
Form Methods Syst Des (2009) 34: 157–182
DOI 10.1007/s10703-008-0058-5

Hybrid systems: from verification to falsification
by combining motion planning and discrete search

Erion Plaku · Lydia E. Kavraki · Moshe Y. Vardi

Published online: 25 October 2008
© Springer Science+Business Media, LLC 2008

Abstract We propose HyDICE, Hybrid Discrete Continuous Exploration, a multi-layered
approach for hybrid-system falsification that combines motion planning with discrete search
and discovers safety violations by computing witness trajectories to unsafe states. The dis-
crete search uses discrete transitions and a state-space decomposition to guide the motion
planner during the search for witness trajectories. Experiments on a nonlinear hybrid robotic
system with over one million modes and experiments with an aircraft conflict-resolution
protocol with high-dimensional continuous state spaces demonstrate the effectiveness of
HyDICE. Comparisons to related work show computational speedups of up to two orders of
magnitude.

Keywords Hybrid system · Safety properties · Robot motion planning · Discrete search ·
Sampling-based planning · Decomposition · Nonlinear dynamics

Work supported in part by NSF CNS 0615328 (EP, LK, MV), NSF 0713623 (EP, LK), a Sloan
Fellowship (LK), and NSF CCF 0613889 (MV). Equipment supported by NSF CNS 0454333 and NSF
CNS 0421109 in partnership with Rice, AMD, and Cray.

A preliminary version of this work was published in the Proceedings of the 19th International
Conference on Computer Aided Verification (CAV 2007). Lecture Notes in Computer Science, eds.
W. Damm and H. Hermanns, vol. 4590, pp. 468–481. This work contains substantial improvements to
the overall computational method introduced in the preliminary work and new experiments that were
not included in the preliminary work.

E. Plaku · L.E. Kavraki (�) · M.Y. Vardi
Department of Computer Science, Rice University, Houston, TX 77005, USA
e-mail: kavraki@cs.rice.edu

E. Plaku
e-mail: plakue@cs.rice.edu

M.Y. Vardi
e-mail: vardi@cs.rice.edu

mailto:kavraki@cs.rice.edu
mailto:plakue@cs.rice.edu
mailto:vardi@cs.rice.edu

158 Form Methods Syst Des (2009) 34: 157–182

1 Introduction

1.1 Hybrid systems and verification of safety properties

Hybrid systems play an increasingly important role in transportation networks as part of
sophisticated embedded controllers used in the automotive industry and air-traffic manage-
ment, or in manufacturing processes, robotics, and even medicine and biology as part of
medical devices monitoring health conditions [6, 24, 29, 42, 43, 53]. A hybrid system is a
formal model that combines discrete and continuous dynamics. Continuous dynamics are
associated with each mode, and discrete logic determines how to switch between modes.
A hybrid system may model air traffic control, where the modes correspond to the cruising
of the planes and the discrete logic models conflict-resolution protocols. As another ex-
ample, a hybrid system may model a vehicle whose underlying dynamics varies discretely
depending on terrain conditions.

As hybrid systems are often part of devices operating in safety-critical situations, the ver-
ification of safety properties becomes increasingly important. A hybrid system is considered
safe if unsafe states cannot be reached starting from initial safe states.

The hybrid-system verification problem has traditionally been formulated as a reachabil-
ity analysis on the state space of the hybrid system. In the forward reachability formulation,
safety verification is equivalent to showing that the set of states reachable from the initial
states does not intersect the set of unsafe states. In the backward reachability formulation,
safety is guaranteed by showing that the set of states that can reach an unsafe state does not
intersect the initial set of states.

Over the years a rich theory has been developed for this problem as well as numer-
ous methods [1, 25, 26, 36, 39, 48]. Initial approaches included enumeration and symbolic
methods originally developed for discrete systems [14]. Tools such as KRONOS [55] and
UPPAAL [5] have been used for the verification of real-time hardware and software, and
HyTech [27] has been used for the verification of hybrid systems with linear dynamics.

Research has also focused on abstraction methods that make verification more amenable
to analysis by constructing a simplified model that simulates the original system
[2, 3, 12, 23, 49]. The simplified model is usually obtained by eliminating variables that do
not influence safety properties, mapping each domain to a smaller domain, or constructing
finite-state models that group states that satisfy the same predicates.

Alternative methods have also been developed that approximate the reachable set
[1, 4, 8, 51, 52, 54]. Tools such as d/dt [4], Checkmate [51], VeriSHIFT [8] use polyhedra
or ellipsoids to overapproximate the reachable set, and other tools use level sets to compute
convergent approximations [54].

1.2 From verification to falsification

Unfortunately, even for safety properties where verification is equivalent to reachability
checking, decidability holds only for hybrid systems with simple continuous dynamics (es-
sentially some types of linear dynamics) [1, 26, 40, 54]. In light of these theoretical results,
it is no surprise that the most efficient complete algorithms for hybrid-system verification
have a single- or double-exponential dependency on the dimension of the state space and
are generally limited in practicality to hybrid systems with up to six dimensions, simple
dynamics, and few or no input controls [1, 40, 54].

These hardness theoretical results underscore the need for the development of alternative
methods that perhaps satisfy weaker forms of completeness, but can handle more complex
hybrid systems. In fact, recent computational methods developed in [7, 9, 19, 30, 32, 41],

Form Methods Syst Des (2009) 34: 157–182 159

even though unable to determine that a hybrid system is safe, are capable of handling com-
plex hybrid systems and finding unsafe behaviors when such systems are unsafe.

In essence, the focus in these recent approaches shifts from verification to falsification,
which often is the main focus of model checking in industrial applications [15]. Falsification
(see [7, 32, 41]) studies the following problem: Can a hybrid-system witness trajectory be
produced from a safe state to an unsafe state when such trajectories exist?

The main contribution of this work is the development of an efficient computational
method for hybrid-system falsification that offers significant computational speedups of up
to two orders of magnitude over related work. When a hybrid system is safe, it may not
be possible to prove that unsafe states are unreachable. Such an approach trades complete-
ness for the ability to discover safety violations for complex hybrid systems with nonlinear
dynamics and input controls that current verification methods cannot handle.

1.3 Combining motion planning and discrete search for the falsification of safety
properties of hybrid systems with nonlinear dynamics

This work approaches hybrid-system falsification from a robotics perspective. Initially, we
exploit the insight that hybrid-system falsification is in many respects related to robot motion
planning, which is a search problem for a witness trajectory that satisfies certain invariants,
such as ensuring that the robot motion respects dynamics constraints and avoids collision
with obstacles [11, 37]. While in motion planning the search takes place in a continuous
space, in hybrid-system falsification the search for a witness trajectory takes place in a space
consisting of discrete and continuous components.

The connection between hybrid-system falsification and motion planning becomes
deeper when we consider state-of-the art motion planning as the starting point for searching
the continuous state spaces of a hybrid system. Recent progress in sampling-based mo-
tion planning has made it possible to efficiently find witness trajectories even for high-
dimensional and nonlinear continuous systems (e.g., PRM [31], RRT [38], EST [28, 50],
PDST [35], DSLX [45], and others surveyed in [11, 37]). These motion planners typically
search the continuous state space by incrementally extending feasible trajectories in a tree-
like fashion from initial states toward unsafe states. Recently, RRT-based methods have also
been used for the falsification of safety properties of nonlinear hybrid systems with few
modes [7, 9, 19, 32, 41].

Departing from traditional robot motion planning, we introduce a discrete-search com-
ponent to our work that is responsible for managing the potentially huge number of modes
and discrete transitions of a hybrid system. The contribution of this work is the develop-
ment of a multi-layered framework for hybrid-system falsification that effectively combines
sampling-based motion planning with discrete search. The motivation and many of our de-
sign decisions come from our earlier work [45–47]. In [47] we use discrete search to obtain
a sequence of discrete transitions that guides the generation of motions for a hybrid robotic
system with 10–30 modes and mostly linear dynamics. In [45] we show that traditional
motion-planning problems can be solved more efficiently by combining sampling-based
motion planning with discrete search over an artificially imposed decomposition of the en-
vironment on which the robot moves (which in general can be regarded as a projection of
its state space). In [46] we show that combination of motion planning and discrete search is
also promising for hybrid-system falsification.

The work in this article combines and extends ideas in [45–47] to obtain an effective fal-
sification method for hybrid systems. As a result, while our previous work [46] could handle
hybrid systems with up to ten thousand modes, this work can handle hybrid systems with

160 Form Methods Syst Des (2009) 34: 157–182

Fig. 1 (Color online) (Top) Example of a witness hybrid-system trajectory from a safe state (q1, x1) to an
unsafe state (q3, x3). The witness trajectory consists of continuous trajectories, shown as curved arrows,
interleaved with discrete transitions, shown as straight arrows. (Middle) The dotted regions show a decom-
position of the continuous state spaces associated with the different modes q1, q2, q3 of the hybrid system.
(Bottom) The shaded decomposition regions show a lead, a sequence of decomposition regions from the safe
to the unsafe state that is estimated to be a useful search direction for finding a witness trajectory

over a million modes and nonlinear dynamics associated with each mode. In addition, while
our previous work [46] focused on hybrid systems with low-dimensional continuous spaces,
this work shows the effectiveness of the proposed approach even for hybrid systems with
high-dimensional continuous spaces. The proposed method, HyDICE, uses discrete transi-
tions and a decomposition of the continuous state spaces into regions to construct a search
graph that provides a simplified layer to the hybrid-system falsification problem. Vertices of
the graph correspond to decomposition regions, while edges correspond to adjacent decom-
position regions or decomposition regions that are connected by a discrete transition. The
discrete-search component of HyDICE obtains from this graph at each iteration a high-level
plan, called a lead, that guides the motion planner in the search for a witness trajectory.
Each lead corresponds to a sequence of decomposition regions and discrete transitions that
start at a decomposition region associated with an initial safe state and end at a decompo-
sition region associated with an unsafe state. Figure 1 provides an illustration.1 Among the
combinatorially large number of such sequences, the discrete-search component of HyDICE
computes at each iteration a lead that is estimated to be a useful search direction for finding
a witness trajectory. The search inside the decomposition regions associated with the lead
is based on a state-of-the-art sampling-based motion planner [45]. The motion planner sam-
ples states inside the decomposition regions, connects states associated with the same mode
with simple continuous trajectories, and connects states associated with different modes by
interleaving continuous trajectories with discrete transitions, as shown in Fig. 2. A witness

1Figures in this work are better viewed in color.

