC .
The result is then communicated to the players. By assuming that in case of equal turns the
transmitted address is that of the service provider λ, awinner can be defined as follows:

if yA 	= yB then (if eAwin then asg(xC : xA) else asg(xC : xB)) else empty

where eAwin is the boolean condition (yA = “paper”∧yB = “rock”)∨(yA = “scissor”∧yB =
“paper”) ∨ (yA = “rock” ∧ yB = “scissor”) that holds true when the player A wins.

Handling fault messages As we said before, when a WS-BPEL process instance invokes
an operation provided by a service partner, this latter might return in response a fault mes-
sage. This results in a fault internal to the process instance that can be caught and handled
by using a fault handler.

In our framework, fault messages are dealt with like usual messages, then they are simply
caught by receive activities and handled by their continuations. To illustrate such situation,
let us consider the following variant of the buyer-seller scenario described in the first exam-
ple of this section:

buyer :: { [ seller/xS,buyer/yB, id/yid, d/y] � inv(xS : oreq : yB, yid, y) ;
( rec(xS : ores : yid, yres) ;aokContinuation

+ rec(xS : ofault : yid, yerr) ;afh ) }
‖ seller :: { [λ/xB] � rec(xB : oreq : xB, zid, z) ;

if isOk(z) then aelaboratingAndReplying else inv(xB : ofault : zid, z) }
Here, the seller instance checks the request data (stored in z) by means of an unspecified
function isOk(·) and, if the check fails, the request data are sent back by invoking the op-
eration ofault . The buyer instance exploits a pick activity to choose between two alternative
behaviours; this way, the reception of an invocation of operation ofault , responsible for re-
ceiving fault messages, triggers the execution of the fault handling activity afh.

3.3 Operational semantics

We will only consider networks that are well-formed in the sense that they comply with
the following two syntactic constraints. Firstly, distinct nodes have different addresses (so
that nodes are uniquely identified by their address). Secondly, at least one start activity of
every process definition must be a pick (as required in [61, Sect. 5.5]), where the start
activities of m > a are deemed to be all those activities in a that are not (syntactically)
preceded by other ones, considering that a1 precedes a2 in a1 ;a2 and that, for any i ∈ I ,
rec(xi : oi : w̄i) precedes ai in

∑
i∈I rec(xi : oi : w̄i) ;ai . This means that process definitions

are sort of templates that must be necessarily instantiated in order to get executable entities
and instantiation takes place when one of the receives of a pick activity consumes a request
message and, hence, causes the creation of a new process instance. Well-formedness could
be easily checked through a standard (and trivial) static analysis.
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Table 4 WS-CALCULUS operational semantics: instances (symmetric of rules (FLOW1) and (FLOW2) omitted)

m � asg(x̄ : ē) τ−→ m ◦ [m(ē)/x̄] � empty (ASSIGN)

m � inv(x : o : ȳ)
m(x) 〈o :m(ȳ)〉−−−−−−−−−→ m � empty (INVOKE)

m � ∑
i∈I rec(xi : oi : w̄i ) ;ai

(ok : w̄k)−−−−−→ m � ak with k ∈ I (PICK)

m � a1
α−→ m′ � a′

1
m � a1 ;a2

α−→ m′ � a′
1 ;a2

(SEQ1)
m � a1

α−→ m′ � a′
1

m � a1 | a2
α−→ m′ � a′

1 | a2
(FLOW1)

m � empty ;a τ−→ m � a (SEQ2) m � empty | a τ−→ m � a (FLOW2)

m(e) = true

m � if e thena1 elsea2
τ−→ m � a1

(IF1)
m(e) = false

m � if e thena1 elsea2
τ−→ m � a2

(IF2)

m(e) = true

m � while e doa
τ−→ m � a ;while e doa

(WH1)
m(e) = false

m � while e doa
τ−→ m � empty

(WH2)

The operational semantics of WS-CALCULUS is defined by a reduction relation over
networks, written �−→. It relies on a labelled transition relation α−→ over process instances,
where label α is generated by the following productions:

α ::= τ | λ 〈o : ū〉 | (o : w̄)

The meaning of labels is as follows: τ denotes a silent internal action, λ 〈o : ū〉 denotes invo-
cation of operation o located at λ with data ū, and (o : w̄) denotes waiting along operation
o using message variables w̄ for a message from any partner.

To define α−→ we need a partial function for evaluating expressions: it takes an expression
and returns a value. Expressions to be evaluated can contain variables; thus, evaluation of
an expression e uses a state m storing the values of the variables that may occur within e.
We write m(e) such an evaluation function, but we do not explicitly define it because the
exact syntax of expressions is deliberately not specified (in fact, WS-CALCULUS is parame-
terised w.r.t. the syntax of expressions). We just assume that expressions, to be successfully
evaluated, may not contain uninitialized variables.

Now, α−→ can be defined as the least relation over process instances induced by the rules in
Table 4. Most of the rules are straightforward, we only remark a few points. Rule (ASSIGN)
states that an assignment can proceed only if the expressions in its argument can be evalu-
ated (otherwise, the evaluation function m(ē) is undefined). In case of successful evaluation,
the state of the instance is updated. Similarly, a service invocation can proceed only if the
variables in its argument are initialized3 (rule (INVOKE)). Rule (PICK) states that the pick ac-
tivity can execute any of its receive activities and then proceed accordingly. Rules (FLOW1)
and (FLOW2) state that executions of two parallel activities are interleaved and that empty
activities can be removed. For simplicity, symmetric rules for parallel composition have
been omitted.

To define the reduction relation, we need a mechanism for checking if the assignments of
values ū to message variables w̄ comply with a given state m. Such a mechanism is rendered

3This slightly differs from WS-BPEL specification, where taking place of abnormal situations (like, e.g.,
execution of an invoke activity whose argument contains uninitialized variables) raises faults. Our simplifica-
tion is however allowable since it does not change processes’ interaction ability, which is the aspect we focus
on in this paper.
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Table 5 WS-CALCULUS operational semantics: matching function

m♦ (x,u) = [u/x] m(x) = u ∨ m(x) undefined

m♦ (!x,u) = [u/x]
m♦ (w,u) = m1 m♦ (w̄, ū) = m2

m♦ ((w, w̄), (u, ū)) = m1◦ m2

Table 6 WS-CALCULUS operational semantics: is there any active receive matching 〈o : ū〉?

arec((c1, c2), o, ū) if arec(c1, o, ū) or arec(c2, o, ū) arec(m � a, o, ū) if arecm(a, o, ū)

arecm(a1 | a2, o, ū) if arecm(a1, o, ū) or arecm(a2, o, ū) arecm(a1 ;a2, o, ū) if arecm(a1, o, ū)

arecm(
∑

i∈I rec(xi : oi : w̄i ) ;ai , o, ū) if ∃k ∈ I such that ok = o and m♦ (w̄k, ū) = m′

Table 7 WS-CALCULUS operational semantics: networks (symmetric of rule (N-PAR) omitted)

m � a
λ2 〈o:ū〉−−−−−→ m � a′

λ1 :: {m � a, c1 } ‖ λ2 :: { c2 }�−→ λ1 :: {m � a′, c1 } ‖ λ2 :: { 〈o : ū〉, c2 } (N-INV)

m � a
(o : w̄)−−−−→ m � a′ m♦ (w̄, ū) = m′

λ :: {m � a, 〈o : ū〉, c }�−→ λ :: {m ◦ m′ � a′, c } (N-REC)

m � a
(o:w̄)−−−→ m � a′ m♦ (w̄, ū) = m′ ¬arec(c, o, ū)

λ :: {m > a, 〈o : ū〉, c }�−→ λ :: {m > a, m ◦ m′ � a′, c } (N-START)

m � a
τ−→ m′ � a′

λ :: {m � a, c }�−→ λ :: {m′ � a′, c } (N-TAU)
N1�−→ N ′

1
N1 ‖ N2�−→ N ′

1 ‖ N2
(N-PAR)

as a partial function, written m♦ (w̄, ū), that in case the check succeeds, returns a collection
of bindings m′ implementing the assignments. It is defined inductively on the structure of w̄

by the rules in Table 5. These rules state that w̄ and ū must have the same number of fields
and corresponding fields match; a variable x matches any value u by returning the binding
[u/x]; the same binding is also returned when a join-variable !x matches a value u, which
happens when either m(x) does match with u or m(x) is undefined.

We also exploit the predicate arec(c, o, ū), defined in Table 6 inductively on the syntax of
components, to detect if there exists an active receive activity within a process instance in c

matching the message 〈o : ū〉. This predicate relies on the auxiliary predicate arecm(a, o, ū)

that checks an activity a for the presence of a receive matching 〈o : ū〉 and complying with
state m. The meaning of the rules is straightforward; notably, the predicates are undefined
for process definitions and activities conditional choice and iteration.

