Form Method Syst Des (2006) 30:5-28
DOI 10.1007/s10703-006-0020-3

Verification of SpecC using predicate abstraction

Edmund Clarke - Himanshu Jain - Daniel Kroening

Published online: 31 August 2006
© Springer Science + Business Media, LLC 2006

Abstract Languages such as SystemC or SpecC offer modeling of hardware and whole
system designs at a high level of abstraction. However, formal verification techniques are
widely applied in the hardware design industry only for low level designs, such as a netlist
or RTL. The higher abstraction levels offered by these new languages are not yet amenable
to rigorous, formal verification. This paper describes how to apply predicate abstraction
to SpecC system descriptions. The technique supports the concurrency constructs offered
by SpecC. It models the bit-vector semantics of the language accurately, and can be used
both for property checking and for checking refinement together with a traditional low-level
design given in Verilog.

Keywords Verification - System level design - Predicate abstraction

This paper is an extended version of [29].

This research was sponsored by the Gigascale Systems Research Center (GSRC) under contract no.
9278-1-1010315, the National Science Foundation (NSF) under grant no. CCR-9803774, the Office of Naval
Research (ONR), the Naval Research Laboratory (NRL) under contract no. NO0014-01-1-0796, the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485, and the General Motors Collaborative
Research Lab at CMU. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of GSRC, NSF,
ONR, NRL, ARO, GM, or the U.S. government.

E. Clarke (<) - H. Jain
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: emc@cs.cmu.edu

H. Jain
e-mail: hjain@cs.cmu.edu

D. Kroening
Computer Systems Institute, ETH Zurich, Switzerland
e-mail: daniel kroening@inf.ethz.ch

@ Springer

6 Form Method Syst Des (2006) 30:5-28

1 Introduction

Formal verification techniques are widely applied in the hardware design industry. Introduced
in 1981 Model Checking [11, 15] is one of the most commonly used formal verification
techniques in a commercial setting. However, it suffers from the state explosion problem. In
the case of BDD-based symbolic model checking this problem manifests itself in the form
of unmanageably large BDDs [8]. This problem is partly addressed by a formal verification
technique called Bounded Model Checking (BMC) [7]. In BMC, the transition relation for
a complex design and its specification are jointly unwound to obtain a Boolean formula,
which is then checked for satisfiability by using a SAT procedure such as Chaff [40]. BMC
has been used successfully to find subtle errors in very large industrial circuits [20, 48].

Most model checkers used in the hardware industry use a very low level design, usually a
netlist, but time-to-market requirements have rushed the Electronic Design and Automation
(EDA) industry towards design paradigms that offer a very high level of abstraction. This
high level can shorten the design time by allowing the creation of fast executable verification
models. This way, bugs in the design can be discovered early in the design process. As part of
this paradigm, an abundance of C-like system design languages has emerged. They promise
joint modeling of both the hardware and software component of a system using a language
that is well-known to engineers.

Several different projects have undertaken the task of extending C to support hardware
specification. HardwareC [36] from Stanford University is one of the earliest C-like hardware
description languages. While not all ANSI-C constructs are offered, it provides arbitrary-
length bit-vector (an array of bits) data types and an extended set of bit-vector operators. It
also features inter-process communication by means of channels. It is aimed at a rather low
hardware-level, resembling synthesizable RTL.

Handel-C [42], developed at Oxford University, is based on ANSI-C and adds concurrency
primitives, arbitrary-length bit-vectors, and channels. The synchronization mechanisms are
derived from the semantics of CSP.

The SpecC language [23], developed at the University of California, Irvine, is also based
on ANSI-C and adds constructs for state machines, concurrency (pipelines in particular), and
arbitrary-length bit-vectors. It also provides a way to modularize the design by a construct
that resembles classes as offered by C++. Channels are used for synchronization and
communication between modules.

The languages mentioned above are all based on ANSI-C and share most features. On
the other hand, SystemC [1], promoted by several companies in the EDA industry, is based
on C++. Like the C-based languages, SystemC offers extensions to allow arbitrary-length
bit-vectors and constructs for modularization and inter-process communication. As a distin-
guishing feature, it offers four state logic signals as found in Verilog. A four state logic signal
can have the four logical values ‘0’, ‘1°, ‘X’ (zero or one), and ‘Z’ (high impedance). SystemC
also supports low-level hardware concepts such as multiple drivers for a single signal.

Some fragments of these languages are synthesizable, and thus allow the application
of netlist or RTL-based formal verification tools. However, the higher abstraction levels
offered by most of these languages are not yet amenable to rigorous, formal verification.
The ambiguity in the specifications of the underlying programming languages such as C and
C++ makes the creation of formal models for verification even more difficult. As languages
like SpecC are closer to concurrent software than to a traditional hardware description, we
propose to address this verification problem using techniques from software verification.

The effectiveness of model checking for software is severely constrained by the state
space explosion problem, and much of the research in this area is targeted at reducing the

@ Springer

Form Method Syst Des (2006) 30:5-28 7

state space of the model used for verification. One principal method in state space reduction
of software systems is abstraction. Abstraction techniques reduce the program state space
by mapping the set of states of the actual system to an abstract, and smaller, set of states in
a way that preserves the actual behaviors of the system. If the abstraction turns out to be too
coarse, it has to be refined.

The abstraction refinement process has been automated by the Counterexample Guided
Abstraction Refinement paradigm [4, 16, 37], or CEGAR for short. One starts with a coarse
abstraction, and if it is found that an error trace reported by the model checker is not realistic,
the error trace is used to refine the abstract program, and the process proceeds until no
spurious error traces can be found.

Predicate abstraction [25] is a powerful technique for extracting finite-state models from
complex source code. It abstracts data by keeping track of certain predicates on the data. Each
predicate is represented by a Boolean variable in the abstract program, while the original
data variables are eliminated. Predicate abstraction of ANSI-C programs in combination
with counterexample guided abstraction refinement was introduced by Ball and Rajamani
[4] and promoted by the success of the SLAM project [5]. The goal of SLAM is to verify that
Windows device drivers obey API conventions. The abstraction of the program is computed
using a theorem prover such as Simplify [21], and thus, SLAM models the program variables
using unbounded integer numbers. Overflow or bit-wise operators are not modeled. As the
property of interest mainly depends on the control flow and not on the data computed, this
treatment is sufficient.

While the original work on predicate abstraction covers sequential programs only, the
idea was extended to concurrent programs in [9]. The threads are abstracted to labeled
transition systems that communicate using shared events. However, system-level languages
allow the use of shared variables for communication between processes. This is not supported
efficiently by the approach presented in [9]. As in the SLAM project, the abstraction in [9]
is performed assuming unbounded integer variables.

However, SystemC, SpecC and Handel-C all offer an extensive set of bit-wise operators,
which are not supported by this approach. Bit-wise operators perform bit-wise manipulations
on the operands, i.e., a bit-wise operator combines a bit in one operand with its corresponding
bit in the other operand to calculate one bit for the result. For example, the bit-wise AND (&)
of the two bit-vectors 1101 and 0111 is 0101. We use the term ‘bit-wise operator” to refer
to the various operations possible on one or more bit-vectors. These operations include shift
operators, which shift the bits in a given operand to either the left or the right by a specified
number of positions, the concatenation operator, which combines two or more bit-vectors,
and the extraction operator, which extracts bits from a bit-vector from the specified positions.
At the system-level, the use of these bit-level constructs is ubiquitous.

An algorithm that preserves the bit-vector semantics during predicate abstraction is pre-
sented in [13, 14]: A SAT solver is used to compute an abstraction of an ANSI-C program.
The approach supports all ANSI-C integer operators, including the bit-wise operators. The
technique is described for sequential programs only, while languages like SpecC encourage
the use of concurrency. A version of SLAM that implements SAT-based predicate abstraction
is reported to have found a previously unknown bug in a Windows device driver in [18]. The
bug depends on bit-vector operations, and thus, was not found using integer semantics.