Form Methods Syst Des (2009) 34: 157–182 161

trajectory is then found when the motion planner succeeds in connecting a safe state to an
unsafe state. Coverage estimation is fed back from the motion planner to the discrete search
in order to improve the lead in the next iteration. This interaction between the motion planner
and discrete search, illustrated in Fig. 2, is crucial for the efficiency of HyDICE.

In contrast to previous work [32, 41], as shown later in this article, HyDICE is well-
suited for systems with many modes. Experimental validation is provided by using HyDICE
for the falsification of safety properties of a hybrid robotic system with over one million
modes, and nonlinear dynamics and input controls associated with each mode. An additional
benchmark, based on aircraft conflict-resolution protocols, demonstrates the effectiveness of
HyDICE in the case of hybrid systems with high-dimensional continuous state spaces. As
indicated by the experiments, the tight integration of discrete search and motion planning
enables HyDICE to be up to two orders of magnitude faster than other related methods.

The rest of the article is as follows. The hybrid-system model, hybrid-system falsification
problem, and the related motion-planning problem are described in Sect. 2. Description of
HyDICE is given in Sect. 3. Experiments and results are presented in Sect. 4. The article
concludes in Sect. 5 with a discussion.

2 Preliminaries

This section defines hybrid automata, the hybrid-system falsification problem, and the re-
lated motion-planning problem.

2.1 Hybrid automata and hybrid-system falsification problem

In this work, hybrid systems are modeled by hybrid automata [1].

Definition 1 A hybrid automaton is a tuple

H = (S, Inv,E,G,J,U,f, I,F),

where

− S = Q × X is the Cartesian product of the discrete and continuous state spaces;
− Q is a discrete and finite set;

− X maps each mode to the corresponding continuous state space, i.e., q
X�→ Xq , where

Xq ⊂ R
dim(Xq) is the continuous state space associated with q ∈ Q;

− Inv maps each mode to the corresponding continuous invariant, i.e., q
Inv�→ Invq , where

Invq ⊆ Xq represents the domain of the continuous variables associated with q ∈ Q;
− E ⊆ Q × Q is the set of discrete transitions between modes;

− G maps discrete transitions to guard conditions, i.e., (qi, qj)
G�→ G(qi ,qj), where G(qi ,qj) ⊆

Xqi
is the guard condition associated with (qi, qj) ∈ E;

− J maps discrete transitions to reset functions, i.e., (qi, qj)
J�→ J(qi ,qj), where J(qi ,qj) :

G(qi ,qj) → Xqj
is the reset function associated with (qi, qj) ∈ E;

− U maps each mode to the corresponding set of input controls, i.e., q
U�→ Uq , where q ∈ Q

and Uq ⊆ R
dim(Uq);

− f maps each mode to the function that describes the associated continuous dynamics,

i.e., q
f�→ fq , where fq : Xq × Uq → Ẋq determines the continuous dynamics associated

with q ∈ Q, and Ẋq is the tangent space of Xq ;
− I ⊂ S is the set of initial states; and
− F ⊂ S is the set of unsafe states.

162 Form Methods Syst Des (2009) 34: 157–182

The state of the hybrid automaton is a tuple (q, x) ∈ S that describes both the discrete and
the continuous components. The invariant, Invq ⊆ Xq , associated with each mode q ∈ Q,
represents the domain of the continuous variables x ∈ Xq . The set E describes which transi-
tions are possible from one mode to another. A discrete transition (qi, qj) ∈ E occurs when
the corresponding guard condition G(qi ,qj) is satisfied. The state of the system is then reset
according to the reset function J(qi ,qj). The continuous dynamics of the system in each q ∈ Q

is governed by a set of differential equations fq : Xq ×Uq → Ẋq . In this work, each Xq ∈ X

includes derivatives of different orders, e.g., velocity and acceleration of a vehicle, and thus
fq is nonlinear. The function fq has the form fq(x,u), where the input u ∈ Uq could repre-
sent controls, nondeterminism, uncertainties, disturbances from the environment, or actions
of other systems.

A hybrid-system trajectory consists of one or more continuous trajectories interleaved
with discrete transitions. A hybrid system is considered unsafe if a trajectory is found that
reaches an unsafe state starting from an initial safe state. More precisely, the problem state-
ment is as follows.

Definition 2 A state s = (q, x) ∈ S, a time T ≥ 0, and an input control u ∈ Uq , define a
valid continuous trajectory �s,u,T : [0, T] → Xq when

− x = �s,u,T (0);
− �s,u,T (t) ∈ Invq , for t ∈ [0, T];
− �s,u,T (t) ∈ Invq −{G(q,q ′) : (q, q ′) ∈ E}, for t ∈ [0, T); and
− �̇s,u,T (t) = fq(�s,u,T (t), u), for t ∈ [0, T].
For any state s = (q, x) ∈ S, define

χ(q.x) =
{

χ(q ′, J(q,q ′)(x)), x ∈ G(q,q ′) for some (q, q ′) ∈ E,

(q, x), otherwise.

The hybrid-system trajectory ϒs,u,T : [0, T] → S, defined as

ϒs,u,T (t) =
{

(q,�s,u,T (t)), 0 ≤ t < T ,

χ(q,�s,u,T (t)), t = T ,

ensures that discrete transitions at time T , if they occur, are followed.

The continuous trajectory �s,u,T is thus obtained by applying the input control u to the
state s for a duration of T units of time. Moreover, �s,u,T never reaches a guard condition
during the time interval [0, T) and each state of �s,u,T satisfies the invariant. The trajectory
ϒs,u,T is similar to �s,u,T , but, unlike �s,u,T , ϒs,u,T follows the discrete transitions at time
T when they occur.

We note that in the hybrid-system benchmarks used in this work the discrete transitions
are considered urgent, i.e., a discrete transition is immediately taken once a guard condition
is satisfied. There is however no inherent limitation of HyDICE in dealing with non-urgent
discrete transitions. When discrete transitions are non-urgent, enabled discrete transitions
could be taken nondeterministically with some probability or taken only when the invariant
is invalid or a combination of both. We also note that when multiple discrete transitions
are enabled, all discrete transitions could be taken, or only the discrete transition with the
highest priority is taken, or some other prioritization scheme as specified by the user can be
used to determine which discrete transitions should be taken.

Form Methods Syst Des (2009) 34: 157–182 163

Definition 3 The extension of a trajectory Φ : [0, T] → S by applying to Φ(T) the input
control u′ ∈ U for a duration of time T ′ > 0 is written as

Φ ◦ (u′, T ′),

and it is another trajectory Ξ : [0, T + T ′] → S defined as

Ξ(t) =
{

Φ(t), t ∈ [0, T],
ϒΦ(T),u′,T ′(t − T), t ∈ (T ,T + T ′].

The trajectory Φ ◦ (u′, T ′) thus denotes the hybrid-system trajectory that is obtained by
applying the input control u′ to the last state of Φ for a duration of T ′ units of time and
following all the discrete transitions that may occur at time T + T ′.

Definition 4 (Problem Statement) Given a hybrid automaton H , find a sequence u1, u2, . . . ,

uk of input controls and a sequence T1, T2, . . . , Tk of time durations, such that the trajectory
W : [0, T] → S defined as

W def= ϒssafe,u1,T1 ◦ (u2, T2) ◦ · · · ◦ (uk, Tk),

reaches an unsafe state, i.e., W(T) ∈ F , where T = T1 + · · · + Tk and ssafe ∈ I .

2.2 Motion-planning problem

The motion-planning problem consists of finding a trajectory for a robotic system from an
initial state to a final state, such that the trajectory satisfies kinodynamic and other constraints
on the robot motion, e.g., bounds on velocity and acceleration, collision avoidance. In an
abstract formulation, the motion-planning problem is closely related to the hybrid-system
falsification problem, as evidenced by the following definition:

Definition 5 The motion-planning problem is a tuple

MP = (X, Inv,U,f, I,F),

where

− X ⊂ R
dim(X) is the continuous state space;

− Inv ⊂ X is the invariant set representing the domain of the continuous variables;
− U ⊆ R

dim(U) is the set of input controls;
− f : X × U → Ẋ determines the continuous dynamics, and Ẋ is the tangent space of X;
− I ⊂ S is the set of initial states; and
− F ⊂ S is the set of final states.

A solution to the motion-planning problem is a witness trajectory from a state s ′ ∈ I to a
state s ′′ ∈ F , such that each state in this trajectory satisfies the invariant Inv.

The invariant Inv represents different constraints imposed on the states of the systems and
indicates which states satisfy those constraints. The invariant is usually specified implicitly
as Inv = {x : x ∈ X ∧ val(x) = 1}, where the function val : X → {0,1} indicates which state
is valid.

164 Form Methods Syst Des (2009) 34: 157–182

Algorithm 1 A search-tree framework for finding a witness trajectory
Input: H = (S, Inv,E,G,J,f,U, I,F): hybrid system

tmax ∈ R: upper bound on overall computation time
Output: A witness trajectory or FAILURE if no witness trajectory is found

1: STARTCLOCK

2: T = (VT ,ET); VT ← {ssafe}; ET ← ∅
3: while ELAPSEDTIME < tmax do
4: s ← SELECTSTATEFROMSEARCHTREE(H, T)

5: snew ← EXTENDSEARCHTREE(H, T , s)

6: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
7: if snew ∈ F then
8: return WITNESSTRAJECTORY(T , snew)

9: end if
10: end while
11: return FAILURE

A comparison of the hybrid automaton in Definition 1 and the motion-planning problem
in Definition 5 reveals the similarities between them. In fact, the motion-planning problem
corresponds to a hybrid automaton that has only one mode and no discrete transitions. As it
will be explained in Sect. 3, HyDICE takes advantage of precisely this similarity to effec-
tively search the continuous state spaces associated with the modes of a hybrid system.