Finally, we can define the reduction relation �−→ as the least relation over networks
induced by the rules in Table 7. Let us now comment on the rules. Rule (N-INV) states that
service invocation corresponds to adding a request message to the dataspace of the invoked
node. The request is a pair, containing the name of the invoked operation o and the message
ū (i.e. the data to be passed to o). Hence, the invocation of a remote service is asynchronous
because the invoker can proceed before its request is elaborated. Notice also that a request
message does not automatically collect the address of the invoker. This choice is dictated
by our aim at modelling service communications in a real loose-coupled way where no
default addressing mechanism is assumed. Anyway, to allow the receiver to send a callback
message, the invoker can explicitly add its address to the message as shown in the buyer-
seller scenario described in Sect. 3.2. Interestingly, rule (N-INV) requires two nodes because
request messages can only be exchanged with existing ‘external nodes’. In other words,
two components located at the same node cannot communicate using this mechanism. Rule
(N-REC) states that a receive activity cannot progress until a matching request has been
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received. Thus, differently from an invoke activity, it is blocking. Requests are delivered
to the correct process instance by exploiting the operation name contained in the request,
which must be identical to the name occurring in the label of the transition performed by the
process instance, and by exploiting the correlation mechanism implemented by the matching
function. In practice, the values contained in the request and corresponding to join-variables
within the receive argument permit to determine the correct instance to which the request
must be delivered. When the reduction takes place, the matching request is consumed and
the state of the instance is updated with the corresponding assignments. Rule (N-START)
permits to create a new process instance on receipt of a request that cannot be delivered to
any existing instance. The premise ¬arec(c, o, ū) prevents interferences with rule (N-REC)
as illustrated by the following example:

λ :: { [ ] > ( rec(x : o1 :!y) | rec(x : o2 :!y) ) ;a,

[10/y] � rec(x : o1 :!y) ;a,

〈o1 : 10〉 }
where only the process instance [10/y] � rec(x : o1 :!y) ;a can proceed by consuming the
request and evolving as follows:

λ :: { [ ] > ( rec(x : o1 :!y) | rec(x : o2 :!y) ) ;a, [10/y] � a }
Notably, incidental receive conflicts among process instances or among process definitions
are non-deterministically resolved. In such cases, the programmer has not properly set the
correlation values thus the correlation mechanism cannot uniquely identify a service in-
stance. Receive conflicts within the same process instance are dealt with similarly.4 Rule
(N-TAU) establishes that conditional and iterative constructs can silently choose and evolve,
and that states can be silently updated. Notably, the state update semantics is simplified
by the fact that the effect of an assignment is global w.r.t. a process instance. Finally, rule
(N-PAR) states that if a part of a larger network evolves, the whole network evolves accord-
ingly.

In Sect. 3.2, we have shown a few examples of WS-CALCULUS terms behaving as ex-
pected. On the contrary, here we want to illustrate some erroneous network configurations
that we would like not to reach while computation proceed, but cannot do so if we only
rely on the operational semantics. It is worth noting that in all considered examples WS-
CALCULUS operational semantics does not point out any runtime error, at most the compu-
tation gets stuck.

Two trivial examples are

[2/x, true/y] � asg(x : y)

where a boolean value is going to be assigned to the integer variable x, and

[2/x] � inv(x : o : y)

where x is going to be used as a partner link. Furthermore, since WS-CALCULUS, as well
as WS-BPEL, is parametric with respect to the expression language, it may be equipped
with operators for manipulating basic values, such as integer addition or boolean negation.

4Actually, this slightly differs from WS-BPEL specification that prescribes to raise a fault. Again, our sim-
plification is allowable as this fault is an internal one.
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Applying them to type-incompatible values can lead to erroneous network configurations,
as in

[2/x] � asg(y : notx)

While the above situations indicate an error involving a single component, there are other
cases where the error is related to wrong interactions between process instances and partner
services. For example, a typical problem occurring in an asynchronous context is represented
by the following network

A :: { [ “ok”/y] � rec(xB : ores : xB) ; inv(xB : ores : y) }
‖ B :: { [A/xA,B/z] � inv(xA : oreq : z) }

Process B sends its address to A that uses this value for initializing its partner link xB . Thus,
after three reduction steps, the whole network evolves to

A :: { [ “ok”/y,B/xB] � inv(xB : ores : y) }
‖ B :: { [A/xA,B/z] � empty }

Now, process A expects the partner identified by xB , that is B , to provide a reply operation
ores to be invoked. Instead, B does not provide such an operation, thus, the collaboration
between A and B cannot be further carried out.

All the situations above are actually considered as errors falling within the WS-BPEL
fault classification [61, Appendix A and B]. For example, the first error above is classified
as SA00043 stating that assign activities must handle type-compatible variables. Although
the WS-BPEL classification takes into account many different kinds of errors, as e.g. unde-
fined variables and partner link uniqueness, in our opinion, some kind of errors dealing with
interactions between process instances and partner services are overlooked. The task of the
typing discipline we introduce in the next section is to statically prevent that situations like
those we have just described can take place at runtime.

4 A typing discipline for collaborating services

The types for WS-CALCULUS we present in this section are closely inspired by WSDL
type definitions. Actually, they do not contain any information in addition to that which can
be extracted from the WSDL document associated to a WS-BPEL process specification.
The assignments of types to WS-CALCULUS objects (i.e. values, variables, partner links,
addresses, and nodes) correspond to the type declarations that are found in the WS-BPEL
process specifications. The type system for WS-CALCULUS uses the type information both
to prevent assign or receive activities from associating values with variables which are not
type-compatible and to implement a sort of ‘partner link control’ that checks the ability
of a process to invoke the partner specified by a partner link and the ability of that part-
ner to asynchronously respond. As shown in the previous section, the interaction can take
place by means of the transmission of the process address to the partner, hence by relying
on an address-passing communication mechanism. Such an aspect complicates the defin-
ition of our type system but, at the same time, makes it more useful to single out those
processes that are not able to carry out successfully the business collaboration with their
partners.
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Table 8 Syntax of types
δ ::= / types /

υ / value type /

| � / partner link type /

υ ::= / value types /

β / basic type /

| γ / address type /

β ::= BOOL | INT | STR / basic types /

γ ::= {πi }i∈I / address types /

π ::= [oi 〈ῡi 〉]i∈I / port types /

� ::= 〈π1,π2〉 / partner link types /

ω ::= {xi : δi }i∈I / local types /

4.1 Syntax of types

As previously said, a WS-CALCULUS node can be thought of as an ‘engine’ for executing
business processes. Now that types come into the picture, nodes are enriched with a declar-
ative part ω that defines their type. Typed nodes will be written as λ ::ω { c }, while typed
networks are finite collections of typed nodes. The type of a node collects all information
about the format of the messages exchanged in collaborations involving the components run-
ning at the node. It also specifies the type of each such collaboration, the so-called partner
link type, as a pair of roles such that one role depends on the other. In practice, it represents
the type information that can be extracted from the WSDL and WS-BPEL documents of
the processes running there5. For example, in an asynchronous request-response interaction,
the role of the service provider, which is the one that performs the receive activity over the
request operation, must be paired with the role of the requestor, which performs the receive
activity over the callback operation. Roles are rendered as port types; therefore, as in the
case of WSDL declarations, a collaboration is expressed at the port type level and not at the
operation level. Indeed, for WS-BPEL (and, hence, also for WSDL), this choice is dictated
by the need to preserve compositionality and loose coupling while modelling asynchronous
collaborating services.

The syntax of types is defined in Table 8. A local type ω consists of definitions of value
types υ and partner link types �. The two kinds of value types are basic types β (we only
consider BOOL, INT and STR types) and address types γ . An address type is a collection of
port types {πi }i∈I , where πi range over port types. The values determined by an address type
are addresses, e.g. if x : {π1,π2,π3 } is an address type definition then we can only assign to
x addresses compatible with port types π1, π2 and π3. Port types [oi〈ῡi〉]i∈I are collections
of operation types o〈ῡ〉, where the tuple ῡ is the type of the arguments required by the
operation o. It is worth noting that basic values and addresses are the only values exchanged
among WS-CALCULUS terms. Partner link types are defined as pairs of port types 〈π1,π2〉,

5Usually, any WS-BPEL process has its own associated WSDL document. Instead, in WS-CALCULUS, for
the sake of simplicity, process definitions located at the same node λ ::ω { c } share the same node type ω.
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Table 9 Correspondence between WS-CALCULUS types and WSDL & WS-BPEL type declarations

WS-CALCULUS types WSDL & WS-BPEL

BOOL xsd:boolean

INT xsd:integer

STR xsd:string

γ wsa:EndpointReference

π = [o1〈ῡ1〉, . . . , on〈ῡn〉] <portType name="π">

<operation name="o_1">

<input message="v_1" />

</operation>

. . .

<operation name="o_n">

<input message="v_n" />

</operation>

</portType>

� = 〈π1,π2〉 <partnerLinkType name="�">

<role name="my" portType="π1" />

<role name="partner" portType="π2" />

</partnerLinkType>

where π1 refers to the role played by the considered service and π2 to the role played by
the partner service. To specify collaborations where a single port type (i.e. a single role)
suffices, we use the symbol [/] to denote an empty port type.

Table 9 sheds light on the correspondence between WS-CALCULUS types and WSDL
plus WS-BPEL type declarations. In particular, consider that address types are usually spec-
ified in WSDL by relying on WS-Addressing [36] ‘endpoint reference types’. It is worth
noting that type declarations within a local type ω are specified inside the WS-BPEL doc-
ument; in particular, declarations of the form x : υ correspond to <variable> elements,
while those of the form x : � to <partnerLink> elements.

As specified in [61, Sect. 3], operation overloading is not permitted, e.g. operation types
such as o〈INT〉 and o〈INT, BOOL〉 cannot occur in the same local typing. Thus, the notion of
network well-formedness extends to typed networks by taking into account also this syntac-
tic constraint. Anyway, type declarations within nodes do not play any role in the operational
semantics of WS-CALCULUS and the operational rules in Tables 4 and 7 still hold for typed
networks. In other words, type declarations do not affect the transitions and are not modified
by them. Therefore, types within nodes have been omitted in Sect. 3; on the contrary, the
results presented in this section will be based on transitions between typed terms.

We conclude with a few simple examples aimed at clarifying the intuitive meaning of the
type declarations.

In the simplest interaction pattern, where a requestor B invokes a service provider A and
the interaction immediately terminates, a single one-way operation oreq suffices:

A ::ωA { [B/xB] > rec(xB : oreq : x) }
‖ B ::ωB { [A/xA,2/y] � inv(xA : oreq : y) }
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where ωA = {xB : 〈[oreq〈INT〉], [/]〉 , x : INT } and ωB = {xA : 〈[/], [oreq〈INT〉]〉 , y : INT }.
The service A, which provides the operation oreq, specifies the partner link xB whose type
contains a single role played by A itself. Symmetrically, B specifies the partner link xA and
does not play any role in the collaboration, because the invoked operation oreq is provided
by the partner.