Contribution. This paper presents a method to verify a concurrent SpecC system description
with communication through shared variables using the CEGAR paradigm. This includes

reasoning about the concurrency constructs (such as par, wait, and notify) and the

@ Springer

8 Form Method Syst Des (2006) 30:5-28

bit-vector operators found in SpecC. The par construct starts the concurrent execution of
threads, the wa it construct suspends the execution of a thread until a given event occurs, the
notify construct generates the events specified as arguments. Before the verification starts,
a pre-processing step is performed, which replaces all occurrences of the par construct with
equivalent static threads. Each thread consists of only guarded goto, assignment, and few
concurrency related statements. The verification is performed on the pre-processed program
using the CEGAR loop.

We describe the four steps that form the CEGAR loop, namely abstraction, model check-
ing, simulation, refinement. All steps of the CEGAR loop are completely automated, and
do not require any manual intervention. The abstraction of the given program is computed
using SAT-based predicate abstraction as introduced earlier in [13]. Each thread of control
is abstracted separately. The abstractions preserve the bit-vector semantics of SpecC, and all
SpecC bit-vector operators are supported.

The abstractions of the individual threads are then combined to obtain a concurrent finite
state model. This model is verified using a conventional BDD-based symbolic model checker.
If the model checker reports that the property holds on the abstract model, then the property
holds on the given SpecC program. In this case, the CEGAR loop outputs “property holds”
and terminates. Otherwise, an abstract counterexample is produced by the model checker.

The abstract counterexample corresponds to a sequence of statements Seq and includes the
interleavings between the various threads in the pre-processed SpecC program. The purpose
of the simulation step is to check if Seq corresponds to any concrete counterexample (i.e., a
real bug) in the given program or not. The simulation is done with a BMC-like computation
using a SAT solver. If Seq is a trace of a real bug, then the bug is reported and the CEGAR
loop terminates. Otherwise, Seq denotes a sequence of statements that cannot occur during
any execution of the given program. Such a sequence of statements is called a spurious
counterexample.

The spurious counterexample is analyzed by the refinement procedure to produce addi-
tional information, which is used to make later abstractions more precise, that is, to remove
the spurious counterexample. In the context of predicate abstraction, the refinement step is
used to discover new predicates. We perform the refinement using a backwards weakest pre-
condition [22] computation over Seq. This method guarantees that the counterexample Seq is
not obtained again. The prior work, which is less general, targets either sequential programs,
or disregards bit-vectors, or does not support communication through shared variables.

Optionally, a low level design (circuit level) can be added during the verification process.
The low-level design may be used for two purposes:

1. The low-level design can be used to check refinement, i.e., both the low-level and the
high-level design implement the same behavior.

2. The low-level design can be used as an addition to the high-level design. The algorithm
can then check safety properties on this combination. The low-level design can represent
the hardware, while the high-level design represents the software component of a system.

Related work. To the best of our knowledge, this work is the first to apply predicate abstraction
to SpecC or any similar system-level language.

There are tools that take a C program in a specific form as input and translate it into
a circuit. The circuit can then be used for property checking or can be compared to other
circuits using standard equivalence checkers, as done by Séméria et al. [47]. However, the
C program has to be very similar to the circuit, e.g., they must share the same registers and
must perform the computations in the same number of steps. Thus, it cannot be a high-level
model such as we examine.

@ Springer

Form Method Syst Des (2006) 30:5-28 9

Matsumoto, Saito, and Fujita compare two SpecC hardware descriptions [38]. First,
the differences are identified syntactically, and then compared using symbolic simulation.
The method also assumes very strong similarity of the two descriptions. No abstraction is
performed.

In [33], Bounded Model Checking (BMC) [6, 7] is applied to both a circuit and an
ANSI-C program. The approach is restricted to sequential ANSI-C programs; no support
for concurrency is provided. Furthermore, no attempt is made to abstract the program or
the circuit, which limits the capacity of the method. Also, Bounded Model Checking only
shows the absence of inconsistencies up to a given bound. In order to guarantee the absence
of any inconsistencies, the bound has to be larger than the Completeness Threshold [35],
which is too large for many industrial designs. A Bounded Model Checker for concurrent
ANSI-C programs with communication through shared variables is presented by Rabinovitz
and Grumberg in [46].

In [32], the authors apply SAT-based predicate abstraction to the equivalence checking
problem. The high-level language used is ANSI-C, not a system level language, and no
concurrency is supported.

The concept of verifying the equivalence of a software implementation and a synchronous
transition system was introduced by Pnueli, Siegel, and Shtrichman [43]. Since the target
code is generated automatically by a compiler, the C program is assumed to have a specific
form.

Clarke et al. [12] use SAT-based predicate abstraction for the verification of control inten-
sive systems arising from the hardware domain. They propose a lazy abstraction refinement
algorithm to identify the predicates relevant to the verification of the given property. In
contrast to our work, very low level designs in the form of netlists are verified.

Several methods address the problem of scalability in the presence of threads and non-
deterministically chosen data via forms of decomposition [2, 26]. Henzinger et al. apply an
algorithm for model checking safety properties of concurrent software for automatic race
detection in multi-threaded C programs [26]. However, the analysis of Henzinger et al. does
not cover hardware-like bit-vector manipulation. These techniques usually either sacrifice
some amount of completeness or require small amounts of intervention from the user. The
advantage of these approaches is that the analysis is much more scalable. Unsound approaches
have also proved successful in finding bugs in concurrent programs. For example, Qadeer &
Rehof [45] note that many bugs can be found when the analysis is limited to execution traces
with only a small number of context-switches between concurrent threads. This analysis
supports recursive programs.

Qadeer et al. [44] present an algorithm for computing summaries of procedures for multi-
threaded programs. The summary of a procedure P represents the effect of P on a particular
input state. If P is called from two different places but with the same input state, the work done
in analyzing the first call is reused for the second. They also present a model checking algo-
rithm that uses the summaries. However, no experimental evaluation was given in the paper.

Forms of partial-order reduction for explicit-state model checking (examples include [24,
28]) have been particularly effective for verifying programs and protocols with many threads.
For example, Ball, Chaki and Rajamani [3] describe a partial-order reduction based explicit
state model checker, called Beacon, for asynchronous Boolean programs. Beacon, however,
is overly sensitive to the occurrence of symbolic data.

Outline. In Section 2, we provide a background on SpecC, and describe how we pre-process
the SpecC program for verification. Section 3 formalizes the semantics of the synchronization

@ Springer

10 Form Method Syst Des (2006) 30:5-28

constructs found in SpecC. We describe the abstraction and refinement process in Section 4,
and provide experimental data in Section 5.

2 SpecC
2.1 Introduction

The SpecC language [23] is a modeling language for the specification and design of digital
embedded systems at the system level. System-level design is a methodology for specification
and design of systems that include both hardware and software components. The process of
system design begins with a high-level specification that defines the functionality as well as
the performance, power, cost and other constraints of the intended design.

The SpecC language is an extension of the C programming language and is based on the
ANSI-C standard. As a true superset, SpecC covers the complete set of ANSI-C constructs.
In addition, SpecC supports concepts essential for the design of embedded systems, including
structural hierarchy, concurrency, communication, synchronization, state transitions, excep-
tion handling, and timing.

Syntactically, a SpecC program consists of a set of behavior, interface,and chan-
nel declarations. The syntax of a behavior is similar to the syntax of a C++ class with a
set of ports, a set of instantiations of child behaviors, and a set of variables and functions. A
behavior can be connected to other behaviors or channels through its ports. A channel is a
class that encapsulates communication and provides a method for process synchronization.
An interface provides a flexible link between behaviors and channels.

SpecC extends the ANSI-C syntax with several constructs for concurrent programming
with asynchronous interleaving semantics. Since the focus of this paper is making the
concurrent SpecC programs amenable to verification, we describe the informal meaning of
these constructs next:

— The par construct specifies concurrent execution. It is used to split the current thread by
starting the concurrent execution of the various child threads. The execution of the par
construct completes when all the child-threads have terminated.