3 HyDICE

A preliminary version of HyDICE has appeared in [46]. This section provides a detailed de-
scription of HyDICE and emphasizes the extensions aimed at improving the motion planner
and the interplay between the motion planner and the discrete search. As a result of these
extensions, as shown in Sect. 4, the overall computational efficiency of the method improves
significantly over [46].

Throughout execution, HyDICE maintains an internal data structure, which is a tree T =
(VT ,ET). A vertex s ∈ VT is a state in S, while an edge (s ′, s ′′) ∈ ET indicates that a hybrid-
system trajectory connects s ′ ∈ S to s ′′ ∈ S. Initially T contains a safe state ssafe ∈ I as its
root and has no edges, i.e., VT = {ssafe} and ET = ∅. The search for a witness trajectory pro-
ceeds in an iterative fashion. At each iteration, T is extended by adding a new vertex to VT
and a new edge to ET . The search terminates successfully when an unsafe state sunsafe ∈ F

is added to T . A witness trajectory is then constructed by concatenating the hybrid-system
trajectories associated with the tree edges that connect ssafe to sunsafe. Otherwise, the search
continues until an upper bound on the computation time is exceeded. Algorithm 1 provides
pseudocode for this general search-tree framework.

3.1 Extending the search-tree framework

The success of the search-tree framework in Algorithm 1 depends on the ability of the
method to quickly extend T along those directions that can facilitate the construction of
a witness trajectory. HyDICE, as explained next, uses the discrete transitions of the hybrid
system and a state-space decomposition to estimate such directions.

Form Methods Syst Des (2009) 34: 157–182 165

Note that a witness trajectory consists of several continuous trajectories interleaved with
discrete transitions, as illustrated in Fig. 1. Each continuous trajectory corresponds to a lo-
cal connection, i.e., a trajectory between two continuous states associated with the same
mode, while each discrete transition occurs when some guard condition is satisfied. In order
to construct a witness trajectory, it suffices to identify states where discrete transitions of a
witness trajectory occur and use local connections to obtain the continuous trajectories as-
sociated with a witness trajectory. Assume for the moment that such computational methods
are available, i.e.,

TRANSITIONS: Returns a sequence of states ssafe = (q1, x1), (q1, x
′
1), (q2, x2),

(q2, x
′
2), . . . , (qn, xn) = sunsafe, where (qi, x

′
i) ∈ G(qi ,qi+1) and xi+1 = J(qi ,qi+1)(x

′
i).

CONNECTSAMEQ: Given q ∈ Q and x ′, x ′′ ∈ Invq , the local connection method returns a
continuous trajectory that connects (q, x ′) to (q, x ′′).

A witness trajectory can then be constructed by first invoking TRANSITIONS and then us-
ing CONNECTSAMEQ to connect each (qi, xi) to (qi, x

′
i) with a continuous trajectory. Ob-

serve that in each case CONNECTSAMEQ is solving the motion-planning problem defined
in Sect. 2. HyDICE takes advantage of this observation and bases CONNECTSAMEQ on a
state-of-the-art motion planner, as described in Sect. 3.3.

Note that it is in general challenging for the TRANSITIONS method to identify states
where discrete transitions occur, since witness trajectories are not known a priori. It is how-
ever possible to identify sequences of discrete transitions q1, q2, . . . , qn, (qi, qi+1) ∈ E, from
a mode q1 = qsafe associated with a safe state to a mode qn = qunsafe associated with an un-
safe state. In fact, these sequences of discrete transitions correspond to paths in the graph
(Q,E) of the discrete transitions of the hybrid system.

The objective of HyDICE is then to focus the search inside the continuous state spaces
associated with these discrete transitions. In particular, the motion-planning component of
HyDICE attempts to extend T from states associated with (qi,Xqi

) to states associated with
(qi,G(qi ,qi+1)), thus enabling discrete transitions to states associated with (qi+1,Xqi+1). In
this way, a sequence of discrete transitions from qsafe to qunsafe provides a general direction
for extending T that could potentially facilitate the construction of witness trajectories.

Taking this approach a step further, HyDICE also introduces a decomposition of each
continuous state space Xq , q ∈ Q, into different regions. Such decomposition has been
shown quite effective in increasing the computational efficiency for searching a continu-
ous state space [45]. Moreover, similar to the observation made earlier, when imposing such
decomposition, each witness trajectory now passes through a sequence of decomposition
regions that starts at a decomposition region associated with ssafe ∈ I and ends at a de-
composition region associated with sunsafe ∈ F , as illustrated in Fig. 1. Therefore, such a
sequence of decomposition regions, which is referred to as a lead and described in detail
in Sect. 3.2, provides a potentially useful direction for extending T during the search for a
witness trajectory, as illustrated in Fig. 2.

Interplay of discrete search and motion planning Since the number of possible leads could
be combinatorially large, HyDICE employs a discrete-search component to obtain at each
iteration a general direction that is estimated to be useful for extending the search tree T in
order to facilitate the construction of a witness trajectory. The motion-planning component
of HyDICE extends the search tree T along the decomposition regions specified by the lead.
Information collected by the motion planner such as coverage and time is fed back to the
discrete-search component to improve the lead computed in the next iteration. Figure 2 illus-
trates the interplay of discrete-search and motion-planning components of HyDICE and Al-

166 Form Methods Syst Des (2009) 34: 157–182

Fig. 2 (Color online) Illustration of the interplay between the discrete-search and motion-planning compo-
nents of HyDICE. (a) The discrete search computes a lead. (b) The motion planner extends the search tree
along the decomposition regions specified by the lead by adding new vertices and edges to the search tree
from these or neighboring decomposition regions. (c) A new lead is computed by the discrete search to reflect
the current growth of the search tree. (d) The motion planner again extends the search tree using the current
lead as a guide. This time, the search tree reaches an unsafe state and thus a witness trajectory is found

gorithm 2 provides pseudocode for HyDICE. The discrete-search and motion-planning com-
ponents correspond to line 6 and lines 7–14 of Algorithm 2 and are described in Sects. 3.2
and 3.3, respectively.

3.2 Discrete-search component of HyDICE

3.2.1 Decomposition

The decomposition D of the continuous state spaces associated with the modes of the hybrid
system (Algorithm 2:3) is obtained by decomposing each Xq ∈ X into a number of differ-
ent regions, i.e., D = {D(q) : q ∈ Q} and D(q) = {D1(q), . . . ,Dnq (q)}. HyDICE does not
impose any strict requirements on the decomposition and each D(q) is usually computed as
a set of nonoverlapping regions in some low-dimensional projection of Xq . The objective
of the projection is to reduce the dimensionality, while at the same time preserve the under-
lying structure of the original set. As such, the projection is state-space dependent, and it
is generally suggested by the user. For many systems, simple projections that consider only
some of the state components have been shown to work well in practice [34, 45].

For the hybrid system used in this work, HyDICE projects each Xq onto R
2 and

constructs a grid decomposition with nr(q) rows and nc(q) columns. More specifically,

Form Methods Syst Des (2009) 34: 157–182 167

Algorithm 2 Pseudocode for HyDICE
Input: H = (S, Inv,E,G,J,f,U, I,F): hybrid system

tmax ∈ R: upper bound on overall computation time
tσ ∈ R: short time allocated to each motion planning step

Output: A witness trajectory or FAILURE if no witness trajectory is found

1: STARTCLOCK

2: T = (VT ,ET); VT ← {ssafe}; ET ← ∅ ♦initialize search tree
3: D ← DECOMPOSITION(H)

4: GD = (VD,ED) ← DISCRETESEARCHGRAPH(H,D)

5: while ELAPSEDTIME < tmax do
6: σ ← DISCRETESEARCH(GD) ♦compute current lead σ

7: STARTCLOCK2 ♦extend T along regions specified by σ

8: while ELAPSEDTIME2 < tσ do ♦begin motion-planning step
9: Di(q) ← SELECTDECOMPOSITIONREGION(T , σ)

10: s ← SELECTSTATEFROMDECOMPOSITIONREGION(Di(q))

11: snew ← PROPAGATEFORWARD(H, T , s, σ)

12: VT ← VT ∪ {snew}; ET ← ET ∪ {(s, snew)}
13: if snew ∈ F then
14: return WITNESSTRAJECTORY(T , snew) ♦end motion-planning step
15: end if
16: end while
17: return FAILURE

let projq : Xq → R
2 compute the projection of each x ∈ Xq onto [amin(q), amax(q)] ×

[bmin(q), bmax(q)] ⊂ R
2. Then, nq = nc(q) × nr(q), and for each i = {1, . . . , nq},

Di(q) = {x ∈ Xq : projq(x) ∈ [ai(q), ai(q) + α(q)) × [bi(q), bi(q) + β(q))},
where ai(q) = amin(q) + cα(q); bi(q) = bmin(q) + rβ(q); c = (i − 1) modnc(q); r =
(i − 1)÷ nc(q); α(q) = (amax(q)− amin(q))/nc(q); and β(q) = (bmax(q)− bmin(q))/nr(q).
Other types of decompositions are also possible and are discussed in Sect. 5.

3.2.2 Discrete-search graph

HyDICE uses the decomposition D and the discrete transitions of the hybrid system to
construct a search graph GD = (VD,ED), as illustrated in Algorithm 2:4. A vertex vi(q) is
added to VD for each Di(q). In addition, VD contains two special vertices vsafe and vunsafe.
An edge (vsafe, vi(q)) is added to ED for every Di(q) such that Di(q)∩ I �= ∅. Similarly, an
edge (vi(q), vunsafe) is added to ED for every Di(q) such that Di(q) ∩ F �= ∅. Furthermore,
an edge (vi(q), vj (q)) is added to ED if the projections of Di(q) and Dj(q) are adjacent,
i.e., ‖(ai(q), bi(q)), (aj (q), bj (q))‖2 ≤ √

α2(q) + β2(q). Finally, an edge (vi(q
′), vj (q

′′))
is added to ED if there is a discrete transition from some state (q ′, x ′), x ′ ∈ Di(q

′), to some
state (q ′′, x ′′), x ′′ ∈ Dj(q

′′). HyDICE uses a function REGIONTRANS(Di(q
′),Dj (q

′′)) to
determine if there is the possibility of a discrete transition from Di(q

′) to Dj(q
′′).