The more complex asynchronous request-response interaction pattern is expressed by
connecting two one-way operations (request and callback):

A ::ωA { [B/xB] > rec(xB : oreq : x) ; inv(xB : ores : x) }
‖ B ::ωB { [A/xA,2/y] � inv(xA : oreq : y) ; rec(xA : ores : y) }

where ωA and ωB are respectively defined as {xB : 〈[oreq〈INT〉], [ores〈INT〉]〉 , x : INT } and
{xA : 〈[ores〈INT〉], [oreq〈INT〉]〉 , y : INT }. Now, both services play a role in the collaboration,
according to the provided operation. Notice that the provider service A (statically) knows
the address of the requestor (indeed, its initial state is [B/xB]). The example can be slightly
modified to allow the provider to discover at run-time the address of the requestor and,
hence, to dynamically bind it to the partner link xB :

A ::ωA { [ ] > rec(xB : oreq : xB, x) ; inv(xB : ores : x) }
‖ B ::ωB { [A/xA,B/yB,2/y] � inv(xA : oreq : yB, y) ; rec(xA : ores : y) }

where, this time, ωA and ωB are defined as {xB : 〈[oreq〈{π }, INT〉],π〉 , x : INT } and {xA :
〈π, [oreq〈{π }, INT〉]〉 , yB : {π } , y : INT }, respectively, where π stands for [ores〈INT〉]. No-
tably, due to address-passing, the first argument of the operation oreq, as well as the vari-
able yB , has type {π }, which is an address type.

4.2 Type checking

Type environments, ranged over by θ , map addresses to address types. This information is
exploited to properly deal with address-passing, because invoke and receive activities can
use partner links as message variables for exchanging node addresses. For example, the
type checking will control that a variable of type 〈π1,π2〉 must be assigned an address that,
according to the type environment, provides the port type π2. Type environments also store
in a compact form the type of the interaction patterns that all processes in the network should
follow along their computations.

The judgement θ � N , defined by the inference rules in Table 10, states that a net-
work N is well-typed under the type environment θ . Rule (T-NET) says that a network
is well-typed under a type environment, if each node of the network is well-typed under
the same environment. Rule (T-NODE) says that a node is well-typed if its components
are well-typed too. The premise θ(λ) = myRoles(ω), where we let myRoles(ω) denote the
set {π | x : 〈π,π ′〉 ∈ ω }, checks if the type environment θ contains the type information
concerning the components located at λ. In fact, for a given node λ ::ω { c }, myRoles(ω)

includes the port types provided by the components located at λ (to be used in order to
collaborate with them). Therefore, (T-NET) and (T-NODE) together require the type envi-
ronment θ used to typecheck a network to contain type associations for all nodes of the
network. Actually, such associations could be easily extracted from the local types of the
considered nodes; e.g. given the network λ1 ::ω1 { c1 } ‖ · · · ‖ λn ::ωn { cn }, a suitable type
environment is [myRoles(ω1)/λ1, . . . ,myRoles(ωn)/λn].

The judgement ω �θ c, defined by the inference rules in Table 11, states that a collection
of components is well-typed w.r.t. a type environment θ and a local type ω. Rule (T-COMP)
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Table 10 Inference rules for θ � N

θ � N1 θ � N2

θ � N1 ‖ N2
(T-NET)

ω �θ c θ(λ) = myRoles(ω)

θ � λ ::ω { c } (T-NODE)

Table 11 Inference rules for ω �θ c

ω �θ c1 ω �θ c2

ω �θ c1, c2
(T-COMP)

o〈ῡ〉 ∈∈ myRoles(ω) ω �θ ū : ῡ′ ῡ � ῡ′
ω �θ 〈o : ū〉 (T-REQ)

ω �θ m � a

ω �θ m > a
(T-DEF)

ω �θ a

ω �θ [ ] � a
(T-INST1)

ω �θ m � asg(x̄ : ū) ;a
ω �θ m ◦ [ ū/x̄] � a

(T-INST2)

Table 12 Inference rules for ω �θ ē : ῡ and ω �θ w̄ : ῡ
u ∈ Int

ω �θ u : INT
(T-INT)

u ∈ Str

ω �θ u : STR
(T-STR)

u ∈ {true, false}
ω �θ u : BOOL

(T-BOOL)

x : υ ∈ ω

ω �θ x : υ (T-VAR)
x : υ ∈ ω

ω �θ !x : υ (T-JOIN)
x : � ∈ ω

ω �θ x : � (T-LINK)

θ(u) = {πi }i∈I

ω �θ u : {πi }i∈I
(T-ADDR)

ω �θ e1 : υ1 · · · ω �θ en : υn

ω �θ e1, . . . , en : υ1, . . . , υn
(T-EXPR)

ω �θ x : 〈π1,π2〉
ω �θ x : {π2 } (T-ROLE)

ω �θ w1 : υ1 · · · ω �θ wn : υn

ω �θ w1, . . . ,wn : υ1, . . . , υn
(T-TUPLE)

is used to split the judgement for a collection into the judgements for each single compo-
nent. Rule (T-REQ) states that a message request delivered to a node is well-typed if the
node provides the requested operation with the proper types. Notation o〈ῡ〉 ∈∈ myRoles(ω)

is a short-hand to mean that there exists some port type π ∈ myRoles(ω) such that o〈ῡ〉 ∈ π .
Condition ῡ � ῡ ′ ensures that the type ῡ of the arguments of the invoked operation o con-
forms to the type ῡ ′ of the corresponding transmitted values. The symbol � denotes the
subtyping preorder over value types induced by letting β � β ′ if β = β ′ and γ � γ ′ if
γ ⊆ γ ′. The preorder extends component-wise to tuples of value types, i.e. ῡ � ῡ ′ if ῡ and
ῡ ′ have the same number of fields and the corresponding fields are in the subtyping rela-
tion. Thus, if the type of the invoked operation contains an address type {πi }i∈I then, as a
set, it must be a subset of the address type {π ′

j }j∈J of the corresponding value contained
in the message ū. The intuition here is that it is safe to send along o addresses that pro-
vide more operations than those a receiver might initially expect. By means of rule (T-DEF),
process definitions are typed in terms of the corresponding process instance. Finally, rule
(T-INST1) establishes that a process instance [ ] � a with empty state is well-typed if the
activity a is well-typed w.r.t. the same type environment θ and local type ω, while rule
(T-INST2) establishes that a process instance m ◦ [ ū/x̄] � a is well-typed if the activity
resulting from the sequential composition of the assign activity producing the state [ ū/x̄]
with the activity a is well-typed in the state m w.r.t. the same type environment θ and local
type ω.

The inference rules for the judgements ω �θ ē : ῡ and ω �θ w̄ : ῡ are in Table 12. Since
the syntax of expressions has not been specified, our type system only includes inference
rules for basic values and variables. Once the syntax of expressions will have been precisely
established, specific inference rules should be added for each operator. For example, if inte-
ger addition would be added to the syntax of expressions, then the following rule should be



Form Methods Syst Des (2011) 38: 119–157 139

Table 13 Inference rules for ω �θ a

ω �θ o〈ῡ〉 ∈ partnerRole(x) ω �θ ȳ : ῡ′ ῡ � ῡ′
ω �θ inv(x : o : ȳ)

(T-INV)

ω �θ x̄ : ῡ ω �θ ē : ῡ′ ῡ � ῡ′
ω �θ asg(x̄ : ē) (T-ASG)

ω �θ a1 ω �θ a2

ω �θ a1 ;a2
(T-SEQ)

ω �θ a1 ω �θ a2

ω �θ a1 | a2
(T-FLOW)

∀i ∈ I ω �θ rec(xi : oi : w̄i ) ;ai

ω �θ
∑

i∈I rec(xi : oi : w̄i ) ;ai
(T-PICK)

ω �θ e : BOOL ω �θ a1 ω �θ a2

ω �θ if e thena1 elsea2
(T-IF)

ω �θ e : BOOL ω �θ a

ω �θ while e doa
(T-WH)

ω �θ o〈ῡ〉 ∈ myRole(x) ω �θ w̄ : ῡ′ ῡ′ � ῡ

ω �θ rec(x : o : w̄)
(T-REC)

added to the type system:

ω �θ e1 : INT ω �θ e2 : INT

ω �θ e1 + e2 : INT
(T-OP+)

We comment now on the most significant rules. Rules (T-INT), (T-STR) and (T-BOOL)
simply check if a value belongs to the set of values corresponding to its type (Int and
Str denote the set of integer and string values, respectively). Address values are typed by
exploiting the type environment θ (rule (T-ADDR)), while variables (i.e. basic variables,
join-variables and partner links) are typed by exploiting the local type ω (rules (T-VAR),
(T-JOIN), (T-LINK) and (T-ROLE)). In particular, rule (T-ROLE) states that a partner link of
type 〈π1,π2〉 can be used as an address variable of type {π2 }. This rule permits checking
assignments of type-compatible values involving partner links variables, e.g. addresses can
be assigned to such variables only if the corresponding nodes provide the port type π2, at
least.

The judgement ω �θ a, defined by the inference rules in Table 13, states that ac-
tivity a is well-typed w.r.t. a type environment θ and a local type ω. Notation ω �θ

o〈ῡ〉 ∈ partnerRole(x) stands for the judgement ω �θ x : 〈π1,π2 ∪ [o〈ῡ〉]〉, while notation
ω �θ o〈ῡ〉 ∈ myRole(x) stands for the judgement ω �θ x : 〈π1 ∪ [o〈ῡ〉],π2〉, where in both
cases π1 and π2 are generic port types. Rule (T-INV) states that an invoke activity is well-
typed when it is performed in collaboration with a partner providing the type definition of
the invoked operation. The premises ensure that the message type ῡ of the invoked opera-
tion conforms to the type ῡ ′ of the variables argument of the invoke activity. Similarly to
rule (T-REQ) in Table 11, the underlying intuition is that e.g. it is safe to send addresses
providing more operations than those a receiver might expect. Rule (T-ASG) checks type-
compatible assignments. Also in this case the subtyping judgement between arguments is
required to hold. Rule (T-PICK) exploits rules (T-SEQ) and (T-REC) to check well/typedness
of the component activities. As a special case, when I = ∅, we get the rule

ω �θ empty (T-EMPTY)

Differently from rule (T-INV), in rule (T-REC) the operation type is provided by the node
performing the receive operation. In addition, by the subtyping relation, it is considered safe
to receive addresses that provide more operations than those the receiver might actually use.