— The wait construct suspends the execution of the current thread until a given event
occurs. If more than one event is specified, the wait construct follows either OR or AND
semantics (as specified). The OR semantics means that the wait construct suspends the
execution of the current thread until at least one of the events occurs. The AND semantics
means that the wait construct suspends the execution of the current thread until all the
given events have occurred. A particular ordering between events is not required.

— The not ify construct generates the events specified as arguments. The generated events
are delivered to all the threads that are currently waiting or sensitive to the notified events.
This allows resuming the execution of threads that currently (or in the future) wait on the
generated events.

— The functions defined for a channel class have an implicit locking mechanism. Only one
thread is allowed to execute the channel code of a particular instance of the channel. The
lock is released while the channel waits for events. We model this implicit synchronization
construct using explicit lock and unlock commands.

An event has a special type called the event type. Note that an event does not have a
value. Therefore, an event must not be used in any expression. Events can be used only with
certain constructs such as wait and notify.

@ Springer

Form Method Syst Des (2006) 30:5-28 11

event e;
int x;
behavior A () { behavior Main {
void main() { A aQ;
x = 42; B b(O);
notify e; int main O {
} par { a.main();
I¥ b.main(); }
return O;
behavior B () { }
void main() { }s
wait(e);

printf ("Got %d4d", x);
1
s

Fig. 1 Small SpecC program P from the SpecC language reference manual [23]

Example 1. The SpecC program of Fig. 1 shows the use of the wait and notify constructs
described above. The example consists of a Main behavior, behavior A, and a behavior
B. The Main behavior uses the par construct to start concurrent execution of the main
functions of the behaviors A and B, where A sends data to B via the global variable x. In
order to ensure that B reads the value of x only when A has produced it, B waits for the event
e to be generated by A.

In the example above, the use of the synchronization constructs wait and notify
ensures that for any possible interleaving of the statements in thread A and thread B, the data
will transfer correctly from A to B. That is, even if A were to generate the event e before B
starts waiting for e, B will eventually get the event sent by A and will read the data correctly.

Informally, the synchronization semantics described in the SpecC standard requires that
the events generated are collected until no active thread is available for execution. Once all
the threads are either suspended due to a wa it statement or terminated, the set of generated
events is delivered to all threads, which activates those threads that were waiting on any of
them. This is why in the example above B is guaranteed to receive the event sent by A. Note
that the wa it can occur any time after the not i fy. In particular, the following sequence is
guaranteed not to deadlock.!

notify e;
wait e;

Example 2. The SpecC program of Fig. 2(a) shows a channel class C that implements
an interface /. The interface / specifies the send and receive methods. The channel class
C provides a simple implementation of the send and receive methods by use of an integer
variable d. Intuitively, the methods of a channel specify the communication protocol, whereas
the variables of a channel resemble the communication media.

! We are grateful to Masahiro Fujita for clarifying this issue.

@ Springer

12 Form Method Syst Des (2006) 30:5-28

interface I { void C::send(int x) {
void send(int); lock(C);
int receive(void); d = x;

1 unlock(C);

}

channel C implements I {

int d; int C::receive(void) {
void send(int x) { int temp;
d = x; lock(C);
+ temp = d;
int receive(void) { unlock(C);
return d; return temp;

IS }
s

(a) (b)

Fig. 2 (a) Example of a channel C taken from [23]. (b) Making implicit locks in channel methods explicit
by adding lock and unlock statements

2.2 Pre-processing

In this section we describe the steps used to simplify the given SpecC program before it is
given to the verification tool. All transformations are performed automatically. We assume
that the given SpecC program does not use recursion and hence, there is no dynamic thread
creation either.

First, we flatten the class-like constructs offered by SpecC, i.e., the behaviors and channels.
While flattening the channels, we make the implicit locks explicit by adding lock and unlock
statements. Figure 2(b) illustrates the send and receive methods implemented by channel C
after making the locks explicit.

This is followed by the removal of side effects, that is, pre- and post-increment operators,
the compound assignment operators (such as x+ = y) and the assignment operators that
are used as expressions (such as (x = (y = z)), and the function calls. This is done by
introducing temporary variables and inlining of function calls. We then replace the break,
continue, if, for, while, and do while statements by equivalent guarded goto
commands. After these steps, the program contains only guarded goto, simple assignment,
wait, notify, lock, unlock, and par statements.

The next step is to statically create the threads that can be active during the execution of the
given program. This is done by iterating over the par statements in the given program. For
example, let the ma in thread contain a par statement which starts the concurrent execution
of the threads of type A and B. Let A contain a par statement which starts two threads of type
B and C. We assume that B and C do not contain any more par statements. The resulting
par graph is shown in Fig. 3(A).

The par graph shows that there are two threads of type B which can be concurrent at
the same time. For the static creation of the threads we need to distinguish between these
two instances of B. This is done by performing depth first search (DFS) and assigning a
distinct number called thread-number to each node in the par graph. The result is shown in
Fig. 3(B). After assigning the thread numbers, we create five static threads, which are main,
A, B3, Bs, and C. The threads B3 and Bs are the two instances of thread B indexed according

@ Springer

Form Method Syst Des (2006) 30:5-28 13

Fig. 3 (A) Nested par structure B B 3
(B) DFS numbering starting from A/ (i)‘
main 7 T=C 7 T—=C @
maln\\ mai
B (1) B ®
(A) (B)
Fig. 4 Replacement of par in main

the main thread -
S1: notify startl, start2;

S2: wait donel && done2;|

L1: wait startl; MI: wait start2;
A By
notify donel; notify done2;
goto L1; goto M1;

7\

to their thread-numbers. We do not index the threads main, A, and C, because there is only
one instance of these threads in Fig. 3(B).

After the creation of static threads we replace the par statements using wait and
notify statements. For example, consider the main thread of Fig. 3(B). It starts the
concurrent execution of the threads A and Bs. In order to replace this par statement, we
introduce four global events start;, start,, doney, and done, into the system. The changes
made to the code of the main, A, and Bs threads are shown in Fig. 4. The par statement in
the main thread is replaced by the following statements:

notify start;, start,
wait done, && doney;

The statements wait start; and wait start, are added to the beginning of A and Bs,
respectively. These statements ensure that the threads A and Bs will wait for the ma in thread
to start them by generating the events start; and start,, respectively. Similarly, the statements
notify done; and notify done, are added to the end of A and Bs, respectively. These
events signal the main thread that the threads A and Bs have completed their execution. This
in turn enables the main thread to resume its execution.

The goto statements at the end of the threads A and Bs in Fig. 4 cause A and Bs to
start waiting again for the events start| and start,, respectively. This is required if the par
statement of the main thread was inside a loop. The guards of the goto statements in Fig. 4
are assumed to be true. Recall that thread A starts the concurrent execution of the threads
B3 and C by using a par statement. This par statement is also replaced by the wait
and notify statements as done for the main thread to start the threads B3 and C. This is
depicted by arrows from A to B3 and C in Fig. 4.

The program obtained after applying the simplifications described above consists of a
set of static threads. Each thread consists of only guarded goto, assignment, and the four
synchronization statements. This pre-processing greatly simplifies the construction of the
formal models that can subsequently be given to standard program verification tools.

@ Springer

14 Form Method Syst Des (2006) 30:5-28

3 Formal semantics

The SpecC execution semantics have been described by Domer et al. [23] using the time
interval formalism. Mueller et al. [41] formalized the execution semantics of SpecC using
distributed Abstract State Machines. In this section, we describe the operational semantics
that we use. Given a SpecC program P, we define a transition system 7 for P. The transition
system T = (S, I, R) consists of a set of states S, a set of initial states / C S, and a transition
relation R(s, s’), which relates the current state s € S to a next-state s’ € S.

We assume that the given program P has already been pre-processed as described in
Section 2.2. Let {Py, ..., P,} be the set of the static threads present in P. A state s of the
program P consists of the valuations for:

— the set of program counters {pcy, ..., pcy}, where each pc; is the program counter of the
thread P;. The projection function pc;(s) maps a state s to the value of the program counter
pc; in state s.

— the set of program variables, denoted by V. The function v(s) maps a state s to the value
of the variable v in state s.