Note that the computation of REGIONTRANS(Di(q
′),Dj (q

′′)) depends on the defini-
tion of the guard G(q ′,q ′′) and reset function J(q ′,q ′′) : G(q ′,q ′′) → Xq ′′ . When it is computa-
tionally infeasible or expensive to determine if there is a discrete transition from Di(q

′)
to Dj(q

′′), the definition of REGIONTRANS(Di(q
′),Dj (q

′′)) can be relaxed. In fact, it

168 Form Methods Syst Des (2009) 34: 157–182

is only required that REGIONTRANS(Di(q
′),Dj (q

′′)) does not return any false negatives,
i.e., REGIONTRANS(Di(q

′),Dj (q
′′)) returns false when there is a discrete transition from

Di(q
′) to Dj(q

′′). A false negative would cause HyDICE to miss an edge in the search graph
GD = (VD,ED), and as a result, not be able to compute any feasible leads. False positives,
i.e., REGIONTRANS(Di(q

′),Dj (q
′′)) returns true when there is in no discrete transition

from Di(q
′) to Dj(q

′′), are however allowed. A false positive would add a spurious edge
to the search graph GD = (VD,ED), which could lead to the computation of an infeasible
lead. However, as the search progresses, the weight estimates associated with the spurious
edge would indicate that such edge should not be included in future leads as it is not help-
ing HyDICE to extend the search tree T . By allowing false positives, the computation of
REGIONTRANS(Di(q

′),Dj (q
′′)) can be greatly simplified. In particular, it can be computed

in any of the following ways:

− REGIONTRANS(Di(q
′),Dj (q

′′)) = � ⇐⇒ Di(q
′) ∩ G(q ′,q ′′) �= ∅;

− REGIONTRANS(Di(q
′),Dj (q

′′)) = � ⇐⇒ (q ′, q ′′) ∈ E.

3.2.3 Computation of leads

The current lead σ is computed at each iteration (Algorithm 2:6) by searching the graph
GD = (VD,ED) for a sequence of edges that connects vsafe to vunsafe. A central issue is
which lead σ to select from the set
 of all possible leads. Assume for the moment that
w(σ) > 0 reflects a running estimate on the likelihood σ is useful to HyDICE for construct-
ing a witness trajectory. An effective strategy that balances greedy search with methodical
search can be obtained by selecting each lead σ with probability w(σ)/

∑
σ ′∈
 w(σ ′). This

selection process is biased towards the most useful leads, since the objective of HyDICE
is to quickly construct a witness trajectory. At the same time, since it is not known a pri-
ori which σ actually leads to the construction of a witness trajectory, the selection process
guarantees that each σ ∈
 has a non-zero probability of being selected. Computationally
however such selection strategy is feasible only when it is practical to enumerate all leads.
Due to the decomposition and the potentially huge complexity of discrete transitions, there
is usually a combinatorial number of leads, which makes enumeration impractical.

The approach followed in this work addresses this issue by maintaining instead a running
estimate wi(q) on the priority of including the decomposition region Di(q) in the current
lead σ . The weight is computed as

wi(q) = volν(Di(q))covζ (Di(q))

tτ (Di(q))
,

where t (Di(q)) is the time the motion planner has spent extending the search tree T
from states associated with Di(q), i.e., time spent by PROPAGATEFORWARD in Algo-
rithm 2:11; vol(Di(q)) is the volume of the projection of Di(q), i.e., vol(Di(q)) =
α(q)β(q); cov(Di(q)) measures the coverage of Di(q) by T , which is computed by im-
posing an implicit fine-grained uniform grid on the projection of Di(q) and measuring
the number of cells that contain at least one state from T ; and τ , ν, ζ are normalization
constants. Note that a new cell c is added to the implicit uniform grid only when a state
snew = (q, x) ∈ S is added to VT such that projq(x) ∈ c. A hash-set data structure is used by
HyDICE to keep track of which cells have currently been added to the implicit uniform grid
and update the coverage estimate in roughly constant time.

A high weight wi(q) indicates priority. When the coverage estimate cov(Di(q)) of a de-
composition region Di(q) is high, then there are many vertices and edges which HyDICE

Form Methods Syst Des (2009) 34: 157–182 169

can use to extend T from Di(q) to the next decomposition region in the lead. Preference
is also given to Di(q) when it has a large volume, since it allows HyDICE to extend T
in different directions. The time factor t (Di(q)) ensures that HyDICE does not spend all
the computation time re-exploring one particular decomposition region. In fact, as t (Di(q))

increases, the likelihood that Di(q) is included in the current lead decreases rapidly, allow-
ing HyDICE to spend time searching inside other decomposition regions. The weighting
function wi(q) is thus biased towards decomposition regions that have large volume and are
quickly covered by the search tree.

The current lead σ is then obtained as the shortest path from vsafe to vunsafe in the graph
GD = (VD,ED), where the path length is determined by the weights w(vi(q

′), vj (q
′′)) =

1/(w(Di(q
′)) × w(Dj(q

′′))) associated with each edge (vi(q
′), vj (q

′′)) ∈ ED . The shortest
path can be efficiently computed using A* or Dijkstra’s algorithm. For considerably larger
problems, more advanced graph-search techniques [56] or approaches from model checking,
such as bounded model checking [13] or directed model checking [17], could be used (see
also discussion in Sect. 5). The current lead σ , with a small probability, is also computed
as a random path from vsafe to vunsafe as a way to correct for errors inherent with the weight
estimates and to ensure that each lead has a non-zero probability of being selected. In this
way, the discrete-search component is able to lead the search for a witness trajectory toward
promising directions, while allowing the motion planner to extend the search tree along new
directions.

We note that in the experiments in this work, the graph GD = (VD,ED) is explicitly
constructed. In cases where it is infeasible to explicitly store GD = (VD,ED) in memory,
HyDICE can be used with implicit representations of GD . A function EDGES : VD → 2VD

can be used to compute on-the-fly the outgoing edges from each vertex.

3.3 Motion-planning component of HyDICE

The objective of the motion planner is to extend the search tree T along the decomposition
regions associated with the current lead σ so that T can reach F as quickly as possible. This
is achieved by selecting states from the decomposition regions specified by σ and gener-
ating hybrid-system trajectories by propagating forward from those states. As described in
Sect. 3.2.3, since σ is computed by searching the graph GD = (VD,ED), not all the decom-
position regions in σ have been reached by T . A decomposition region Di(q) is reached by
T when a state s = (q, x) is added to VT and x ∈ Di(q). The motion planner then selects
states from those decomposition regions in σ that have already been reached by T . As a
result of extending T with hybrid-system trajectories from the selected states, T may reach
new decomposition regions, allowing HyDICE to explore parts of the state space that were
previously unexplored.

Conceptually, forward propagation provides the necessary mechanism for the motion
planner to extend T and search the state space of the hybrid system. The forward propagation
from a state s = (q, x) ∈ S entails applying a control u to s and simulating the continuous
and discrete dynamics of the hybrid system for a certain duration of time T to obtain a
new state snew ∈ S. The state snew thus corresponds to the last state of the trajectory ϒs,u,T ,
as described in Definition 2. The control u ∈ Uq is usually selected pseudo-uniformly at
random from the set of all possible controls or according to some specific control law that
selects controls depending on state values and other criteria, as illustrated in Sect. 4. The
new state snew and the edge (s, snew) are added to the vertices and edges of T , respectively.

As indicated in Algorithm 2:7–14, the motion planner repeats the above select-and-
propagate step until an upper bound tσ on the time dedicated to σ is exceeded. It is im-
portant that the motion planner commits to the current lead σ only for a short period of

170 Form Methods Syst Des (2009) 34: 157–182

time tσ to allow for an effective interplay with the discrete-search component, since leads
are continually refined based on information collected during the search and potentially new
leads are computed at the beginning of each iteration step (Algorithm 2:6). The rest of this
section describes in more detail the selection of a decomposition region Di(q) from the de-
composition regions associated with σ (Algorithm 2:9), selection of a state s ∈ VT from the
states associated with Di(q) (Algorithm 2:10), and the forward propagation from s to a new
state snew.

3.3.1 Selection of a decomposition region

Since the objective of the motion planner is to extend T toward F , the function
SELECTDECOMPOSITIONREGION (Algorithm 2:9) gives preferences to those decompo-
sition regions of σ that have been reached by T and are closer to F . Recall that Di(q) is
reached by T when a state s = (q, x) is added to VT and x ∈ Di(q). Furthermore, the order
in which vi(q) appears in σ is an indication of how close Di(q) is to F .

More specifically, the motion planner maintains a set Davail of decomposition regions
that are available for the selection process. Initially, Davail = ∅. The lead σ is scanned back-
wards starting at position i = |σ | down to i = 1. If the i-th decomposition region Di(q)

of σ is reached by T , then Di(q) is added to Davail with probability 1/(1 + |Davail|). Thus,
decomposition regions that have been reached by T and appear toward the end of σ are
estimated to be closer to F and are thus given a higher priority by the motion planner. Each
Di(q) ∈ Davail is then selected with probability

wsel(Di(q))∑
Dj (q ′)∈Davail

wsel(Dj (q ′))
,

where

wsel(Di(q)) = volν(Di(q))

tτ (Di(q))covζ (Di(q))
.

This selection strategy allows the motion planner to spend more time extending the search
tree T along those decomposition regions that are close to F , have large volume, and have
not been adequately covered in the past.

When snew = (qnew, xnew) ∈ S is added to T (Algorithm 2:12), snew is also added to the
appropriate decomposition region Dj(qnew), such that xnew ∈ Dj(qnew). If Dj(qnew) is not
already in Davail, then Dj(qnew) is added to Davail. Thus, when the motion planner extends T
along new decomposition regions, they become available for selection during the next iter-
ation of the motion-planning step in Algorithm 2:9. In this way, the motion planner extends
T along decomposition regions associated with σ and along new decomposition regions
that T reaches while the search for a witness trajectory progresses from one decomposition
region to another.