One of the major contributions of our type system is to shed light on the most peculiar and
intricate aspects of the relationship between WSDL and WS-BPEL, such as the handling of
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partner links. As we have already pointed out, our typing discipline requires partner links to
be typed by pairs of port types characterizing the two roles involved in a collaboration. The
type checking rules exploit the first element of such pairs when checking receive activities
and the second element when checking invoke activities. No rule uses the two elements at
the same time. This is also the case when dealing with address-passing, which requires to
transform (by applying rule (T-ROLE)) partner link types 〈π1,π2〉 into address types {π2 },
since the types of message variables/data do not include partner link types.

4.3 Type soundness

The main property of our type system is that if a network is well-typed then it never reaches
an error configuration (Corollary 1). The proof proceeds in the style of [68] by first prov-
ing subject reduction, namely that networks well-typedness is an invariant of the reduction
relation (Theorem 1), and then proving type safety, namely that well-typed networks are
error-free (Theorem 2). The errors that our typing discipline permits to prevent are charac-
terised by the predicate ⇑θ

λ defined by the inference rules in Table 14.
The subject reduction theorem exploits an auxiliary lemma stating that if a process in-

stance is well-typed then its continuation after a labelled transition is well-typed too.

Lemma 1 If ω �θ m � a and m � a
α−→ m′ � a′, then ω �θ m′ � a′.

Proof The proof is by induction on the depth of the inference of the labelled transition
m � a

α−→ m′ � a′ and case analysis on the last applied rule of Table 4. For the base step,
we only show two significant cases.

In the case of rule (ASSIGN), we have a = asg(x̄ : ē), m = [ ū/ȳ] (for some ȳ and
ū), m′ = m ◦ [m(ē)/x̄] and a′ = empty. From the hypothesis ω �θ m � asg(x̄ : ē), by
rule (T-INST2), we get ω �θ [ ] � asg(ȳ : ū) ;asg(x̄ : ē), and, by rule (T-INST1), we
get ω �θ asg(ȳ : ū) ;asg(x̄ : ē). Then, by rule (T-SEQ), we have ω �θ asg(ȳ : ū) and
ω �θ asg(x̄ : ē). From the latter, by rule (T-ASG), we get ω �θ x̄ : ῡ , ω �θ ē : ῡ ′ and ῡ � ῡ ′.
By assuming that the evaluation function m(·) is type-preserving,6 we obtain ω �θ m(ē) : ῡ ′.
Hence, again by using rule (T-ASG), we get ω �θ asg(x̄ : m(ē)). By rules (T-EMPTY) and
(T-SEQ) (two times), we get ω �θ asg(ȳ : ū) ;asg(x̄ : m(ē)) ; empty. Now, by rule (T-
INST1), ω �θ [ ] � asg(ȳ : ū) ;asg(x̄ : m(ē)) ; empty, and by (T-INST2), ω �θ m � asg(x̄ :
m(ē)) ; empty. Now, again by applying rule (T-INST2), we get ω �θ m◦[m(ē)/x̄] � empty,
as to be proved.

In the case of rule (PICK), we have a = ∑
i∈I rec(xi : oi : w̄i) ;ai , m = [ ū/ȳ] (for some

ȳ and ū), m′ = m and a′ = ak for some k ∈ I . By hypothesis and rules (T-INST2) and (T-
-INST1), we have ω �θ asg(ȳ : ū) ;a. By rule (T-SEQ), we get ω �θ asg(ȳ : ū) and ω �θ a.
By rules (T-PICK) and (T-SEQ), we obtain ω �θ ak for each k ∈ I . By applying rule (T-SEQ)
again, we have ω �θ asg(ȳ : ū) ;ak for each k ∈ I . Finally, by applying rules (T-INST1) and
(T-INST2), we obtain ω �θ m � ak , as to be proved.

For the induction step, we only show the case of rule (SEQ1), since that of rule (FLOW1)
proceeds similarly. Then, suppose a = a1 ;a2, m = [ ū/x̄] (for some x̄ and ū), m � a1

α−→
m′ � a′

1 and a′ = a′
1 ;a2. From the hypothesis ω �θ m � a1 ;a2, by rule (T-INST2), we have

ω �θ [ ] � asg(x̄ : ū) ;a1 ;a2, and, by rule (T-INST1), we have ω �θ asg(x̄ : ū) ;a1 ;a2.

6Since the syntax of expressions and, hence, the evaluation function are not specified (see Sect. 3), the type-
preservation property of m(·) cannot be proved. It is however perfectly reasonable to require it as a condition
to be satisfied by m(·).
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By rule (T-SEQ), we get ω �θ asg(x̄ : ū) ;a1 and ω �θ a2. Now, by rules (T-INST1) and
(T-INST2), we have ω �θ m � a1. Thus, by induction hypothesis, we get ω �θ m′ � a′

1.
The thesis then follows by applying rules (T-INST2), (T-INST1) and (T-SEQ), first to infer
that ω �θ asg(ȳ : ū′) ;a′

1 ;a2 (for some proper ȳ and ū′ such that m′ = [ ū′/ȳ]), then to infer
that ω �θ m′ � a′

1 ;a2, as to be proved. �

To prove subject reduction, we also need an auxiliary lemma stating that in a well-typed
network the port type of the partner role of a partner link must be defined in the local type
of the node to which the partner link refers to.

Lemma 2 If θ � λ1 ::ω1 {m � a, c1 } ‖ λ2 ::ω2 { c2 } and m(x) = λ2, then ω1 �θ x : 〈π ′,π〉
and π ∈ myRoles(ω2), for some port types π ′ and π .

Proof From the first hypothesis, by rule (T-NET), it follows that θ � λ1 ::ω1 {m � a, c1 }.
By rules (T-NODE), (T-COMP), (T-INST2) and (T-INST1), we get ω1 �θ asg(x̄ : ū) ;a, where
x̄ and ū are such that m = [ ū/x̄]. Now, by rule (T-SEQ), we have that ω1 �θ asg(x̄ : ū).
Since by hypothesis m(x) = λ2, when applying rule (T-ASG) it is checked in particular that,
for some port type π , ω1 �θ x : {π }, ω1 �θ λ2 : {πi }i∈I , and {π } � {πi }i∈I . Now, the
first check, by rule (T-ROLE), implies ω1 �θ x : 〈π ′,π〉, for some port type π ′; the second
check, by rule (T-ADDR), implies θ(λ2) = {πi }i∈I ; and the last check implies {π } ⊆ θ(λ2).
From the first hypothesis, by rule (T-NET), it follows that θ � λ2 ::ω2 { c2 }. Hence, by
rule (T-NODE), we get θ(λ2) = myRoles(ω2), which implies π ∈ myRoles(ω2), as to be
proved. �

We can now prove the subject reduction theorem stating preservation of well-typedness
under networks evolution. As a matter of notation, we write N ≡ λ1 ::ω1 { c1 } ‖ · · · ‖ λk ::ωk

{ ck } to mean that N is of the form λ1 ::ω1 { c1 } ‖ · · · ‖ λk ::ωk { ck }.

Theorem 1 (Subject reduction) If θ � N and N�−→ N ′, then θ � N ′.

Proof The proof is by induction on the depth of the inference of the reduction N�−→ N ′ and
case analysis on the last applied rule of Table 7.
For the base step, we have the following cases to consider:

(N-INV): In this case we have N ≡ λ1 ::ω1 {m � a, c1 } ‖ λ2 ::ω2 { c2 } and N ′ ≡ λ1 ::ω1

{m � a′, c1 } ‖ λ2 ::ω2 { 〈o : ū〉, c2 }. Moreover, the reduction N�−→ N ′ is caused by
an activity-level transition m � a

λ2 〈o : ū〉−−−−→ m � a′ pointing out that a is performing an
invoke activity inv(x : o : ȳ) with λ2 = m(x) and ū = m(ȳ). Now, by the well-typedness
hypothesis, we have ω1 �θ m � a. On the one hand, by Lemma 1, this implies that
ω1 �θ m � a′. On the other hand, by first applying rules (T-INST2) and (T-INST1), and
then, possibly, other rules in Table 13 according to the syntax of a, we eventually end
up to apply rule (T-INV), thus we get that its premises do hold, i.e., for some port types
π1 and π2, ω1 �θ x : 〈π1,π2 ∪ [o〈ῡ〉]〉, ω1 �θ ȳ : ῡ ′ and ῡ � ῡ ′. Now, by assuming
that the evaluation function m(·) is type-preserving, we get ω1 �θ m(ȳ) : ῡ ′. Thus, since
the rules in the first line of Table 12 are independent of the local type occurring in the
judgement, we get ω2 �θ m(ȳ) : ῡ ′. Since m(x) = λ2, by Lemma 2, we get π2 ∪[o〈ῡ〉] ∈
myRoles(ω2), i.e. o〈ῡ〉 ∈∈ myRoles(ω2). Hence, all premises of rule (T-REQ) do hold
thus, by applying the rule, we get ω2 �θ 〈o : ū〉. Finally, because of the syntactic form of
N ′, the thesis follows by applying rules (T-COMP), (T-NODE) and (T-NET).
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Table 14 Error configurations N ⇑θ
λ (with � ∈ {�,> } and symmetric of rule (E-PAR) omitted)

x : 〈π1,π2〉 ∈ ω1 π2 /∈ θ(λ2)

(λ1 ::ω1 {m ◦ [λ2/x] � a, c1 }) ⇑θ
λ1

(E-PARTNERROLE)

m � a
(o : w̄)−−−−→ m � a′ o〈ῡ〉 	∈∈θ(λ)