— the set of event bits E, defined as UL U, {e;}, where e denotes an event in the program.
Intuitively, an event bit ¢; is the flag used by the thread P; to check if event e has occurred.
This definition of E treats all events as global, that is, we assume that each event can
potentially be used by any thread in wait or notify-like constructs. This makes the
description of formal semantics easier. In practice, the number of event bits can be reduced
if an event is used only by a subset of the threads. The function e;(s) maps s to the value
of the event bit ¢; in state s.

Henceforth, we assume that 7, j range over the thread indexes, that is i, j € {1, ..., m}.
Initially, the program counter for each thread is set to one and all event bits e; are set to false.
Thus, the set of initial states / is defined as follows:

I :={s € S|(Vi. pci(s) = 1) A (Ve; € E.—ei(s))}
The transition relation R(s, s) relates two states s and s’, where s’ is obtained by choosing
one of the threads P; non-deterministically and executing it in the state s. If the thread P; is
executed in the transition from s to s’, then the program counters of all the other threads j #

i remain the same. We use §(s, ', i) to denote the effect of executing the thread P; in state s.
Formally,

R(s,s") =3 (Vj#i — pc;(s) = pcij(sH) A8, s, i)

We use egqvars(s, s') to denote that the values of all variables do not change in the transition
from s to s'.

eqvars(s, s') :=Yv € V. v(s) = v(s")

We use egevents(s, s") to denote that the values of all the event bits do not change in the
transition from s to s’

eqevents(s,s') :=Ve; € E. e;(s) = e;(s)

@ Springer

Form Method Syst Des (2006) 30:5-28 15

We assume that in each transition exactly one thread executes one statement atomically.
This assumption is justified later in this section. Let I'(s, i) denote the statement executed in
the state s by P;. The function (s, s’,i) is defined by a case split on the statement I'(s, 7). We
have the following cases:

If I'(s, i) is a guarded goto statement of the form (goto, g, /), then the value of the
program counter pc; is changed according to the value of the Boolean condition g in the state
s, which is denoted by g(s). If g(s) is true, then the program counter is set to /, otherwise the
program counter is simply incremented. The values of the variables and the values of the
event bits remain unchanged.

.. pci(s) =1 :g(s)
8(s,s',0):= ,
pci(s") = pci(s) +1 :otherwise

Aeqvars(s,s’) A egevents(s, s)

If ['(s, i) is an assignment statement of the form (v := exp), then the value of v is set to
the value of the expression exp in the state s, which is denoted by exp(s). The values of the
other variables and the values of the event bits in £ remain unchanged. The program counter
for P; is incremented.

8(s, s, i) = (v(s") = exp(s)) A
Vu € V\{v} : u(s) = u(s")) A
(pci(s") = pci(s) + 1) A egevents(s, s')

If I"(s, i) is a wait statement of the form (wait, AND, W), where W is a set of events, then
the thread P; waits until all the events in W have been generated (AND semantics). In order
to test if an event e has been generated, the thread P; checks the event bit e;. If all the event
bits e; with e € W are true, all the events in W have been generated. In this case, the program
counter for P; is incremented and the event bits ¢; with e € W are reset to false.? The values
of the other event bits remain the same. We denote the set of other event bits by £ with
E’' = E\{eile € W}. If not all the events in W have been generated yet, then the program
counter for P; remains unchanged. The values of all the event bits remain unchanged. In both
the cases, the values of all the variables remain unchanged.

/\ ei(s) — 8(s, s, 1) := eqvars(s, s’) A
eeW
(pci(s) = pai() + 1) A
/\ —ei(s) A
ecW
(Vfi € E": fi(s) = fi(s)
=\ eis) = 8Gs, s, i) i= (pei(s) = pei(s)) A
eeW

eqvars(s, s") A eqevents(s, s)

2 Thus, we implement a form of busy-waiting—this is wasteful if execution is the goal, but simplifies the
model if the goal is model checking.

@ Springer

16 Form Method Syst Des (2006) 30:5-28

The treatment of the wait statement with OR semantics is similar.

If (s, i) is anot i fy statement of the form (not i £y, W), where W is a set of events, then
for every event e € W, we set the event bits ¢; for all j(1 < j < m) to true. This ensures that
any thread P; that was previously waiting for an event e € W will now find the corresponding
event bit ¢; to be true. This also allows notify e to match with wait e even if wait e
occurs later.

8(s,s",i):= (Yee WYj:e;j(s)) A
(Ve ¢ WYj:ej(s)=¢e;(s) A
(pci(s) = pei(s) + 1) A eqars(s, s')

Our definition of the transition relation assumes that in each transition exactly one thread
executes one statement atomically. However, the SpecC standard does not guarantee atomic-
ity for the execution of any portion of the concurrent code. The SpecC standard requires that
for concurrent threads to be cooperative, the threads need to be synchronized at the point of
communication.

If the given program is not synchronized properly, the following situation might arise:
thread P;, executing the assignment statement x :=y, is preempted by another thread P»,
which starts writing to y. As a result of this, x might get a value with bits from both the old
and the new value of the variable y. This situation is commonly referred to as the read write
(RW) conflict between two concurrently executing threads. A situation similar to this is the
write write (WW) conflict which arises when two threads attempt to write to a shared variable
simultaneously.

Both RW and WW conflicts are undesirable, as they make the program unsafe. Therefore,
before taking a transition out of a state s, we first check for a potential RW or WW conflict in
the state s. In order to do this, we compute for each thread P; the set of variables it can read
and write in the state s. We denote these sets by read(i, s) and write(i, s), respectively. Note
that both read(i, s) and write(i, s) may depend on the valuations of pointer variables in case
the statement that is to be executed contains pointer dereferencing operators.

The presence of a RW or WW conflict can be cast as the following safety property:

i3j : (@ # j) A ((read(s, i) Nwrite(s, j) # D)V
(write(s, i) Nwrite(s, j) # ?))

We call a state s in which a RW or WW conflict is possible during the execution of the next
statement of two threads a conflict state. If there is a conflict state s, we report that as an
error and stop the verification process. However, if there is no RW or WW conflict in s, then
we can safely make a transition out of state s using the transition relation described above.
This is justified by the Claim 1.

Claim 1. Assuming that the execution is free of RW and WW conflicts, any state s reachable
by executing k statements using full interleaving semantics (that is, no atomicity) is also
reachable by £ or less transitions using interleavings only between statements (that is, atomic
execution of the statements).

This claim is shown by induction on k.

@ Springer

Form Method Syst Des (2006) 30:5-28 17

Claim 2. If there is a conflict state s reachable using full interleaving semantics, it is also
reachable using interleavings only between statements.

This claim is also shown inductively. It allows us to conclude that it is sufficient to check
for possible RW or WW conflicts before the execution of a statement. It is not necessary
to consider any interleavings within the statement. In the following, we will describe a
verification method that is based on this assumption as it abstracts programs statement by
statement.

4 Counterexample guided abstraction refinement loop for SpecC
4.1 Predicate abstraction

We verify the SpecC program using counterexample guided abstraction refinement (CE-
GAR). We perform a predicate abstraction [25], i.e., the variables of the program are replaced
by Boolean variables that correspond to a predicate on the original variables.

The first step is to obtain an initial abstraction. This abstraction is then checked using a
symbolic model checker. We perform a safe abstraction, i.e., if the property holds on the
abstract model, we can conclude that it also holds on the concrete model. If the property does
not hold on the abstract model, we expect the model checker to provide a counterexample.
This abstract counterexample is then simulated on the concrete model. This step corresponds
to Bounded Model Checking on the concrete model with additional constraints that are
derived from the abstract counterexample.

If the simulation is successful, we obtain a concrete counterexample from the Bounded
Model Checker, which can be given to the user to aid in finding the cause of the flaw. If
the simulation fails, the abstract counterexample is spurious, and the abstraction has to be
refined.