3.3.2 Selection of a state from a decomposition region

As illustrated in Algorithm 2:10, among all the states in VT associated with Di(q), the
function SELECTSTATEFROMDECOMPOSITIONREGION selects one state s from which it
extends T . The state-selection strategy follows well-established techniques developed in
motion planning research, similar to the work in [50]. Recall that an implicit uniform grid
was used to estimate the coverage of Di(q) by the states in VT , as discussed in Sect. 3.2. The
i-th cell from this implicit uniform grid is selected with probability (1/nsel2

i)/
∑

j (1/nsel2
j),

Form Methods Syst Des (2009) 34: 157–182 171

where nseli is the number of times the i-th cell has been selected in the past. A state s is then
selected pseudo-uniformly at random from all the states associated with the i-th cell. This
state-selection strategy gives priority to new states that have not been frequently selected in
the past and allows the motion planner to extend T along new directions.

3.3.3 Extending the tree from the selected state by forward propagation

As mentioned earlier, the actual extension of T from s = (q, x) is computed by the
PROPAGATEFORWARD function in Algorithm 2:11. An input control u ∈ Uq , which could be
selected pseudo-uniformly at random or according to some other strategy (see Sect. 4.1.2),
is applied to s for a short duration of time T > 0. The function PROPAGATEFORWARD sim-
ulates the continuous and discrete dynamics of the hybrid system to obtain the resulting
hybrid-system trajectory ϒs,u,T , as in Definition 2. Pseudocode is given in Algorithm 3.

The forward propagation follows the continuous dynamics fq associated with q ∈ Q and
is usually computed based on numerical integration of the ordinary differential equations
associated with fq . This work uses 8-th order Prince-Dormand Runge-Kutta numerical inte-
gration with adaptive step-size control as implemented in GSL [21]. The forward propaga-
tion is an iterative procedure. Let nsteps denote the number of propagation steps and let ε > 0
denote the integration step. Initially, x0 = x (Algorithm 3:2). During the i-th iteration, the
continuous state xi ∈ Xq is obtained by numerically integrating the differential equations
fq(xi−1, u) for ε units of time (Algorithm 3:4).

If xi �∈ Invq , then the forward propagation is terminated, since xi is not valid (Algo-
rithm 3:5–6). The previous valid state (q, xi−1) is returned as the new state snew obtained at
the end of the forward propagation. The valid hybrid-system trajectory corresponds then to
�s,u,T (see Definition 2), where T = (i − 1) × ε.

If xi ∈ Invq , the simulation checks whether the state (q, xi) satisfies any guard condition,
i.e., (q, xi) ∈ G(q,qnew) for some qnew ∈ Q. If a guard condition is satisfied, then a discrete

Algorithm 3 PROPAGATEFORWARD

Input: H = (S, Inv,E,G,J,f,U, I,F): hybrid system
s = (q, x) ∈ S: starting state
ε ∈ R

>0: integration step
nsteps ∈ N: number of integration steps

Output: The new state obtained at the end of propagation

1: u ← sample control from Uq

2: x0 ← x

3: for i = 1,2, . . . , nsteps do
4: xi ← ∫ ε

0 fq(xi−1, u)

5: if xi �∈ Invq then
6: return (q, xi−1)

7: end if
8: if (q, xi) ∈ G(q,qnew) for some qnew ∈ Q then
9: (xloc, T) ← localize discrete event in time interval ((i − 1) ∗ ε, i ∗ ε]

10: return J(q,qnew)(q, xloc)

11: end if
12: end for
13: return (q, xi)

172 Form Methods Syst Des (2009) 34: 157–182

event has occurred in the time interval (i − 1 × ε, i × ε] (Algorithm 3:8). This stage, com-
monly known as event detection, is followed by the event localization stage, which localizes
the earliest time T ∈ ((i − 1) × ε, i × ε] the guard condition is satisfied (Algorithm 3:9).
Variants of bisection or bracketing algorithms, as those found in the classical numerical lit-
erature, are commonly employed for the event detection [18]. Once the event is localized,
the propagation stops and the corresponding discrete transition is applied to obtain the new
state snew (Algorithm 3:10). The valid hybrid-system trajectory corresponds then to ϒs,u,T

(see Definition 2).
At the end of the forward propagation, the new state snew = ϒs,u,T (T) and the edge

(s, snew) are added to the vertices and edges of T , respectively (Algorithm 2:12). A wit-
ness trajectory is found if snew ∈ F . The witness trajectory is computed by reconstructing
the evolution of the hybrid system from ssafe to snew following the appropriate edges of T
(Algorithm 2:14).

We note that, due to limitations of floating-point arithmetic, as with any other numeri-
cal method in computational mathematics, including symbolic techniques for linear hybrid
systems, there will be round-off errors in the simulation of the continuous dynamics and the
event detection and localization of discrete transitions. The approach followed by HyDICE
to deal with such numerical errors is similar to the approach followed by other numerical
methods for hybrid-system falsification [7, 32, 41], which choose the integration step ε > 0
to be small in order to minimize such errors. For certain hybrid systems with linear guard
descriptions, it is also possible to use more accurate event detection and localization algo-
rithms, such as those surveyed and developed in [18], which come asymptotically close to
the boundary of the guard set without overshooting it.

4 Experiments and results

Experimental validation is provided by using HyDICE for the falsification of safety prop-
erties of a hybrid robotic system navigation benchmark and an aircraft conflict-resolution
protocol. The navigation benchmark, which is based on a scalable benchmark proposed in
[20], tests the scalability of HyDICE with respect to the number of modes. The aircraft
conflict-resolution protocol, which has been widely used in [7, 32, 41, 54], tests the compu-
tational efficiency of HyDICE when also dealing with high-dimensional continuous states
spaces.

Methods used for the comparisons An important part of experiments is the comparison
with previous related work. The closest work we can compare to is the application of RRT
to hybrid systems [19, 32]. We also compare our work to a more recent version of RRT
developed in [41] as a hybrid-system falsification method that is guided by the star discrep-
ancy coverage measure. To distinguish between RRT and its variant, we will use the acronym
RRT[D∗] to refer to the star-discrepancy version of RRT [41]. We also provide experiments
that indicate the impact of the discrete-search component on the computational efficiency
of HyDICE. We refer to the version of HyDICE that does not use the discrete-search com-
ponent as HyDICE[NoLeads]. From an algorithmic perspective, HyDICE[NoLeads]
is the sampling-based motion planner of HyDICE. More precisely, HyDICE[NoLeads]
is obtained from Algorithm 2 by commenting out the outer while loop in line 5 and setting
tσ = tmax.

Form Methods Syst Des (2009) 34: 157–182 173

Hardware Experiments were run on the Rice Cray XD1 ADA and PBC clusters, where
each processor is at 2.2 GHz and has up to 8 GB RAM. Each run uses a single processor,
i.e., no parallelism. An upper bound of 3600 s is set for each run. In the case of HyDICE,
the current lead σ is computed as the shortest path in the search graph with probability 0.9
and as a random path with probability 0.1 (see Sect. 3).

4.1 A hybrid robotic system navigation benchmark

The first hybrid-system benchmark used in the experiments consists of an autonomous ro-
botic vehicle, whose underlying dynamics change discretely depending on terrain condi-
tions. The choice of this specific system is to provide a concrete, scalable benchmark in
which the competitiveness of HyDICE can be tested. This hybrid-system benchmark, which
is motivated by robotics applications, is constructed based on a scalable navigation bench-
mark proposed in [20]. A given environment is divided into n×n equally sized terrains. The
hybrid robotic system associates one mode qi ∈ Q with each terrain Ri . For each mode, the
associated dynamics is specified by a set of ordinary differential equations, as described in
Sect. 4.1.1. A discrete transition (qi, qj) ∈ E occurs when the hybrid robotic system moves
from Ri to Rj . When the discrete transition occurs, velocity components of the current con-
tinuous state of the hybrid robotic vehicle are set to zero.

4.1.1 Second-order models

While the navigation benchmark proposed in [20] used linear dynamics, this work uses
second-order dynamics that are commonly used for modeling cars, differential drives, and
unicycles. Detailed descriptions of these models can be found in [11, 37].

Smooth car (SCar) A second-order car is controlled by setting the acceleration and the
rotational velocity of the steering wheel. The dynamics is specified as ẋ = v cos(θ); ẏ =
v sin(θ); θ̇ = v tan(φ)/L; v̇ = u0; φ̇ = u1, where (x, y, θ) is the configuration; L = 0.8 m
is the distance between the front and rear axles; |v| ≤ vmax = 3 m/s is the velocity; |φ| ≤
φmax = 40◦ is the steering angle; |u0| ≤ max0 = 0.8 m/s2 is the acceleration control; and
|u1| ≤ max1 = 25◦/s is the control for the steering wheel.

Smooth unicycle (SUni) A second-order unicycle is controlled by translational and ro-
tational accelerations. The dynamics is given by ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = ω; v̇ =
u0; ω̇ = u1, where (x, y, θ) is the configuration; |v| ≤ vmax = 3 m/s and |ω| ≤ ωmax = 20◦/s
are the translational and rotational velocities; |u0| ≤ max0 = 0.3 m/s2 and |u1| ≤ max1 =
10◦/s2 are the translational and rotational acceleration controls.

Smooth differential drive (SDDrive) A second-order differential drive is controlled by
setting the left and right wheel rotational accelerations. The dynamics is given by ẋ =
0.5r(ω� + ωr) cos(θ); ẏ = 0.5r(ω� + ωr) sin(θ); θ̇ = r(ωr − ω�)/L; ω̇� = u0; ω̇r = u1,
where (x, y, θ) is the configuration; |ω�| ≤ ωmax = 5◦/s and |ωr | ≤ ωmax are the rotational
velocities of the left and right wheels; r = 0.2 m is the wheel radius; L = 0.8 m is the
length of the axis connecting the centers of the two wheels; |u0| ≤ max0 = 10◦/s2 and
|u1| ≤ max1 = 10◦/s2 are the left and right wheel acceleration controls.