(λ ::ω {m � a, c }) ⇑θ
λ

(E-MYROLE)

m � a
λ2 〈o : ū〉−−−−−→ m � a′ o〈ῡ〉 ∈∈ θ(λ2) ῡ 	� ῡ′ with ω1 �θ ū : ῡ′

(λ1 ::ω1 {m � a, c1 }) ⇑θ
λ1

(E-MSG1)

m � a
(o : w̄)−−−−→ m � a′ o〈ῡ〉 ∈∈ θ(λ) ῡ′ 	� ῡ with ω �θ w̄ : ῡ′

(λ ::ω {m � a, c }) ⇑θ
λ

(E-MSG2)

υ 	� υ′ with ω �θ x : υ and ω �θ u : υ′
(λ ::ω {m ◦ [u/x] � a, c }) ⇑θ

λ

(E-ASG)
N1 ⇑θ

λ

N1 ‖ N2 ⇑θ
λ

(E-PAR)

(N-REC) and (N-START): We proceed in a way similar to (N-INV). We only show the case
of rule (N-REC), since that of rule (N-START) is analogous. Hence, we have N ≡ λ ::ω
{m � a, 〈o : ū〉, c } and N ′ ≡ λ ::ω {m ◦ m′ � a′, c }. Moreover, the reduction N�−→
N ′ is caused by an activity-level transition m � a

(o : w̄)−−−→ m � a′ pointing out that a

is performing a receive activity rec(x : o : w̄). Now, by hypothesis and rules (T-NODE)
and (T-COMP), we get θ(λ) = myRoles(ω), ω �θ c, ω �θ m � a and ω �θ 〈o : ū〉. From
ω �θ m � a, on the one hand, by Lemma 1, we get that ω1 �θ m � a′. On the other
hand, by first applying rules (T-INST2) and (T-INST1), and then, possibly, other rules
in Table 13 according to the syntax of a, we eventually end up to apply rule (T-REC),
thus we get ω �θ x : 〈π1 ∪ [o〈ῡ〉],π2〉, ω �θ w̄ : ῡ ′ and ῡ ′ � ῡ . From ω �θ 〈o : ū〉, by
rule (T-REQ), we get o〈ῡ〉 ∈∈ myRoles(ω), that is π ∪ [o〈ῡ〉] ∈ myRoles(ω) for some
port type π , ω �θ ū : ῡ ′′ and ῡ � ῡ ′′. Now, from ω �θ w̄ : ῡ ′, by applying rules (T-JOIN)
and (T-VAR), we get ω �θ ȳ : ῡ ′, where ȳ is obtained from w̄ by removing possible
occurrences of operator “!”. From this, ω �θ ū : ῡ ′′ and ῡ ′ � ῡ ′′ (that follows because
of transitivity of the preorder �), by applying rule (T-ASG), we get ω �θ asg(ȳ : ū).
By rule (T-SEQ), we get ω �θ asg(ȳ : ū) ;a′ and, again by rule (T-SEQ), we get ω �θ

asg(x̄ : ū′) ;asg(ȳ : ū) ;a′, for some x̄ and ū′ such that m = [ ū′/x̄]. Now, by rule (T-
-INST1), we get ω �θ [ ] � asg(x̄ : ū′) ;asg(ȳ : ū) ;a′, and by rule (T-INST2), we get
ω �θ m � asg(ȳ : ū) ;a′. By rule (T-INST2) again, we get ω �θ m ◦ m′ � a′ for m′ =
[ ū/ȳ]. Finally, because of the syntactic form of N ′, the thesis follows by applying rules
(T-COMP), (T-NODE) and (T-NET).

(N-TAU): This case easily follows from Lemma 1.

For the induction step, we only have to consider the case of rule (N-PAR). Then, the thesis
easily follows by induction hypothesis and rule (T-NET). �

The errors that our type system can prevent are characterised by the predicate ⇑θ
λ. The

predicate holds true on error configurations, meaning intuitively that the behaviour of a
component running at λ can violate a type constraint stored in θ . To capture the presence of
errors in networks, we exploit the type environment θ since, as we have pointed out at the
beginning of Sect. 4.2, it contains in a compact form the type specifications of all networks
nodes, as e.g. the interaction patterns that all processes in the network should follow along
their computations. Thus, θ is at the same time a repository for the patterns establishing how
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interactions should take place and a technical device to implement the check that interactions
really proceed as prescribed.

The rules defining ⇑θ
λ are shown in Table 14, where 	∈∈ means that ∈∈ does not hold,

	� means that the subtype preorder � does not hold, and m � a stands both for process
definitions (m > a) and for process instances (m � a). Rule (E-PARTNERROLE) states that
there is an error when the partner role π2 of a partner link x is not provided as a port type
in the local type of the node to which the partner link refers to. For example, consider the
typed version of the network presented at the beginning of this section

A ::ωA { [ “ok”/y] � rec(xB : oreq : xB) ; inv(xB : ores : y) }
‖ B ::ωB { [A/xA,B/z] � inv(xA : oreq : z) }

where in the local type ωA the partner link type of xB is 〈[oreq〈{π }〉],π〉, with π =
[ores〈STR〉], while the local type ωB is empty. The type checking reveals an error in
the collaboration between the two instances since xB is not compatible with B , in fact
π /∈ myRoles(ωB). Rule (E-MYROLE) states that there is an error when the type declaration
of the requested operation is not found in the type of the local node. Indeed, the component
m � a must be the provider of the operation, since by hypothesis it performs a receive ac-
tivity along such operation. Rules (E-MSG1) and (E-MSG2) point out errors due to the fact
that the wanted operation is provided but its type is not compatible with the type of the
message variables. Rule (E-ASG) indicates errors that occur when some stored values are in-
compatible with the type of the corresponding variables. Finally, rule (E-PAR) is a standard
contextual rule.

We now prove the type safety theorem stating that well-typed networks are error-free.

Theorem 2 (Type safety) If θ � N then N ⇑θ
λ does not hold, for every address λ of N .

Proof From the hypothesis, it follows that for all nodes λ ::ω { c } of N we have that θ(λ) =
myRoles(ω). We proceed by contradiction and show that if N ⇑θ

λ then θ � N could not be
derived. We now reason by induction on the inference of predicate N ⇑θ

λ using the rules in
Table 14. For the base step, we have the following cases to consider:

(E-PARTNERROLE) Thus N ≡ λ1 ::ω1 {m ◦ [λ2/x] � a, c1 }. This means that the process
located at λ1 uses the partner link x to refer to node λ2 but the port type π2 is not defined
in the local type ω2 of λ2, hence π2 /∈ myRoles(ω2). Now, suppose that θ � N can be
derived. Then, by rules (T-INST2) and (T-INST1), and, possibly, (T-DEF), in case of
process definition, we can derive ω1 �θ asg(ȳ, x : ū, λ2) ;a, for some ȳ and ū such that
m = [ ū/ȳ]. By rule (T-SEQ) in Table 13, we get ω1 �θ asg(ȳ, x : ū, λ2), which, by rule
(T-ASG), would imply in particular that ω1 �θ x : {π2 } and {π2 } � θ(λ2). However,
this cannot be inferred because we already know that θ(λ2) = myRoles(ω2) and π2 /∈
myRoles(ω2).

(E-MYROLE) We reason like in the previous case. The thesis trivially follows by making
use of the fact that the premise o〈ῡ〉 	∈∈θ(λ) implies that rule (T-REC) in Table 13 cannot
be applied since the premise ω �θ o〈ῡ〉 ∈ myRole(x), i.e. ω �θ x : 〈π1 ∪ {o〈ῡ〉 },π2〉,
does not hold.

(E-MSG1) and (E-MSG2) These cases are proved in a way similar to the previous case. Con-
sider for example the case of rule (E-MSG1). The premise ῡ 	� ῡ ′ with ω �θ ū : ῡ ′ implies
that rule (T-INV) in Table 13 cannot be applied. But application of rule (T-INV) is needed
in the derivation of θ � N , since m � a can execute an invoke. Thus, θ � N cannot be
derived. In the case of rule (E-MSG2), the proof proceeds similarly by observing that the
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premise ῡ ′ 	� ῡ with ω �θ w̄ : ῡ ′ prevents application of rule (T-REC) that is necessary
in the derivation of θ � N .

(E-ASG) Also in this case the proof proceeds as the previous cases. Indeed, the premise
υ 	� υ ′ with ω �θ x : υ and ω �θ u : υ ′ prevents application of rule (T-ASG) that is
necessary in the derivation of θ � N .

The case of (E-PAR) follows by induction. Indeed, suppose that N1 ‖ N2 ⇑θ
λ because, for

example, N1 ⇑θ
λ. By induction hypothesis we cannot infer that θ � N1 and, therefore, we

cannot apply (T-NET), the only possible rule to infer θ � N1 ‖ N2. �

We can finally prove our major result stating that well-typed networks are free from errors
throughout their evolution.

Corollary 1 (Type soundness) Let θ � N . Then N ′ ⇑θ
λ does not hold for every addresses λ

and network N ′ such that N�−→∗N ′ (where �−→∗ denotes the reflexive and transitive closure
of �−→).

Proof Theorem 1 implies that θ � N ′, while Theorem 2 implies that N ′⇑θ
λ does not hold for

every address λ of N ′. �

5 WS-CALCULUS at work

In this section, we apply our framework to illustrate two commonly used interaction pat-
terns. The first pattern describes a shipping service scenario borrowed from the WS-BPEL
official specification document [61, Sect. 15.1]. This example will allow us to illustrate both
how to use WS-CALCULUS to formalise WS-BPEL programs and most of the language
features, including correlation sets, shared variables and control flow structures. The second
pattern will allow us to explain how to use our framework to analyse a generic asynchro-
nous interaction pattern that offers a way to exchange messages, via an intermediary service,
with services requiring synchronous interactions. This last pattern allows such synchronous
services and their requestors to elaborate messages independently, by remaining temporally
decoupled. Specific instantiations of asynchronous interaction patterns are catalogued in
[29] (see, e.g., Asynchronous Queuing and Service Callback patterns).