Formally, we assume that the algorithm maintains a set of n predicates p, ..., p,. These
predicates are global, i.e., the abstract model only contains one set, which is used by all the
threads. The predicates are functions that map a concrete state x € S into a Boolean value.
When applying all predicates to a specific concrete state, one obtains a vector of # Boolean
values, which represents an abstract state . We denote this function by «(x). It maps a
concrete state into an abstract state and is therefore called an abstraction function.

We perform an existential abstraction [17], i.e., the abstract model can make a transition
from an abstract state £ to £ iff there is a transition from x to x’ in the concrete model and x
is abstracted to £ and x’ is abstracted to £’. We call the abstract transition system T, and we
denote the transition relation of T by R.

R:={& £)|3x,x' € S: R(x,x)Aalx) =% Aalx) =%}

Note that in practice, additional transitions are often added to the abstract transition relation
in order to make the computation of R easier. This is common for the abstraction of both
circuits and programs.

The initial set of states I(x) is abstracted as follows: an abstract state X is an initial state
in the abstract model if there exists a concrete state x that is an initial state in the concrete
model and is abstracted to X.

&) :=3xeS:alx)=%AlKX)
@Springer

18 Form Method Syst Des (2006) 30:5-28

The abstraction of a safety property P(x) is defined as follows: for the property to hold on
an abstract state X, the property must hold on all states x that are abstracted to X.

P(R):=VxeS:(ax)=2%) = P(x)

Thus, if 2 holds on all reachable states of the abstract model, P holds on all reachable
states of the concrete model.

4.2 SAT-based abstraction

Most tools using predicate abstraction for software verification use general-purpose theorem
provers such as Simplify [21] to compute the abstraction. This approach suffers from the fact
that errors caused by bit-vector overflow may remain undetected. As a motivating example,
the formula(x — y > 0) <= (x > y) obviously holds if x and y are integers, but no longer
holds once x and y are interpreted as bit-vectors, due to possible overflow on the subtraction
operation.

Furthermore, bit-wise operators are usually treated by means of uninterpreted functions.
Thus, properties that rely on these bit-vector operators cannot be verified. However, we
expect that system-level SpecC models typically use an abundance of bit-wise operators, and
that the property of interest will depend on these operations.

In [13], the authors propose to use a SAT solver to compute the abstraction of a sequential
ANSI-C program. We implement this approach for computing abstractions of SpecC pro-
grams. The method supports all ANSI-C integer operators, including the bit-wise operators.
Itis used to abstract the assignment statements and the guards of the guarded goto statements
of the SpecC program. No abstraction is done for the wait and notify statements. They
are copied into the abstract model directly using the event bits (Section 4.3). Similarly, no
abstraction is done for the 1ock and unlock statements. They are modeled in the abstract
model by using new Boolean variables (Section 4.3).

Assignment statements. In order to abstract an assignment statement v := exp, it is trans-
formed into an equality v’ = exp. The primed version of a variable denotes the value of the
variable in the next state. This equality is conjoined with equalities that define the next value
of any other variable u € V' \{v} to be the current value. Thus, only the value of the variable
v in the assignment statement changes. This equation system is denoted by 7, v denotes the
vector of all variables in V.

T@,0):=v =exp A /\ u=u
ueV\{v}

The abstract transition relation B(%, ') relates a current state £ (before the execution of
the assignment) to a next state X’ (after the execution of the assignment). It is defined using
« as follows:

{(£,%)]30,0 : (@) =) AT(®,0) A (a@) =)
We compute B using SAT-based Boolean quantification, as described in [13]. The result

is DNF over the predicates. There are a number of ways to improve this basic algorithm,

@ Springer

Form Method Syst Des (2006) 30:5-28 19

e.g., predicate partitioning as described in [30]. However, these techniques are beyond the
scope of this article.

Branching conditions. The expressions used in the branching conditions of the program are
ideal candidates for predicates, and thus, the branching condition will often be a Boolean
combination of predicates. If this is so, the branching conditions are simply replaced by their
corresponding Boolean variables. If not, the expression is abstracted using SAT in analogy
to an assignment statement.

4.3 Checking the abstract model

The abstraction process above results in one Boolean program for each thread. The programs
share the predicates, but each thread has individual state bits to store the events. No attempt
is made to abstract the event structure. We rely on the model checker to explore the possible
interleavings of the individual threads. In order to check the abstract model, we use SMV
[10, 39].

The wait and the notify statements present in the static threads are directly translated
to the SMV statements using the semantics described in Section 3. For example, consider
a program with only two threads P; and P,. Let P contain a wait e statement and let P,
contain a notify e statement. In order to translate these statements to SMV, two event bits
e and e, are introduced into the SMV model. The bit ¢; is used to transmit e to Py, and the
bit e; is used to transmit e to P;. Let /; and /, denote the program counter (pc) values of
the wait e statement in P; and of the notify e statement in P,, respectively. The SMV
statements generated for the wait e statement in P, are as follows:

ASSIGN next(pcy) :=

casepcy =1 : //wait statement
casee; : [1 +1; //event e has occurred
ley 2 1q; //event e has not yet occurred
esac;
esac;
TRANS pcy = I} A ey — !next(ey) //resetting e}

The SMV statement generated for the not i fy e statement in P;, is as follows:

TRANS pcy = I, — next(e;) A next(ey)

Let C denote a channel. As illustrated above, the implicit lock that guards the channel is
translated into explicit 1ock and unlock statements. The translation of the lock (C) ,
unlock (C) statements into SMV is based on a new Boolean variable for each lock. Let
b denote the Boolean variable corresponding to the lock for C. Let /; and /, denote the
program counter values of the 1ock (C) and unlock (C) statements, respectively. The

@ Springer

20 Form Method Syst Des (2006) 30:5-28

SMYV statements generated for the 1ock (C) statement are as follows:

ASSIGN next(pc) :=

casepc =1 : /Mlock statement
case !b: [+ 1; /Mlock available, increment program counter
b:l; //lock held by some other thread
esac;
esac;

TRANS pc =1} A b — next(b) //acquire lock
The SMV statement generated for the unlock (C) statement is as follows:
TRANS pc = [, —!next(b) / /release lock

As described in Section 3, it is not necessary to consider all possible interleavings if
one checks for possible conflicts before the execution of the statements. We merge multiple
assignment statements into one basic block and abstract this block into one abstract transition,
and thus, we eliminate the interleavings within a basic block. This requires that any conflict
between any pair of statements in the basic blocks that are about to be executed has to be
detected. The set of variables read and written until the end of the basic block can easily
be computed statically. We use these sets to detect a potential RW or WW conflict among the
threads that are ready to be executed by means of an SMV SPEC statement.

4.4 Simulation and refinement

If the property does not hold on the abstract model, SMV returns a counterexample trace.
This trace is then checked on the concrete model.

Let the counterexample trace have k steps. Each step is performed by a particular thread,
and corresponds to a particular statement in the concrete program. We use the thread schedule
(interleaving) of the abstract trace as given by SMV for the simulation. No attempt is made
to find alternate thread schedules.

The simulation requires a total of kX SAT instances. Each instance adds constraints for one
more step of the counterexample trace. We denote the value of the (concrete) variable v € V
after step i by v;. All the variables v € V inside an arbitrary expression e are renamed to v;
using the function p;(e).

The SAT instance number i is denoted by X; and is built inductively as follows: X, (for
the empty trace) is defined to be true. For i > 1, 3; depends on the type of statement of state
i in the counterexample trace. Let p; denote the statement executed in the step i.

If step i is a guarded goto statement, then the (concrete) guard g of the goto statement is
renamed and used as conjunct. If the branch is not taken in the abstract trace, g is negated.
Furthermore, a conjunct is added that constrains the values of the variables to be equal to the
previous values:

pi =(goto, g,) — X, = X1 Api(9 A /\ U =i
ueV

@ Springer

Form Method Syst Des (2006) 30:5-28 21

If step i is an assignment statement, the equality for the assignment statement is renamed
and used as conjunct:

pi=(v:i=exp) — Z; =X Apj(v) = pi_1(exp) A

/\ Ui = uj—1

ueV\{v}
If stepiis anotify or wait statement, the variables are not changed.

pi = (motify, W) — X, =%, A /\ U = Uj_q

ueV

The formal definition of X, for wait, lock and unlock statements is done analo-
gously.