174 Form Methods Syst Des (2009) 34: 157–182

4.1.2 Autonomous driver models

The controls u0 and u1 could be thought of as playing the role of the automatic driver. The
objective of hybrid-system falsification is then to test the safety of the automatic driver, i.e.,
the driver is unsafe if a witness trajectory is produced that indicates that it is possible for
the robotic vehicle to enter an unsafe state. The driver models used in this work consist of
simple if-then-else statements that depend on the state values and the underlying dynamics
associated with each mode of the hybrid robotic system.

In the first model, RandomDriver, u0 and u1 are selected pseudo-uniformly at
random from [−max0,max0] and [−max1,max1], respectively. In the second model,
StudentDriver, the driver follows an approach similar to stop-and-go. When the
speed is close to zero, StudentDriver selects u0 and u1 as in RandomDriver.
Otherwise, StudentDriver selects controls that reduce the speed. The third model,
HighwayDriver attempts to maintain the speed within acceptable low and upper bounds.
When the speed is too low, HighwayDriver selects controls that increase the speed.
When the speed is too high, HighwayDriver selects controls that slow down the robotic
vehicle. Otherwise, HighwayDriver selects controls that do not change the speed consid-
erably. For completeness, we provide below a succinct description of the selection strategy
for the input controls u0 and u1 for each driver model and each second-order dynamics:

RandomDriver f (a, i, c,L,R): return rnd(−maxi ,maxi)

StudentDriver f (a, i, c,L,R):
if a ∈ (0.2,1] then return rnd(−Lmaxi ,R(c − 1)maxi)

elif a ∈ [−1,−0.2) then return rnd(R(1 − c)maxi ,Lmaxi)

else return rnd(−maxi ,maxi)

HighwayDriver f (a, i, c,L,R): B={0.4, 0.6, 0.8, 1.0}
if ∃b ∈ B ∧ a ∈ (b − 0.2, b] then return rnd(−Lbmaxi ,R(c − b)maxi)

elif ∃b ∈ B ∧ a ∈ [−b,0.2 − b) then return rnd(R(b − c)maxi ,Lbmaxi)

else return rnd(−maxi ,maxi)

SCar: u0 = f (v/vmax,0,0.2,1,1); u1 = rnd(−max1,max1)

SUni: u0 = f (v/vmax,0,0.2,1,1); u1 = f (ω/ωmax,1,0.2,1,1)

SDDrive: u0 = f (a,0,1.2,0,0.25); u1 = −f (a,1,1.2,0,0.25); a = ω�+ωr
2ωmax

4.1.3 Modes and discrete transitions

The continuous dynamics associated with each mode q ∈ Q is selected pseudo-uniformly
at random from SCar, SUni, and SDDrive. The set of discrete transitions E is created
using a strategy similar to maze generation based on Kruskal’s algorithm [33]. Initially, E is
empty and walls are placed between each pair of neighboring terrains Ri and Rj . Then,
walls are visited in some random order. If the terrains divided by the current wall belong to
distinct sets, then the wall is removed and the two sets are joined. At the end, each remaining
wall is kept with probability p = 0.9 to allow for more than one passage from one terrain
to another. Each time a wall that separates some terrain Ri from Rj is removed, discrete
transitions (qi, qj) and (qj , qi) are added to E.

4.1.4 Experiments

Experiments are performed using the hybrid robotic system described in Sect. 4.1. A prob-
lem instance is obtained by fixing the number of modes |Q| = n × n and the driver model

Form Methods Syst Des (2009) 34: 157–182 175

Table 1 Computational efficiency of HyDICE compared to other methods as a function of the number of
modes |Q| and the driver model. Times are in seconds. Entries marked with X indicate a timeout, which was
set to 3600 s

RandomDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.1 0.3 1.5 16.8 195.3 X X X X

RRT[D∗] 0.1 0.9 0.5 4.7 5.1 24.8 411.3 X X X

HyDICE[NoLeads] 0.1 0.1 0.3 3.6 5.7 10.0 147.1 564.8 X X

HyDICE 0.4 0.4 0.6 1.2 1.5 2.4 11.1 66.1 352.7 1198.4

StudentDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.2 0.7 2.4 25.4 210.5 X X X X

RRT[D∗] 0.1 1.4 0.3 1.0 4.6 23.2 605.8 X X X

HyDICE[NoLeads] 0.1 0.1 0.4 3.4 5.6 10.3 189.2 576.8 X X

HyDICE 0.4 0.4 0.7 1.3 1.8 3.4 12.4 64.6 294.5 1289.9

HighwayDriver |Q|
12 22 42 82 162 322 642 1282 5122 10242

RRT 0.1 0.2 0.3 2.9 25.5 219.3 X X X X

RRT[D∗] 0.2 0.7 0.2 0.9 3.9 23.7 515.5 X X X

HyDICE[NoLeads] 0.1 0.1 0.4 4.0 5.9 8.8 151.6 514.9 X X

HyDICE 0.4 0.4 0.6 1.3 1.8 2.9 10.9 70.4 288.9 954.8

to RandomDriver, StudentDriver, or HighwayDriver. For each problem in-
stance, we create 40 safety properties. Each safety property is created by selecting pseudo-
uniformly at random one terrain as the initial place where the search for a witness trajectory
should start and another terrain as unsafe. A violation of the safety property then occurs
when the hybrid robotic vehicle enters the unsafe terrain. For each experiment, we report
the average computational time in seconds. Recall that an upper bound of 3600 s was set for
each run.

4.1.5 Results

A summary of the results is shown in Table 1. Table 1 indicates that HyDICE is consistently
more efficient than RRT. As an example, when RandomDriver is used and |Q| = 322,
RRT requires on average 195.3 s, while HyDICE requires only 2.4 s. Similarly, when
StudentDriver or HighwayDriver are used and |Q| = 322, RRT requires on average
210.5 s and 219.3 s, while HyDICE requires only 3.4 s and 2.9 s, respectively. Moreover,
as the number of modes is increased HyDICE remains efficient, while RRT times out. As
Table 1 shows, RRT times out in all instances with |Q| ≥ 642, while HyDICE requires on
average less than 15 s for problem instances with |Q| = 642 and less than 75 s for problem
instances with |Q| = 1282.

176 Form Methods Syst Des (2009) 34: 157–182

Table 1 also indicates that HyDICE is consistently more efficient than RRT[D∗]. The
computational advantages of HyDICE become more pronounced as |Q| is increased. For
example, when RandomDriver is used and |Q| = 642, RRT[D∗] requires on average
411.3 s. Similarly, when StudentDriver or HighwayDriver are used, RRT[D∗] re-
quires 605.8 s and 515.5 s, respectively. On the other hand, as mentioned earlier, HyDICE
requires on average less than 15 s. Furthermore, RRT[D∗] times out as the number of modes
is increased to |Q| = 1282, while HyDICE requires only a short time (less than 75 s) to han-
dle such problem instances.

The second set of experiments provides insight on the observed computational efficiency
of HyDICE. In particular, we investigate the importance of the discrete-search component
on HyDICE. As noted earlier, HyDICE[NoLeads] is the version of HyDICE that does
not use leads to guide the motion planner during the search for a witness trajectory. Ta-
ble 1 shows that although HyDICE[NoLeads] is still faster than RRT and RRT[D∗], it is
considerably slower than HyDICE. (For a discussion on issues related to the computational
efficiency of RRT and sampling-based motion planners similar to HyDICE[NoLeads]
see [11, 37, 44, 45].) For example, HyDICE[NoLeads] is capable of handling problem
instances even with |Q| = 1282, while both RRT and RRT[D∗] timed out on these prob-
lem instances. However, HyDICE[NoLeads] requires on the average 564.8 s, 576.8 s,
and 514.9 s when RandomDriver, StudentDriver, and HighwayDriver are used,
respectively, while HyDICE requires only 66.1 s, 64.6 s, and 70.4 s. These results highlight
the importance of the discrete-search component, which, by guiding the motion planner dur-
ing the search for a witness trajectory, significantly improves the computational efficiency
of HyDICE.

Table 1 also shows that HyDICE scales up reasonably well and can handle nonlinear
problem instances with over a million modes. While other methods failed to handle large
problem instances beyond |Q| = 1282, HyDICE even when |Q| = 10242 remains compu-
tationally efficient. Overall, results in Table 1 show the competitiveness of HyDICE as a
hybrid-system falsification method.

4.2 Aircraft conflict-resolution protocol

The aircraft conflict-resolution protocol, which has been widely used in [7, 32, 41, 54],
tests the computational efficiency of HyDICE when also dealing with high-dimensional
continuous states spaces.

The continuous state space is X = X1 ×X2 × · · ·×XN , where Xi is the continuous state
space associated with the i-th aircraft. Each aircraft i has three continuous state variables
(xi, yi, θi), where (xi, yi) denotes the position and θi denotes the orientation.

This work presents experiments with up to 20 aircraft (60 continuous dimensions), which
is considerably larger than instances considered in related work (5 aircraft in [32] and 8
aircraft in [41]). The continuous dynamics of the i-th aircraft are given by

ẋi = v cos(θi) + (−u1 sin(θi) + d2 cos(θi))(−sin(θi)),

ẏi = v cos(θi) + (−u1 sin(θi) + d2 cos(θi))(cos(θi)),

θ̇i = PROTOCOL(i),

where v is a constant forward velocity; u1, u2 ∈ [−w,w] is the wind disturbance; and
PROTOCOL(i) determines the yaw rate. The discrete dynamics, which makes this bench-
mark a hybrid system, are incorporated in the computation of PROTOCOL(i), which is based

Form Methods Syst Des (2009) 34: 157–182 177

on a conflict-resolution protocol that aims to safely bring all aircrafts from their initial po-
sitions (x init

i , y init
i) to their goal positions (x

goal
i , y

goal
i) while avoiding collisions with each

other.
As in [19, 32, 41], the function PROTOCOL(i) switches depending on the modes associ-

ated with the aircrafts. At the initial position, the i-th aircraft is in heading mode, q = 1, and
rotates with an angular velocity θ̇i = PROTOCOL(i) = θgoal − θi until it points toward the
goal position, where θgoal ∈ [−π,π) is computed as the directed angle between the x-axis
and (x

goal
i , y

goal
i). Once reaching the desired goal heading, the i-th aircraft switches to cruis-

ing mode, q = 2, and cruises toward the goal with angular velocity θ̇i = PROTOCOL(i) = 0.
If two aircrafts i and j get close to each-other, i.e., within p distance, then both air-
crafts enter an avoid mode, q = 2. During the avoid mode, both aircrafts i and j make
an instantaneous turn by −90◦ and then follow a half-circle with constant angular velocity
θ̇i = PROTOCOL(i) = c and θ̇j = PROTOCOL(j) = c. At the end of the half circle, each
aircraft makes instantaneous turns until pointing toward their own goal positions, and then
the aircrafts return to cruise mode. It is also possible that during the avoid mode between
aircrafts i and j , another aircraft k comes within p distance to i. In this case, aircrafts i

and k make instantaneous turn by −90◦ and execute the same avoid procedure as above.
When an aircraft reaches the goal position, it stays there and it is no longer involved in the
collision-avoidance protocol.