For readability, long typing inferences are split in a few parts, each one may refer the
other parts. As a matter of notation, if 〈k〉 occurs in the left hand side of the conclusion of
an inference then it denotes the whole inference, while if (k) occurs in a premise then it is
a reference to the inference whose conclusion is labelled by 〈k〉 and has to be replaced by
such an inference.

5.1 Defining a shipping service in WS-CALCULUS

The shipping service handles the shipment of orders. From the service point of view, orders
are composed of a number of items. The service offers two types of shipments: shipments
where the items are held and shipped together and shipments where the items are shipped
piecemeal until the order is fulfilled. A skeleton description follows:

receive shipOrder
if shipComplete

send shipNotice
else
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itemsShipped := 0
while itemsShipped < itemsTotal
itemsCount := opaque // non-deterministic

// assignment corresponding
// e.g. to interaction with
// a back-end system

send shipNotice
itemsShipped = itemsShipped + itemsCount

The portType and partnerLinkType descriptions representing the collaborations
between the shipping service and the customer are reported in the following simplified
WSDL elements:

<wsdl:definitions>
<portType name="shippingServicePT">
<operation name="shippingRequest">

<input message="shippingRequestMsg" />
</operation>

</portType>

<portType name="shippingServiceCustomerPT">
<operation name="shippingNotice">

<input message="shippingNoticeMsg" />
</operation>

</portType>

<partnerLinkType name="shippingLT">
<role name="shippingService" portType="shippingServicePT" />
<role name="shippingServiceCustomer"

portType="shippingServiceCustomerPT" />
</partnerLinkType>

</wsdl:definitions>

The partner link type shippingLT represents the collaboration dependencies between
the shipping service and the requesting customers that must provide a callback operation
to enable notices to be sent (through the port type shippingServiceCustomerPT).
Notably, also the customer port type is defined here.

The WS-BPEL program corresponding to the above description follows (to make the
reading of the code easier, we have omitted irrelevant details7 and highlighted the basic
activities receive, invoke and assign):

<process name="shippingService">
<partnerLinks>
<partnerLink name="customer" partnerLinkType="shippingLT"
partnerRole="shippingServiceCustomer"
myRole="shippingService" />

</partnerLinks>
<correlationSets>
<correlationSet name="shipOrder" properties="shipOrderID" />

</correlationSets>
<sequence>

<receive partnerLink="customer"
operation="shippingRequest"
variable="shipRequest">
<correlations>

7The fully detailed version of the WS-BPEL process and the associated WSDL document can be found in
[61].



146 Form Methods Syst Des (2011) 38: 119–157

correlation set="shipOrder" initiate="yes" />
</correlations>

</receive>

<if>
<condition>

bpel:getVariableProperty(’shipRequest’,’shipComplete’)
</condition>
<sequence>

<assign>
<copy>
<from variable="shipRequest" property="shipOrderID" />
<to variable="shipNotice" property="shipOrderID" />

</copy>
<copy>
<from variable="shipRequest" property="itemsCount" />
<to variable="shipNotice" property="itemsCount" />

</copy>
</assign>

<invoke partnerLink="customer" operation="shippingNotice"
inputVariable="shipNotice">
<correlations>
<correlation set="shipOrder" />

</correlations>
</invoke>

</sequence>
<else>

<sequence>

<assign>
<copy>

<from>0</from>
<to>$itemsShipped</to>

</copy>
</assign>

<while>
<condition>

$itemsShipped
&lt;
bpel:getVariableProperty(’shipRequest’,’itemsTotal’)

</condition>
<sequence>

<assign>
<copy>
<opaqueFrom />
<to variable="shipNotice" property="shipOrderID" />

</copy>
<copy>
<opaqueFrom />
<to variable="shipNotice" property="itemsCount" />

</copy>
</assign>

<invoke partnerLink="customer" operation="shippingNotice"
inputVariable="shipNotice">
<correlations>
<correlation set="shipOrder" />

</correlations>
</invoke>
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<assign>
<copy>
<from>
$itemsShipped
+
bpel:getVariableProperty(’shipNotice’,’itemsCount’)
</from>
<to>$itemsShipped</to>

</copy>
</assign>

</sequence>
</while>

</sequence>
</else>
</if>
</sequence>

</process>

A deployment of the above WS-BPEL process is given in WS-CALCULUS by the fol-
lowing node:

S ::ωS { [C/xC,0/yshipped] > aS }
We assume that the partner link xC is initialized to a customer address C providing the
operation oshippingNotice. We use the following local type ωS and activity aS :

ωS = {xC : 〈[oshippingRequest〈INT, BOOL, INT〉], [oshippingNotice〈INT, INT〉]〉,
zid : INT, zc : BOOL, zitems : INT, yshipped : INT, ycount : INT}

aS = rec(xC : oshippingRequest : zid, zc, zitems) ;
if zc then

inv(xC : oshippingNotice : zid, zitems)

else
whileyshipped < zitems do

asg(ycount : rand(zitems − yshipped)) ;
inv(xC : oshippingNotice : zid, ycount) ;
asg(yshipped : yshipped + ycount)

Here xC is the partner link associated to the customer service, oshippingRequest is the oper-
ation used to receive the shipping request, and zid , zc and zitems are the variables used for
storing the request message: zid stores the order identifier which is used to correlate the ship
notice(s) with the ship order, zc stores a boolean indicating if the order has to be shipped
complete or not, and zitems stores the number of items in the order. Shipping notices are
sent to customers using the address C stored in xC and the operation oshippingNotice. A notice
message is a tuple composed of the order identifier and the number of items in the shipping
notice. When partial shipment is acceptable, yshipped is used to record the number of items
already shipped. Expression rand(k) is a function that returns a random positive integer
number not greater than k and represents an internal interaction with the back-end system.

Now, consider the following network containing the deployment of the shipping service
definition and a customer instance invoking the service:

N ≡ S ::ωS { [C/xC,0/yshipped] > aS }
‖ C ::ωC { [S/xS,123/yid, false/yc,50/yitems,0/zshipped] � aC }



148 Form Methods Syst Des (2011) 38: 119–157

Fig. 1 A computation in the
shipping service scenario

where the local type ωC and activity aC of the customer are defined as follows:

ωC = {xS : 〈[oshippingNotice〈INT, INT〉], [oshippingRequest〈INT, BOOL, INT〉]〉,
yid : INT, yc : BOOL, yitems : INT, zshipped : INT, zcount : INT}

aC = inv(xS : oshippingRequest : yid, yc, yitems) ;
while zshipped < yitems do

rec(xS : oshippingNotice :!yid, zcount) ;
asg(zshipped : zshipped + zcount)

At the first computational step, the customer’s invocation is delivered to the node S. The
request is then consumed and an instance of the shipping service is created. The computation
can now go on, e.g., as shown in the customized UML sequence diagram of Fig. 1, where it
is supposed that the shipment successfully completes.

We could easily prove that the network N will remain error-free by showing that N is
well-typed under the type environment θ , i.e. θ � N , for θ defined by the following bindings:

θ(S) = { [oshippingRequest〈INT, BOOL, INT〉] }
θ(C) = { [oshippingNotice〈INT, INT〉] }

5.2 Analysing an asynchronous messaging broker

Although business processes do not naturally fit synchronous client-server collaborations,
as mentioned in the Introduction, request-response operations are frequently used, even to
invoke long-running web services. In fact, avoiding synchronous interactions in real busi-
ness scenarios is not a simple task. In addition, when services developed by third parties are
involved, signatures of synchronous operations cannot be directly modified and rendered
asynchronous through pairs of one-way interactions. To overcome this problem, asynchro-
nous messaging patterns [29] may be exploited.

Consider a service resource R that needs a large amount of time for message elaboration
and requires its consumer C to interact with it synchronously. Here, for example, we let
R receive messages containing an integer value n and send back responses containing the
nth prime number. An intermediary service Q allows customers to communicate with R

asynchronously by providing an indirect access mechanism. For this, service Q requires
the customers to provide a callback address to which it can send the response message.
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Although the synchronous interaction between R and Q is simply simulated, since only
one-way operations are provided in WS-CALCULUS, our analysis is not undermined.

The asynchronous messaging network is modelled in WS-CALCULUS as

N ≡ C ::ωC {mC � aC } ‖ Q ::ωQ {mQ > aQ } ‖ R ::ωR {mR > aR }
C is a process instance that behaves according to the following state mC and activity aC :

mC ≡ [Q/xQ,C/xC,1207/y] aC ≡ inv(xQ : oreq : xC, y) ;
rec(xQ : ores : z, !y)

Activity aC sends a message containing the callback address C and the correlation value
1207 to service Q. Service Q, at a later point in time, sends a response containing also
the necessary correlation information. This explains the presence of the join-variable !y,
whose role is to correlate the value of y into the response with the value 1207 into the
request. This would turn out to be necessary in presence of more than one customer in-
stance within node C. The local type ωC contains definitions of the partner link type
xQ : 〈π, [oreq〈{π }, INT〉]〉 and value types xC : {π }, y : INT and z : INT, where π denotes
the port type [ores〈INT, INT〉]. Notice that the partner link xQ is used here to model the
collaboration between services C and Q.

Q is a service that must be first instantiated by a request from the customer C. Its defini-
tion follows:

mQ≡ [R/xR] aQ≡ rec(xC : oreq : xC, y) ; inv(xR : onum : y) ;
rec(xR : oprime : z, !y) ; inv(xC : ores : z, y)

For the sake of simplicity, services Q and R are configured to be ready to communicate
without any preliminary address exchange, i.e. each service already knows the address of
the other one. When invoked, service Q creates an instance that will forward the received
request to service R. Notice that service Q will use a join-variable !y for message cor-
relation. The local type ωQ contains the partner link types xC : 〈[ores〈{π }, INT〉],π〉 and
xR : 〈[oprime〈INT, INT〉], [onum〈INT〉]〉 and the value types y : INT and z : INT, where also in
this case π denotes the port type [ores〈INT, INT〉].