Note that in case of assignment, wait, and notify statements, X; is satisfiable if the
previous instance X;_; is satisfiable. Thus, the satisfiability check only has to be performed
if the last statement is a guarded goto statement. If the last instance X is satisfiable, the
simulation is successful and a bug is reported. The satisfying assignment provided by the
SAT solver allows us to extract the values of all variables along the trace. If any SAT instance
is unsatisfiable, the step number and the guard that caused the failure are passed to the
refinement algorithm.

If 5 is a goto statement with guard g, we write assume g or assume —g to denote
the branch of the goto statement that is executed in the abstract trace.

Example. Let S denote the following counterexample trace.

assume(y == 2);
X=7y;
assume(!(x > 0));

It is checked if S is a real counterexample (bug) or a spurious counterexample by checking
the satisfiability of the following formulas:

2= (y1 =2) A (xp =x0) A (Y1 = Yo)
=1 A =yDA02=y1)
3= A3 =x) A (y3 = y2) A —(x3 > 0)

We use a SAT solver to check the satisfiability of the above formulas. Observe that X1,
Y, are satisfiable, but X5 is unsatisfiable. Thus, trace S is a spurious counterexample and the
guard that caused the last SAT instance to be unsatisfiable is !(x > 0).

Refinement. If the abstract counterexample cannot be simulated, it is an artifact from the ab-
straction process and the abstraction has to be refined. This is done by computing the weakest
precondition [22] of the guard g that caused the last SAT-instance ¥ to be unsatisfiable; as
above, g is negated if the branch is not taken.

Formally, let formula ¢ describe a set of program states, namely, the states in which the
value of program variables satisfy ¢. The weakest pre-condition of a formula ¢ with respect
to a statement s is the weakest formula whose truth before the execution of s entails the

@ Springer

22 Form Method Syst Des (2006) 30:5-28

truth of ¢ after s terminates. We denote the weakest pre-condition of ¢ with respect to s by
WP(¢, s). It is defined as follows:

— If s is an assignment statement of the form v = exp;, then the weakest pre-condition of ¢
with respect to s, is obtained from ¢ by replacing every occurrence of v in ¢ with exp.

— If s is a goto statement with guard g, we write assume g or assume —g to denote
the branch of the goto statement that is executed. The weakest pre-condition of ¢ with
respect to assume gis¢ A g.

- Ifsisanotify, wait, lock orunlock statement, then the weakest pre-condition
of ¢ with respect to s is ¢ itself.

The weakest pre-condition operator is extended to a sequence of statements by WP(¢,
s1; 82) = WP (WP (¢, s2), s1). The weakest preconditions are computed following the
simulation trace as built in the previous section, and thus, the computation may include
statements from multiple threads. The new predicates are obtained by extracting the
atomic predicates (Boolean expressions) from the weakest pre-condition. For example,
if the weakest pre-condition is x > y A x == 3, we obtain the two predicates x > y and
x == 3. Both the computation of the weakest pre-condition and the extraction of the atomic
predicates are completely automated. The new predicates are added to the previous set of
predicates. This method guarantees that future abstract models do not contain the same
spurious counterexample.

Example. Let S denote the following counterexample trace.

assume(y == 2);
X=7y;
assume(!(x > 0));

As described in the previous example, S is a spurious counterexample, and the guard
g that makes the last SAT instance unsatisfiable is !(x > 0). To eliminate this spurious
counterexample, the weakest pre-condition of g is computed with respect to the statements
occurring before g in S. We denote these statements by §' := assume(y == 2);x =y;.
The weakest pre-condition of g with respect to §’ is:

WP(p,S)=WPWP((x > 0),x =y), assume(y == 2))
WP(¢5 S,) = WP('(y > 0), assu_me(y == 2))

The weakest pre-condition of S with respect to ¢ is !(y > 0) A y == 2. There are two
new atomic predicates that occur in the weakest pre-condition: y > 0 and y == 2.

The next example illustrates the operation of the CEGAR loop using a small SpecC
program. Note that all steps of the CEGAR loop are automatic and do not require user
intervention.

Example. The SpecC program given in Fig. 5(a) has two threads A and B, which commu-
nicate using events ey, e;. For simplicity we omit some syntax irrelevant to this example
and the Main thread, which starts the threads A and B. The program operates as follows:
thread A writes 42 into the shared variable x. After that, thread A generates an event e,
which matches with the wait el statement in thread B. Next, thread B performs some

@ Springer

Form Method Syst Des (2006) 30:5-28 23

event el, e2; event el, e2; event el, e2;
int x; bool pl; /* x>0 %/ bool pl; /* x>0 */
bool p2; /* y>0 */
bool p3; /* y==2 x/
behavior A () { process A O { process A () {
Al: x = 42; Al: pl = true; Al: pl = true;
A2: notify el; A2: notify el; A2: notify el;
A3: wait e2; A3: wait e2; A3: wait e2;
Ad: if ' (x > 0) A4: if ' (pl) A4: if 1 (pl)
A5: ERROR: ; A5: ERROR: ; A5: ERROR: ;
} } }
behavior B () { process B () { process B () {
int y;
Bl: wait el; Bl: wait el; Bl: wait el;
B2: if (y == 2) { B2: if (x) { B2: if (%) {
B3: X =Y, B3: pl = *; B2: p3 = true;
B4: } B4: } B2: p2 = true;
B5: notify e2; B5: notify e2; B3: pl = p2;
} } Ba: }
B5: notify e2;
}

Fig. 5 (a) A SpecC program with two threads. (b) Abstraction with respect to the predicate set {x > 0} (c)
Abstraction with respect to the predicate set {x > 0,y > 0, y == 2}

computation on X. Once thread B completes its computation, it generates an event e,. Upon
receiving the event e;, thread A checks the value of the guard !(x > 0). If this guard is true,
an ERROR label is reached.

We use the CEGAR loop to show that the ERROR label is not reachable in the given
program. The first step of this loop is to create an abstraction of the concrete program using
an initial set of predicates. In practice one starts with an empty set of predicates and new
predicates are discovered through refinement. For this example, we suppose that the initial
set of predicates contains the predicate x > 0. The abstraction with respect to the predicate
x > 0 is shown in Fig. 5(b). Each thread of the SpecC program is abstracted separately to
a process in the abstraction. The control flow of the concrete program is preserved in the
abstraction. Since the event structure is not abstracted, wait and not i fy statements from
the concrete program are directly copied in the abstraction. For simplicity we do not show
the actual SMV code of the abstract model.

In the abstract model, the predicate x > 0 is represented by the Boolean variable p;. Each
statement in the abstraction represents the effect of the corresponding concrete statement
on the set of predicates. For example, the statement x = 42 in thread A makes the predicate
x > 0 true at the program location Al in the abstraction. The statement x = y in thread B
assigns a non-deterministically chosen Boolean value (*) to x > 0 at program location B3.
This is because the current set of predicates contains no information about y.