A violation of the safety property occurs if at any point two aircraft come within d

(d < p) distance from each other.
We initially experimented with the benchmark in [19], which has 5 aircraft (15 continu-

ous dimensions). As in [19], the avoidance distance was set to p = 5.25 km and the collision
distance was set to d = 1 km. The translational velocity was set to 0.3 km/s and the angular
velocity was set to c = 0.03 rad/s. The maximum wind disturbance was set to w = 0.1.
For the benchmark used in [19], all computational methods tested in the experiments, RRT,
RRT[D∗], HyDICE[NoLeads], HyDICE, were able to compute witness trajectories in
a matter of a few seconds (less than 10 s). The methods would quickly find collisions that
resulted from the aircrafts making instantaneous −90◦ turns during the avoid mode and
bumping into each other as they followed the respective half-circles. Figure 3 provides an
illustration.

4.2.1 Safer aircraft conflict-resolution protocol

In order to make the protocol safer, when two aircrafts i and j enter an avoid mode, each
aircraft determines whether it would be best to make a −90◦ or a 90◦ instantaneous turn.
Let halfcirclei (ai) denote the half-circle made by the i-th aircraft following an ai -degree
instantaneous turn, where ai ∈ {−90◦,90◦}. The half-circle halfcirclei (ai) is defined simi-
larly. The decision which half-circle to take is based on maximizing the minimum distance
between the two aircraft when they follow the half circles with constant angular veloc-
ity θ̇i = PROTOCOL(i) = (−sign(ai))c and θ̇j = PROTOCOL(j) = (−sign(aj))c. This safer
protocol eliminates those collisions which could be avoided by making the appropriate −90◦
or 90◦ instantaneous turn instead of always turning by −90◦, as it is the case in [19, 32, 41].
This safer protocol makes it more challenging to compute witness trajectories.

4.2.2 Experimental settings

A problem instance is obtained by specifying the number N of the aircrafts, the initial
(x init

i , y init
i), and the goal (x

goal
i , y

goal
i) positions for each aircraft i. The experiments carried

178 Form Methods Syst Des (2009) 34: 157–182

Fig. 3 (Color online) A collision
between two aircraft is quickly
found after a few seconds (less
than 10 s) of exploration. The
exploration is shown by plotting
as a dot the position component
of each state in the search tree.
Goal positions are shown as
circles

out in related work [7, 32, 41, 54] relied on one problem instance, where the initial and goal
positions were set by hand. In order to test the computational efficiency of HyDICE across
different problem instances, we use an automatic procedure to generate random problem
instances. This allows a more comprehensive testing that better characterizes the computa-
tional efficiency of each method. As noted earlier, in the hand-designed problem instance, all
the computational methods (RRT, RRT[D∗], HyDICE[NoLeads], and HyDICE) solved
the problem in less than 10 s.

Randomized problem instance generation In the automatic procedure for generating a ran-
dom benchmark instance, half of the aircrafts are placed from left to right at the top and
the other half are placed at the bottom at a safe distance from each other. The aircrafts
placed at the top have goal positions at the bottom, and the aircrafts placed at the bot-
tom have goal positions placed at the top. More precisely, let h = N/2. The gap between
aircrafts is set to gap = (2.85 + 0.04 × (N − 10)) × p, which corresponds to 2.85p for
N = 10; 3.05p for N = 15; and 3.25p for N = 20. Then, for each i = 1, . . . , h, which
corresponds to the first half of the aircrafts, x init

i is selected pseudo-uniformly at random
from [initi , initi + p], where initi = −500 km + (i − 1) × gap; y init

i is selected pseudo-
uniformly at random from [250,350] km; x

goal
i is selected pseudo-uniformly at random

from [goali ,goali + p], where goali = −420 km + (i − 1) × gap; and y
goal
i is selected

pseudo-uniformly at random from [−350,−250] km. For each i = h, . . . ,N , which cor-
responds to the second half of the aircrafts, x init

i is selected pseudo-uniformly at random
from [initi , initi + p], where initi = −500 km + (i − h − 1) × gap; y init

i is selected pseudo-
uniformly at random from [−350,−250] km; x

goal
i is selected pseudo-uniformly at random

from [goali ,goali + p], where goali = −420 km + (i − h − 1) × gap; and y
goal
i is selected

pseudo-uniformly at random from [250,350] km.

Form Methods Syst Des (2009) 34: 157–182 179

Table 2 Comparison of the computational efficiency for solving the aircraft conflict-resolution problem with
respect to the number of aircrafts N . For each N , the computational efficiency of each method is measured as
the median computational time obtained on 200 random instances of the aircraft conflict-resolution problem.
Entries marked with X indicate a timeout, which was set to 3600 s

Method Number of aircrafts

N = 10 N = 15 N = 20

HyDICE 30.35 s 42.67 s 77.61 s

RRT 242.15 s 394.40 s 1973.11 s

RRT[D∗] X X X

Fig. 4 (Color online) Example
of a witness trajectory that
indicates a collision between two
aircrafts in a scenario involving
10 aircrafts. Circles indicate goal
positions

4.2.3 Experiments

Experiments were carried out with N = 10,15,20 aircrafts, which correspond to continuous
state spaces with 30,45,60 dimensions, respectively. For a fixed N , 200 problem instances
were generated using the randomized procedure described above in Sect. 4.2.2. Each method
was run on each problem instance. A timeout of 3600 s was imposed on each run. The
median computational time is reported for each method.

4.2.4 Results

A summary of the results is provided in Table 2. These results indicate the computational
efficiency of HyDICE. In each case, HyDICE is several times faster than RRT and RRT[D∗].
As the number of aircrafts is increased, the computational advantages of HyDICE become
more pronounced.

180 Form Methods Syst Des (2009) 34: 157–182

5 Discussion

We have presented HyDICE, a multi-layered approach for hybrid-system falsification that
combines motion planning with discrete search. Experiments on nonlinear hybrid sys-
tems with numerous modes and high-dimensional continuous state spaces demonstrate the
promise of HyDICE as a falsification method. Comparisons to related work show computa-
tional speedups of up to two orders of magnitude. The combination of motion planning and
discrete search in the framework of HyDICE raises important computational and theoretical
research issues, which are part of ongoing and future investigations.

Scalability in the discrete space Although HyDICE was shown to scale up reasonably
well and handle a system with slightly over one million modes, the scalability issue remains
open to research. As the number of modes becomes significantly large, the graph search
used in this work becomes a bottleneck. Methods developed in the verification community,
which can handle discrete systems with billions of modes [10], could provide an efficient
alternative.

Scalability in the continuous space Complex hybrid systems are characterized not only by
a large number of modes, but also by high-dimensional continuous state spaces. An impor-
tant research issue is the improvement of the motion-planning component of HyDICE in or-
der to effectively explore high-dimensional continuous state spaces with hundreds of dimen-
sions. The framework of HyDICE, which focuses on the combination of discrete search and
motion planning, opens up the possibility of integrating different motion planners from the
one presented in this work, such as RRT [38], EST [28, 50], PDST [35], and others [11, 37].

Low-dimensional projections Another issue that arises when dealing with high-dimen-
sional continuous state spaces is the effective computation of low-dimensional projections.
The objective of the projection is to reduce the dimensionality, while at the same time pre-
serve the underlying structure of the original dataset. This work relied on simple projections
based on specific knowledge about the hybrid systems under consideration.

Toward increasingly realistic hybrid robotic systems In robotics applications such as ex-
ploration and navigation, which motivated the hybrid-system benchmark in this work, it is
often the case that the robotic system should avoid collisions with obstacles. Current work
[32, 41, 46] in the context of hybrid-system testing has not considered obstacles. HyDICE
can however naturally handle such scenarios. In particular, collision avoidance can be in-
corporated into HyDICE by considering it as an additional constraint in the invariant that
should be satisfied by each state and hybrid-system trajectory that is added to the search
tree. Moreover, the presence of obstacles makes it possible to consider other types of de-
compositions besides the grid decompositions used in this work. In particular, triangular de-
compositions such as conforming Delaunay triangulations have been widely used in similar
settings in computational geometry [16], finite element analysis [22], and robotics [11, 37].
Preliminary results in the context of motion planning show considerable computational im-
provements when using conforming Delaunay triangulations instead of grid decompositions,
and one would expect that similar benefits can be obtained by HyDICE for the falsification
of safety properties of hybrid robotic systems that must avoid collision with obstacles at all
times.

Acknowledgements The authors thank Thao Dang for providing implementation details of the related
work [41].