Finally, service R is defined as follows:

mR ≡ [Q/xQ] aR ≡ rec(xQ : onum : y) ;asg(z : prime(y)) ;
inv(xQ : oprime : z, y)

When invoked, service R creates an instance that will elaborate the received value and send
the response back to service Q. Since no other message is expected from the intermediary
service, service R does not require any correlation information. Notably, the expression
prime(n) denotes a function which returns the nth prime number. The local type ωR contains
the partner link type xQ : 〈[onum〈INT〉], [oprime〈INT, INT〉]〉 and the value types y : INT and
z : INT.

According to our framework, to ensure that N will remain error-free, it suffices to prove
that the judgement θ � N can be derived, i.e. that N is well-typed w.r.t. the typing environ-
ment θ defined by the following bindings:

θ(C) = { [ores〈INT, INT〉] }
θ(Q) = { [oreq〈{ [ores〈INT, INT〉] }, INT〉], [oprime〈INT, INT〉] }
θ(R) = { [onum〈INT〉] }
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Table 15 Type inference for the consumer service ωC �θ mC � aC

ωC �θ xC : { [ores〈INT, INT〉] } ωC �θ y : INT

〈4〉ωC �θ xC, y : { [ores〈INT, INT〉] }, INT
(T-TUPLE)

ωC �θ ores〈INT, INT〉 ∈ myRole(xQ)
ωC �θ z : INT ωC �θ !y : INT

ωC �θ z, !y : INT, INT
(T-TUPLE)

〈3〉 ωC �θ rec(xQ : ores : z, !y)
(T-REC)

ωC �θ ores〈{ [ores〈INT, INT〉] }, INT〉 ∈ partnerRole(xQ) (4)

〈2〉ωC �θ inv(xQ : oreq : xC,y)
(T-INV)

(1 − Table 16)
(2) (3)

ωC �θ inv(xQ : oreq : xC,y) ; rec(xQ : ores : z, !y)
(T-SEQ)

ωC �θ asg(xQ,xC,y : Q,C,1207) ; inv(xQ : oreq : xC,y) ; rec(xQ : ores : z, !y)
(T-SEQ)

ωC �θ [ ] � asg(xQ,xC,y : Q,C,1207) ; inv(xQ : oreq : xC,y) ; rec(xQ : ores : z, !y)
(T-INST1)

ωC �θ [Q/xQ,C/xC,1207/y] � inv(xQ : oreq : xC,y) ; rec(xQ : ores : z, !y)
(T-INST2)

Table 16 Type inference for the arguments of ωC �θ asg(xQ,xC,y : Q,C,1207)

θ(Q) = { [oreq〈{ [ores〈INT, INT〉] }, INT〉], [oprime〈INT, INT〉] }
〈5〉 ωC �θ Q : { [ores〈{ [ores〈INT, INT〉] }, INT〉], [oprime〈INT, INT〉] } (T-ADDR)

(5)
θ(C) = { [ores〈INT, INT〉] }

ωC �θ C : { [ores〈INT, INT〉] } (T-ADDR)
1207 ∈ Int

ωC �θ 1207 : INT
(T-VAL) (T-TUPLE)

〈3〉 ωC �θ Q, C, 1207 : { [oreq〈{ [ores〈INT, INT〉] }, INT〉], [oprime〈INT, INT〉] }, { [ores〈INT, INT〉] }, INT

xQ : 〈[ores〈INT, INT〉], [oreq〈{ [ores〈INT, INT〉] }, INT〉]〉 ∈ ωC

ωC �θ xQ : 〈[ores〈INT, INT〉], [oreq〈{ [ores〈INT, INT〉] }, INT〉]〉 (T-LINK)

〈4〉 ωC �θ xQ : { [oreq〈{ [ores〈INT, INT〉] }, INT〉] } (T-ROLE)

(4)
xC : { [ores〈INT, INT〉] } ∈ ωC

ωC �θ xC : { [ores〈INT, INT〉] } (T-VAR)
y : INT ∈ ωC

ωC �θ y : INT
(T-VAR)

〈2〉 ωC �θ xQ, xC, y : { [oreq〈{ [ores〈INT, INT〉] }, INT〉] }, { [ores〈INT, INT〉] }, INT
(T-TUPLE)

(2) (3) { [oreq〈{ [ores〈INT, INT〉] }, INT〉] } � θ(Q)

〈1〉 ωC �θ asg(xQ,xC,y : Q,C,1207)
(T-ASG)

By rules (T-NET) and (T-NODE), this means that we must check that the judgements
ωC �θ mC � aC , ωQ �θ mQ > aQ and ωR �θ mR > aR hold. This is what the inferences
in Tables 15, 16, 17 and 18 show. For the sake of readability, obvious and repeated typing
inferences for partner links, values and operation parameters, as well as obvious subtyping
checks, are omitted. In particular, we have omitted the checks that states mQ and mR are
well-typed (as instead done for state mC in Table 16) and directly show the inferences of
judgements ωQ �θ aQ and ωR �θ aR .

We just comment on the most significant inferences for service C in Tables 15 and 16,
since those for services Q and R are very similar. Initially, by applying rules (T-INST2),
(T-INST1) and (T-SEQ) in Table 15 and then rule (T-ASG) in Table 16, well-typedness of
state mC is checked. In Table 15, rules (T-INV) and (T-REC) permit checking if the partner
link type of xQ provides the operation types for oreq and ores according to their respective
argument types. For example, operation oreq is checked by verifying that its definition be-
longs to some port type provided by xQ and that its signature for arguments xC and y is
well-typed.

In Table 16, rule (T-ROLE) permits checking the binding for xQ by verifying that the
address type of Q is a subtype of the value type of xQ. In particular, it is checked that the
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Table 17 Type inference for the intermediary service ωQ �θ aQ

ωQ �θ ores〈INT, INT〉 ∈ partnerRole(xC) ωQ �θ z, y : INT, INT

〈4〉 ωQ �θ inv(xC : orec : z, y)
(T-INV)

ωQ �θ oprime〈INT, INT〉 ∈ myRole(xR) ωQ �θ z, !y : INT, INT

〈3〉 ωQ �θ rec(xR : oprime : z, !y)
(T-REC)

ωQ �θ onum〈INT〉 ∈ partnerRole(xR) ωQ �θ y : INT

〈2〉 ωQ �θ inv(xR : onum : y)
(T-INV)

ωQ �θ oreq〈{ [ores〈INT, INT〉] }, INT〉 ∈ myRole(xC) ωQ �θ xC, y : { [ores〈INT, INT〉] }, INT

〈1〉 ωQ �θ rec(xC : oreq : xC,y)
(T-REC)

(1)

(2)
(3) (4)

ωQ �θ rec(xR : oprime : z, !y) ; inv(xC : ores : z, y)
(T-SEQ)

ωQ �θ inv(xR : onum : y) ; rec(xR : oprime : z, !y) ; inv(xC : ores : z, y)
(T-SEQ)

ωQ �θ rec(xC : oreq : xC,y) ; inv(xR : onum : y) ; rec(xR : oprime : z, !y) ; inv(xC : ores : z, y)
(T-SEQ)

Table 18 Type inference for the resource service ωR �θ aR

ωQ �θ oprime〈INT, INT〉 ∈ partnerRole(xR) ωQ �θ z, !y : INT, INT

〈3〉 ωR �θ inv(xR : oprime : z, !y)
(T-INV)

ωR �θ z : INT
ωR �θ y : INT

ωR �θ prime(y) : INT
(T-PRIME)

〈2〉 ωR �θ asg(z : prime(y))
(T-ASG)

ωR �θ onum〈INT〉 ∈ myRole(xQ) ωR �θ y : INT

〈1〉 ωR �θ rec(xQ : onum : y)
(T-REC)

(1)
(2) (3)

ωQ �θ asg(z : prime(y)) ; inv(xQ : oprime : z, y)
(T-SEQ)

ωR �θ rec(xQ : onum : y) ;asg(z : prime(y)) ; inv(xQ : oprime : z, y)
(T-SEQ)

value type of xQ, that is { [oreq〈{ [ores〈INT, INT〉] }, INT〉] }, is a subset of θ(Q). Rule (T-VAR)
instead permits checking if the type of the value variable xC is a subtype of the address type
of C. The other inferences in Table 16 are obvious.

The inferences in Tables 15, 16, 17 and 18 prove that the network N behaves correctly.
Now, we slightly modify N so that its execution would eventually reach an error configura-
tion; we show that our type system can statically detect this situation. Indeed, suppose we
have a service consumer C ′ obtained from C by removing the receive activity and using a
local type ωC′ for which the type of xQ is now 〈[/], [oreq〈{ [/] }, INT〉]〉 and the type of xC is
{ [/] }.

Services C ′ and Q interact as follows:

C ′ ::ωC′ {mC � inv(xQ : oreq : xC, y) }
‖ Q ::ωQ {mQ > aQ }
‖ R ::ωR {mR > aR }

�−→ �−→
C ′ ::ωC′ {mC � empty }
‖ Q ::ωQ {mQ > aQ, mQ ◦ [C/xC,1207/y] � (inv(xR : onum : y) ; . . .) }
‖ R ::ωR {mR > aR }
≡ N ′
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By rule (E-PARTNERROLE), an error occurs at node Q because, according to ωQ, xC has
type 〈π1, [ores〈INT, INT〉]〉 and, according to ωC′ , θ(C ′) = { [/] }, hence ores〈INT, INT〉 	∈∈
θ(C ′). In fact, our type system statically detects this error, since the judgement ωQ �θ

inv(xQ : orec : xC, y) does not hold. Indeed, the premise { [oreq〈{ [ores〈INT, INT〉] }, INT〉] } �
{ [/] } is not satisfied. Hence, service C ′, as well as the whole network, is not well-typed.