Running a model checker on the abstraction in Fig. 5(b) returns an abstract counterex-
ample shown in Fig. 6(a). An assume statement is used to specify which branch of the
if statement is taken in the counterexample. In this counterexample, p; is assigned false

@ Springer

24 Form Method Syst Des (2006) 30:5-28

Al: pl = true; Al: x = 42;

A2: notify el; A2: notify el;

Bl: wait el; Bl: wait el;

B2: assume (true); B2: assume (y == 2);
B3: pl = false; B3: x = y;

B5: notify e2; B5: notify e2;

A3: wait e2; A3: wait e2;

A4: assume (!pl); A4: assume !(x > 0);
A5: ERROR;

Fig. 6 (a) Counterexample obtained after model checking the abstraction in Fig. 5(b). (b) Corresponding
counterexample in the concrete program Fig. 5(a)

at location B3, making the condition !p; in A4 true. This makes the ERROR label reachable
in the abstract model. The sequence of SpecC statements corresponding to this abstract
counterexample is shown in Fig. 6(b). Observe that this sequence of statements is not
feasible in any execution of the concrete program. This is because at location B2, we assume
y to be equal to 2. At location B3, the variable x is assigned to the value of y, and thus, the
guard !(x > 0) in location A4 must evaluate to false. Thus, the abstract counterexample is
spurious. Since the guard !(x > 0) in location A4 causes the simulation to fail, we compute
its weakest pre-condition with respect to the statements shown in Fig. 6(b). The weakest
precondition !(y > 0) A (y == 2) results in two new atomic predicates y > 0, y == 2.
The abstraction using the new predicate set {x > 0,y > 0, y == 2} is shown in Fig. 5(c).
Observe that inside the true branch (assume y == 2) of the if statement at location B2,
the predicates y == 2 (p3) and y > 0 (p,) are assigned true. The effect of the statement
x =y in thread B is to assign the value of predicate p; the value of p; in the abstraction.
Model checking of this abstraction is successful, that is, the ERROR label is shown not to be
reachable in the abstraction. Thus, the ERROR label is not reachable in the concrete program.

5 Experimental results

We have implemented the algorithm described above in a tool called SATABS. The imple-
mentation includes front-ends for ANSI-C, SpecC, Verilog, and SystemC. We make our
implementation available for experimentation by other researchers.’

We report experimental results for synthetic benchmarks to evaluate the scalability of the
approach with respect to the size of the program, the number of threads, and the number of
predicates required to prove or disprove the property. The experiments are performed on a
1.5 GHz AMD machine with 3 GB of memory running Linux.

The benchmark results are given in Tables 1 and 2. The PIPE benchmarks are a series of
instances of a pipeline that simply passes data through. The number denotes the number of
pipeline stages. Each pipeline stage is modeled as a separate thread. A separate event for each
stage is used to synchronize the communication of the threads. The property is an assertion
that the data that was put in the pipeline matches the data that comes out of the pipeline. The
run-time includes the time for the abstraction refinement. The table shows the total time and
the time spent in the model checker checking the abstract model. On this benchmark, the
run-time is clearly dominated by the time required for checking the abstract model. Thus,

3 http://www.inf.ethz.ch/personal/daniekro/satabs/

@ Springer

Form Method Syst Des (2006) 30:5-28 25

Table 1 Experimental results. The times are given in seconds. The “bug length” column denotes the length
of the counterexample. A dash denotes that the property holds

Runtime
Benchmark Threads Bug length Predicates Total NuSMV
PIPE 4 5 - 4 1.9 1.9
PIPE 5 6 - 5 44 4.3
PIPE 6 7 - 6 8.3 8.2
PIPE 7 8 - 7 132 13.1
PIPE 8 9 - 8 233 232
PIPE 9 10 - 9 32.6 325
PIPE 10 11 - 10 55.9 55.7
PIPE 11 12 - 11 75.8 75.6
PIPE 12 13 - 12 92.0 91.9
PIPE 13 14 - 13 202.3 202.1
PIPE 14 15 - 14 789.2 788.9

Table 2 Experimental results. The times are given in seconds. The “bug length” column denotes the length
of the counterexample. A dash denotes that the property holds

Runtime
Benchmark Threads Bug length Predicates Total NuSMV
PRED 8 1 - 8 0.9 0.6
PRED 16 1 - 16 6.6 4.5
PRED 32 1 - 32 60.3 46.4
PRED 64 1 - 64 831.6 723.1
ALUPIPE A 3 - 4 4.0 0.3
ALUPIPE B 3 25 1 2.8 0.3
ALUPIPE C 3 - 6 11.1 2.6

we experimented with two different implementations, CMU SMV [39] and NuSMV [10].
NuSMV clearly outperforms CMU SMYV, and therefore we only report the NuSMV time.
Both model checkers show exponential run-time in the number of threads.

The PRED n benchmarks require n predicates and refinement iterations to show the
property. While the abstraction scales well with the number of predicates, the model checker
quickly becomes the bottleneck.

The ALUPIPE benchmarks use a SpecC program that models a shallow pipeline (just
two or three stages). However, they make extensive use of bit-wise operators (arithmetic,
slicing, concatenation). E.g., the program computes the result of an addition in multiple steps.
The property is an assertion that checks the result computed by the pipeline. In contrast to
the benchmarks above, the ALUPIPE benchmarks require predicates that contain complex
arithmetic. In case of the passing properties (ALUPIPE A and ALUPIPE C), the run-time
is dominated by the abstraction computation phase, and in the case of the failing property
(ALUPIPE B), the run-time is dominated by the simulation phase.

Experiments with SPIN. We also experimented with SPIN [27], which is an explicit state
model checker with partial order reduction. On a large number of threads and a small number
of predicates, SPIN clearly outperforms NuSMV due to its partial order reduction algorithm.
However, SPIN quickly runs out of memory as soon as even a moderate (>30) predicates are

@ Springer

26 Form Method Syst Des (2006) 30:5-28

used, as all states are represented explicitly. As future work, we plan to investigate symbolic
model checkers that implement partial order reduction.

6 Conclusion

An abundance of formal verification tools are available for the verification of hardware given
in RTL or as a netlist. However, there is little support for formal verification for system
level languages such as SpecC. We presented an algorithm for rigorous, formal verification
of SpecC programs. SpecC offers an extensive set of bitwise operators. Our algorithm
models the bit-vector semantics of the language accurately by means of a direct, bit-wise
encoding of the variables and operators into propositional logic. It provides full support for
the concurrency and synchronization constructs offered by the language.

The method uses counterexample guided abstraction refinement to obtain a safe predicate
abstraction of the SpecC program. The abstraction is done using SAT, which enables support
for all bit-vector operators. The experimental results indicate that the verification of the
abstract model can be a bottleneck if many threads are used. We implemented a model checker
that integrates partial order reduction into a SAT-solver to verify the abstract models [19].

Predicate discovery for abstraction-refinement is still an open area of research. We de-
scribed how new predicates can be discovered using weakest pre-conditions. This is theo-
retically sufficient for making sure that CEGAR loop makes progress. However, it may not
be practical for certain examples where a large (intractable) number of refinement iterations
are needed to get the “right” set of predicates. An alternative technique for discovering new
predicates is based on interpolation [31].

Among the system level languages, SystemC stands out since it is the only language based
on C++ and not on plain ANSI-C. We have implemented the predicate abstraction refine-
ment loop for models extracted from SystemC [34]. In contrast to SpecC, SystemC does not
permit arbitrary interleavings, but only upon thread termination or the execution of a wait
statement. This reduces the complexity of the model checking problem, but does not support
modeling of real-time operating systems. The paper also describes how to reduce the com-
plexity of verification by statically scheduling (merging) particular threads. As future work,
we plan to investigate opportunities for exploiting the object structure of SystemC models.

Acknowledgments We thank Masahiro Fujita for numerous clarifications of the semantics of SpecC, and
the anonymous referees for helpful suggestions.

References

1. SystemC, http://www.systemc.org

2. Alur R, Henzinger TA, Mang F, Qadeer S, Rajamani SK, Tasiran S (1998) MocHA: Modularity in model
checking. In: Proceedings of the 10th international conference on computer-Aided verification (CAV),
vol 1427 of Lecture notes in computer science, pp 521-525

3. Ball T, Chaki S, Rajamani SK (2001) Parameterized verification of multithreaded software libraries. In:
Proceedings of the 7th international conference on tools and algorithms for the construction and analysis
of systems (TACAS), vol 2031 of lecture notes in computer science, pp 158-173

4. Ball T, Rajamani SK (2000) Boolean programs: A model and process for software analysis. Technical
Report 2000-14, Microsoft Research

5. Ball, T, Rajamani SK (2001) Automatically validating temporal safety properties of interfaces. In: The
8th International SPIN workshop on model checking of software, vol 2057 of lecture notes in computer
science, pp 103-122

@ Springer

Form Method Syst Des (2006) 30:5-28 27

6.

10.