Form Methods Syst Des (2009) 34: 157–182 181

References

1. Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, Olivero A, Sifakis J, Yovine
S (1995) The algorithmic analysis of hybrid systems. Theor Comput Sci 138(1):3–34

2. Alur R, Henzinger TA, Lafferriere G, Pappas G (2000) Discrete abstractions of hybrid systems. Proc
IEEE 88(7):971–984

3. Alur R, Dang T, Ivančić F (2006) Counterexample-guided predicate abstraction of hybrid systems. Theor
Comput Sci 354(2):250–271

4. Asarin E, Dang T, Maler O (2002) The d/dt tool for verification of hybrid systems. In: Int conf on
computer aided verification. LNCS. Springer, Berlin, pp 365–370

5. Behrmann G, David A, Larsen KG, Möller O, Pettersson P, Yi W (2001) UPPAAL—present and future.
In: IEEE conf on decision and control, vol 3, pp 2881–2886

6. Belta C, Esposito J, Kim J, Kumar V (2005) Computational techniques for analysis of genetic network
dynamics. Int J Robot Res 24(2–3):219–235

7. Bhatia A, Frazzoli E (2004) Incremental search methods for reachability analysis of continuous and
hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 2993. Springer, Berlin, pp
142–156

8. Botchkarev O, Tripakis S (2000) Verification of hybrid systems with linear differential inclusions using
ellipsoidal approximations. In: Hybrid systems: Computation and control. LNCS, vol 1790. Springer,
Berlin, pp 73–88

9. Branicky MS, Curtiss MM, Levine J, Morgan S (2006) Sampling-based planning, control, and verifica-
tion of hybrid systems. Control Theory Appl 153(5):575–590

10. Burch J, Clarke E, McMillan K, Dill D, Hwang L (1992) Symbolic model checking: 1020 states and
beyond. Inf Comput 98(2):142–170

11. Choset H, Lynch KM, Hutchinson S, Kantor G, Burgard W, Kavraki LE, Thrun S (2005) Principles of
robot motion: Theory, algorithms, and implementations. MIT Press, Cambridge

12. Chutinan C, Krogh BH (2003) Computational techniques for hybrid system verification. IEEE Trans
Autom Control 48(1):64–75

13. Clarke EM, Bierea A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solving.
Formal Methods Syst Des 19(1):7–34

14. Clarke EM, Grumberg O, Peled DA (2001) Model checking. MIT Press, Cambridge
15. Copty F, Fix L, Fraer R, Giunchiglia E, Kamhi G, Tacchella A, Vardi M (2001) Benefits of bounded

model checking at an industrial setting. In: Int conf on computer aided verification. LNCS, vol 2102.
Springer, Berlin, pp 436–453

16. de Berg M, van Kreveld M, Overmars MH (1997) Computational geometry: Algorithms and applica-
tions. Springer, Berlin

17. Edelkamp S, Jabbar S (2006) Large-scale directed model checking LTL. In: Int SPIN work on model
checking software. LNCS, vol 3925. Springer, Berlin, pp 1–18

18. Esposito J, Kumar V, Pappas G (2001) Accurate event detection for simulation of hybrid systems. In:
Hybrid systems: Computation and control. LNCS. Springer, Berlin, pp 204–217

19. Esposito JM, Kim J, Kumar V (2004) Adaptive RRTs for validating hybrid robotic control systems. In:
Workshop on algorithmic foundations of robotics. Zeist, Netherlands, pp 107–132

20. Fehnker A, Ivancic F (2004) Benchmarks for hybrid systems verification. In: Hybrid systems: Compu-
tation and control. LNCS, vol 2993. Springer, Berlin, pp 326–341

21. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006) GNU scientific library
reference manual, 2 edn. Network Theory Ltd

22. George PL, Borouchaki H (1998) Delaunay triangulation and meshing: Application to finite elements.
Hermes Science Publications

23. Giorgetti N, Pappas GJ, Bemporad A (2005) Bounded model checking for hybrid dynamical systems.
In: IEEE conf on decision and control. Seville, Spain, pp 672–677

24. Glover W, Lygeros J (2004) A stochastic hybrid model for air traffic control simulation. In: Hybrid
systems: Computation and control. LNCS, vol 2993. Springer, Berlin, pp 372–386

25. Henzinger T (1996) The theory of hybrid automata. In: Symp on logic in computer science, pp 278–292
26. Henzinger T, Kopke P, Puri A, Varaiya P (1995) What’s decidable about hybrid automata? In: ACM

symp on theory of computing, pp 373–382
27. Henzinger TA, Ho PH, Wong-Toi H (1997) HyTech: A model checker for hybrid systems. Softw Tools

Technol Transfer 1:110–122
28. Hsu D, Kindel R, Latombe, JC, Rock S (2002) Randomized kinodynamic motion planning with moving

obstacles. Int J Robot Res 21(3):233–255
29. Johansson R, Rantzer A (2002) Nonlinear and hybrid, systems in automotive, control. Springer, New

York

182 Form Methods Syst Des (2009) 34: 157–182

30. Julius AA, Fainekos GE, Anand M, Lee I, Pappas GJ (2007) Robust test generation and coverage for
hybrid systems. In: Hybrid systems: Computation and control. LNCS, vol 4416. Springer, Berlin, pp
329–342

31. Kavraki LE, Švestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

32. Kim J, Esposito JM, Kumar V (2005) An RRT-based algorithm for testing and validating multi-robot
controllers. In: Robotics: Science and systems. Boston, MA, pp 249–256

33. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc
Am Math Soc 7(1):48–50

34. Ladd AM (2006) Motion planning for physical simulation. PhD thesis, Rice University, Houston, TX
35. Ladd AM, Kavraki LE (2005) Motion planning in the presence of drift, underactuation and discrete

system changes. In: Robotics: Science and systems. Boston, MA, pp 233–241
36. Lafferriere G, Pappas G, Yovine S (1999) A new class of decidable hybrid systems. In: Hybrid systems:

Computation and control. LNCS, vol 1569. Springer, Berlin, pp 137–151
37. LaValle SM (2006) Planning algorithms. Cambridge University Press, Cambridge
38. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees: Progress and prospects. In: Workshop

on algorithmic foundations of robotics, pp 293–308
39. Livadas C, Lynch N (1998) Formal verification of safety-critical hybrid systems. In: Hybrid systems:

Computation and control. LNCS, vol 1386. Springer, Berlin, pp 253–272
40. Mitchell IM (2007) Comparing forward and backward reachability as tools for safety analysis. In: Hybrid

systems: Computation and control. LNCS, vol 4416. Springer, Berlin, pp 428–443
41. Nahhal T, Dang T (2007) Test coverage for continuous and hybrid systems. In: Int conf on computer

aided verification. LNCS, vol 4590. Springer, Berlin, pp 449–462
42. Pepyne D, Cassandras C (2000) Optimal control of hybrid systems in manufacturing. Proc IEEE

88(7):1108–1123
43. Piazza C, Antoniotti M, Mysore V, Policriti A, Winkler F, Mishra B (2005) (2005) Algorithmic algebraic

model checking I: Challenges from systems biology. In: Int conf computer aided verification. LNCS, vol
3576. Springer, Berlin, pp 5–19

44. Plaku E, Bekris KE, Chen BY, Ladd AM, Kavraki LE (2005) Sampling-based roadmap of trees for
parallel motion planning. IEEE Trans Robot 21(4):597–608

45. Plaku E, Kavraki LE, Vardi MY (2007) Discrete search leading continuous exploration for kinodynamic
motion planning. In: Robotics: Science and systems. Atlanta, Georgia

46. Plaku E, Kavraki LE, Vardi MY (2007) Hybrid systems: From verification to falsification. In: Int conf
on computer aided verification. LNCS, vol 4590. Springer, Berlin, pp 468–481

47. Plaku E, Kavraki LE, Vardi MY (2007) A motion planner for a hybrid robotic system with kinodynamic
constraints. In: IEEE int conf on robotics and automation. Rome, Italy, pp 692–697

48. Puri A (1995) Theory of hybrid systems and discrete event systems. PhD thesis, University of California,
Berkeley

49. Ratschan S, She Z (2007) Safety verification of hybrid systems by constraint propagation-based abstrac-
tion refinement. ACM Trans Embed Comput Syst 6(1):8

50. Sánchez G, Latombe JC (2002) On delaying collision checking in PRM planning: Application to multi-
robot coordination. Int J Robot Res 21(1):5–26

51. Silva BI, Krogh BH (2000) Formal verification of hybrid systems using CheckMate: A case study. In:
American control conference, pp 1679–1683

52. Stursberg O, Krogh BH (2003) Efficient representation and computation of reachable sets for hybrid
systems. In: Hybrid systems: Computation and control. LNCS, vol 2623. Springer, Berlin, pp 482–497

53. Tomlin CJ, Pappas GJ, Sastry SS (1998) Conflict resolution for air traffic management: A case study in
multi-agent hybrid systems. IEEE Trans Autom Control 43(4):509–521

54. Tomlin CJ, Mitchell I, Bayen A, Oishi M (2003) Computational techniques for the verification and
control of hybrid systems. Proc IEEE 91(7):986–1001

55. Yovine S (1997) Kronos: A verification tool for real-time systems. Int J Softw Tools Technol Transf
1:123–133

56. Zhang W (2006) State-space search: Algorithms, complexity, extensions, and applications. Springer,
New York

	Hybrid systems: from verification to falsification by combining motion planning and discrete search
	Abstract
	Introduction
	Hybrid systems and verification of safety properties
	From verification to falsification
	Combining motion planning and discrete search for the falsification of safety properties of hybrid systems with nonlinear dynamics

	Preliminaries
	Hybrid automata and hybrid-system falsification problem
	Motion-planning problem

	HyDICE
	Extending the search-tree framework
	Interplay of discrete search and motion planning

	Discrete-search component of HyDICE
	Decomposition
	Discrete-search graph
	Computation of leads

	Motion-planning component of HyDICE
	Selection of a decomposition region
	Selection of a state from a decomposition region
	Extending the tree from the selected state by forward propagation

	Experiments and results
	Methods used for the comparisons
	Hardware
	A hybrid robotic system navigation benchmark
	Second-order models
	Smooth car (SCar)
	Smooth unicycle (SUni)
	Smooth differential drive (SDDrive)

	Autonomous driver models
	Modes and discrete transitions
	Experiments
	Results

	Aircraft conflict-resolution protocol
	Safer aircraft conflict-resolution protocol
	Experimental settings
	Randomized problem instance generation

	Experiments
	Results

	Discussion
	Scalability in the discrete space
	Scalability in the continuous space
	Low-dimensional projections
	Toward increasingly realistic hybrid robotic systems

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