6 Related work

Following [59], we have put forward the use of a type system to define basic contracts for
web services. An alternative approach that is worth to be mentioned is based on the schema
language introduced in [21]. This work presents a very basic contract language modelling
WSDL documents as schema types with channels. In particular, a sophisticated (and, at the
same time, computationally efficient) subschema relation has been defined for checking if
an exchanged XML document conforms to its schema type. However, such contract lan-
guage, differently from ours, does not take into account partner links types, which play a
central role in the relationship between WS-BPEL processes and their associated WSDL
documents. Indeed, rather than to WS-BPEL, it has been applied in [22] to the program-
ming language PiDuce [22], an extension of the asynchronous π -calculus [4] with XML
values and datatypes, that does not resort to the notion of partner link. A general theory of
contracts for web services is developed in [23]. Differently from ours, that work abstracts
from the language used to express web services and does not take into account the many
specific mechanisms about execution of WS-BPEL programs we have modelled, as e.g.
address-passing, correlation and service instantiation.

Other well-known service-oriented approaches that use the concept of dual (or comple-
mentary) types are based on session-types and have been explored in e.g. [8, 11, 12, 19, 20,
32, 40, 41, 49, 70]. Session-types are emerged as a powerful tool for taking into account
behavioural and non-functional properties of conversational interactions. They permit to ex-
press and enforce many relevant policies for, e.g., constraining the sequences of messages
accepted by services, ensuring service interoperability and compositionality, and guaran-
teeing absence of deadlock in service composition. Moreover, other form of behavioural
types, see e.g. [2, 3, 18, 24, 42, 45, 46], can be exploited to express other dynamic aspects
that cannot be captured by only relying on sessions. Our work differs for the fact that, by
electing WS-BPEL and WSDL as starting points, we distill a core model of interaction
whose dynamical aspects at linguistic-level are fully taken into account by relying only on
the ‘conversational data’ for message delivering (i.e. partner links, operation signatures and
correlation data) contained in WS-BPEL and WSDL specifications, rather than on session-
oriented constructs. These latter constructs indeed rely on private channels (the so-called
session channels) along which communication takes place. Instead, in WS-CALCULUS, as
well as in WS-BPEL, the notion of private channel is not exploited and, hence, the as-
sumptions at the base of the session-types theory do not hold. At type-level, instead, in our
technology-oriented investigation we do not consider behavioural aspects (for, e.g., con-
straining the sequences of messages accepted by services or guaranteeing absence of dead-
lock in service composition), since they go further on what the technology (in particular
WSDL) currently supports.

A secondary, but not minor, contribution of our work is the formal modelling of different
aspects of WS-BPEL, such as multiple start activities, receive conflicts, routing of corre-
lated messages, interactions among different web services. Since we wanted to study those
problems arising when executing WS-BPEL processes, then we have focused on service
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orchestration rather than on service choreography, that instead provides a means to describe
service interactions in a top-view way (these aspects have been considered, e.g., in [16, 20]).
The mechanism of correlation sets was first investigated in [67], that however only consider
interaction of different instances of a single business process.

Several formal semantics of WS-BPEL were proposed in the literature. Many of these
efforts aim at formalizing a semantics for WS-BPEL using Petri nets [39, 57, 64] or work-
flow [1, 63], but do not cover such dynamical aspects as service instantiation and message
correlation. Another bunch of related works using process calculi focus instead on small
and relatively simple fragments of WS-BPEL (e.g. [27, 33, 37]) or are targeted to formal-
ize the semantics of WS-BPEL by encoding parts of the language into more foundational
languages, such as π -calculus (e.g. [28, 58]). A very general and flexible framework for er-
ror recovery has been introduced in [38]; this framework extends SOCK [37], a language for
service composition with dynamic compensation, and models in particular the dependency
between fault handling and the request-response communication pattern. The language clos-
est to WS-CALCULUS is Blite [55], a lightweight language for web services orchestration
designed around some of WS-BPEL relevant features like process termination, message
correlation, long-running business transactions and compensation handlers. Although WS-
CALCULUS and Blite are built on a common set of WS-BPEL activities, there are significant
differences between them. Indeed, while WS-CALCULUS aims at formalising the semantics
of a fragment of WS-BPEL for enabling the investigation of its relationship with WSDL,
Blite aims at being an alternative to WS-BPEL as a programming language for web ser-
vices orchestration. Thus, to facilitate the task of programming orchestration, some Blite
activities have simplified form and semantics w.r.t. the corresponding WS-BPEL and WS-
CALCULUS ones. For example, to be faithful to WS-BPEL, the treatment of partner links
and the implementation of the correlation mechanism in WS-CALCULUS are more complex
than in Blite. The works presented in [38, 55] focus on fault and compensation handling as-
pects, which are not considered in our WSDL-based types. We expect that WS-CALCULUS

can be extended to deal with them without significantly affecting our type theory (see the
discussion on fault and compensation handling in Sect. 3).

Some other relevant related works are [10, 14, 15]. In the first two, the authors propose a
formal approach to model compensation à la WS-BPEL in transactional calculi and present
a detailed comparison with [17]. The third is an extension of the asynchronous π -calculus
with long-running (scoped) transactions. As already said, most of these formalisms, how-
ever, do not model the different aspects of WS-BPEL in their completeness. One such
aspect is represented by timed activities that are frequently exploited in service orchestra-
tion and are typically used for handling timeouts. For example, in WS-BPEL, activities
wait and pick turn out to be essential for dealing with service transactions or with message
losses. Thus, a service process could await a callback message for a certain amount of time
after which, if no callback has been received, it invokes another operation or throws a fault.
However, only a few process calculi for modelling WS-BPEL programs deal with timed ac-
tivities. In particular, [50, 51] introduce webπ , a timed extension of the π -calculus tailored
to study ‘web transactions’. This very expressive language (putting together time aspects
with transactional mechanisms) facilitates the modelling of long running transactions and
the encoding of transactional constructs such as the scope activity of WS-BPEL. Geguang
et al. [34, 35] present a timed calculus based on a more general notion of time, and an ap-
proach to verify WS-BPEL specifications with compensation/fault activities. Kitchin et al.
[44] proposes a general purpose task orchestration language that manages timeouts as sig-
nals returned by dedicated services after some specified time intervals. We could integrate
the WS-BPEL activity wait into WS-CALCULUS as it has been done in [54] for the service-
oriented, correlation-based calculus COWS [53]. Since our types, like WSDL interfaces,
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do not deal with timed aspects, such extension of the calculus would not affect the type
discipline introduced in this paper.

Almost all the efforts towards the formal verification of WS-BPEL applications rely
on model checking techniques (a wide survey of these approaches is presented in [13]).
A largely followed approach is based on (extensions of) Petri Nets. For example, [39] pro-
poses a tool for transforming WS-BPEL specifications into Petri Nets that can be verified
using the LoLA analyzer [65]. Similarly, [64] generates Petri Nets from WS-BPEL speci-
fications for enabling a few different kinds of verification (e.g. reachability analysis). Many
other works rely on the process meta language Promela. For instance, [31] presents the sta-
tic analysis tool WSAT that takes as an input a WS-BPEL specification and, after a few
translation steps, produces a Promela specification that can be analysed through the model
checker SPIN. However, although Petri Nets and Promela can be a natural choice for encod-
ing workflows, they seem not to fit well for such aspects as process instantiation, message
correlation, shared variables and partner link-based collaborations that are particularly rele-
vant for WS-BPEL. Moreover, since such approaches focus on the control flow, they ignore
the data flow among the services participating to the orchestration. A verification approach
that takes into account this issue by exploiting abstraction techniques is presented in [43].
Finally, other different approaches, such as e.g. [30, 48], exploit model checker tools based
on Labelled Transition System models. Our work differs from all above for the proposed ver-
ification technique, which is indeed based on a type system rather than on a model checker.
What is more, it also differs from all others because it formalises the relationship between
WS-BPEL and WSDL, which is instead completely overlooked by the other approaches.

7 Concluding remarks

We have set a formal semantics framework for typing web services orchestration languages
and, in particular, for clarifying the relationship between WS-BPEL programs and the asso-
ciated WSDL documents, with special attention to asynchronous interactions. More specif-
ically, we have introduced WS-CALCULUS, a foundational language specifically designed
for modelling asynchronous interactions among web services, and a type system for it that
forces a neat programming discipline. We have proved that the operational semantics of WS-
CALCULUS and the type system are ‘sound’, and demonstrated feasibility and effectiveness
of our approach by means of the specification and the analysis of two illustrative examples.

In our opinion, the potential of WS-BPEL as an integration platform must still be fully
exploited. On the one hand, WSDL specifications are very basic: they only permit to spec-
ify names and types of request and callback operations, and how they can be combined.
Although there are other technologies that permit to specify more complex interaction pat-
terns (e.g. WSCL [6] provides behavioural descriptions through activity diagrams), they are
not currently supported by WS-BPEL. On the other hand, at present, business processes
abundantly use synchronous request-response interactions to integrate their complex col-
laborations. Making interactions asynchronous is beneficial to reduce the time a requestor
spends waiting for responses. Therefore, WS-CALCULUS defines a model for describing the
behavior of business processes based on asynchronous interactions between the processes
and their partners. The collaboration with each partner occurs through port types (i.e. WSDL
interfaces) and is described by making use of partner link types. WS-CALCULUS emphasizes
the importance of this construct in support of defining peer-to-peer (and not request-response
based, client-server) interactions. In practice, by using partner links, the asynchronous mes-
sage exchange tends to become the primary mechanism with respect to the (still valid) mech-
anism of request-response.
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Our theoretical framework could be the base of an effective software tool for identi-
fying errors during the design phase of WS-BPEL programs. However, implementation
issues have not been considered in this paper and are left for future work. Actually, our type
system enables a syntax-directed type checking of WS-CALCULUS terms, thus we expect
that it can be implemented by a suitable decidable algorithm applying the rules reported in
Tables 10–13. In particular, a type checking tool could be written in Ocaml by following the
approach developed in [47, 60] for π -calculus-based settings.
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