11.
12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

. Domer R, Gerstlauer A, Gajski D (2002) SpecC language reference manual, Version 2.0.

24.

25.

26.

27.

28.

29.

Biere A, Cimatti A, Clarke EM, Fujita M, Yhu Y (1999a) Symbolic model checking using SAT procedures
instead of BDDs. In: Proceedings of the 36th conference on design automation conference (DAC), pp
317-320

. Biere A, Cimatti A, Clarke EM, Yhu Y (1999b) Symbolic model checking without BDDs. In: Proceedings

of the 5th international conference on tools and algorithms for construction and analysis of systems
(TACAS), vol 1579 of lecture notes in computer science, pp 193-207

. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic model checking: 1020 states

and beyond. Inf Comput 98(2):142-170

. Chaki S, Clarke E, Groce A, Ouaknine J, Strichman O, Yorav K (2004) Efficient verification of sequential

and concurrent C programs. Form Meth Syst Des (FMSD) 25(2-3):129-166

Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A
(2002) NuSMV Version 2: An opensource tool for symbolic model checking. In: Proceedings of the 14th
international conference on computer aided verification (CAV), vol 2404 of lecture notes in computer
science, pp 359-364

Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press

Clarke E, Grumberg O, Talupur M, Wang D (2003) High level verification of control intensive systems
using predicate abstraction. In: Proceedings of the 1st ACM and IEEE international conference on formal
methods and models for co-design (MEMOCODE), pp 55-64

Clarke E, Kroening D, Sharygina N, Yorav K (2004) Predicate abstraction of ANSI-C programs using
SAT. Formal Methods Syst Des (FMSD) 25:105-127

. Clarke E, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction for

ANSI-C. In: Proceedings of the 11th international conference on tools and algorithms for the construction
and analysis of systems (TACAS), vol 3440 of lecture notes in computer science, pp 570-574

Clarke EM, Emerson EA (1981) Synthesis of synchronization skeletons for branching time tempo-
ral logic. In: Logic of programs: Workshop, vol 131 of Lecture notes in computer science, pp 52—
71

Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement.
In: Proceedings of the 12th international conference on computer aided verification (CAV), vol 1855 of
lecture notes in computer science, pp 154—-169

Clarke EM, Grumberg O, Long DE (1992) Model checking and abstraction. In: Proceedings of the 19th
symposium on principles of programming languages (POPL), pp 342-354

Cook B, Kroening D, Sharygina N (2005a) Cogent: Accurate theorem proving for program verification.
In: Etessami K, Rajamani SK (eds) Proceedings of the 19th international conference on computer aided
verification (CAV), vol. 3576 of lecture notes in computer science, pp 296300

Cook B, Kroening D, Sharygina N (2005b) Symbolic model checking for asynchronous boolean programs.
In: Godefroid P (ed) Proceedings of the 12th international SPIN workshop, vol 3639 of lecture notes in
computer science, pp 75-90

Copty F, Fix L, Fraer R, Giunchiglia E, Kamhi G, Tacchella A, Vardi MY (2001) Benefits of bounded
model checking at an industrial setting. In: Berry G, Comon H, Finkel A (eds) Proceedings of the 13th
international conference on computer aided verification (CAV), pp 436453

Detlefs D, Nelson G, Saxe JB (2003) Simplify: A theorem prover for program checking. Technical Report
HPL-2003-148, HP Labs

Dijkstra E (1976) A discipline of programming. Prentice Hall

http://www.specc.org/

Flanagan C, Godefroid P (2005) Dynamic partial-order reduction for model checking software. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on principles of programming languages
(POPL), pp 110-121

Graf S, Saidi H (1997) Construction of abstract state graphs with PVS. In: Grumberg O (ed) Proceedings
of the 9th international conference on computer aided verification (CAV), vol 1254 of lecture notes in
computer science, pp 72-83

Henzinger TA, Jhala R, Majumdar R, Qadeer S (2003) Thread modular abstraction refinement. In:
Proceedings of the 15th international conference on computer-aided verification (CAV), vol 2725 of
lecture notes in computer science, pp 262-274

Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279-295

Holzmann GJ, Peled D (1994) An improvement in formal verification. In: Proceedings of the 7th IFIP
WG6.1 international conference on formal description techniques, pp 197-211

Jain H, Clarke E, Kroening D (2004) Verification of SpecC and verilog using predicate abstraction. In:
Proceedings of the 2nd ACM and IEEE international conference on formal methods and models for
co-design (MEMOCODE), pp 7-16

@ Springer

28

Form Method Syst Des (2006) 30:5-28

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

45.

46.

47.

48.

Jain H, Kroening D, Sharygina N, Clarke E (2005) Word level predicate abstraction and refinement for
verifying RTL Verilog. In: Proceedings of the 42nd design automation conference (DAC), pp 445-450
Jhala R, McMillan KL (2006) A practical and complete approach to predicate refinement. In: TACAS,
vol. 3920 of lecture notes in computer science, pp 459-473

Kroening, D, Clarke E (2004) Checking consistency of C and Verilog using predicate abstraction and
induction. In: Proceedings of the 2004 IEEE/ACM international conference on computer-aided design
(ICCAD), pp 66-72

Kroening D, Clarke E, Yorav K (2003) Behavioral consistency of C and VERILOG programs using
bounded model checking. In: Proceedings of the 40th design automation conference (DAC), pp 368-371
Kroening D, Sharygina N (2005) Formal verification of system C by automatic hardware/software par-
titioning. In: Proceedings of the 3rd ACM and IEEE international conference on formal methods and
models for co-design (MEMOCODE), pp 101-110

Kroening D, Strichman O (2003) Efficient computation of recurrence diameters. In: Zuck L, Attie P,
Cortesi A, Mukhopadhyay S (eds) Proceedings of the 4th international conference on verification, model
checking, and abstract interpretation (VMCALI), vol 2575 of lecture notes in computer science, pp 298—309
Ku, D, DeMicheli G (1990) HardwareC—A language for hardware design (Version 2.0). Technical Report
CSL-TR-90-419, Stanford University

Kurshan RP (1994) Computer-aided verification of coordinating processes: The automata-theoretic ap-
proach. Princeton University Press

Matsumoto T, Saito H, Fujita M (2003) Equivalence checking of C based hardware descriptions by using
symbolic simulation and program slicer. In: International workshop on logic and synthesis IWLS’03)
McMillan K: CMU Symbolic Model Verifier, http://www.cs.cmu.edu/ ~ modelcheck/smv.html
Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering an efficient SAT
solver. In: Proceedings of the 38th design automation conference (DAC), pp 530-535

Mueller W, Domer R, Gerstlauer A (2002) The formal execution semantics of specC. In: Proceedings of
the 15th international symposium on system synthesis, pp 150-155

Page I (1996) Constructing hardware-software systems from a single description. J VLSI Signal Process
12(1):87-107

Pnueli A, Shtrichman O, Siegel M (1998) The code validation tool CVT: Automatic verification of a
compilation process. Int J Softw Tools Technol Transt (STTT) 2(2):192-201

Qadeer S, Rajamani SK, Rehof J (2004) Summarizing procedures in concurrent programs. In: Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL), pp
245-255

Qadeer, S, Rehof J (2005) Context-bounded model checking of concurrent software. In: Proceedings of
the 11th international conference on tools and algorithms for the construction and analysis of systems
(TACAS), vol 3440 of lecture notes in computer science, pp 3—107

Rabinovitz I, Grumberg O (2005) Bounded model checking of concurrent programs. In: Proceedings
of the 17th international conference on computer aided verification (CAV), vol 3576 of lecture notes in
computer science, pp 82-97

Séméria L, Seawright A, Mehra R, Ng D, Ekanayake A, Pangrle B (2002) RTL C-based methodology
for designing and verifying a multi-threaded processor. In: Proceedings of the 39th design automation
conference (DAC), pp 123-128

Shtrichman O (2000) Tuning SAT checkers for bounded model checking. In: Emerson E, Sistla A (eds)
Proceedings of the 12th international conference on computer aided verification (CAV), pp 480-494

@ Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

